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1 Introduction 

The berth allocation problem (BAP) involves assigning vessels arriving at the port to berths 

within a terminal to optimise a given performance measure (Imai et al. 2007). Effective allocation 

of berths to arriving vessels, especially in a multi-user terminal, is critical for successful terminal 

operations (Imai et al 2007; Stahlbock and Voβ, 2007). This is due to the fact that the efficiency 

of the berthing process affects the work of other port resources such as quay cranes used for 

loading and unloading the vessels, yard cranes, labour and other important and expensive port 

resources (Stahlbock and Voβ, 2007). Thus poor berth allocation may lead to under utilisation of 

other port resources and hence an overall reduction in port or terminal performance. With 

increasing competition not just between ports but also between terminals within the same port, 

managers are keen to reduce costs by maximising the utilisation of resources (labour, berths, 

yards, quay cranes) and are constantly looking for ways to be more competitive. Several 

researchers have therefore been working on optimisation models, not just for improving the 

efficiency of berth utilisation, but also for improving the efficiency of all areas of port operations 

(Stahlbock and Voβ, 2007). 

Models for berth allocation can be classified into two broad areas; the discrete berth 

allocation problem (DBAP) and the continuous berth allocation problem (CBAP).  The DBAP 

models assume that the berthing area (wharf) is partitioned into discrete berths, where each berth 

can be occupied by at most one vessel at a time. Studies on this model type include (Brown et al. 

1994; Imai et al. 2003; Cordeau et al. 2005). The models for continuous berth allocation problem 

(CBAP) treat the berth area (wharf) as one finite linear facility, where several vessels can be 

moored simultaneously. Under this continuous berthing approach, a vessel is allowed to berth 

wherever an empty space is available to physically accommodate it (Imai et al. 2007). This class 

of BAP, as noted in (Imai et al. 2007), could be considered as a form of cutting-stock problem 

(CSP) where a set of commodities is packed into boxes in an efficient manner. This class of 

models can be found in (Lim 1998; Park and Kim 2002; Cordeau et al. 2005; and Imai et al. 

2007). Models under each of the above two classes can further be segmented into static or 

dynamic variants. The static variant assumes that the vessels to be berthed are available for 

berthing at the port at decision time or before the schedule is constructed. On the other hand, the 

dynamic variant allows the arrival of vessels at different times during the planning horizon or 

berthing process. A survey of berth allocation problems can be found in (Bierwirth and Meisel 

2009).  
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The focus of this study is on the dynamic discrete berth allocation problem (DDBAP) 

under several performance measures. The performance measures considered are the total or 

average turnaround time for all vessels (ATT), the maximum turnaround time or makespan 

(Cmax) of any vessel in the schedule, the number of late vessels (Tardy) and the maximum 

lateness (Lmax) of any vessel. Each of these performance measures or optimality criteria is 

discussed in the next section.  

2 Optimality Criteria 

The goal of any berth allocation problem is to generate the best schedule. However, what is best 

depends on the application and the chosen performance measure. Depending on the problem 

faced by the port or terminal operator, the goal may be to process vessels as quickly as possible. 

In other words minimise the total turnaround time of all vessels arriving during the scheduled 

period. Given the schedule 𝕊, let 𝐶𝑗 be the turnaround time for vessel 𝑗 ∈ {1,2, … , |𝑉|}, namely 

the completion time of the vessel, then ∑ 𝐶𝑗𝑗∈𝑉  becomes the total turnaround time for all the 

vessels arriving at the port within the schedule period or planning time horizon. With this 

optimality criterion we care less about the turnaround time of the last vessel in the schedule as 

long as all the vessels on average receive good service. Dividing this total turnaround time by the 

number scheduled vessels gives the average turnaround time, and can be used as one of the 

performance indicators at the port or terminal. It is also possible that not all vessels are of equal 

importance and that the terminal operator might wish to consider this when measuring service 

quality provided to a vessel. This can be achieved by minimising the total weighted turnaround 

time ∑ 𝑤𝑗𝐶𝑗𝑗∈𝑉  or the average weighted turnaround time   
1

|𝑉|
∑ 𝑤𝑗𝐶𝑗𝑗∈𝑉 , where 𝑤𝑗 is the weight 

or priority of vessel  𝑗 ∈ {1,2, … , |𝑉|} .   

A performance indicator in which carriers may be more interested is the maximum 

turnaround time of any vessel in the schedule. This performance measure is called the makespan, 

and is defined as 𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗{𝐶𝑗}  for a given schedule 𝕊. 

