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1. Introduction 

 

Aggregation methods in transport have been studied since the late ‘60s of the 20th 

century. Initially the main objective was to reduce computational cost as a result of the 

limited amount of computing resources available for the task at hand. Today governments 

and industry are shifting more and more towards operating multiple transport models 

alongside each other. In such environments (dis)aggregation plays an increasingly important 

role, not only to reduce computation times, but also in providing conversions between 

different levels of granularity. In doing so, one mainly aims to remove/introduce 

redundant/relevant detail. However, it should be noted that it depends on the application at 

hand what detail can be considered redundant/relevant.  

Given a more recent emphasis on consistency and the observation that an aggregation 

method is only as effective as the application context it was designed for, it is surprising to 

see that very little research regarding aggregation methods take these two components 

explicitly into account.  

In this research the application context considered is one where the transport network 

(supply) is assumed fixed, while demand can vary per scenario .s S  There is a multitude 

of applications that follow this protocol and could benefit from the proposed method. One 

can think of matrix calibration/estimation procedures, quick scan methods and/or demand 

scenario comparisons.  

Most aggregation methods in the literature are described either informally or in terms of 

an algorithm. This can make it difficult to analyze what exactly is being proposed. To 

address this, we formalize our methodology by adopting and modifying a method that is 

well known in the field of quantum processing (Coecke and Duncan, 2011) and (linear) 

logical reasoning, but has so far not been used in the field of transport. The proposed 

adaptation is grounded in category theory and it is considered attractive in this context since 

it provides an intuitive graphical interpretation, while at the same time has a rigorous 

mathematical underpinning. 

The concept of delay is important in this paper. We distinguish between two types of 

delay: Hypercritical delay and hypocritical delay (Cascetta, 2009). Hypercritical delay is the 
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queuing delay when travel demand exceeds infrastructure supply. This delay is related to 

the congested part of the fundamental diagram where flow decreases with increasing density. 

Hypocritical delay on the other hand is the delay one experiences when there are no queues, 

but drivers can no longer traverse a road segment at free speed due to interactions with other 

vehicles. This delay is related to the uncongested part of the fundamental diagram where 

flow increases with increasing density. Therefore, the total travel time on a link or path 

consists of free flow travel time plus hypocritical delay plus hypercritical delay.  

On the part of the aggregation methodology, we make a number of simplifying 

assumptions are to support a (potential) lossless outcome for our class of compatible traffic 

assignment models: (i) Hypocritical delay is assumed to be zero. This is an often made 

assumption in which only free flow travel time and hypercritical (queuing) delays are 

considered, and is consistent with for example the well-known triangular fundamental 

diagram (Newell, 1993) and the bottleneck model (Vickrey, 1969). (ii) The traffic 

assignment procedure is path based with a given set of paths.  

For simplicity we assume that path costs consist solely of travel time, although this 

assumption can be relaxed. The path travel cost function compatible with the defined class 

of models is then given by (1). 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

hypocritical delay hypercritical delay

( ) ( ) ( ),s I II s s I III s s I III s s

p p p p p p p p p pc f f f            (1) 

  

where ( )s

pf  denotes the (desired) path flow for a path p P  under demand scenario .s S  

Here ( ) ( )( )II s s

p pf  represents the flow dependent uncongested path travel time (including 

hypocritical delay), and ( ) ( )( )III s s

p pf  represents the flow dependent congested travel time 

(hypercritical delay).  Uncongested travel time ( ) ( )( )II s s

p pf  can be decomposed into flow 

independent minimum free flow path travel time I

p  (based on maximum link speeds), and 

hypocritical delay ( ) ( )( ) ,II s s I

p p pf   where the latter is assumed to be zero in this context. As 

a result, the path travel time in Equation (1) can then be decomposed into a part that is flow 

independent and a part that is flow dependent only in case of congestion. The efficiency of 
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the proposed aggregation concept hinges on exploiting the possibility of decomposing path 

travel times and utilise it to decompose the entire transport network.  

This results in a free flow network and a (queuing) delay network. Since the free flow 

network is independent of flow, I

p only needs to be computed once across all demand 

scenarios. The delay network on the other hand requires computation for each demand 

scenario separately. However, since the portion of the network experiencing queuing delays 

is typically small, a significant reduction in computation time is realised. Path travel times 

are reconstructed by combining the free flow travel time and delay travel time of the two 

networks. 

The proposed aggregation method is especially effective in a context where queues are 

assumed vertical, i.e. do not spillback. However, one can also apply it in a (dynamic) context 

with horizontal queues. Finally, note that one can even adopt this approach when violating 

assumption (i); an example being traditional static assignment with a BPR function (Bureau 

of Public roads, 1964). In such cases ( ) ( )( ) 0II s s I

p p pf    and the methodology becomes lossy 

rather than lossless. It is therefore not explicitly considered in the remainder of this work.  

 

1.1. Contributions and outline 

 

This work makes the following contributions. First, we introduce a category theoretical 

approach in formalizing transport network transformations by adopting and adapting pattern 

graph rewriting techniques. To the best of the author’s knowledge this is the first time such 

a method is used to formalize methodology in the field of transport. Secondly, we propose 

a novel network aggregation procedure based on path travel time decomposition as well as 

a novel zonal aggregation procedure that can be applied on top of the decomposition method 

utilising a path aggregation scheme. Both methods are lossless under some (discussed) 

conditions. Thirdly, we demonstrate applicability via theoretical examples and a real world 

large scale case study adopting a recently developed quasi-dynamic traffic assignment 

model with residual point queues. Preliminary results show potential for computational 

reductions to less than 5% of the original cost, depending on the demand scenario. 
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This paper is organized as follows. Section 2 discusses the current state of spatial 

aggregation procedures in traffic assignment. Section 3 introduces string graphs and how 

they can represent transport networks. Section 4 provides an introduction into category 

theory and pushouts and introduces pattern graphs. Section 5 formalizes graph rewriting 

with rewrite patterns which are used to describe the two aggregation methods discussed in 

Sections 6 and 7, respectively. Section 8 presents two case studies, one on a small theoretical 

network and one on a large real network. Conclusions and future research are outlined in 

Section 9.  

 

2. Spatial aggregation in the literature 

 

Two types of spatial aggregation are typically distinguished in the transport literature: 

network aggregation which impacts on the road infrastructure, i.e. nodes and links, and 

zonal aggregation which aggregates the zones (and virtual links connecting the zones to the 

network). 

 

2.1. Network aggregation 

 

One can differentiate between network extraction and network abstraction methods 

within the network aggregation paradigm (Chan et al., 1968; Connors and Watling, 2008). 

