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1. Introduction 
 
Recent research in auction and marketplace design highlights the importance of auction 
rules on bidders and market performance (1 and 2). The principal focus of this research 
is to compare and evaluate the impact of distinct auction rules on the performance of a 
transportation marketplace. This investigation focuses on the dynamic procurement of 
truckload pickup-and-delivery services in a sequential auction transportation 
marketplace; this marketplace is denoted TLPM which stands for truckload procurement 
marketplace.  
 
The motivation for this work arises from the growth of network business-to-business 
forecasts (3). This growth is partly supported by the increasing use of private 
exchanges, where a company or group of companies invites selected suppliers to 
interact in a real time marketplace, compete, and provide the required services. In the 
logistics sector, shippers have also set up private exchanges, which they use for 
confidential communications with their carriers, for example, DuPont has a logistic web 
portal to manage all inbound and outbound freight movements across all transportation 
modes (4). These exchanges allow for freight visibility as well as for consolidation and 
optimization opportunities (5). On the supply side, carriers have begun to offer more 
internet based services, particularly the larger motor carriers (6).  
 
Carriers participating in a TLPM face complex interrelated decision problems.  Two 
distinct problems stand out (a) profit maximization problem (chose best pricing or 
bidding policy) and (b) cost minimization problem (operate the fleet in the most 
efficient manner). Sequential auctions are notoriously complex problems; furthermore, 
no equilibrium solution exists when there are several auctions (three or more) and multi-
unit demand bidders (7).  Therefore, in this work carriers are assumed boundedly 
rational. In addition, due to the inherent complexity, it is assumed that TLPM carriers 
make not attempt to acquire or use knowledge about competitors’ explicit decision 
(bidding) processes. Carriers solely learn about the distribution of past market prices or 
the relationships between realized profits and bids. Previous work has already dealt with 
the importance of dynamic vehicle routing technology and cost estimation in a TLPM 
(8). 
    
The goal of this paper is not to find the “optimal” rules or procedures that lead to the 
best possible bidding. Rather, the goal is to define and simulate plausible bounded 
rational procedures and behaviors of carriers competing in a TLPM. Three different 
auction formats are compared using simulation experiments: second price auctions, first 
price auctions with minimum information disclosure, and first price auctions with 
maximum information disclosure.  
 
The paper is organized as follows: the next section describes the marketplace 
framework and operation. Learning in a TLPM is discussed in the third section. Section 
four describes the utilized learning mechanisms. Section five describes the simulation 
framework. The experimental results are analyzed and discussed in section six, followed 
by concluding comments in the final section.  
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2.  Market Description 
 
The TLPM enables the sale of cargo capacity based mainly on price, yet still satisfies 
customer level of service demands. The specific focus of the study is the reverse auction 
format, where shippers post loads and carriers compete over them (bidding).  The 
auctions operate in real time and transaction volumes and prices reflect the status of 
demand and supply. A framework to study transportation marketplaces is presented by 
Figliozzi, Mahmassani, and Jaillet (9).  
 
The market is comprised of shippers that independently call for shipment procurement 
auctions, and carriers, that participate in them (we assume that the probability of two 
auctions being called at the same time is zero). Auctions are performed one at a time as 
shipments arrive to the auction market. Shippers generate a stream of shipments, with 
corresponding attributes, according to predetermined probability distribution functions. 
A shipment attribute is its reservation price, or maximum amount that the shipper is 
willing to pay for the transportation service. It is assumed that an auction 
announcement, bidding, and resolution take place in real time, thereby precluding the 
option of bidding on two auctions simultaneously.  
 
