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1. INTRODUCTION 
In many logistics problems it is necessary to estimate the distance that a fleet of vehicles 
travel to meet a set of costumer demands. Traveled distance is not only an important 
element of carriers’ variable costs but it is also a key input in tactical and strategic 
models to solve problems such as facility location, fleet sizing, and network design.   
 
Previous research has either focused on approximating distances in Traveling Salesman 
Problem (TSP) or Capacitated Vehicle Routing Problem (CVRP). Although the CVRP 
can be considered a TSP with capacity constraints, there is no unifying framework to 
approximate distances in both problems. In addition, existing models to estimate 
distance have not considered Vehicle Routing Problems with time windows1 (VRP). 
This is a critical gap in the literature as time windows are becoming increasingly 
important with the wider implementation of customer-responsive and made-to-order 
supply chains in both the manufacturing and service sectors. 
 
The unique contributions of this work are threefold: (a) it provides an intuitive and 
unifying mathematical framework to estimate distances in TSP and VRP problems, (b) 
it considers routing problems with time windows, and (c) it tests the approximation in 
not only randomly generated scenarios but also in  real world urban networks. Although 
the approximations can be used for operational purposes, the approximations are 
intended for strategic and planning analysis of transportation and logistics problems. 
 
The paper is organized as follows: Section 2 provides a literature review; Section 3 
derives approximation formulas based on intuition and insights borrowed from graph 
theory and continuous approximation models; Section 4 describes the experimental 
design, including how the test problems were generated. The experimental results are 
analyzed and discussed in Section 5; the description and analysis of a real world 
application is presented in Section 6, followed by concluding comments in the final 
section.  
 
 

2. LITERATURE REVIEW 
There exists an extensive body of TSP and VRP related literature in operations research 
and transportation journals. The goal of this section is not to present a review of TSP 
and VRP solution methods but to focus on the literature that deals with the estimation of 
distances in TSP and VRP problems.  Comprehensive reviews of solution methods for 
TSP and VRP problems are found in Gutin and Punnen (2002) and Toth and Vigo 
(2001) respectively. 
 
A seminal contribution to estimate the length of a shortest closed path or tour through a 
set of points was established by Beardwood et al. (1959) . These authors demonstrated 
that for a set of n  points distributed in a s-dimensional space ℜ , with a probability of 
one, the following result holds: 
 

                                                           
1 For the sake of brevity, VRP is used to indicate vehicle routing problems with both capacity constraints (CVRP) and 
time windows (VRPTW). 
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1/ 2lim )-(s-1)/s n (s-1)/s
n sn TSP( d p duβ→∞

ℵ

= ∫   V  (1) 

Where a sequence of points or vertices in ℜ  is 1 2, ,...v v=V and the first n  points of 
V are denoted 1{ ,..., }n

nv v=V , the distance between two points is the ordinary 
Euclidian distance and )nTSP(V  is the distance of the shortest closed path tour 
through nV . The tour through nV is confined to the bounded set ℵ  and its points are 
independently distributed over ℵ  with a common probability function p , whose 
density is taken with respect to a Lebesgue measure. For a two dimensional space and 
uniform distribution of points in a circle of area one, Bearwood et al. (1959) established 
that 1/ 2 0.53 2ssβ ≈ .  
 
Although the results from Bearwood et al. are valid for any density function, posterior 
contributions have applied expression (1) to problems where the points are randomly 
and uniformly distributed in an area A  with a constant density /n Aδ = . For two 
dimensions or 2s = ,  Euclidian metric, and uniform distributions, the constant term 

1/ 2
sk sβ= has been estimated at 0.765k =  (Stein, 1978). For reasonably compact and 

convex areas, the limit provided by expression (1) converges rapidly (Larson and 
Odoni, 1981). In these types of areas, the following approximation formula can be used: 
 

[ ] 0.765)nE nATSP( ≈V  (2) 
 
Where A  denotes the area of the set ℵ .  As long as feasibility is satisfied, economies of 
density are achieved in expressions (1) and (2) because distance grows slower than the 
number of customer requests. Formula (2) requires a Euclidean travel metric or L1 
metric. Jaillet (1988) estimated the constant 0.97k ≈  for Manhattan travel metric or  L2 
metric.  
 
Approximations to the length of capacitated vehicle routing problems were first 
published in the late 1960’s and early 1970’s (Webb, 1968, Christofides and Eilon, 
1969, Eilon et al., 1971). Webb studies the correlation between route distance and 
customer-depot distances. Eilon et al. (1971) propose several approximations to the 
length of CVRP based on the shape  and area of the delivery area, the average distance 
between customers and the depot, the capacity of the vehicle in terms of the number of 
customers that can be served per vehicle, and the area of a squared delivery region.  
Daganzo (1984) proposed a simple and intuitive formula for the CVRP when the depot 
is not necessarily located in the area that contains the customers.  
 