There are problems or situations where each vessel may have an associated departure 

time (due date) by which it must depart from the port or by which any operations on it must be 

completed. This gives rise to two different optimality criteria. The first optimality criterion is the 

Maximum Lateness (𝐿𝑚𝑎𝑥) of any vessel in the schedule 𝕊 and is defined as 𝐿𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗{𝐿𝑗}, 

where 𝐿𝑗 =  𝑚𝑎𝑥{0, 𝐶𝑗-𝑑𝑗}  is the lateness of vessel 𝑗 ∈ {1,2, … , |𝑉|} and 𝑑𝑗  is the due date of 

vessel j.  Alternatively, the port or terminal operator may be interested in constructing a schedule 

that maximizes the number of vessels that can be served before their due dates (not late or tardy). 
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This condition can be captured in the objective function by defining a dummy variable 𝑈𝑗 which 

equals 0 if vessel j is handled before its departure time or due date 𝑑𝑗 and 1 otherwise. Thus we 

can define the minimisation of  ∑ 𝑈𝑗𝑗∈𝑉   or more generally ∑ 𝑤𝑗𝑈𝑗𝑗∈𝑉 . If 𝑈𝑗  equals 1 then it 

means the vessel is late or tardy and the objective is to minimise the total number or total 

weighted number of tardiness in the schedule. 

In this paper we investigated the implications of using the above four optimality criteria 

described in berth scheduling. Minimising one optimality criterion may not necessarily imply 

minimising the others. Thus each optimality criterion is expected to yield a different schedule and 

hence a different port or terminal performance indicator or efficiency measure.  

3 Literature Review 

Early studies on the berth allocation problem include (Brown et al. 1994; Imai et al. 1997; Lim 

1998 & Li et al. 1998) and a detailed review of the subject can be found in (Stahlbock and Voβ 

2007). The dynamic continuous version was studied by (Lim 1998). He exploits the graphical 

representation of the problem to develop a heuristic algorithm to solve the problem. (Li et al. 

1998) also considered the continuous BAP with the objective of minimising the makespan (the 

completion time of the last vessel in the schedule). In (Guan et al. 2002), a heuristic for the 

continuous BAP with an objective that minimises the total weighted completion time of vessel 

services is developed. The problem was also studied by (Park and Kim 2002) with an objective 

function that minimises the cost of delayed departures of vessels or total tardiness and employed 

a subgradient algorithm to solve the problem. The problem was tackled by (Kim and Moon 2003) 

using a simulated annealing method. 

The static discrete version of the berth allocation problem was studied by (Brown et al. 

1994). They formulated the problem as an integer-programming model for assigning a vessel to a 

berth with several constraints. Here the performance measure considered was the total service 

time of all vessels.  (Dai et al. 2004) formulated the static berth allocation as a rectangle problem 

and developed a heuristic algorithm to solve it. (Cordeau et al. 2005) considered both the discrete 

and continuous versions of the BAP with the objective of minimising the total weighted service 

time of all vessels. They provided mathematical formulations of both problems and solved small 

instances to optimality. They also employed the Tabu Search algorithm for the discrete case and 

developed a heuristic for solving large instances of the continuous problem. In (Imai et al. 1997) 

the static discrete BAP for commercial ports is addressed with a multi-criteria objective function 
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that combines the minimisation of service order dissatisfaction and the maximization of berth 

performance.  

 As (Imai et al. 2007) noted, solutions to the static BAP are more useful for busy ports. 

But competition is increasing between ports and between terminals operators of the same port, 

which means carriers are less likely to tolerate long delays at the port. (Imai et al. 2001) then 

extended the static version of the BAP to a dynamic treatment that is similar to the static 

treatment, but with the difference that some vessels arrive while work is in progress with the 

objective of maximizing berth performance. They developed a Lagrangian heuristic by to solve 

the problem as the problem is known to be NP-hard. (Nishimura et al. 2001) also considered a 

similar dynamic version of the BAP and employed genetic algorithms to solve that problem with 

the results shown to be comparable to that of Imai et al. (2001). However, there were no 

computational comparisons between two proposed heuristics of the problem. The model in (Imai 

et al. 2001) was extended in (Imai et al. 2001) by considering vessels with different priorities with 

the objective function being the total weighted service time of all vessels.  

 Reformulation of the DDBAP was presented by (Cordeau et al. 2005) in a form of a 

Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW) and had the objective 

of minimising the total service time of all vessels. Here, vessels were considered as customers 

and the berths as depots.  The re-formulation does not obviate the need for a heuristic as the 

MDVRPTW is also NP-Hard, so a tabu search algorithm was developed for solving large 

instances of the problem. (Imai et al. 2007) proposed the BAP with simultaneous berthing of 

multiple vessels at the indented berth, which is potentially useful for fast turnaround of mega-

containerships.  (Christensen and Holst 2008) presented another re-formulation of the problem by 

considering it as a generalised set-partitioning problem. In their formulation time was discretised 

and for each berth and time interval a packing constraint ensures that at most one vessel can be at 

the berth at any given time. (Buhrkal et al. 2011) considered the computational advantage of the 

three main formulations through extensive numerical tests and suggested that the generalized set-

partitioning model (first proposed in Christensen and Holst 2008) outperforms all other existing 

models.  

To the best of our knowledge, the dynamic berth allocation problem under the range of 

performance measures proposed in this paper has yet to be studied. Most of the existing papers 

focus mainly on the static berth allocation problem, where the central issue is to obtain a good 

plan to pack the vessels waiting and arriving within the scheduling window, and the few dynamic 

berth allocation papers considered only one performance measure without any regard to the 

performances of other PMs.   