In the TLPM there are n  carriers competing, a carrier is denoted by i ∈ ℑ  
where {1, 2,..., }nℑ = is the set of all carriers. Let the shipment/auction 
arrival/announcement epochs be 1 2{ , ,..., }Nt t t  such that 1i it t +< . Let 1 2{ , ,..., }Ns s s be the 
set of arriving shipments. Let jt represent the time when shipment js  arrives and is 

auctioned. There is a one to one correspondence between each jt  and js  (i.e. for each jt  

there is just one js ). Arrival times and shipments are not known in advance. The arrival 

instants 1 2{ , ,..., }Nt t t follow some general arrival process. Furthermore, arrival times and 
shipments are assumed to come from a probability space ( , , )Ω F P , with 
outcomes 1 2{ , ,..., }Nω ω ω . Any arriving shipment js  represents a realization at time jt  

from the aforementioned probability space, therefore { , }j j jt sω = . 
 
In an auction for shipment js , each carrier i ∈ℑ simultaneously bids a monetary 

amount i
jb R∈  (every carrier must participate in each action, i.e. submit a bid). A set of 

bids 1{ ,..., }n
j j jb b b
ℑ

= generates publicly observed information jy . Under maximum 

information disclosure, all bids are revealed after the auction, this is j jy b
ℑ

= .  Under 

minimum information disclosure, no bids are revealed after the auction, this is {}jy = . 
Each carrier is solely informed about his bidding outcome: successful or unsuccessful.  
 
The fleet status of carrier i  when shipment js  arrives is denoted as i

jz , which comprises 

two different sets: i
jS   (set of shipments acquired up to time jt  by carrier i ∈ ℑ) and i

jV  

(set of vehicles in the fleet of carrier i , vehicle status updated to time jt ). The estimated 

cost of serving shipment js  by carrier i ∈ ℑ of type i
jz   is denoted c ( , )i i

j js z . Let i
jI  be 

the indicator variable for carrier i  for shipment js , such that 1i
jI =  if carrier  i  secured 
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the auction for shipment js  and 0i
jI =  otherwise. The set of indicator variables is 

denoted 1{ ,..., }n
j j jI I Iℑ =  and 1i

j
i

I
∈ℑ

≤∑ .  Let i
jπ  be the profit obtained by carrier i  (if this 

carrier wins) for shipment js , then [ , ]i
j

i i i
j j jb c sπ θ= − .  

 
 

3.  Learning in a TLPM  
In an auction context, learning methods seek good bidding strategies by approximating 
the behavior of competitors. Most learning methods assume that competitors’ bidding 
behavior is stable. This assumed bidding stability is akin to believing that all 
competitors are in a strategic equilibrium.  
 
Walliser (10) distinguishes four distinct dynamic processes to play games. In a 
decreasing order of cognitive capacities they are: eductive processes, epistematic 
learning (fictitious play), behavioral learning (reinforcement learning), and evolutionary 
processes. An eductive process requires knowledge about competitors’ behavior (agents 
simulate competitors’ behavior).  Epistemic and behavioral learning are similar to 
fictitious play and reinforcement learning respectively (fully described in the next 
section). In the evolutionary process, a player has (is born with) a given strategy; after 
playing that strategy the player dies and reproduces in proportion to the utilities 
obtained (usually in a game where it has been randomly matched to another player). 
 
This work studies the two intermediate types of learning. Eductive-like type of play 
requires carriers to have almost unbounded computational power and expertise.  On the 
other hand, evolutionary model players seem too simplistic: they have no memory, and 
simply react in response to the last result. Furthermore, the notion that a company is 
born, dies, and reproduces with each auction does not fit well behaviorally in the 
defined TLPM. Ultimately, neither extreme approach is practically or theoretically 
compelling in the TLPM context. Carriers that survive competition in a competitive 
market like TL procurement cannot be inefficient or unskilled. They are merely limited 
in the strategies they can implement. It is assumed that carriers would like to implement 
the strategy (regardless of its complexity) that ensured higher profits, but they are 
restricted by their cognitive and informational (which give rise to bounded rationality).  
 