[ ] 2 / 0.57 ))nE r n C nACVRP( ≈ +V  (3) 
 
Where )nCVRP(V  is the total distance of the CVRP problem serving n  customers, the 
average distance between the customers and the depot is r , and the maximum number 
of customers that can be served per vehicle is C . Expression (3) can be interpreted as 
having: (a) a term related to the distance between the depot and customers and (b) a 
term related to the distance between customers. The coefficients of expression (3) were 
derived assuming 6C >  and 24N C> . Daganzo’s approximation works better in 
elongated areas as the routes were formed following the “strip” strategy. Robuste et al. 
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(2004) use simulations to analyze elliptical areas and propose adjustments based on area 
shape, C ,  and n . 
Chien (1992) carried out simulations and linear regressions to test the accuracy of 
different models to estimate the length of TSP.  Chien tested rectangular areas with 8 
different length/width ratios ranging from 1 to 8 and circular sectors with 8 different 
central angles ranging from 45 to 360 degrees. Exact solutions to solve the TSP 
problems were used and the size of the problems is 5 to 30 customers. The depot was 
always located at the origin, the left-lower corner of the rectangular areas. Chien 
randomly generated test problems and using liner regressions found the best fitting 
parameters. The mean absolute percentage error (MAPE) was the benchmark to 
compare specifications.  
 
The fitted models were: 
 

2[ ] 0.26 0.80 40.1)nE r RTSP( MAPE≈ = =V  (4) 
2[ ] 0.88 0.97 18.6( 1))nE Rn ATSP( MAPE≈ = =+V  (5) 

2[ ] 1.95 0.62 0.99 8.3))nE r RnATSP( MAPE≈ + = =V  (6) 
 
The 2R  is obtained from the linear regression. MAPE is a measure of the average 
accuracy of the estimator. Chien finds that the lowest MAPE equals 6.9% using the area 
of the smallest rectangle that covers only the customers; this area is denoted R .   
 

2[ ] 2.1 0.67 0.99 6.9))nE r RnRTSP( MAPE≈ + = =V  (7) 
 
However, expression (7) is not convenient for planning purposes when there may be 
many possible subsets of costumers; expression (7) requires the estimation of R  for 
each subset of customers. Using the analytical approximations derived for compact 
areas, the resulting MAPEs are: 
 

[ ] 202.1)nE rnTSP( MAPE≈ =V  (8) 
[ ] 0.75 23.0( 1))nE n ATSP( MAPE≈ =+V  (9) 
[ ] 2 0.57 8.8))nE r nATSP( MAPE≈ + =V    (10) 

 
The previous models were also estimated for each of the 16 different regions; 2R  and 
MAPE  are reported for each type of region and model. The estimated parameters 

change according to the shape of the region.  
 
Kwon et al. (1995) also carried out simulations and linear regressions but in addition 
they also used neural networks to find better approximations. To test the accuracy of 
different models they tested TSP problems in rectangular areas with 8 length/width 
ratios ranging from 1 to 8.  Models were estimated with the depot being located at the 
origin and at the middle of the rectangle. The sizes of the problems range from 10 to 80 
customers.  Kwon et al. (1995) compare  models (6) and (7) with two additional models 
that make use of the geometric information proportioned by the ratio length/width of the 
rectangle (length and width defined in such a way that the ratio is always larger or equal 
to 1). The results obtained for the depot located at the origin are as follows: 
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2[ ] 2.02 0.57 0.99 4.68( 1))nE r Rn ATSP( MAPE≈ + = =+V  (11) 
2[ ] 2.28 0.55 0.99 5.00)nE r RnRTSP( MAPE≈ + = =V   (12) 

2[ ] [0.83 0.0011( 1) 1.11 /( 1)] 0.99 3.71)nE n S n RnATSP( MAPE≈ − + + + = =V   (13) 
2[ ] 0.41 [0.77 0.0008( 1) 0.90 /( 1)] 0.99 3.61)nE r n S n RnATSP( MAPE≈ + − + + + = =V   (14) 

 
Accounting for the shape of the area improves accuracy, although this is at the expense 
of adding one and two extra terms in the last two expressions.  With the depot located at 
the center of the rectangle the results obtained are as follows: 
 

2[ ] 3.38 0.59 0.99 4.72( 1))nE r Rn ATSP( MAPE≈ + = =+V   (15)  
2[ ] 3.98 0.58 0.99 4.45)nE r RnRTSP( MAPE≈ + = =V   (16) 

21[ ] [0.87 0.0016( 1) 1.34 /( 1)] 0.99 3.88)nE n S n RnRTSP( MAPE≈ − + + + = =V    (17) 
21[ ] 1.15 [0.79 0.0012( 1) 0.97 /( 1)] 0.99 3.70)nE r n S n RnRTSP( MAPE≈ + − + + + = =V   (18) 

 
Where 1R  is defined as the area of the smallest rectangle that covers the customer and 
the depot. Kwon et al. (1995) also used neural networks to find a model that better 
predicts TSP length. They conclude that the capability of neural networks to find 
“hidden” relationships provides a slight edge against regression models.  
 