Network extraction directly removes nodes and links from the network. Examples of this 

type of procedure can be found in Chang et al. (2002), Long and Stover (1967) and Bovy 

and Jansen (1983). Network abstraction on the other hand, replaces nodes and links with 

something else, in order to mimic the original situation. Chen et al. (1968) argue that 

network extraction is an undesirable approach because it reduces capacity on the network, 

unrealistically diverts traffic and breaks network connectivity. Based on these findings Chan 

(1976) proposes a network abstraction method using zonal bypasses adopting a traditional 

static network loading procedure.  
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Network decomposition can be regarded as an alternative to network aggregation, instead 

of aggregating the network it decomposes the network in order to simplify the problem. 

Examples of this approach, proposing a traffic transfer decomposition technique, can be 

found in Barton and Hearn (1979) and Hearn (1984), where they determine a deterministic 

user equilibrium by solving a mathematical programming problem. For a comprehensive 

literature review on network topology decomposition (mostly related to queuing theory) we 

refer to Osorio and Bierlaire (2009). All aforementioned methods only consider static 

capacity restrained traffic assignment (i.e., no capacity constraints and residual queues) and 

do not take the application context into account. 

 

2.2. Zonal aggregation 

 

In an urban planning or demand modelling context, zonal aggregation is often associated 

with the procedure on how to construct zones. This is also known as zoning effects 

(Openshaw and Taylor, 1979; Paez and Scott 2004). However, this research considers a 

traffic assignment context, as such the original zoning structure is assumed given (zones 

based on a detailed level of postal codes for example) and we only look at the scaling effect 

of zoning. This entails grouping of existing zones. This type of zonal aggregation is termed 

the “spatial aggregation problem” by Daganzo (1980a). Daganzo solved the problem by 

embedding a zonal aggregation procedure into the Frank and Wolfe (1956) algorithm. A 

generalised version extending this to a continuum approach (Newell, 1979) also exists 

(Daganzo, 1980b).  

Some studies combined a zonal aggregation and network aggregation procedure to create 

a more comprehensive approach (Jeon et al., 2010; Bovy and Jansen, 1983). They remove 

categories of links deemed not important enough. As a second step the zones, residing 

within the “holes” formed by the network aggregation procedure, are grouped. Chang et al. 

(2002) adopt a similar approach, only they group zones according to functional groups. The 

main problem of these methods is twofold, namely (i) they only consider the traditional 

static traffic assignment approach and more importantly, no justification is provided on why 

removing certain links, or grouping certain centroids is reasonable, and (ii) all combined 
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network and zonal aggregation approaches rely on network extraction which is an 

undesirable approach if one can avoid it. 

As stated the proposed aggregation method addresses aforementioned issues by explicitly 

stating the application context the method is designed for. Furthermore, the procedure itself 

is formalised in category theory. Since this is the first time such a method is applied in the 

field of transport some basic concepts are explained while introducing the necessary 

notation. 

 

3. Graph representation in a category theoretical context 

 

Category theory comes with entirely new terminology that will be unfamiliar to most 

transport scientists. This section as well as Sections 4 and 5 lean heavily on definitions 

originally introduced in Kissinger et al. (2014). All Definitions adopted from Kissinger 

(2014), but adapted to suit the specific needs of the aggregation method are indicated with 

an asterisk (*). To correctly construct the algebra these definitions require revisiting in this 

paper, especially since many of them have been altered. We urge the reader not to worry if 

some of the more mathematical constructs, especially in Sections 5 and 6, are not 

immediately understood. One does not necessarily need to understand every intricate detail 

of how this algebra is constructed in order to take advantage of the benefits of the final 

result, much the same as not every driver understands how the engine of its car works. 

Applying the graphical rewriting method in the presented aggregation methodology, rather 

than the math underpinning this algebra is discussed from Section 6 and onward. 

Category theory revolves around the notion of objects and arrows. Objects are instances 

of a particular category while arrows, named morphisms, typically (but not necessarily) 

represent operations on objects that allow for transformations from one object to another. In 

this section we will define several categories of graphs used to represent our transport 

network and paths that go through this network. Let start with how we construct the category 

of graph from the category of sets. A graph G  contains edges e E G and vertices v V G and 

the two can be linked via (2)1. 

                                                           
1 Diagrams such as the one depicted in (2) are valid category theoretical constructs and have a closer resemblance to an 
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(2) 

 

Both src and trg are functions yielding the source (upstream vertex) or target 

(downstream vertex) of the edge respectively, observe that this implies that each edge and 

vertex is both uniquely labelled as well as directed. In addition we define that when

( )src e v , edge e  is an out-edge of .v Conversely, it is an in-edge when ( ) .trg e v  

The definition of the category of graphs from the category of sets can be achieved via a 

functor category, which roughly speaking, imposes the additional rules stated in (2) onto the 

category of sets to construct the category of graphs, or more formally: 

 

Definition 3.1*: Graph is the category of directed labelled graphs, which is a functor 

category denoted as G
Set where Set  is the category of sets and G represents (2), i.e. two 

morphisms between two objects of the category of sets 

 

Let us now define the successors of edge v  through ( ).succ v This is the set of all vertices 

v  that have an in-edge e  which is an out-edge of .v  Similarly, the set of vertices v   which 

have an out-edge e  which is an in-edge of  v  is known as the predecessors of v , i.e. ( ).pred v  

In transport networks, intersections (nodes) are often represented by vertices while road 

segments (links) are indicated by edges (Figure 1a). However, for this research an 

alternative representation is adopted. The reason for this is that it will simplify the final 

graph rewriting method as it obviates the need for explicit node representation. 

 

                                                           
equation than a figure. Therefore they are treated as equations rather than figures in the remainder of this paper. 
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(a) 

 

(b) 

Fig. 1. (a) Common representation of example network of a Manhattan type network with four 

travel zones. (b) String graph representation of the same network shown in (a). 

 

Links are modelled as vertices while nodes are indirectly represented through turns, 

where each turn is modelled through a so called wire chain. Each wire chain consists of two 

edges and a single special vertex termed wire vertex, see Figure 1(b). This network 

representation can be categorised as a string graph (Dixon et al. 2010) which is the discrete 

version of a string diagram. These diagrams were originally used to describe calculations 

on tensor networks (Joyal and Street, 1991). One of the benefits of representing a transport 

network as a (string) graph is that it allows to apply specific graph rewriting rules using 

pushouts, inspired by recent work from Kissinger et al. (2014). These (recursive) rewriting 

rules are used to formalise the presented aggregation method. To define a category of graphs 

that has two different types of vertices one can define a type graph. A type graph can be 

used to formalise the allowed interaction between the differently typed components of the 

original graph category. It is a way to make a category more specific. For example the type 

graph that defines the category of string graphs as shown in Figure 1(b) is given by 2G :   

 

 

 

(3) 

wire vertex (14,15)

regular vertex
2 3 4

65 7

121110

13 14 15

16

1

98

wire chain



0..1

0..*

2G
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Wire vertices are represented through type   and “regular” vertices through type  , i.e. 