In practical and theoretical applications, the process of setting initial beliefs has always 
been a thorny issue. Implemented learning models must specify what agents initially 
know. Ideally, how or why these initial assumptions were built should always be 
reasonable justified or explained. In this respect, restricting the research to the TLPM 
context has clear advantages.  
 
Normal operating ratios in the TL industry range from 0.90 to 0.95 (11). It is expected 
that operating ratios in a TLPM would not radically differ from that range. If prices are 
too high shippers can always opt out, abandon the marketplace and find an external 
carrier. Prices cannot be substantially lower because carriers would run continuously in 
the red, which does not lead to a self-sustainable marketplace. Obviously, operating 
ratios fluctuations in a competitive market are expected, in response to natural changes 
in demand and supply. However, these fluctuations should be in the neighbourhood of 
historical long term operating ratios unless the market structure is substantially changed.    
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Another practical consideration is the usage of ratios or factors in the trucking industry. 
Traditionally, the trucking industry has used numerous factors and indicators to analyze 
a carrier’s performance, costs, and profits. It seems natural that some carriers would 
obtain a bid after multiplying the estimated cost by a bidding coefficient or factor. 
Actually, experimental data show that the use of multiplicative bidding factors is quite 
common (12).  

 

4. Learning Mechanisms 
 
In reinforcement learning the required knowledge about the game payoff structure and 
competitors behavior is extremely limited or null. From a single carrier’s perspective 
the situation is modeled as a game against nature; each action (bid) has some random 
payoff about which the carrier has no prior knowledge. Learning in this situation is the 
process of moving (in the action space) in a direction of higher profit. Experimentation 
(trial and error) is necessary to identify good and bad directions.  
 
Let M  be the ordered set of real numbers that are multiplicative 
coefficients 0M { ,..., }Kmc mc= , such that if Mkmc ∈  and 1 Mkmc + ∈ , then 1k kmc mc +< . 
Using multiplicative coefficients the profit obtained for any shipment js , when using 

the multiplicative coefficient kmc   is equal to: 
 

( ) ( ) ( 1) (1)i
j

i i i i i
k k j j j j j kmc mc c c I c I mcπ = − = −   

(2)( ) ( ) (2)i
j

i i
k j j jmc b c Iπ = −   

 
The first equation applies to first price auctions while the second equation applies to 
second price auctions. Adapting the reinforcement model to TLPM bidding, the 
probability ( )i

j kmcϕ of carrier i  using a multiplicative coefficient kmc  in the auction for 

shipment js  is equal to: 
 
 1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (3)i i i i i

j k j k j k j k j kmc mc mc I mc mcϕ λ π ϕ λ π− − − −= − +  
 
To use equation (3), each bidder only needs information about his bids and the result of 
the auction.  To use this model the profits 1( )i

j kmcπ − must be normalized to lie between 
zero and one so that they may be interpreted as probabilities. The indicator variable 

( )i
j kI mc  is equal to one if carrier i  used the multiplicative coefficient kmc  when 

bidding for shipment js , the indicator is equal to zero otherwise. The parameter λ  is 
called the reinforcement learning parameter, it usually vary between 0 1λ< < .  
 
The stimulus response model with reinforcement had its origin in the psychological 
literature and has been widely used to try to explain human and even animal behavior. 
Some computer science literature calls this model the learning automaton. Narenda and 
Tatcher (13) showed that a players’ time average utility, when confronting an opponent 
playing a random but stationary strategy, converges to the maximum payoff level 
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obtainable against the distribution of opponents’ play. The convergence is obtained as 
the reinforcement parameter λ goes to zero.  
 
The reinforcement is proportional to the realized payoff, which is always positive by 
assumption. Any action played with these assumptions, even those with low 
performance, receives positive reinforcement as long as it is played (14). Furthermore, 
in an auction context there is no learning when the auction is lost 
since 1( ) 0 Mi

j k kmc mcπ − = ∀ ∈  if 1 0i
jI − = .  