This section has thoroughly reviewed approximations and simulation results for TSP. 
There are strong theoretical and intuitive reasons to include both nA and r terms in the 
models. More accuracy can be obtained if additional terms related to the shape of the 
region and customers are added, as in Kwon et al. Although Daganzo (1984) and 
Robuste et al. (2004) propose distance formulas for the CVRP, to the best of the 
author’s knowledge there is no published research that reports MAPE and simulation 
results for the CVRP.  Distance-wise, problems with time windows have not been 
analyzed in the literature. In the next section a simple and intuitive approximation to the 
distance required for TSP and VRP problems is proposed.  
 
 

3. ALTERNATIVE FORMULA TO APPROXIMATE THE 
DISTANCE OF TSP AND VRP PROBLEMS 
In this paper a VRP is associated with a set of points in 2ℜ  that is 
denoted 0 1{ , ,..., }n

nv v v=V , where the graph associated with the set of vertices nV  is 
denoted ( , )G V L= . The set of links or arcs is denoted {( , ) : , , }i j i jL v v v v V i j= ∈ ≠ .  
The distance between two points is the ordinary Euclidian distance. Vertex 0v  
represents the depot and 0\n n v=C V  represents the set of customers’ requests. There is 
a set of vehicles denoted by T . Each vehicle route must start and finish at the depot; the 
routes must satisfy a set of time windows and capacity constraints denoted by Z . The 
first objective is to build the smallest number of m  routes such that | |m ≤ T , Z  is 
satisfied. The secondary objective is to minimize total distance.  Each route j  serves a 
set of n n

j ⊆V V  customers and n n
j k∩ =∅V V  for all routes where j k≠ . Using this 

notation, a special case of a VRP with | | 1=T  and ∅Z =  is equivalent to a TSP.  
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For the sake of simplicity, let ,1 ,2 ,{ , ,..., }n
j j j j nv v v=V  also denote the customer service 

sequence or order, e.g., vehicle j  first visits ,1jv , then ,2jv , and so on.   The distance of 
the path connecting ,1 ,2 ,{ , ,..., }j j j nv v v  is denoted local or intra-customer distance 

,1 ,2 ,{ , ,..., }j j j nl v v v or simply { }n
jl V .  The distance of the remaining links, that is 

0 1 0{( , ); ( , )}nv v v v  is denoted by the connecting distance { }n
jc V . For any set of customers 

n
jV  it follows that { } { } { }n n n

j j jTSP l c= +V V V .  The definition of these distances can be 
extended to each of the m  routes of a VRP problem with: 
 

{ } { } { } { } { } { }n n n n n n
m m m l c

m m m

VRP TSP l c VRP VRP= = + = +∑ ∑ ∑V V V V V V  (19) 

 
For one route and n customers, any solution to the TSP uses only 1n +  links.  In a 
TSP, 1n−  links are local and 2 links are connecting.  If capacity and/or window 
constraints are added to the TSP, the resulting VRP has a number of routes 1m ≥ .  In 
general, for m  routes and n  customers any solution to the VRP uses n m+  links.  The 
number of connecting links is 2m  and the number of local links is n m− . The 
following observations can be made assuming a uniform distribution of customers: 
 
 For a TSP, as the number of customers increases the relative  importance of the local 

and connecting distance increases and decreases respectively –  Vice versa as the 
number of customers decreases 

 
 As more constraints are added to a TSP and the number of routes m  grows, the 

number of connecting links increases and the number of local links decreases.  
 
 A TSP for the set of customers nC  has exactly n  links. 

 
Based on these observations, the following formula is proposed to estimate the length of 
TSP and VRP: 

{ } /n
l b m

n mVRP k An k A n k m
n
−

≈ + +V   (20) 

Where lk , bk , and mk  are parameters to be estimated by linear regression.  
 
The first term of expression (20) tries to approximate the local tour distance. The first 
term has the desirable property that when n m= , the local distance is zero. 
Alternatively, when n m>> the first term approximates the local tour distance as 
suggested by the Bearwood et al. The third term approximates the connecting distance. 
Observing Daganzo’s expression (4), this term is related to the average distance from 
the depot to the customers. In expression (4) the term /n C  is equivalent to the number 
of routes necessary due to capacity constraints.  The second term is readily associated 
with the connecting distance when the depot is located within or close to A . Intuitively, 
for a depot located within or sufficiently close to A , the distance from the depot to the 
first and last customer of the tour tends to decrease as the number of customers 
increases.  The second term is the bridging component between the local tour and the 
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average distance from the region to the customer area.  The value of parameters lk , bk , 
and mk  are to be determined by linear regression and capture the influence of remaining 
factors such as spatial customer distributions, depot location, and time windows.  
 
The incremental distance of an additional route or customer is denoted ( )mΔ  and ( )nΔ  
respectively and can be obtained taking the derivative of the distance with respect to m  
and n . These values can also be thought of as the average marginal cost of adding a 
new customer to the existing routes and the marginal cost of tightening the 
constraints Z  such that a new route is needed while keeping the number of customers 
served constant (see derivation in the appendix).  
 