.V    Multiplicities (e.g. 0..1, 0..*)  impose the lower and upper bound on edge 

cardinality, identical to multiplicities used in class diagrams in the field of computer science. 

This means that each wire vertex v   is allowed to connect towards at most one regular 

vertex ,v  while each regular vertex can have zero or more (a ‘*’ represents infinite) 

connections to wire vertices.  

 

Definition 3.2* SSGraph: The category SSGraph of simplified string graphs2 is the full 

subcategory of the slice category Graph/ 2G  adhering to the multiplicities indicated. 

Furthermore, only a single wire vertex is allowed to exist in between two regular vertices 

on any string graph ,G such that each wire vertex can be uniquely defined through its 

adjacent regular vertices, see Figure 1(b) for an example.  

 

While simplified string graphs can represent our transport network, each path can be 

defined as a string graph as well, albeit a slightly different one. Each path p P  has a 

representing linear string graph (Definition 3.3) denoted by ,p P G  where G is a simplified 

string graph representing the entire transport network. 

 

Definition 3.3 LSGraph: The category LSGraph of linear string graphs is identical to 

SSGraph except for its multiplicities. LSGraph allows only a single wire to enter and a 

single wire to exit a regular vertex, hence the name linear string graph.  

 

Both simplified string graphs and linear string graphs have a boundary. In both cases the 

boundary is defined as the union of locations in the graph where a wire vertex lacks an 

ingoing or outgoing edge, see also Definition 3.4 or Figure 2 for an example. This notion of 

boundaries will become important in the following section when defining our algebra. 

 

                                                           
2 This category is termed ‘simplified’ because the typical definition of a string graph does allow for wire chains containing 

multiple wire vertices, while we limit ourselves to a single wire vertex to suit our needs. 
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Definition 3.4* Boundary: The boundary of a (linear) string graph is defined in terms of 

its wire vertices. Given a string graph G  the set of inputs  In  GG  is determined such 

that when  In ,v G it holds that ( ) .pred v  G  Similarly,  Out G  is determined such 

that when  Out ,v G ( ) .succ v  G  The intersection with G  ensures an unaltered 

interpretation of what constitutes a boundary in case additional vertex types are introduced. 

The boundary is given by      Bound =In Out .G G G  

 

 

Fig. 2. Example linear string graph pP for some path p and its boundary. 

 

4. Graph transformation via pushouts 

 

 

The graph categories defined in Section 3 are in fact sets with some additional structure 

imposed by (2) and (3). If one performs a mapping on an object of the category of graphs 

and the result of this function is again a graph of the same category, the mapping is said to 

be structure preserving. Such as a structure preserving mapping is known as a 

(homo)morphism in category theory. Given we only consider (sub)categories of graphs and 

sets in this paper one can think of morphisms as a generalisation of an ordinary function that 

acts upon sets (although this does not hold in general). For example :m G G denotes 

morphism m  that maps object G to ,G where the former is known as the domain and the 

latter as the codomain of .m  A composition of multiple morphisms is typically depicted in 

a diagram by combining their representative arrows.  

To provide some context for the reader unfamiliar with category theoretical constructs 

Table 1 outlines some of the more common morphisms and their functional equivalents, i.e. 

interpretations in the context of the category of sets/graphs as considered in this paper. 

 

pP

 , In
p pv v P P  , Out

p pv v  P P
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Table 1. Morphisms and their (better known) functional equivalents for the category of 

sets/graphs. 

 

Morphism type Homomorphism 

synonym 

Set/graph 

functional 

equivalent  

Interpretation 

Monomorphism Injective 

homomorphism 

Injective 

function 

Each element in the domain is 

mapped to maximum one 

element  in the codomain 

Epimorphism Surjective 

homomorphism 

Surjective 

function 

Each element in the codomain 

was mapped from minimum 

one element in the domain 

Isomorphism Bijective 

homomorphism  

Bijective 

function 

Every element in domain, 

codomain has a single mapped 

element in codomain, domain 

respectively. 

Identity 

morphism 

- Identity 

mapping 

An object is mapped to itself 

 

One example of morphism composition is the pushout. While this is a known method in 

many areas of research it is, as far as the authors are aware, new to the field of transport. An 

introduction into the basic concept is therefore warranted. Pushout graph rewriting was first 

proposed by Ehrig et al. (1973). Popular constructs are the single pushout (SPO) and double 

pushout (DPO). In this paper we use them to modify the transport network and path 

representations. 

 

Definition 4.1 Single Pushout (SPO): Let 1 :m K G and 2 :m K G  be morphisms, 

the pushout of 1m  and 2m  is the ‘glued’ object  G G   with morphisms 1 :m   G G G  

and 2 :m    G G G  such that the diagram in Figure 3 commutes3. 

                                                           
3 Given multiple paths exist from one object to another, the diagram commutes when the result of the two paths is identical. 
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Fig. 3. Pushout diagram, based on Ehrig et al. (1973). 

 

The objective of this pushout is to glue objects G   and G  together rather than obtaining 

the disjoint combination of the two. To achieve this, object K serves as a common interface. 

The effect of this interface is that all nodes and links that can be ‘glued’ are identified by 

,K which in the context of graphs can be interpreted as . G G  Due to the fact that this 

pushout commutes, the minimal ‘glued’ result graph  G G is obtained.  

Pushouts can be used to define (graph) rewriting rules. Löwe (1993) showed that 

rewriting rules in DPO format are in fact special cases of SPO. Since SPO is a simpler 

construct, the reader is informally introduced to the intuition of this concept using an SPO 

example. We delay formal definitions until Section 5. 

To apply a rewrite rule, one first identifies a subgraph L  of some reference graph ,G  

this is called a matching and denoted by injective homomorphism : . L G L represents 

the left hand side of rewrite rule : , L R with R representing the right hand side after the 

rewrite. Since the SPO commutes, the changes applied via morphism  are also applied to 

G such that it yields rewritten graph ,H which is identical to graph G  except that L  has 

been replaced by R.  Figure 4(a) illustrates the SPO and Figure 4(b) shows a concrete 

example. 

Any dangling vertices that result from this transformation are deleted. In case a node or 

link in R  does not exist in L   it is added to .H  For a comprehensive introduction into 

category theory and pushouts see for example Awodey (2010) or Simmons (2011). 

1m

K

G

G

 G G

2m

1m
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Fig. 4. (a) SPO Rewrite rule notation (b) concrete SPO rewrite rule example for an instance 

of the category simplified string graph. 