 
Borgers and Sarin (15) propose a model that deals with the aforementioned problems. In 
this model the stimulus can be positive or negative depending on whether the realized 
profit is greater or less than the agent’s “aspiration level”. If the agent’s aspiration level 
for shipment js  is denoted i

jρ  and the effective profit is 

denoted 1 1( ) ( ) (4)i i i
j k j k jmc mcπ π ρ− −= −% , then  

 

1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (5)i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λ π ϕ λ π− − − −= − +% %  

 
When 0i

jρ = , the equation (5) provides the same probability updating equation as (3). 
Borgers and Sarin explore the implications of different policies to set the level of the 
aspiration level. These implications are clearly game dependent.  A general observation 
applies for aspiration levels that are unreachable. In this case equation (4) is always 
negative; therefore the learning algorithm can never settle on a given strategy, even if 
the opponent plays a stationary strategy.  
 
These learning mechanisms were originally designed for games with a finite number of 
actions and without private values (or at a minimum for players with a constant private 
value). In the TLPM context, the cost of serving shipments may vary significantly. 
Furthermore, even the “best” or optimal multiplier coefficient can get a negative 
reinforcement when an auction is lost simply because the cost of serving a shipment is 
too high. This negative reinforcement for the “good” coefficient creates instability and 
tends to equalize the attractiveness of the different multiplicative coefficients.  This 
problem worsens as the number of competitors is increased causing a higher proportion 
of lost auctions, i.e. negative reinforcement.  
 
This research proposes a modified version of the stimulus response model with 
reinforcement learning that better adapts to TLPM bidding. Each multiplicative 
coefficient km  has an associated average profit value ( )i

j kmπ  that is equal to: 
 

{1,..., }

{1,..., }

( ) ( )
( )

( )

i i
t t t k

t ji
j k i

t k
t j

s I m
m

I m

π
π ∈

∈

=
∑

∑
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The aspiration level is defined as the average profit over all past auctions: 
 

 {1,..., }

( )i i
t t t

t ji
j

s I

j

π
ρ ∈=

∑
 

 
Therefore the average effective profit is defined as 1 1( ) ( )i i i

j k j k jmc mcπ π ρ− −= − . 
Probabilities are therefore updated using equation (6).  
 

1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (6)i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λ π ϕ λ π− − − −= − +  

 
With the latter formulation (6), a “good” multiplicative coefficient does not get a 
negative reinforcement unless its average profit falls below the general profit average. 
At the same time, there is learning even if the auction is lost.  
 
Stimulus-response learning requires the least information and can be applied to both 
first and second price auctions. The probability updating equations (3), (3), and (6) are 
the same for first and second price auctions. Therefore the application of the 
reinforcement learning model does not change with the auction format that is being 
utilized in the TLPM.  Using this learning method, a carrier does not need to model 
neither the behavior nor the actions of competitors. The learning method is essentially 
myopic since it does not attempt to measure the effect of the current auction on future 
auctions. The method clearly fits in the category of no-knowledge/myopic carrier 
bounded rationality.  
 
Since the method is myopic, for the first price auction the multiplicative coefficients 
must be equal or bigger than one, i.e. 0 1mc ≥ . A coefficient smaller than one, generates 
only zero or negative profits. In a second price auction the multiplicative coefficients 
can be smaller than one and still generate positive profits since the payment is 
dependent on the competitors’ bids.  
 
In both types of auctions it is necessary to specify not just the set of multiplicative 
coefficients but the initial probabilities. If equation (5) is used it is also necessary to set 
the aspiration level. If equation (6) is used it is necessary to set the level of the initial 
profits but not the aspiration level. A uniform probability distribution is the classical 
assumption and indicates a complete lack of knowledge about the competitive 
environment.  
 