( ) l
m

k Am k
n

Δ = −  (21) 

1( ) ( )
2 2 2

l b

l

k A kmn
n nkn

Δ = + −  (22) 

 
The value of ( )mΔ  is readily interpreted as the difference between the added 
connecting links and the replaced inter-customer link. The value of ( )nΔ  represents the 
distance of the additional inter-customer link added. This distance decreases when the 
number of customers increases and when the number of routes decreases.  The value of 

( )nΔ  is always less than the average inter-customer distance as expressed 
by /lk A n  when bk  is positive or when n m−  is larger than the absolute value of the 
ratio /b lk k . Expression (20) is a linear function of m  and the derivative ( )mΔ  is the 
real average rate of change. However, expression (20) is a convex non-linear function 
of n  and the derivative ( )nΔ  slightly overestimates the average distance increase when 
a new customer is added.   
 
The next section describes the experimental design used to test expression (20) in 
settings with diverse customer demands, time windows, depot location, and geographic 
distribution of customers. To evaluate the prediction accuracy the MAPE  and the MPE   
(Mean Percentage Error) are used, which are calculated as follows: 
 

1

1 *100%
p

i i

i i

D EMPE
p D=

−
= ∑     

1

| |1 *100%
p

i i

i i

D EMAPE
p D=

−
= ∑     

 
Where the actual distance for instance i  is denoted iD  and the estimated distance is 
denoted iE . For a given set of instances it is always the case that MPE MAPE≤ . 
The MPE  indicates whether the estimation on average overestimates or underestimates 
the actual distance; the MAPE  provides the average deviation between actual and 
estimated distance as a percentage of the actual distance.  
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It remains to be seen how well the derived expression works, more specifically: 
 

1. How  does expression (20) compare with the expression derived for the CVRP? 

2. Does the adjusting factor ( ) /n m n−  improve the accuracy of the predictions? 

3. What is the impact of time windows on the accuracy of the approximations and 
estimated coefficients? 

4. What is the impact of depot location on the accuracy of the approximations and 
estimated coefficients? 

 
To answer the first two questions two alternative models are used: (a) the “CVRP” 
model, expression (23), which is similar to previously derived formulas for the CVRP; 
and (b) the “base” model, expression (24), that is equivalent to the “adjusted” model 
(20) but without the correcting factor.  
 

1 3{ }nVRP k An k m≈ +V   (23) 

1 2 3{ } /nVRP k An k A n k m≈ + +V   (24) 
 
Expression (20), herein is referred to as the “adjusted” model since it includes the 
factor ( ) /n m n− .  The next section describes the experimental setting.  
 
 

4. EXPERIMENTAL SETTING 
 
The classical instances of the VRP with time windows proposed by Solomon (1987) are 
used in this research. The Solomon instances are chosen because they incorporate key 
factors that affect the behavior of routing algorithms such as geographical distribution 
of customers, the number of customers serviced by a vehicle, time-constrained 
customers, vehicles capacities, and customer demands. These problems have not only 
been widely studied in the operations research literature and but they are readily 
available2.  
 
In the Solomon problems there are 100 randomly generated customers per instance. The 
distances and travel times are Euclidean. There are six different classes of problems 
depending on the geographic location of customers (R: random; C: clustered; RC: 
mixed random and clustered) and time windows length (1: short time windows; 2: long 
time windows).  The customer coordinates are identical for all problems within one type 
(i.e., R, C and RC).  The sets R1, C1 and RC1 have vehicle capacity C of 200 units, 
allowing fewer customers per route than the remaining sets. In contrast, problem sets 
R2, C2, and RC2 have vehicle capacity C equal to 1000, 700 and 1000 units, 
respectively, allowing a larger number of customers per route.  
 
Due to the short time windows, problem sets R1, C1 and RC1 allow only a few 
customers per route (approximately 5 to 10). Problem sets R2, C2 and RC2 have longer 
                                                           
2 Many websites maintain downloadable datasets of the instances including Solomon’s own website: 
http://web.cba.neu.edu/~msolomon/problems.htm 
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time windows and route sizes are in the order of 30 customers serviced by the same 
vehicle. Figures 1, 2, and 3 illustrate the distribution of customer locations in instances 
of problems R, C, and RC respectively. Table 1 provides statistical information 
regarding customers coordinates, demands, time windows (beginning, end, length), and 
service time spent at the customer.  
 
The approximations (20), (23), and (24) are proposed and tested for planning purposes. 
Out of n  possible customers in the service area A , a problem or instance is formed by 
any non-empty subset of nC  and the depot 0v .  Instances can differ not only in the 
subset of customers served but also in their demand levels. Hence, using the first 
instance of the six problem types proposed by Solomon, 15 subsets of customers of size 
70, 60, 50, 40, 30, 20, and 10 were randomly selected from the original 100 customers. 
To incorporate different levels of customer demand, new instances were created 
applying the demand factors presented in Table 2 to each subset of customers. Applying 
the factors in the first row of table 2 (row of ones) the customers have similar demands 
as in the original Solomon problems. The resulting problems using the highest demand 
multipliers (last row of table 2) are such that some customers are truckload (TL) or 
almost TL customers.  This was done to test the approximations when problems are 
highly constrained and have a large number of routes. In the Solomon problems the 
depot has a central location with respect to the customers. To test the approximation 
when the depot is located in the periphery all the created instances where also solved 
with the depot located at the origin, i.e. coordinates (0,0). To study the approximation 
quality and parameter values without time windows all the problem instances were also 
solved without time windows. The combination of settings renders 15*7*6*2*2 = 2,520 
instances.  
 