 

4.1. Graph families and pattern graphs 

 

To modify graphs, i.e. our transport network, instances of rewrite rules are to be defined. 

As we will see later, the rewrite rules required for our aggregation method exhibit a recurring 

pattern. This results in a large, if not infinite, number of rewrite rules because each possible 

rule has to be defined explicitly. Dixon and Duncan (2009) first introduced the concept of 

!-boxes (‘bang’ boxes) to circumvent this problem. This idea was further extended by Dixon 

and Kissinger (2013) and Kissinger et al. (2014). It allows the specification of an infinite 

family of graphs in a single visual representation. As an example Figure 5 depicts a !-box 

around the top (light grey) vertex, which means this vertex can be repeated zero or more 

times. Similarly, there is a !-box containing the bottom (dark grey) vertex. Additionally, 

there is a !-box around all three vertices such that any pattern of the three vertices can be 

repeated zero or more times, with a minimum of a single white vertex in each repetition.  
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Fig. 5. (a) Example sequential !-box pattern graph and (b) the infinite family of concrete 

instances of linear string graphs that it represents. 

 

This expression that represents an infinite family of graphs is underpinned by defining 

operations on (sequential) !-boxes. All operations can be repeated zero or more times and 

(sequential) !-boxes can also be nested. One can think of this method as the equivalent of 

pattern matching in regular expressions or the functional programming paradigm from 

computer science. Due to this close resemblance, this technique has the additional benefit 

of providing direct insights regarding the construction of solution algorithms. While the 

original !-boxes in Kissinger at al. (2014) used parallel inspired operations, in the context 

of this study, three sequential operations are proposed, namely a sequential copy, sequential 

kill and drop operation (Figure 6). 

 

 

Fig. 6. (a) Example linear string graph ,G with a single (sequential) !-box and the result of 

applying a sequential copy operation (b) on G , a drop operation (c) onG or a sequential kill 

operation (d) on .G  

 

To formalize these operations a new type of vertex is required: The s!-vertex (‘sequential 

bang’ vertex). This requires a new type graph 3G  as depicted in (4) which in turn can be 

used to create a more specific category including s!-vertices. Each s!-vertex on a pattern 

 , , , , ,   , ,  , ,

(a) (b)
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graph G  is denoted by !b G . Figure 7(a) shows the proposed schematic box notation while 

Figure 7(b) depicts the equivalent traditional version of the same graph.  

 

 

                       (a) 

 

(b) 

Fig. 7.*: (a) Schematic depiction of s!-boxes and their boundaries, (b) traditional depiction via 

explicit edges. 

 

Each s!-box is denoted by bB , with ! .b G bB  represents the full subgraph where its 

vertices are the successors to b, i.e. ( ).succ b  Each bB , is required to have a single wire vertex 

that represents its incoming boundary and a single wire vertex that represents its outgoing 

boundary, i.e. In( ) = Out( ) 1.b b B B This ensures that the boundary is invariant under the 

supported operations. 

 

 

 

 

(4) 

 

Definition 4.2* LSPatGraph: A graph G  which is an instance of the full subcategory 

of Graph/ 3G  is known  

as a (linear sequential) pattern graph (LSPatGraph ) when: 

 The full subgraph with  G G  is a linear string graph, 

1

2

3

2b

1b
1

Out( )bB

2
Out( )bB

1 2
In( ) In( )b bB B

1

2

3

2b

1b


0..1

0..1

3G



!
1..*0..*

0..*
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 The full subgraph !G  is partially ordered4. 

 s!-box bB   does not overlap with another bang box ,b b b B  on its internal structure 

 \ Boundb bB B  unless bB  is fully contained in bB , i.e. if 

 ( \ Bound( )) ( \ Bound( )) ,b b b b  B B B B  with then .b bB B  The latter case is 

termed nesting. 

 

The conditions in Definition 4.2 ensure that the desired operations and rewrite rules work 

as expected. The three required operations are formalized as follows: 

 

Definition 4.3  sCOPYb G : For pattern graph G  and s!-box , !b b GB  the sequential 

copy is denoted by  sCOPYb G . Define bbB  as the inclusion pushout of bB  with itself, where 

the first copy of Out( )bB  is identified with the second copy of In( )bB , indicated below 

through wire vertex 
b

i  B :   

 

 

 

(5) 

 

Then  sCOPYb G  is defined through the following DPO, with \ g bG B  being the pushout 

complement (see also section 5.1): 

 

 

 

(6) 

 

Definition 4.4*  DROPb G : \ .bG   

 

                                                           
4 This ensures that nested s!-boxes can be properly supported in rewrite rules. 

: Out( )b b iB B

: In( )b b iB B

bbB

i

G

Bound( )bB

sCOPY ( )b G

bB

\ g bG B

g

bbB
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Definition 4.5  sKILLb G : Sequential kill is the intuitive inverse of  sCOPYb G . A DPO 

transforms s!-box bB   to single wire vertex ,i  which is identified with both In( )bB  and 

Out( ),bB i.e. they are merged into the same vertex and the bang box itself is no longer 

included: 

 

 

 

 

(7) 

 

To be able to construct concrete instances of linear string graphs as depicted in Figure 

5(b) from linear sequential pattern graphs as depicted in Figure 5(a), a formal conversion 

from the latter category to the former is required. This conversion is supported through 

Definition 4.6.  

 

Definition 4.6* instantiation: For pattern graphs , ,G H we let ,G H  i.e. H  succeeds 

G  if and only if H can be obtained from G by applying operations in Definitions 4.2-4.5 

zero or more times. When ! ,H  then H  is called an instance of G while the sequence of 

operations used to obtain H from G is called the instantiation. 

  

In other words, each instantiation of a linear sequential pattern graph can be considered 

to be a linear string graph, since it no longer contains any s!-vertices. 

 

5. Rewrite rules with sequential pattern graphs 

 

We now have the tools in place to extend the conventional rewrite rules by embedding 

pattern graphs into them, allowing for the definition of recursive rewrite rules needed for 

our aggregation method presented in Section 6 and onward. The first step in achieving this 

G sKILL ( )b G

ibB

\ g bG B

g

Bound( )bB
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is to formalize the concept of linear string graph matching, which was introduced 

informally in Section 4.  

 

Definition 5.1* linear string graph matching: A linear string graph matching is defined 

as monomorphism (injective homomorphism), : , L G  ,L G  with G  being a linear 

string graph. Then L  matches G  via .  

Observe that L can now also be an instantiation of a linear sequential pattern graph, 

which is paramount in formalizing the pattern graph matching concept. 

 

Definition 5.2* pattern graph matching: Given linear string graph G and sequential 

pattern graph !L ; if there is an instance of !L with instantiation ,S  that matches G via  , 

then !L  matches G  via   under instantiation S.  