Summarizing, in reinforcement learning, the agent does not consider strategic 
interaction.  The agent is unable to model an agent play or behavior but his own. This 
agent is informed only by his past experiences and is content with observing the 
sequence of their own past actions and the corresponding payoffs. Using only his 
action-reward experience, he reinforces strategies that succeeded and inhibit strategies 
which failed. He does not maximize but moves in a utility-increasing direction, by 
choosing a strategy or by switching to a strategy with a probability positively related to 
the utility index.  
 
Fictitious play came about as an algorithm to look for Nash equilibrium in finite games 
of complete information (16). It is assumed that the carrier observes the whole sequence 
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of competitors’ actions and draws a probabilistic behavioral model of the opponents’ 
actions. The agent does not try to reveal his or her opponents’ bounded rationality from 
their actions although the agent may eventually know that opponents learn and modified 
their strategies too.  The agent models not behavior but simply a distribution of 
opponents’ actions. Players do not try to influence the future play of their opponents. 
Players behave as if they think they are facing a stationary, but unknown, distribution of 
the opponents’ strategies. Players ignore any dynamic links between their play today 
and their opponents’ play tomorrow.  
 
A player that uses a generalized fictitious play learning scheme assumes that his 
opponents' next bid vector is distributed according to a weighted empirical distribution 
of their past bid vectors. The method cannot be straightforwardly adapted to games with 
an infinite set of strategies (for example the real numbers in an auction). Two ways of 
tackling this problem are: a) the player divides the set of real numbers into a finite 
number of subsets, which are then associated with a strategy or b) the player uses a 
probability distribution, defined over the set of real number to approximate the 
probabilities of competitors play.  In either case, the carrier must come up with a 
estimated stationary price function ξ (in our experiments carriers estimate a normal 
distribution using on competitors’ past bids). If a second price auction format is used in 
the TLPM, the carrier bids using:  
 

*
( )arg max { ( , )}i i i

j j jb E c s z

b R
ξ ξ∈ −

∈
 

 
If a first price auction format is used in the TLPM, the carriers bids using:   
 

*
( )arg max { ( ( , )}i i i

j j jb E b c s z

b R
ξ∈ −

∈
 

 

5. Simulation Framework 
This paper studies truckload carriers that compete over a square area; the sides’ lengths 
are equal to 1 unit of distance. For convenience, trucks travel at constant speed equal to 
one unit of distance per unit of time. Demands for truckload pickup-and-delivery arise 
over this area and over time. Origins and destinations of demands are uniformly 
distributed over the square area, so the average loaded distance for a request is 0.52 
units of distance. All the arrivals are random; the arrival process follows a time Poisson 
process. The expected inter-arrival time is E [T] = 1/ (Kλ), where λ is the demand 
request rate per vehicle and K is the total market fleet size. Roughly, the average service 
time for a shipment is 0.77 units of time (approximately λ = 1.3). The service time is 
broken down into 0.52 units of time corresponding to the average loaded distance, plus 
0.25 units of time that approximate the average empty distance (average empty distance 
vary with arrival rates and time windows considered). Different Poisson arrival rates per 
truck per unit of time are simulated (ranging from 0.5 to 1.5). As a general guideline, 
these values correspond to situations where the carriers are: 
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• λ = 0.5  (uncongested) 
• λ = 1.0  (congested) 
• λ = 1.5  (extremely congested) 

 
The shipments have hard time windows. In all cases, it is assumed that the earliest 
pickup time is the arriving time of the demand to the marketplace. The latest delivery 
time (LDT) is  assumed to be:   
 
LDT = arrival time + 2 x (shipment loaded distance + 0.25) + 2 x uniform (0.0, 1.0).  
 
All the shipments have a reservation price distributed as uniform (1.42, 1.52). In all 
cases, reservation prices exceed the maximum marginal cost possible in the simulated 
area (≈1.41 units of distance). It is also assumed that all the vehicles and loads are 
compatible; no special equipment is required for specific loads. In all the simulations, 
two carriers are competing for the demands.  
 