The instances were solved with a VRP heuristic that have reported solutions within the 
3% of the best solutions results found by any algorithm or solution approach (Figliozzi 
and Bain, 2007). It is worth mentioning that out of the many solutions approaches for 
the VRPTW, there is no method that can provide optimal or even the best known 
solution for all instances as indicated by Braysy and Gendreau (2005a, 2005b). Even for 
CVRPs there are only relatively few instances that can be solved optimally. For 
example, no method can consistently solve instances where the CVRP has more than 50 
customers (Cordeau et al., 2002). Ideally, optimal solutions will be used to compute 
routes and distances. However, the high fitting of the approximations strongly suggests 
that trends and results presented in this research will be valid when other solution 
algorithms are used. 
 
 

5. ANALYSIS AND DISCUSSION OF EXPERIMENTAL RESULTS 
 
To illustrate and provide intuition about the behavior of the different terms of 
expression (20) several graphs have been prepared. The relationship between tour 
distance and connecting distance in TSP problems is shown in Figure 4. Sets of 2, 5, 10, 
20, 30, 40, and 50 customers were randomly extracted from the original R101 Solomon 
problem with 100 customers and the depot has a central location. As shown in figure 4 
the connecting distance quickly decreases and the number of customers increases. As 
expected, the rate of decrease tapers down as /k A n  anticipates. The tour distance 
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increases but at a rate that tapers down as the number of customers grows; this change is 
well captured by k An . These results show that when the number of customers per 
tour is less than 10 the importance of the connecting distance is evident.  
 
The relationship between tour distance and connecting distance in VRP problems is 
shown in figures 5, 6, and 7. Sets of 10, 20, 30, 40, 50, 60, and 70 customers were 
randomly extracted from the original R101 problem. To produce problems with 
different number of routes, the customer demand was multiplied by the demand factors 
shown in table 2. Sets with low customer demand have few routes while sets with high 
customer demand have many routes. Time windows were not considered, therefore, the 
results correspond to distances of CVRP instances. Figure 5 shows that tour distance 
follows the trend already seen in figure 4. The connecting distance shows a different 
pattern (see figure 6). Clearly, the number of customers alone is not a good predictor of 
the connecting distance. As shown in figure 7, the number of routes is a good predictor 
of the connecting distance and a poor predictor of the tour distance.  
 
Results for CRVP instances, i.e. no time windows, and the depot located at the center 
are shown in tables 3, 4, and 5 respectively. Model fit (R2, MAPE, and MPE), estimated 
coefficients,  and the probability of coefficients being equal to zero are displayed for the 
CVRP, base, and adjusted model in tables 3, 4, and 5 respectively.  Herein, all the 
regression results were obtained forcing the intercept or constant term to be zero, which 
is consistent with previous studies by Chien (1992) and Kwon et al. (1995).  In the 
regression models, the average distance per sample size is the dependent variable.  
 
For the sake of clarity, only 3 decimals are displayed in the tables. All three models 
have such a good R2 that no significant differences can be observed; in all three models 
the estimated coefficients are significant, and the probability at a 95% confidence level 
is shown with a 3 decimal level of detail. The MAP shows that the base and adjusted 
model do not significantly overestimate or underestimate the distances. All the models 
present good MAPE values but the adjusted model is superior to the base model. The 
CVRP model, despite its good R2, does not predict distances as well as the other 
models.  
 
The effect of time windows is shown in tables 6, 7, and 8. These results are obtained 
using the same instances used previously in obtaining tables 3, 4, and 5 but considering 
all the customer time windows as originally intended in the Solomon problems. A slight 
decrease in the R2 values is observed; imposing time windows decreases the predicting 
ability of the three models. However, the CVRP model is the most affected; its MPE 
and MAPE increase almost 7 and 3 times respectively. The base and adjusted models 
fare better with a MPE and MAPE increase of 50% with the adjusted model still 
showing the best prediction power with an average MAPE of 3.7%.  
 
Time windows also affect the value of the estimated parameters, although the impact is 
different for tours and connecting distances. The adjusted model shows the most 
consistent behavior. All local tour parameters lk  show an increase that is statistically 
significant at the 95% confidence level. This is intuitively correct since time window 
constraints do not allow the formation of close and tied routes.  All connecting 
parameters bk  show a significant decrease. The parameters mk  are not significantly 
different at the 95% confidence level. This is intuitively correct as the mk  parameter is 
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related to the number of routes and the distance between the depot and customers, and 
therefore, it is not influenced by changes in time windows.  With the depot at the center 
the average increase in the distance associated with the parameters 

( ) / /l bk n m An n k A n− +  is 50% for 10 customers and over 120% for 70 customers. 
There are also significant increases in the distance associated with the term mk m  as the 
number of routes increase up to 30% on average for type 1 problems.  The increase in 
the number of routes is more modest in type 2 problems, on average less than a 5% 
increase of the number of routes.  
 