 

5.1. Pattern graph rewrite rules 

 

The purpose of matchings from pattern graphs to string graphs is to utilise them in 

defining rewrite rules.  

 

Definition 5.3* rewrite rule: A span5 of linear string graphs 1 2i i
 L I R  is called 

a rewrite rule if: (i) I is a point graph and (ii) when one restricts morphisms 1 2,i i  to 

surjections, they result in 1 : Bound( )i I  L  and 2 : Bound( )i I  R  such that 

In In ,Out Out L R L R  are isomorphisms.  

 

Definition 5.3 reflects that separate inputs and outputs can be merged or conversely, 

allow combined input and outputs to be separated as long as this has no impact on the in 

and outgoing boundary. This means that regardless what graph this rule is matched to, its 

boundary won’t be impacted by the rewrite rule.  

                                                           
5 A span consist of three objects and two morphisms, where two of the objects share the same domain. 
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Dixon and Kissinger (2013) demonstrated that span 1 2i i
 L I R adhering to 

Definition 5.3 uniquely defines the DPO transformation6 of any linear string graph G to 

rewritten graph G'  given matching : , L G  as depicted in (8). 

 

 

 

 

(8) 

 

To embed pattern graphs in this rewrite rule, Definition 5.3 has to be extended. The 

extension utilises the notion of identity mapping 1L  on object .L  An identity mapping 

(similar to the identify function) is the mapping of an object to itself, for example 

1 : ,L L L  such that for any :f L G  it holds that 1 1 .f f f L G    

 

Definition 5.4* rewrite pattern: A span of pattern graphs 1 2i i
 L I R  is a rewrite 

pattern, denoted, L R  if:  

  1 2\! \! \!
i i

 L I RL I R  is a rewrite rule,  

 for each ! ,b I  1i b  is the identity mapping of  2 ,i b  

 the preimage7 of  1i b
B  under 1i  is ,bB and 

 the preimage of  2i b
B  under 2i  is also .bB  

 

The latter three conditions on Definition 5.4 ensure that each s!-box vertex present in L  

is present in R  (although it might be dangling and implicitly removed). Also, its original 

representation before applying 1 2,i i  (the preimage) is one and the same s!-box. Furthermore, 

to support the s!-box operations within a rewrite pattern, each operation applied for the s!-

box on the left hand side of a rewrite pattern, needs to be applied (in the same order) on the 

                                                           
6 Dixon and Kissinger (2013) showed that for the category of string graphs (also known as open graphs) the pushout 

complement, which is the codomain of morphism : \ , I G L exists and is unique, hence completes the pushout 

square.  
7 A preimage is the inverse of the image. It represents the original domain that resulted in the codomain after applying the 

morphism at hand. 

G

I RL

G\ G L



1i 2i


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right hand side. Let us now demonstrate that the sequential operations defined in Section 

4.1 can be embedded into the presented rewrite pattern by combining each operation with 

the rewrite pattern span. 

 

Definition 5.5: PsCOPY ( )b L R  is the rewrite pattern equivalent of the original 

sequential copy operation. It is defined through the following span 

1 2

1 2( ) ( )
sCOPY ( ) sCOPY ( ) sCOPY ( )

i i
bi b i b

 

 
 L I R . The construction of morphism 1i  is a 

two-step approach. Firstly, (9) and (10) are original copy operations to construct 

sCOPY ( )b I  and 
1 ( )

sCOPY ( )
i b

L : 

 

 

 

 

 

(9) 

 

 

 

 

 

(10) 

 

Secondly, observe that 1 :i I L  in Definition 5.3 can be regarded as a matching. This in 

turn uniquely identifies the pushout complement 
1

\ iL I  resulting in the DPO where 1i  

completes the rewrite rule equivalent of the sequential copy operation like the following: 

 

 

 

 

(11) 

 

bB

\ g bI BI ( )bsCOPY I

bbB

g

Bound( )bB

1 ( )
\ g i b

L B
1 ( ) ( )i bsCOPY


LL

1 ( )i b
B

1 1( ) ( )i b i b 
B

g

1 ( )
Bound( )

i b
B

bB

\ g bI B

g

I ( )bsCOPY I

bbB

1
\ iL I

1 ( )
( )

i b
sCOPY


LL

1i
1i

Bound( )bB
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One can similarly obtain morphism 2i   which uniquely defines 

2

2 ( )sCOPY ( ) sCOPY ( )
i

b i b


I R  and shows that the sequential copy operation is compatible 

with any rewrite pattern .L R  

 

Definition 5.6: PsKILL ( )b L R  is the rewrite pattern equivalent of the sequential kill 

operation defined by the span 1 2

2
1

( )( )
sKILL ( ) sKILL ( ) sKILL ( )

i i
b i bi b 

 


 L I R . 

Morphisms 1 2,i i  are constructed analogous to Definition 5.5. 

 

Definition 5.7*: PDROP ( )b L R  is defined by the following span 

1 2

1
2

( ) ( )
DROP ( ) DROP ( ) DROP ( ),

i i
i b b i b

 


 L I R  such that 1 2,i i  are the restrictions of 1 2,i i

to DROP ( )b I . 

 

This allows us to use rewrite rules where s!-boxes are part of the rule, or more formally; 

given some matching : L G  with G being a linear string graph and L an instantiation, 

we can apply an identical instantiation sequence on rewrite pattern L R . This completes 

this algebra formalization enabling the reader to use this algebra to construct recursive 

rewrite patterns adopting the notation as shown initially in Figure 5(a), obviating the need 

for defining an infinite number of explicit rewrite rules. 

 

5.2. Labelling regular vertices in (linear) string graphs 

 

In the algebra presented so far, each regular vertex is treated equal. However, in applying 

the graph rewriting method in a practical context one typically has regular vertices (links) 

that have been assigned distinct labels. These labels can then be used to uniquely identify 

their behavior when applying a rewrite pattern. Labelling the regular vertices (links) in 

string graphs is isomorphic to introducing an additional vertex type   connecting solely to 

regular vertices. Here, the epimorphism :lbl    from a regular vertex to a label vertex 
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identifies the label on each regular vertex. The accompanying type graph 4 ,G including 

multiplicities, is given by: 

 

 

 

 

(12) 

For the purpose of the aggregation method in the next section we adopt (12) in a specific 

form where we have only two labels, the critical-delay pattern graph: 

 

Definition 5.8 CDLSPATGraph: The category CDLSPATGraph of critical-delay 

pattern graphs is the full subcategory of the slice category Graph/ 4G  adhering to the 

multiplicities indicated. In addition 2  , i.e. each regular vertex is mapped on one of two 

possible labels. One denoting a critical-delay vertex, the other a non critical-delay vertex.  