Dynamic discrete berth allocation in container terminals under four performance measures  
Teye and Bell 
 

5 

 

In this paper proposed new mathematical models for the dynamic discrete berth 

allocation problem (DDBAP) under four performance measures. The new formulation allows the 

four proposed models (one for each PM) to be compared in terms of both model complexities and 

solutions. The models were each solved to optimality using the CPLEX software for a small-sized 

instance of the problem.  We also proposed four (one for each PM) heuristics under one algorithm 

framework for large instances of the problem. We then demonstrated through extensive numerical 

examples of 48,000 test instances that the choice of performance measure (PM) to optimise is 

crucial as different optimised PMs lead to different service orders and different degrees of 

customer satisfaction as optimising one PM leads to the deterioration or worsening other PMs. As 

will be demonstrated in this paper it is important for terminal managers to be aware of and 

familiar with all the key performance measures considered here and to know the most appropriate 

one to use for any given situation. 

4 Problem Formulation 

4.1 Introduction 

This section presents the mathematical models for the discrete dynamic berth allocation problem 

under the four objective functions (performance measures). In the formulation we consider a set 

of discrete berths 𝐵 at the port indexed by 𝑖 ∈ {1,2, … , |𝐵|},  where |𝐵| is the number of berths, a 

set of vessels 𝑉 to be handled at the berths with index 𝑗 ∈ {1,2, … , |𝑉|}, with arrival time 𝑎𝑗, 

deadline or due date 𝑑𝑗 and handling time  each vessel at each berth ℎ𝑖𝑗 .   In this paper 𝑁 = |𝑉| is 

the number of positions in the schedule expressing the order in which the vessels are handled at 

each berth. For example, Figure 1 shows a feasible schedule 𝕊 =  {𝑉3, 𝑉1, 𝑉4, 𝑉2}, which means 

that the first vessel to be handled is vessel 3 followed by vessel 1, with vessel 2 being the last to 

be handled. The schedule means that if for example vessel 1 is scheduled to be handled at berth 1 

(assume berth 1is idle) but is not available or yet to arrive, berth 1 would be forced to wait until it 

arrives as shown in Figure 1. Also, vessel 2 has to wait in the queue until berth 2 finishes 

handling vessel 3 before it is berthed. It is therefore feasible that an optimal schedule may result 

in forced berth idle time and/or vessel waiting time. 
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Figure 1: Feasible discrete dynamic berth allocation solution 

 

A summary of the key assumptions underlying the formulated models and variable definitions 

are: 

Main assumptions 

1. The quay is partitioned into discrete sections (berths).  

2. Each vessel can be handled at any berth. 

3. Only one vessel can be served at each berth at a time. 

4. There are no physical or technical restrictions such as vessel draft and water depth that 

affect the schedule. 

5. Vessel handling time depends on the assigned berth. 

6. Vessels can only be served after they arrive. 

7. Each vessel has expected arrival and departure times. 

8. Vessel handling at a berth cannot be interrupted once started.  

9. All the models apply to a given planning time horizon. 

Definition of input variables 

𝑉  The set of vessels to be handled at the port indexed by 𝑗 ∈ {1,2, … , |𝑉|}. 

𝐵  The set of berths at the port or terminal indexed by 𝑖 ∈ {1,2, … , |𝐵|}. 

𝑁  The number of possible vessel positions in a schedule indexed by 𝑝 = 1,2, … . , 𝑁. 

ℎ𝑖𝑗  The handling time of vessel 𝑗 ∈ {1,2, … , |𝑉|}  at berth 𝑖 ∈ {1,2, … , |𝐵|}. 

𝑎𝑗  The arrival time of vessel 𝑗 ∈ {1,2, … , |𝑉|}. 

Berth 1 

 Berth 2 

Quay 

Vessel 3 Vessel 2 

Planning time horizon 

Vessel 1 Vessel 4 

Vessel 2 arrival time 

Vessel 3 completion time Berth 1 release time 

Vessel 1 arrival time 

Berth idle time 
Vessel waiting time 
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𝑑𝑗  The expected departure time or date of vessel 𝑗 ∈ {1,2, … , |𝑉|}  from the berth 

𝑤𝑗   The weight or importance of vessel 𝑗 ∈ {1,2, … , |𝑉|}   

𝑀   Large positive constant   

Output variables 

𝑆𝑖𝑝  The setup time of the 𝑝𝑡ℎ vessel in the schedule at berth by 𝑖 ∈ {1,2, … , |𝐵|}. 

𝑅𝑖𝑝  The release time of berth 𝑖 ∈ {1,2, … , |𝐵|} to handle the 𝑝𝑡ℎ vessel in the schedule   

𝐶𝑗   The completion time of vessel 𝑗 ∈ {1,2, … , |𝑉|} 

𝐶𝑚𝑎𝑥   The completion time of the last vessel in the schedule   

𝐿𝑚𝑎𝑥   The maximum lateness of any vessel in the schedule    

Note that some variables, like 𝑆𝑖𝑝, 𝑅𝑖𝑝 and 𝐶𝑖𝑝, are points in time to be decided by the problem 

(and hence upper case), while ℎ𝑖𝑗 is a duration. The arrival and expected departure times, 

𝑎𝑗 and 𝑑𝑗, are given points in time and therefore lower case. Also the variable 𝑆𝑖𝑗𝑝 equals 𝑆𝑖𝑝 if 

vessel 𝑗 ∈ {1,2, … , |𝑉|}  is the 𝑝𝑡ℎ vessel in the schedule and is handled at berth  𝑖 ∈ {1,2, … , |𝐵|},  

and 0 otherwise.  