Multiple performance measures are used. The first is total profits, which equal the sum 
of all payments received by won auctions minus the empty distance incurred to serve all 
won shipments (it was already mentioned that shipment loaded distances are not 
included in the bids, loaded distances cancel out when computing profits). The second 
performance measure is number of auctions won or number of shipments served, an 
indicator of market share. The third is shippers’ consumer surplus, which is the 
accumulated difference between reservation prices and prices paid. The fourth is total 
wealth generated that is equal to the accumulated difference between reservation price 
(of served shipments) and empty distance traveled.   
 
Carriers fleet assignment and cost estimation is based on the static optimization based 
approach proposed by Yang, Jaillet and Mahmassani (17). This approach solves static 
snapshots of the dynamic vehicle routing problem with time windows using an exact 
mathematical programming formulation. As new load occurs, static snapshot problems 
are solved repeatedly, allowing for a complete reassignment of trucks to loads at each 
arrival instance.  
 
The second price auction used in the TLPM operates as follows: 
 

i. Each carrier submits a single bid  
ii. The winner is the carrier with the lowest bid (which must be below the 

reservation price; otherwise the auction is declared vacant) 
iii. The item (shipment) is awarded to the winner  
iv. The winner is paid either the value of the second lowest bid or the 

reservation price, whichever is the lowest 
v. The other carriers (not winners) do not win, pay, or receive anything 

 
The same procedure applies to first price auctions but the winner is paid the value of the 
winning bid (only point iv changes).  
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6.  Analysis of Experimental Results  
 
Figure 1 illustrates the relative performance of Average Reinforcement Learning (ARL) 
and Reinforcement Learning (RL) in a first price auction. Both learning methods select 
a bidding factor among 11 different possibilities, ranging from 1.0 to 2.0 in intervals of 

0.1. The learning factor is 0.10λ = . Figure 1 shows the relative performance of ARL 
and RL after 500 auctions. It is clear that RLA obtains higher profits as the arrival rate 
increases. RL has a poorer performance because it cannot converge steadily to the 
“optimal” coefficient.  The speed of reinforcement learning can be quite slow in an 
auction setting like TLPM. The “optimal” bidding factor can be used and there is still 
roughly a 50% chance of losing (assuming two bidders with equal fleets and 
technologies). If the “optimal” bidding factor loses two or three times its chances of 
being played again may reduce considerably which hinders convergence to the 
“optimal” or even convergence at all. As discussed previously, this issue can be avoided 
using “averages” (ARL method). The carrier RL tends to price lower (it keeps probing 
low bidding coefficients longer) and therefore serves a higher number of shipments. 
 
 The next experiment compares the performance of reinforcement learning and fictitious 
play in first price auctions. The latter uses more information than the former. Therefore, 
it is expected that a carrier using fictitious play must outperform a carrier using 
reinforcement learning. Figure 2 shows the relative performance of Fictitious Play (FP) 
and ARL after 500 auctions. The ARL player has the same characteristics as the ARL 
player utilized for Figure 1. The FP carrier divides the possible competitors’ bids in 
fifteen intervals (from 0.0 to 1.5 in intervals of width 0.1) and starts with a uniform 
probability distribution over them.  
 
Clearly, the FP carrier obtains higher profits across the board. The usage of a competitor 
past bidding data to obtain the bid that maximizes expected profits clearly pays off. In 
this case, carrier ARL tends to bid less and serve more shipments. Again, the difference 
diminished as the arrival rate increase. In the TLPM context, even a simple static 
optimization provides better results than a search based on reinforcement learning. Not 
surprisingly, more information and optimization lead to better results. Therefore, if there 
is maximum information disclosure, carriers will choose to use fictitious play or a 
similar bidding strategy, particularly since the complexity of FP (myopic) and ARL are 
not too different.  
 
In second price auctions fictitious play coincides with marginal cost bidding (regardless 
of the price distribution, the expected profit is always optimized with marginal cost 
bidding). RL or ARL do not perform better than FP in the simulated experiments. 
  