 

6. Network aggregation methodology 

 

As stated earlier, the reason of introducing rewrite patterns is to be able to (graphically) 

decompose the transport network into a free flowing, i.e. hypocritical, component and a 

queueing delayed, i.e. hypercritical, component, based on (1). Let us discuss how this can 

be achieved for each of the two travel time components.  

 

6.1. Path travel time free flow decomposition 

 

The hypocritical decomposition, is essentially an identity mapping on the full spatial 

representation of a path, i.e. one keeps the original path, but restricts itself to collecting only 

the hypocritical link travel times resulting in I

p . Recall that this hypocritical component of 


0..1

0..1

4G



!
1..*

0..*

0..*



0..*

1
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the path travel time is invariant to flow. Since a fixed path set P is used, one can simply 

compute I

p once for each path, store it, and reuse it for each demand scenario .s  We note 

that this approach can only be lossless under the assumption that  ( ) ( ) 0,II s s

p pf  because if 

it isn’t the hypocritical delay is no longer invariant to flow and it can no longer be pre-

computed for all demand scenarios. 

 

6.2. Path travel time hypercritical delay decomposition 

 

Given (1) it is clear that links which, under any of the considered demand scenarios ,s S  

do not contribute to constructing the hypercritical path delay  ( ) ( )III s s

p pf , can be removed 

from the paths traversing it. Doing so incurs no information loss on the part of the path 

travel times and therefore classifies as lossless. Conversely, links that do exhibit delay for 

any of the considered demand scenarios should be kept. We point out that in some cases 

links are to be kept even if they exhibit no direct delay. For example, in traffic assignment 

models including a node model, delay is typically imposed through the node model which 

in turn is dependent on desired flow rates from its incoming links and available supply on 

its outgoing links. Therefore, in case any of the incoming links experience delay imposed 

by the node model, the entire spatial topology of the node needs to be retained, including 

the non-delayed incoming and outgoing links, to be able to obtain identical delays in the 

delay decomposed network.  

Based on this observation, without making any further assumptions on the underlying 

traffic assignment procedure, a single rewrite pattern is presented that is capable of 

converting any original path into its delay decomposed counterpart. This however, does 

require partitioning each link into one of two types: links critical to reconstructing the delay, 

i.e. critical-delay links, and links that are not critical, i.e. non critical-delay links.  
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6.3. Network aggregation rewrite pattern 

 

In the remainder of this work,  vertices (Definition 5.8) are implicitly included in the 

graph representation by colouring regular vertices, see Figure 8(a).  

 

Fig. 8. (a) Critical-delay labelled example network with three example paths. (b) Delay 

decomposed network induced after applying path based rewrite rule. 

 

The goal is now to obtain the delay decomposed network depicted in Figure 8(b) which 

only contains the delay critical links and the abstracted connections between them in case 

links in between have been removed. A two-step approach is adopted, firstly all original 

paths pP are rewritten to their delay decomposed counterparts p
P  through the single rewrite 

pattern given in (13): 

 

  

 

 

(13) 

 

This rewrite pattern tries to match zero or more (sequential) critical-delay links followed 

by zero or more (sequential) non critical-delay links and this itself can be repeated zero or 

more times. The match found it is rewritten to the same sequence except that all non critical-

2 3 4
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delay links have been removed. Figure 9 gives an example of how this works practice (in 

single pushout notation). Notice how both pP and p
P are instantiations of the left and right 

hand side of the rewrite pattern, respectively. 

The second step entails constructing the entire delay decomposed transport network as a 

simplified string graph. Since each linear string graph is a special case of a simplified string 

graph, one can simply take the union of all delay decomposed paths pP  to obtain delay 

decomposed transport network G  as per (14). 

 

p

p P

G' P   (14) 

 

Fig. 9. Example matching and rewrite of a path into its delay decomposed counterpart. 

 

6.4. Aggregation procedure properties 

 

The proposed method remains lossless as long as all vertices identified as delay-critical 

in any of the considered demand scenarios are included in the delay decomposed network. 

This suggests requiring knowledge on the equilibrium solution for the labelling. However, 

the purpose of this method is to speed up the traffic assignment procedure. If for every 

scenario the equilibrium solution is needed before one can aggregate no computational gain 

will be achieved. To circumvent this issue, the aim is to construct a single delay decomposed 

1b
2b

0b 0b

1b

pP p
P


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network from equilibrating a single ‘super scenario’ *s  that contains all (potentially) 

critical-delay vertices, i.e.  *s   is lossless for all considered scenarios .s S   

First, observe that a naïve solution for constructing the supply network for s  is found by 

simply retaining all links by marking them as delay-critical. Clearly, this would not result 

in any computational gain. Let us now make the additional assumption that the hypercritical 

path delay ( ) ( )( )III s s

p pf  is a link additive, strictly increasing function. Then one can construct 

*s  given 
*( ) ( ) , , .s s

p pf f s S p P      Since ( ) ( )( )III s s

p pf  is strictly increasing, each vertex that 

would be identified as delay-critical in any ,s  must by definition also be in * ,s because if 

not, it would contradict with the strict monotonicity of ( ) ( )( ).III s s

p pf Whenever any of these 

assumptions are violated the proposed method might no longer be lossless. The authors 

point out that in a practical context, even when there might be information loss, such a case 

one can easily be verified by comparing the aggregated result to the original network 

scenario combination. One can even incrementally build * ,s by subsequently including 

missing delay-critical vertices while computing the various demand scenarios.    

 

7. Delay decomposed path reduction 

 

The proposed network aggregation method in Section 6 can be extended to increase its 

efficiency. This extension identifies the minimal set of delay composed paths needed in 

traffic assignment, while maintaining the original path delays. The effectiveness of this 

method relies on the significantly increased likelihood of path overlap in a delay 

decomposed network.  

Let us illustrate this with the example presented in Figure 10 (a-c). None of the original 

paths in Figure 10(a) overlap completely. Assuming Figure 10(b) represents the found 

‘super-scenario’ we obtain the delay decomposed network as presented in Figure 10(c) 

based on (13) and (14). At this stage the first two paths and last two paths now overlap 

completely and can be merged to reduce the path set needed in traffic assignment. One only 
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needs to make sure that the demands match and a mapping is maintained in order to 

reconstruct identical path delays. 

Formally, we need to somehow be able to state that 3
P  and 4

P are considered equivalent 

as well as 1
P  and 2 .P This can be achieved through the definition of an equivalence relation 

and accompanying quotient mapping which is a standard approach of modelling such 

relations. 

 

Definition 7.1  delay decomposed path equivalence: Let us define equivalence relation 

( )s P P R  for a demand scenario .s
( )sR  is defined such that any two paths ,p p P  are 

considered equivalent given that morphism ( )( ):
ss

p pg 
 P P  is the identity mapping, i.e. 

whenever two paths have the exact same representation in their delay decomposed form 

they are considered equivalent under ( )sR . 