Key decision variables 

𝑋𝑖𝑗𝑝 = 1 if the vessel 𝑗 ∈ {1,2, … , |𝑉|}  is the 𝑝𝑡ℎ vessel in the schedule and is handled at berth  

𝑖 ∈ {1,2, … , |𝐵|},  and 0 otherwise. 

𝑈𝑗 = 1  if the vessel in the schedule is late and 0 otherwise. 

Based on the above dentitions and assumptions we provide as simplified and intuitive formulation 

of the DDBAP under each of the four performance measure. 

4.2 Minimising the Total Weighted Turnaround Time (TTT) 

𝑇𝑇𝑇 = 𝑀𝑖𝑛 {∑ 𝑤𝑗𝐶𝑗

𝑗∈𝑉

} 

     Subject to: 

                      ∑ ∑ 𝑋𝑖𝑗𝑝 = 1;   𝑝 = 1,2, … 𝑁 

𝑗∈𝑉

                                                         (1)

𝑖∈𝐵

 

                         ∑ ∑ 𝑋𝑖𝑗𝑝

𝑁

𝑝=1

 = 1;    ∀𝑗 ∈ 𝑉

𝑖∈𝐵

                                                               (2)   

                        𝑅𝑖1 = 𝜏𝑖;   ∀𝑖 ∈ 𝐵                                                                                   (3) 

                         𝑅𝑖𝑝 ≥  𝑆𝑖𝑝−1 +  ∑ ℎ𝑖𝑗𝑋𝑖𝑗𝑝−1;     𝑝 = 2, … 𝑁, ∀𝑖 ∈ 𝐵

𝑗∈𝑉

                   (4) 
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                         𝑆𝑖𝑝 ≥  ∑ 𝑎𝑗𝑋𝑖𝑗𝑝 ;    ∀𝑖 ∈ 𝐵 , 𝑝 = 1, … 𝑁

𝑗∈𝑉

                                         (5) 

                           𝑆𝑖𝑝 ≥   𝑅𝑖𝑝;  ∀𝑖 ∈ 𝐵 , 𝑝 = 1, … 𝑁                                                      (6) 

                          𝑆𝑖𝑗𝑝 ≤ 𝑀𝑋𝑖𝑗𝑝;    ∀𝑖 ∈ 𝐵, 𝑗 ∈ 𝑉, 𝑝 = 1,2, . . . , 𝑁                            (7)    

                           𝑆𝑖𝑗𝑝 ≤ 𝑆𝑖𝑝;    ∀𝑖 ∈ 𝐵, 𝑗 ∈ 𝑉, 𝑝 = 1,2, … . 𝑁                                     (8) 

                           𝑆𝑖𝑗𝑝 ≥ 𝑆𝑖𝑝 − 𝑀(1 − 𝑋𝑖𝑗𝑝);   ∀𝑖 ∈ 𝐵, 𝑗 ∈ 𝑉, 𝑝 = 1,2, … . 𝑁        (9)  

                          𝐶𝑗 ≥ ∑ ∑ 𝑆𝑖𝑗𝑝

𝑁

𝑝=1𝑖∈𝐵

+   ∑ ∑ ℎ𝑖𝑗𝑋𝑖𝑗𝑝

𝑁

𝑝=1𝑖∈𝐵

;  ∀𝑗 ∈ 𝑉                               (10) 

                             𝑋𝑖𝑗𝑝 = {0,1};  ∀𝑖 ∈ 𝐵, 𝑗 ∈ 𝑉, 𝑝 = 1,2, … . 𝑁                                (11)   

                          𝑆𝑖𝑝 ≥ 0 ; 𝑆𝑖𝑗𝑝; 𝑅𝑖𝑝 ≥ 0; 𝐶𝑗 ≥ 0; ∀𝑖 ∈ 𝐵, 𝑗 ∈ 𝑉, 𝑝 = 1,2, … . 𝑁  (12) 

 

The objective function minimises the total completion times of the all the vessels in the 

schedule. Constraint (1) ensures that each position in the schedule is occupied by exactly one 

vessel and served at one berth. Constraint (2) ensures that each vessel occupies exactly one 

position in the schedule and it served at one berth. Constraint (3) gives the time each berth is 

available to start handling vessels in the schedule. The constraint allows for the dynamic 

availability of berths as well as the dynamic arrival of vessels. This flexibility could be very 

useful in practice since the berth can be busy handling vessels from the previous schedule or 

undergoing repair or maintenance works. Constraint (4) ensures that no vessel is assigned to a 

berth when it is busy. Constraint (5) ensures that a vessel is not served unless it arrives at the port. 