The next experiment compares the performance of different sequential auction settings 
from carriers and shippers’ points of view. Four different measures are used to compare 
the auction environments: carriers’ profits, consumer surplus, number of shipments 
served, and total wealth generated. To facilitate comparisons amongst all four graphs 
that are presented subsequently, second price auctions with marginal cost bidding are 
used as the standard to measure up the two types of first price auctions.  
 
Figure 3 illustrates the profits obtained by carriers. FP carriers obtain higher profits than 
ARL carriers across the board. FP carriers use the obtained price information to their 
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advantage. The highest carrier profit levels take place with the second price auctions. 
These results do not alter or contradict theoretical results. With asymmetric cost 
distribution functions, Maskin and Riley (18) show that there is no revenue ordering 
between independent value first and second price auctions.  
 
Figure 4 illustrates the consumer surplus obtained with the three auction types. Clearly, 
first price auction with reinforcement learning (minimum information disclosed) benefit 
shippers. Unsurprisingly, figure 4 is almost the reverse image of figure 3. Figure 5 
shows the number of shipments served with each auction setting. As expected, with 
second price auctions more shipments are served. Even in asymmetric auctions, it is still 
a weakly dominant strategy for a bidder to bid his value in a second price auction (this 
property of one-item second price auction is independent of the competitors’ 
valuations). Therefore, in the second price auction the shipment goes to the carrier with 
the lowest cost.   
 
In contrast, with ARL there is a positive probability that there are inefficient 
assignments since a higher cost competitor can use a bidding coefficient that results in a 
lower bid. Similarly with FP carriers, if the price functions are different (which is very 
likely since each carrier models the competitors’ prices), a higher cost carrier can 
underbid a lower cost carrier with a positive probability.   
 
Figure 6 shows the wealth generated with each auction setting. In second price auctions 
more wealth is generated across the board. Marginal cost bidding is the most “price 
efficient” mechanism of the tested auction settings. As the arrival rate increases, the gap 
in total wealth generated tends to close up (figure 6). Consistently with previous results, 
the lowest wealth generated corresponds to the case with FP bidders.  
 
Summarizing, under the current TLPM setting, carriers, shippers, and a social planner 
would each select a different auction setting. Carriers would like to choose a second 
price auction. If first price auction were used, carriers would like to have maximum 
information disclosure. More information allows players to maximize profits, though 
total wealth generated is the lowest. Shippers would like to choose a first price auction 
with minimum information disclosure; more uncertainty about winning leads carriers to 
offer lower prices. However, the uncertainty leads to a reduction in the number of 
shipments served. Finally, from society viewpoint the most efficient system is the 
second price auction. More shipments are served and more wealth is generated.  

 

7.  Conclusions 
 
A sequential auction framework was used to compare distinct sequential auction 
settings. Reinforcement learning and fictitious play, two learning mechanisms adequate 
for TLPM settings, are introduced and analyzed.  
 
Computational experiments indicate that auction setting and information disclosure 
affect the TLPM performance. Maximum information disclosure allows carriers to 
maximize profits at the expense of shippers’ consumer surplus; minimum information 
disclosure allows shippers to maximize consumer surplus but at the expense of lowering 
the number of shipments served. Marginal bidding in second price auctions generates 
more wealth and more shipments served than first price auctions. The results illustrate 
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that under critical arrival rate there is no incentive to use bidding factors (no deviations 
from static marginal cost bidding).   
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Figure 1:  ARL vs. RL  (RL performance as a base) 
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Figure 2:  ARL vs. FP  (RL performance as a base) 
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Figure 3:  Carriers’ Profit level (Second Price Auction MC as base) 
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Figure 4:  Consumer Surplus level (Second Price Auction MC as base) 
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Figure 5:  Number of Shipments Served (Second Price Auction MC as base) 
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Figure 6:  Total Wealth Generated (Second Price Auction MC as base) 
 
 