The same models were also estimated with the depot located at the corner, i.e., 
coordinates (0,0). Moving the depot to the corner increases the average distance 
between the depot and the customers considerably. The increase in average distance is 
indicated in table 9. Despite the increase, the same trends are still observed: a) the 
adjusted model is the best performer followed by the base model, b) time windows 
decreases the accuracy of the models, and c) with time windows the parameter lk  
increases, the parameter bk  decreases, and the parameter mk does not change (with a 
95% confidence level). With the corner depot, all three models perform better in terms 
of MPE and MAPE.  
 
Comparing the parameters obtained with a central an corner depot, it is observed that 
coefficient mk  increases on average at almost the same rate as the average depot-
customer distance (roughly two times larger). However, the average of coefficients lk  
and bk  show a slight change.  This indicates that the mk m  term becomes the dominant 
term of the distance as the depot moves further away from the customers. The ratio 
between / 2mk  and the average distance between depot and customers is within the 
interval (1.03-1.25) with a central depot and within the interval (0.97-1.10) with a 
corner depot.  Intuitively, for large enough distances between the depot and a bounded 
customer area, the route distance can be estimated simply using the number of routes 
and the average distance between the depot and the customers.  
 
Despite the change in sign for some bk  parameters – it becomes negative, with the 
depot at the corner the average increase in the distance associated with the parameters 

( ) / /l bk n m An n k A n− +  is 70% for 10 customers and over 135% for 70 customers. 
There are also significant increases in the distance associated with the term mk m , 
however, the percentage increase associated with type 1 and 2 instances is similar to the 
increase observed when the depot is at the center.  
 
The estimated distance increases when a customer or route is added as shown in tables 
16 and 17. Table 16 shows the values of ( )nΔ and ( )mΔ when the depot is located at the 
center and type 2 problems. The value of ( )nΔ decreases as n increases which is an 
indication of economies of scope. The value of ( )nΔ increases as m  increases which is 
intuitive and expected from the formula. When time windows are present (TW column) 
the increase per customer added is in all cases significantly higher than without time 
windows (no TW column). The value of ( )mΔ  is the difference between the added 
connecting links and the replaced inter-customer link. The value of ( )mΔ decreases with 
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time windows because: (a) the average depot-customer distance remains constant and 
(b) the inter-customer distance is larger with time window constraints. Table 17 shows 
the values of ( )nΔ and ( )mΔ when the depot is located at the corner. When comparing 
tables 16 and 17 it is clear that the values of ( )nΔ are similar in both tables. However, 
the values of ( )mΔ increase reflecting the increase in the average depot-customer 
distance.  
 
If the adjusted model is used for operational purposes, e.g. without averaging the 15 
instances with the same number of customers, the parameters do not experience a 
significant change but the MAPE is increased. Roughly, the MAPE doubles without time 
windows and triples with time windows. For illustrative purposes, the operational 
results with a central depot and no time windows are presented in table 18. If table 5 and 
18 are compared, it can be observed that the parameters have slightly changed but the 
MAPE have increased from a 2.6% to a 6.0% average. Therefore, if a higher predictive 
accuracy is required for operational purposes more parameters have to be added.  
 
The experimental results have confirmed the better performance of the adjusted model, 
expression (20), for vehicle routing problems with different levels of customer demand, 
customer geographic distribution, time windows, and depot location. In addition, the 
behavior of the approximation can be intuitively understood.   
 
 

6. REAL WORLD APPLICATION  
 
Previous literature has solely tested TSP or CVRP distance approximations on 
simulated environments with Euclidian distances. Although approximation formulas 
have theoretical applications in transport and logistics planning, they can also be used to 
estimate distance, costs, and times in practical planning applications.  The original 
motivation for this research came from the study of distribution routes for a freight 
forwarding company based in Sydney, Australia. Distribution tours originated at a depot 
located close to the port of Sydney; the customers were mostly located in different 
industrial suburbs. The pattern of customer distribution resembles the mix of random 
and clustered customers as in the RC Solomon problems.  The company customers are 
in the hundreds but they are not visited every day. The freight forwarding company 
consolidates LTC (less than container) shipments and customers are visited if a 
consignment has arrived before the distribution cutoff time. Further details about the 
tour characteristics can be found in Figliozzi et al.  (2007).  
 