Constraint (6) ensures that a berth cannot serve a vessel unless it is available and the vessel 

arrives at the port. Constraint (7), (8) & (9) satisfy the definition of variable 𝑆𝑖𝑗𝑝 which equals 𝑆𝑖𝑝 

if vessel 𝑗 ∈ {1,2, … , |𝑉|}  is the 𝑝𝑡ℎ vessel in the schedule and is handled at berth 𝑖 ∈

{1,2, … , |𝐵|}, and 0 otherwise. Constraints (10) compute the completion time of each vessel. 

Constraint (11) guarantees integer solutions for the corresponding decision variables. Constraint 

(12) ensures that the corresponding decision variables take on non-negative values.  

4.3 Minimising the Makespan 

 𝑀𝑆 = 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥            

Subject to constraints (1) to (12) and 

                𝐶𝑗 ≤ 𝐶𝑚𝑎𝑥 ;  ∀𝑗 ∈ 𝑉                                                                                                  (13)            

                𝐶𝑚𝑎𝑥 ≥ 0                                                                                                                     (14)                
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The objective function minimises the makespan or maximum completion time of any 

vessel in the schedule (Cmax).  Constraint (13) ensures that the completion time of any 

vessel at any berth is not greater than the makespan. Constraint (14) ensures that the 

makespan takes on a non-negative value.  

4.4 Minimising the Total Weighted Tardiness 

  𝑇𝑎𝑟𝑑𝑦 = 𝑀𝑖𝑛 {∑ 𝑤𝑗𝑈𝑗

𝑗∈𝑉

} 

          Subject to constraints (1) to (12) and 

                      𝐶𝑗 − 𝑀𝑈𝑗 + 𝑀 > 𝑑𝑗  ;      ∀𝑗 ∈ 𝑉                                                                         (15) 

                     𝐶𝑗 − 𝑀𝑈𝑗 < 𝑑𝑗;    ∀𝑗 ∈ 𝑉                                                                                       (16) 

                     𝑈𝑗 = {0,1}  ;  ∀𝑗 ∈ 𝑉                                                                                               (17) 

              The objective function minimises the (weighted) number of vessels that are late 

or tardy in the schedule.  Constraints (15) and (16) ensure that a vessel is only tardy if its 

completion time is greater than its due date. Constraint (17) ensures that the 

corresponding decision variable takes on only two values with the value 0 meaning the 

vessel is either completed on or before its due date and 1 indicating the vessel is late. If 

the weight of each vessel 𝑤𝑗 = 1, ∀𝑗 ∈ 𝑉 , then the problem reduces to minimising total 

tardiness.  

4.5 Minimising Maximum Lateness 

 𝑀𝐿 = 𝑀𝑖𝑛  𝐿𝑚𝑎𝑥          

Subject to constraints (1) to (12) and 

   𝐶𝑗 − 𝑑𝑗 ≤   𝐿𝑚𝑎𝑥;  ∀𝑗 ∈ 𝑉                                                                                (18)  

                      𝐿𝑚𝑎𝑥 ≥ 0                                                                                                             (19) 

The objective function minimises the maximum lateness of any vessel in the schedule. Constraint 

(18) ensures that maximum lateness must not be less than the difference between completion and 

due date of any vessel. Constraint (14) ensures that the maximum lateness takes on a non-

negative value.  
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5 Illustrative Example and Analysis 

5.1 Introduction 

In this section we demonstrated the importance of choosing the right performance measure for the 

problem at hand, as different performance measures result in different schedules and hence may 

result in less efficient use of resources at the port. The DDBAP with different objective functions 

considered in section 4 are compared in this section. For simplicity only one instance of the 

problem was generated and was solved to optimality under the four objective functions or 

performance measures discussed earlier using the CPLEX software. The four objection functions 

considered are: 

1. The average turnaround time (ATT) which the total turnaround time (TTT) divided by 

the number of vessels. 

2. The makespan (Cmax) 

3. The total tardiness (Tardy) 

4. The maximum lateness (Lmax) 

5.2 Instance Generation 

The number of berths and the number of vessels considered in this experiment is 2 and 10 

respectively. The characteristics of the berths and the vessels such as vessel handling time at each 

berth, expected arrival and departure times (due dates) were generated randomly taking into 

account the number of cranes assigned to each berth. The data are presented in Table 1. For 

example vessel number 1 is expected to arrive in 8 hours time with 14 hours handling time at 

berth 1 and 8 hours at berth 2 and is expected to depart in 101 hours time. The times generated 

are for illustrative purposes only.  The weight or importance of each vessel was set to 1. 
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Table 1: Instance characteristics 

Vessel  Arrival Due Handling times (Hrs) 

Number Time Date Berth 1 Berth 2 

1 8 101 14 8 

2 17 79 156 56 

3 11 48 69 29 

4 34 136 227 78 

5 55 150 167 56 

6 20 108 144 45 

7 32 90 101 38 

8 83 168 246 84 

9 78 163 225 78 

10 65 151 211 75 

 

5.3 Results and Analysis 

Here we compare the performances of the optimisation problem under the four objective 

functions with the simple priority rule of First Come Fist Serve (FCFS), which is what port 

mangers often use (Imai et al. 2001).  The results presented in Table 2 include the resulting order 

of service and the computed values of the performance measures (Average turnaround time 

(ATT), makespan (Cmax), total tardiness (Tardy) and maximum lateness (Lmax). Due to 

significant differences in the magnitude of the performance measures, the results are expressed in 

percentage terms. That is the percentage improvements in the four PMs relative to those of the 

FCFS values. Both Table 2 and Figure 2 show that significant gains in berth efficiency and 

utilisations can be achieved when berth allocation is optimised instead of the using the FCFS rule. 