Using equivalence relation ( )sR  of Definition 7.1 one simply partitions all paths into 

their respective equivalence classes. This is known as the quotient mapping induced by 

equivalence relation ( )sR , denoted ( )/ .sP R  One of the benefits of this approach is that it 

yields projection ( ) ( ): /s sP P  R  which maps each path p P  to its respective 

equivalence class based on ( ) .sR   

 

 

Fig. 10. (a) Original network, with four paths, (b) critical-delay labelled string graph 

representation of the same network, (c) delay-decomposed network induced from delay 

decomposed paths. 
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Consider the example in Figure 10(a) with  1 2 3 4, , ,P p p p p . Given labelling under 

scenario *s  (Figure 11(b)) the delay decomposed representations 1 4
P  of these paths are 

depicted in Figure 10(c). The equivalence relation ( )sR under this specific example then 

yields  ( )
1 2 2 1 3 4 4 3( , ),( , ),( , ),( , ) .s p p p p p p p pR Clearly, this results in two equivalence 

classes. We adopt standard notation for equivalence classes which results in the following, 

the projections from original path to equivalence class, i.e.        ( ) ( )
1 1 2 2

s sp p p p   

and      ( ) ( )
3 3 4 4

s sp p p p      , where  1p  and  2p  represent the same equivalence 

class, as do 3p    and  4 .p The number of unique paths on the delay decomposed network 

automatically follows from the cardinality of available equivalence classes, i.e. / sP R .  This 

is also the minimal number of paths one needs in the assignment to obtain the original path 

delays. The path flow for each distinct path represented by an equivalence class has become 

a trivial task and is simply given by:  

 

 
 

 ( ) ( ) ( ), / ,
s s s

pp
p p

f f p P



  R  (15) 

 

where  p  is the equivalence class at hand and [ ]p p  are all paths that project onto the 

same delay decomposed path. When one applies this path aggregation procedure on top of 

the delay decomposition method computation time can be reduced significantly, since the 

computational burden is fully path driven. Note that the original travel time delay function 

needs to be altered slightly since the delay component is obtained by mapping it to its 

equivalence class: 

 

   ( ) ( )( ) ( )
[ ] [ ] , [ ] , , .
III s ss I s

p p p pc f p p p P s S         (16) 
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On a final note, we like to point out that a similar mapping is needed for the underlying 

route choice procedure of the adopted traffic assignment methodology, because each unique 

equivalence path can represent paths with multiple origins and/or destinations. 

8. Case studies 

 

To demonstrate the applicability and effectiveness of the proposed aggregation methods, 

a hypothetical and large scale case study is conducted.  

 

8.1. Traffic assignment procedure 

 

In this case study the path-based quasi-dynamic traffic assignment model proposed by 

Bliemer et al. (2014a) is adopted. This model is compliant with (1)8. Furthermore, it has 

been shown (Bliemer et al. (2014b)) that it can be directly derived from the (dynamic) 

Generalised Link Transmission Model (Gentile, 2011), which should make it arguably more 

realistic than its traditional static peers. This derivation is possible under the following 

assumptions: (i) a concave hypocritical branch of the fundamental diagram and a horizontal 

hypercritical branch, (ii) an infinite link storage capacity, i.e. no spillback leading to vertical 

queues and (iii) a proper first order node model. To satisfy (iii) the node model by Tampere 

et al (2011) is adopted dictating the distribution of accepted flows for merges, diverges, and 

more general cross-nodes. The undelayed path travel time in this model is given by: 

 

, ,

p

I v
p

vv

L
p P








 
P

  
 

(17) 

 

                                                           
8 The underlying travel time function in Bliemer et al. (2014) while compliant with (1) is neither link additive nor strictly 

increasing. As a result it is possible that super scenario 
*s  does not result in a lossless aggregation result under varying 

demand. However, this case study only considers a single demand scenario to illustrate the potential computational gain. In 

such a testbed the procedure is lossless, since demand does not vary. 
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with L and   representing the length and free speed of the road segment represented by 

vertex ,
p

  P  respectively. Whenever some of the flow is held back by the node model a 

point queue forms. Link queue magnitudes are node model controlled by imposing a 

reduction factor 1.   Conversely, when a link has no queue 1.   This reduction factor 

 determines the delay. It can be shown that the total path delay is given by:  
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(18) 

 

where T is the total simulation time. Since queues grow linearly over time, dividing by two 

results in the average delay. For exact details on the network loading we refer to Bliemer et 

al. (2014). 

 

8.2. Hypothetical corridor example 

 

To illustrate the combined result of applying the presented aggregation method in 

coherence with the traffic assignment model of Bliemer et al. (2014) a corridor network is 

presented (Figure 11(a)). It contains a single path ,p with 3000pf   (veh/h) and 1T h   A 

corridor simplifies the node model, i.e. the (turn) reduction factor computation to 

 min 1, ,vv v vvQ q    with outgoing link capacity vQ  and desired turn flow rate vvq   (from 

incoming link v  to outgoing link  , , ).
p

v v v   P Clearly, the first four links can 

accommodate the desired flow, resulting in 1 4 1,   i.e. no reduction. Given our node model 

 5,6 min 1,2000 3000 2 3.   The flow offered at the end of link 6v  is obtained by 

multiplying the desired flow rate with the link reduction factor, i.e. 6,7 3000 (2 3) 2000.q   

Applying the node model again yields  6,7 min 1,1000 2000 1 2,   which provides the 

flows on links 7 10 1000v   veh/h reaching the destination. The 2000 vehicles that departed 

but are stuck in the network emerge as point queues. Recall that queues are assumed to grow 
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linearly in time. Thus, the first vehicle on a link does not encounter a queue, while the last 

vehicle experiences a queue length of (1 ).vv vvq     

 

 

Fig. 11. (a) Corridor network with link capacities and (additive) non-delay link travel times. 

(b) Result under 3000pf   veh/hr, reduction factors and cumulative delays from the origin up 

to the current link. (c) Delay decomposed network after identifying critical delay links yielding 

identical delay travel time. 

 

The link delay shown in Figure 11(b) is computed via (18), note that the cumulative delay 

is shown and not the individual link delay which amounts to an average delay of fourty-five 

minutes, i.e.   3 4 1 2 1 (2 3) (1 2) 1 .h    The observant reader notices that this delay is 

different (and arguably more realistic) compared to the typical additive delay functions that 

follow the work of Payne and Thompson (1975). Finally, observe that link 7 is also labelled 

as a critical-delay link. This is because it is required to be able to correctly determine the 

reduction factor on the previous link. 