The adjusted model was tested with customers located in the industrial suburb of 
Bankstown with thirty costumers distributed in an irregular area of 39.5 squared 
kilometers (see map in figure 8). The delivery area is bordered by the Bankstown local 
airport in the west, a freeway in the south, and secondary highways in the east and 
north. The average distance between the depot and the industrial suburb is 
approximately 22 kilometers in the connecting freeway. To test the adjusted model five 
sets of 2, 4, 6, 8, 10, 15, and 20 customers were randomly chosen among the existing 
customers in the suburb to simulate the daily demand.  Selecting random subsets of 
customers from the pool of existing customers in the area is a fair representation of the 
real demand. The number of customers visited per day varies widely; it may be as low 
as 1 or 2 or exceptionally close to thirty.  In the results presented hereafter all customers 
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have the same probability of a visit. Although this is not the case in reality, it simplifies 
the exposition and introduces greater variation in the customer subsets.  
 
Due to contract and labor policies, the main distribution cost is associated with the 
number of driver hours needed. Therefore, the objective is to minimize total route 
durations avoiding expensive overtime (overtime pay rate is 50% higher). An important 
consideration when working with travel times in an urban area is that speeds are 
strongly influenced by road characteristics and speed limits. In this application the 
speeds used are: 65 km/hour in freeways, 35 km/hour in main connecting streets – four 
lanes or more and traffic lights, and 25 km/hour in local streets. With this speed 
information a matrix of shortest travel times between customers and depot was 
constructed using the real network and geographic information system (GIS) software. 
Figure 8 displays the relationship between the Euclidian distance and the distance based 
on the shortest time path – for all customers and the depot. The high concentration of 
short distance points close to the origin correspond to the distances between customers 
in the suburb while the longer distances are mostly depot-customer. The R2 =0.93 
indicates that despite the irregular shape of the distribution area and the mix of travel 
speeds the Euclidian distance is a fairly good predictor of the actual distance traveled 
between customer pairs or customer-depot pairs.  From existing customer data, an 
average service time of 45 minutes is used.  
 
Three different routing scenarios were constructed: (a) no constraints or TSP case, (b) 
with tour duration constraint of 8 hours, and (c) adding 4 hour time windows per 
customer. The number of routes varied from 1 route in the TSP instances to 5 routes in 
the instances with time windows. The model was estimated with all the data provided 
by pooling all three scenarios and instances together. The results are shown in table 19.  
The network distance traveled is well approximated with a MAPE of 4.2%. The 
prediction of travel time in hours has a MAPE of 7.9%. The good MAPE is not 
surprising giving the good correlation between distance traveled and time driven (see 
Figure 10). These results are encouraging and show that the proposed approximations 
may have useful applications in urban networks. While results are promising, from this 
example it is impossible to generalize these results. Further research efforts are 
necessary to study how effective the proposed formula may be in different cities and 
applications.  
 
 

7. CONCLUSIONS 
 
A new expression to approximate the distance traveled by vehicles in TSP and VRP 
problems was derived. The approximation is intended for strategic and planning 
analysis of transportation and logistics problems. The proposed approximation was 
tested in instances with different patterns of customer spatial distribution, time 
windows, customer demands, and depot locations. The experimental results indicate that 
the approximation outperforms other approximations in randomly generated instances. 
The approximation is parsimonious, effective, and intuitive. Expressions for the average 
marginal cost of adding a new customer or route are derived and estimated.  It was 
found that time windows negatively affect the accuracy of the approximations. Time 
windows not only increase traveled distance because the number of routes is increased 
but also because the separation between customers per route is increased. As the 
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distance between the depot and delivery region increases the accuracy of the 
approximation increases. The approximation was also tested in a real urban network 
with encouraging results. The proposed approximation may be also useful to estimate 
travel times in urban networks, though further research is necessary to validate and 
generalize this claim.  
 
 

APPENDIX 
To obtain the values of ( )nΔ and ( )mΔ  it is easier to write expression (20)  into the 
equivalent expression (25):  
 

/l b m
n mk An k A n k m

n
−

+ +   (20) 

 
1/ 2 1/ 2(1 )l b m

mk An k An k m
n

−= − + + =  

 
1/ 2 1/ 2 1/ 2[ / ]l b l mk A n mn k k n k m− −= − + +  (25) 

 
Taking the derivative of expression (25) with respect to n : 
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b
l

l
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− − −Δ = + −  
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Taking the derivative of expression (25) with respect to m : 
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Instance Statistic X 
COORD. 

Y  
COORD. DEMAND TW BEGIN TW END TW 

LENGTH 
SERVICE 

TIME 

C1 MIN 0 5 10 10 67 37 90 
  MEDIAN 40 48 10 418 480 61 90 
  AVERAGE 42 49 18 427 488 61 90 
  MAX 95 85 50 1,054 1,127 89 90 

R1 MIN 2 3 1 18 28 10 10 
  MEDIAN 31 35 13 93 103 10 10 
  AVERAGE 34 36 15 96 106 10 10 
  MAX 67 77 41 200 210 10 10 

R1 MIN 0 3 2 11 41 30 10 
  MEDIAN 40 41 16 87 117 30 10 
  AVERAGE 40 44 17 92 122 30 10 
  MAX 95 85 40 192 222 30 10 

C2 MIN 0 5 10 8 168 160 90 
  MEDIAN 41 45 10 1,449 1,609 160 90 
  AVERAGE 42 48 18 1,470 1,630 160 90 
  MAX 95 85 50 3,119 3,279 160 90 