For example, minimising TTT (or ATT) can result in a savings of more 9% of average vessel 

turnaround time compared with FCFS rule. Minimising the makespan can reduce the maximum 

turnaround time of a vessel by 31%; the number of late vessels can be reduced by over 25% under 

total tardiness minimisation and the maximum lateness of a vessel can also be reduced by 43% 

under Lmax minimisation, all compared with the FCFS rule.  

 Figure 2 shows the deterioration or worsening of each PM under the optimisation of other 

PMs. For example, the average turnaround time of a vessel deteriorated from over 9% 

improvement relative to the FCFS rule under ATT minimisation to -15% under total tardiness 
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minimisation, making the FCFS rule appear better if the wrong PM is optimised. The Cmax 

(makespan) and the Lmax (maximum lateness) performance measures also recorded their worst 

values under total tardiness minimisation. The improvement in maximum turnaround time of any 

vessel in the schedule over the FCFS rule reduced from 31% under Cmax minimisation to 6% 

under Lmax  minimisation whilst that of maximum lateness of a vessel reduced from 43% under 

Lmax  minimisation to just 1% under total tardiness minimisation. These results clearly 

demonstrate the importance of the choice of PM to optimise to meet customers' requirements or 

achieve required port efficiency targets as different choice of PMs leads to different service 

orders and different outcomes.  

Table 2: Optimisation models vs the FCFS rule  

 

Service order ------------------------------------>       

Objective 

 Function 1 2 3 4 5 6 7 8 9 10 

Optimal 

Value FCFS 

% 

Improvement 

ATT 1 3 7 6 5 4 9 8 2 10 202 223 9% 

Cmax 1 3 2 6 9 5 8 4 10 7 412 594 31% 

 Tardy 1 3 7 9 5 6 8 2 10 4 6 8 25% 

Lmax 1 2 4 3 7 5 6 10 8 9 244 427 43% 

 

 

 
Figure 2: Deterioration of PM under other PM optimization 
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29%
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6 Heuristic Algorithms 

The complexity (NP hard) of the problem means that large problem instances are unlikely to be 

solved by existing commercial solvers such as CPLEX or LINDO.  We therefore developed four 

heuristics algorithm, one for each PM motivated by the insight gained from the formulations 

above. The performances of the heuristics were compared with the First Come First Served 

(FCFS) rule using 48,000 generated instances of the problem. The four heuristics consist of three 

main stages; build, repair and optimise (BRO).  We therefore refer to them as BRO-Z, where Z is 

the PM to be optimised. For example, BRO-Cmax, is the proposed heuristic for minimising the 

makespan. The algorithms first construct a feasible solution, then spread the load cross or move 

vessels across berths and then finally perform local optimisation on each berth.  Thus the 

proposed algorithm can be seen as a general framework that can be adapted to solve all berth 

allocation problems.  

 
 
 

 

 

Figure 3: Heuristic framework for DDBAP  

 

Build (B) Algorithm. 

Assign the vessels to the berths using the FCFS rule. 

The solutions from the Build (B) algorithm then go into the Repair (R) algorithm for repairs, 

where it is very likely all the vessels are assigned to a subset of the available berths. The objective 

of the R-algorithm is to spread the load for better utilisation of all berths. 

Repair (R) Algorithm 

1. Compute the PM (objective function) for each berth assuming a 1-berth system by doing 

one of the following : 

a. If PM is Cmax, schedule the vessels in increasing order of  
𝑎𝑗

ℎ∗𝑗
 ( ℎ∗𝑗. is the handling 

time on the berth which vessel 𝑗 is assigned to) 

b. If the PM is ATT, schedule the vessels in increasing order of   𝑎𝑗 + ℎ∗𝑗 

c. If the PM is Tardy schedule the vessels in increasing order of due dates (EDD) 

d. If the PM is Lmax, schedule the vessels in increasing order of due dates   

2. Find the over-utilised berth (𝐵𝑜). That is the berth with the worse evaluated PM  

3. For the set of vessels assigned to berth 𝐵𝑜, find vessel  𝑉∗, which: 

a. For Cmax minimisation is the vessel with the earliest arrival time (EAT ) 

Build (B) Repair (R) Optimise (O) 
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     b.   For ATT minimisation is the vessel with largest  𝑎𝑗 + ℎ∗𝑗 

     c.   For Tardy minimisation is the first tardy vessel and 

     d.   For Lmax minimisation is the vessel with largest lateness  

4. Assign 𝑉∗  to the berth 𝐵∗ where 𝐵∗ ≠ 𝐵𝑜 is the berth where  𝑉∗ has the smallest   𝑎𝑗 + ℎ∗𝑗 

(arrival + handling time) 

5. Update the objective function. 

 a. If it improves keep the 𝑉∗ on berth 𝐵∗ else 

  a. Mark vessel 𝑉∗ as tabu for berth 𝐵∗ (i.e., 𝐵∗ will not be selected again for 𝑉∗) 

6. Repeat steps 3-4 until vessel  𝑉∗ is permanently assigned or is tabu on all berth, in which 

case is left on berth 𝐵0. 