 

8.3. Large scale case study: Gold Coast 

 

In this section, the two aggregation procedures are sequentially applied to the large-scale 

network of Gold Coast, Queensland Australia as depicted in Figure 12(a).  

  

1 2 3 4 5 6 7

1 4 4000Q  

1 2 3 4 0.025I I I I h      

8 9 10

8 9 10 0.033I I I h    

8 10 1000Q  

5 6 7 0.1I I I h    

5 4000Q 
6 2000Q  7 1000Q 

1 2 3 4 5 6 7

1 4 0III h  

8 9 10

1 10 0.75III h  
1 6 0.75III h  1 5 0.25III h  

5 6 7

5 6 0.75III h  5 0.25III h  5 7 0.75III h  

5,6 2 3 
6,7 1 2 

5,6 2 3 
6,7 1 2 

( )a

( )b

( )c
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(a) 

 

(b) 

 

 

(c) 

Fig. 12. (a) Original Gold Coast network, (b) Gold Coast network after delay-decomposition 

and zonal redistribution, (c) comparing reduction factors between original and aggregate 

equilibrium result of 80 iterations. 

 

This network is kindly provided by Veitch-Lister Consultancy and subsequently made 

publicly available via Bar-Gera (2016). This network contains: 2987 nodes, 5076 (bi-

directional) links, 1067 origins and 1067 destinations. A hypothetical (one hour) morning 

peak origin-destination matrix is utilised, containing roughly 120,000 veh/h. This demand 

is used to represent ‘super-scenario’ *.s   

In this case study a Stochastic User equilibrium (SUE) approach is adopted (Daganzo 

and Sheffi, 1977), i.e. perceived cost is used instead of experienced cost. Regarding route 

choice a conditional logit model (McFadden, 1973) is used. The route choice scaling 

parameter, defining the level of uncertainty in the available information, is set to 5, see also 

Chen (1999). Path set P is generated a-priori, based on Fiorenzo-Catalano et al. (2004): 

Resulting in a conditional SUE. The Method of Successive Averages (MSA) is used to 

smooth iteration results, using a Polyak (1990) inspired smoothing factor of 0.7. The 

proposed aggregation procedures have been implemented as prototypes within the 

StreamLine framework9.  

                                                           
9 StreamLine is a Dynamic Traffic Assignment framework underpinning all non-static assignment procedures in the 

OmniTRANS transport planning software suite, kindly provided by DAT.mobility. 
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After equilibrating the original network the network delay decomposition method is 

applied and subsequently the minimal delay decomposed path set is constructed. Figure 

12(b) shows the delay decomposed network induced from the delay decomposed paths.To 

illustrate that the equilibrated aggregate network yields the same result as the original 

network, the reduction factors of two assignments, one on the original network and the other 

on the delay decomposed delay network are compared: Firstly by creating a 45-degree plot, 

see Figure 12(c). Secondly, we examine the norm 0.00366,v   , which is defined as: 

 

 
2

,v vv 
 



 
  
 


G

  
 

(19) 

with v
  denoting the difference in reduction factor value between the original network G

and the delay decomposed network for link .v The effect on computation times when 

applying the proposed aggregation procedure(s) turns out to be significant as outlined in 

Table 2.  

 

Table 2. Effects of aggregation on computation times and topology (80 iterations). 

Network Links Paths Total path 

links 

Total network 

loading time (s) 

Original 5076 1,221,446 55,852,786 2178.48  

Delay-decomposition 836 1,221,446 12,919,862 902.57   (-59%) 

Delay-decomposed path set 

aggregation 

836 99,528 1,142,338 88.62     (-96%) 

The computational burden is reduced by an order of magnitude, due to the decrease in both 

size and number of paths that need to be loaded in each iteration. Applying only delay 

decomposition halves network loading times on this network. This can be attributed to the 

reduced number of links per path (10.6 vs 45.7 links on average). However, it is not until 

the combined procedure is employed that the method’s full potential is revealed. The 

minimal path set contains less than 10% of the original (<100,000 vs 1,221,446) paths due 

to the increased amount of overlap. As a result, the time required to complete network 

loading drops to 4.1% of the original computation time, meaning one can roughly compute 
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up to twenty-five demand scenarios in a similar amount of time it takes to compute a 

single scenario on the original network. 

 

9. Conclusions and further research 

 

In this work a category theory based formalisation method is introduced to the field of 

transport. This method is then employed to present two novel spatial aggregation procedures 

compatible with a class of traffic assignment models complying with equation (1). The 

introduced sequential pattern graph rewriting technique is deliberately kept fairly generic, 

so it can be reused to describe other aggregation methods than the one presented here. Due 

to its close resemblance to functional programming each rewrite rule can almost directly be 

converted into an equivalent recursive algorithm which first matches against a graph and 

subsequently rewrites it, based on the sequence of operations identified. 

The two aggregation methods specifically target a range of applications where the 

infrastructure, i.e. supply side is kept fixed while demand varies. Under the assumption that 

travel time is link additive and strictly increasing the proposed procedure is 

lossless.Practical implications of applying the presented aggregation procedure are 

threefold: (i) Practitioners can either consider more scenarios in the same amount of time, 

which improves the reliability and robustness of recommendations made or, (ii) 

practitioners have more time investigating the subset of scenarios that require further 

investigation, improving the accuracy of the studies. (iii) One can also opt to adopt a more 

sophisticated assignment method that yields more realistic results. The additional time it 

used to take to adopt such a model, like for example the Bliemer et al. (2014) model used 

in the Gold Coast case study, is mitigated by this aggregation procedure.  

Results on the Gold Coast case study show that network loading can be reduced 

significantly (4.1% of the original network loading time) depending on the employed 

network topology and demand scenarios. This is achieved by a network delay 

decomposition method that reduces path and network topology and a subsequent path 

reduction method that identifies and removes overlapping delay-decomposed paths such 

that only a minimal set of paths is needed in assignment. 
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9.1. Further research 

 

The proposed procedure is guaranteed to be lossless when a ‘super-scenario’ *s  can be 

identified. While one might expect this is the scenario with the highest demand, in practice 

this might not always the case. Models, like the Bliemer at al. (2014) model, that do not 

have monotonic increasing cost functions do not necessarily generate more critical-delay 

links with higher demand. Identifying the ‘super-scenario’ is therefore not trivial. Further 

research is needed to: (i) See if a procedure exists that quickly identifies the ‘super-scenario’ 

for models with non-monotonic cost functions, (ii) in case no ‘super-scenario’ is identified, 

estimate the amount of information loss suffered when still applying the proposed 

aggregation procedure. 

It would also be of interest to investigate the effects of this aggregation procedure on 

other compatible traffic assignment models and compare then. This would provide further 

insight in the robustness and generalisability of the methodology. 
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