7. Repeats steps 2-6 until any for any selected 𝐵𝑜 , all  𝑉∗ ∈ 𝐵𝑜  is marked as tabu  

Once the R-algorithm is applied the resulting solution is optimised across berths and on each 

berth using the Swap algorithm described below. The algorithm is a two-staged swap algorithm, 

where the first stage swaps vessels across berths followed by swapping of vessels on the same 

berth. A swap is only made permanent if it results in improved PM of interest, else the swap is 

reversed. In the algorithm below 𝐵𝑖 represents the set of vessels assign to berth 𝑖 ∈ 𝐵, ℬ =

{⋃ 𝐵𝑖 , ∀𝑖 ∈ 𝐵} and 𝑉𝑢 represent a vessel in position u for any given berth.  

Local optimisation (O)-Swap algorithm 

1. For 𝑖 ≔ 1,2, … |ℬ| do:  

1.1 For 𝑗 ≔ 𝑖 + 1, 1 + 2, … |ℬ| do:  

1.1.1 For 𝑢 ≔ 1,2, … , |𝐵𝑖|  do: 

1.1.1.1 𝑣 ≔ 1, 2, … |𝐵𝑗| do: 

1.1.1.2 Swap the vessel at position 𝑢 (𝑉𝑢) on berth 𝐵𝑖  with vessel at 

position 𝑣 (𝑉𝑣) on berth 𝐵𝑗 

1.1.1.3 If the swapping improves the PM of interest, make the swap 

permanent, else reverse the swap.  

2. For 𝑖 ≔ 1,2, … |ℬ| do:  

2.1 For 𝑢 ≔ 1,2, … |𝐵𝑖|  do: 

2.1.1 𝑣 ≔ 𝑢 + 1, 𝑢 + 2, … |𝐵𝑖| do: 

2.1.1.1 Swap the vessel at position 𝑢 (𝑉𝑢) with vessel at position 𝑣 (𝑉𝑣)  

2.1.1.2 If the swapping improves the PM of interest, make the swap 

permanent, else reverse the swap.  
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6.1     Experimental Study  

As noted in Rardin and Uzsoy (2001) conducting experiments to test the quality of the heuristic 

algorithms is more scientific and also gives an indication of how much the results can be trusted. 

Thus analysis of using averages (measure of central tendencies) and standard deviations (measure 

of variability) for a given set of instances, gives a better picture of how the algorithms may 

perform in practice. So in the study we conducted extensive experiment involving over 48,000 

instances of the problems under consideration to ascertain the strengths and weaknesses of the 

proposed heuristics. 

6.2 Instances Generation  

Since there is essentially no reference benchmark available, we developed our own instance 

generator for this study guided by generating instances with features that resembles those in real-

life conditions. In this experiment we assumed a planning horizon (T) of one week, which is 

equivalent to 168 hours assuming a 24/7 operation; 24 different number of berths were drawn 

from the set 𝔙 = {2,3, … . ,25} and the number of cranes (𝑁𝑖) at each berth were randomly 

generated to lie between 1 and 5 cranes with the average productively of each crane assumed to 

be 35 (TEU/hr).  For each selected berth number 𝑏 ∈ 𝔙 at the multi-user container terminal, 10 

different number of vessels (#𝑉 ) were generated as a function of the number of berths;  #𝑉 =

𝑏 + (𝑣 ∗ 𝑏 ), 𝑣 = 1, … .10; 𝑏 ∈ 𝔙.  The load (𝐿𝑗) carried by each arriving vessel was randomly 

drawn from 250 and 8000 (TEUs/vessel) and combined with the number of cranes at each berth 

the handling time (hours) of a vessel at each berth were computed as:   

ℎ𝑖𝑗 =  
𝐿𝑗

35 ∗ 𝑁𝑖
;  𝑗 ∈ 𝑉;   𝑖 ∈ 𝐵 

The arrival time of vessels (𝑎𝑗) were assumed to be a function of the planning horizon (𝑇): 𝑎𝑗 =

 𝑢 ∗ (𝛼 ∗ 𝑇), 𝑢~𝑈(0,1). 10 different values of 𝛼  were chosen in set {0, 0.1, 0.2… 0.9}, where 

𝛼 = 0 reduces the DDBAP to its static version where all vessels are at the port before the start of 

the schedule and 𝛼 = 0.1 implies the arrival time of any vessel in schedule must not exceed 0.1 ∗

𝑇 (or 1008minutes) from the start of the schedule. Finally, to test the robustness of the algorithms 

we randomly generated 20 instances (replicates) of each combination of the above problem 

characteristics by changing the seed of the random number generator. So in all we generated a 

total of 48,000 (24*10*10*20) feasible instances for each of the four proposed algorithms plus 

the FCFS rule.  The due date for each vessel was computed as a function of its arrival time, 

maximum possible handling time on any berth and the length of the planning horizon: 
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𝑑𝑗 = 𝑎𝑗 + max{ℎ𝑖𝑗} + |𝑇 − 𝑎𝑗 − max{ℎ𝑖𝑗}| ∗  𝑢; 𝑢~𝑈(0,1) 

The departure time or due date of some vessels could be higher than the length of the planning 

horizon, a situation expected even in practice when large vessels call at the terminal. In summary, 

the size of the instances considered ranges from 2 berths with 4 vessels terminal to 25 berths with 

275 vessels terminal.  

6.3 Analysis of experimental results  

For each generated instance we sort for the percentage improvement in the proposed algorithms 

(BRO-Z) with respect to the FCFS rule. Thus for each PM, we evaluated the improvements (in 

percentage) of BRO-Z over the FCFS solution for the 48,000 instances and computed the average 

and standard deviation.  The figures below show the comparison results of the four proposed 

heuristics. Figure 4 shows on average the  proposed heuristic (BRO-ATT)  can reduce the ATT  

(average vessel turnaround time) of a vessel by 18% (with a standard deviation of about 5%) with 

respect to the FCFS rule based on the 48,000 generated instances. The figure also shows that on 

average the  BRO-Cmax heuristic can reduce the makespan (the maximum time a vessel stays at 

the terminal) by 23% (with a standard deviation of about 12% ); and the BRO-Tardy can also on 

average reduce the number of tardy vessels by 34% with a standard deviation of  15%.  Finally, 

algorithm BRO-Lmax makes an average savings of 36% on the maximum lateness of a vessel. 

The standard deviations show the variations in the performance of the algorithms on the different 

test instances with algorithm BRO-Lmax showing the highest variations and algorithm BRO-ATT 

showing the least. This could suggest that the FCFS rule can provide a reliable performance 

guarantee under ATT minimisation. This result is generally consistent with the results in section 5 

where the FCFS rule had it strongest performance under ATT minimisation and also worse under 

Lmax minimisation. 

 Figure 5 shows the deterioration or the worsening of each PM under the optimisation of 

other PMs. For example, only savings of 2%, 5%, and 2% with respect to the FCFS rule were 

recorded for the average turnaround time PM under the minimisations of Cmax (makespan), 

Tardy (number of late vessels), and Lmax (maximum lateness) respectively.  The savings in the 

number of late vessels dropped from 34% under Tardiness minimisation to 4% under Cmax 

minimisation. Similar conclusions can be drawn from the PMs. The results support the conclusion 

drawn from the analysis in section 5 where optimising one PM has the potential of worsening 

other PMs.  
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Figure 4: Summary statistics of the model runs   

 

 

Figure 5: The deterioration of PMs under the optimisation of other PMs   
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7 Conclusion 

This paper presented four new mathematical models for the dynamic discrete berth allocation 

problem (DDBAP) under four performance measures. The models were successfully 

implemented using CPLEX for a small-sized instance of the problem and the results were 

compared with the corresponding results from the FCFS scheduling approach. This paper has also 

shown that the choice of performance measure to optimise is crucial in berth allocation and may 

influence customer satisfaction or dissatisfaction and port efficiency measures. For example, the 

average turnaround time of a vessel deteriorated from over 9% improvement relative to the FCFS 

rule under ATT minimisation to -15% under total tardiness minimisation, making the FCFS rule 

appear better if the wrong PM is optimised. The Cmax (makespan) and the Lmax (maximum 

lateness) performance measures also recorded their worst values under total tardiness 

minimisation. The improvement in maximum turnaround time of any vessel in the schedule over 

the FCFS rule reduced from 31% under Cmax minimisation to 6% under Lmax  minimisation 

whilst that of maximum lateness of a vessel reduced from 43% under Lmax  minimisation to just 

1% under total tardiness minimisation. Similar conclusions can be drawn for the other 

performance measures. Thus it is very important for port managers to be familiar with all the 

performance measures and their implications for the service order and customer satisfaction when 

planning berth allocations.  

 This paper has also demonstrated, albeit based on the test instances that significant gains 

in berth efficiency and utilisation can be made when optimisation models are applied to solve 

berth allocation problems at ports compared to the First Come First Serve (FCFS) approach. The 

paper also proposed four (one for each PM) heuristics under one algorithm framework for large 

instances of the problem and their solution quality were demonstrated through extensive 

numerical experiment using 48,000 test instances allowing the quality of the solutions (compared 

with FCFS rule) to measured in terms of statistical average and standard deviations. The results 

from the experiment support the conclusion drawn from the analysis when the proposed models 

were solved in CPLEX to optimality. 

 Further studies are required to test these models on real world data. Extending these 

models to solve the continuous dynamic berth allocation problem would also be very useful and 

enrich the literature on berth allocation problems. 
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