R2 MIN 2 3 1 17 172 27 10 
  MEDIAN 31 35 13 386 459 117 10 
  AVERAGE 34 36 15 391 507 116 10 
  MAX 67 77 41 849 980 212 10 

RC2 MIN 0 3 2 11 131 120 10 
  MEDIAN 40 41 16 351 471 120 10 
  AVERAGE 40 44 17 371 491 120 10 
  MAX 95 85 40 822 942 120 10 

 
Table 1: Statistics of customer distributions by problem type 

 
 

Instance C1 R1 CR1 C1 R1 CR1 
Capacity 200 200 200 700 1000 1000 
Max. 
Demand 50 41 40 41 41 40 

1 1 1 1 1 1 
1.6 1.78 1.8 3.6 5.68 5.8 
2.2 2.56 2.6 6.2 10.36 10.6 
2.8 3.34 3.4 8.8 15.04 15.4 
3.4 4.12 4.2 11.4 19.72 20.2 

Demand 
Factors 

4 4.9 5 14 24.4 25 
 

Table 2:  Truck capacity and customer demand data by problem type 
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Instance R2 MAPE MAP   k1 k3 
C1 0.999 3.1% -0.9% Coeff. 0.47 58.47 
        Prob. 0.000 0.000 
R1 0.999 3.9% 2.4% Coeff. 0.58 54.67 
        Prob. 0.000 0.000 
RC1 1.000 2.2% 0.3% Coeff. 0.48 72.07 
        Prob. 0.000 0.000 
C2 0.999 4.3% 0.2% Coeff. 0.55 57.09 
        Prob. 0.000 0.000 
R2 0.998 6.4% 3.5% Coeff. 0.74 49.27 
        Prob. 0.000 0.000 
RC2 0.999 3.9% 0.4% Coeff. 0.63 66.84 
        Prob. 0.000 0.000 
AVERAGE 0.999 4.0% 1.0% AVERAGE 0.58 59.74 

 
Table 3:  CVRP model – Depot at the center- Variable demand and NO time Windows 

 
 

Instance R2 MAPE MAP   k1 K2 K3 
C1 1.000 3.0% -0.3% Coeff. 0.45 0.66 58.84
        Prob. 0.000 0.051 0.000
R1 1.000 2.0% -0.1% Coeff. 0.67 -2.18 53.34
        Prob. 0.000 0.000 0.000
RC1 1.000 2.4% -0.1% Coeff. 0.50 -0.58 71.80
        Prob. 0.000 0.175 0.000
C2 0.999 4.3% -0.5% Coeff. 0.57 -0.68 56.83
        Prob. 0.000 0.097 0.000
R2 0.999 3.1% -0.5% Coeff. 0.85 -3.04 48.24
        Prob. 0.000 0.000 0.000
RC2 0.999 3.5% -0.7% Coeff. 0.66 -1.26 66.51
        Prob. 0.000 0.008 0.000
AVERAGE 0.999 3.1% -0.4% AVERAGE 0.62 -1.18 59.26

 
Table 4 Base Model – Depot at the center- Variable demand and Time Windows 
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Instance R2 MAPE MAP   kl Kb km 
C1 1.000 2.6% -0.1% Coeff. 0.43 2.08 64.02
        Prob. 0.000 0.000 0.000
    St. Dev. 0.013 0.253 0.386
R1 1.000 1.5% 0.1% Coeff. 0.65 -0.48 59.49
        Probl. 0.000 0.016 0.000
    St. Dev. 0.013 0.193 0.334
RC1 1.000 2.0% 0.1% Coeff. 0.48 1.20 77.53
        Prob. 0.000 0.001 0.000
    St. Dev. 0.017 0.343 0.446
C2 0.999 3.4% -0.3% Coeff. 0.55 0.94 63.50
        Prob. 0.000 0.004 0.000
    St. Dev. 0.013 0.310 0.448
R2 1.000 2.2% -0.1% Coeff. 0.82 -1.13 56.27
        Prob. 0.000 0.000 0.000
    St. Dev. 0.011 0.215 0.304
RC2 1.000 2.6% -0.3% Coeff. 0.63 0.86 74.23
        Prob. 0.000 0.012 0.000
    St. Dev. 0.013 0.328 0.475
AVERAGE 1.000 2.4% -0.1% AVERAGE 0.60 0.58 65.84

 
Table 5. Adjusted Model – Depot at the center- Variable demand and NO Time Windows 

 
 

Instance R2 MAPE MAP   k1 k3 
C101 0.996 9.4% 5.5% Coeff. 0.98 56.54 
        Prob. 0.000 0.000 
R101 0.996 8.4% 5.1% Coeff. 0.45 67.97 
        Prob. 0.000 0.000 
RC101 0.998 5.8% 3.5% Coeff. 0.67 69.15 
        Prob. 0.000 0.000 
C201 0.994 10.8% 5.7% Coeff. 1.20 48.23 
        Prob. 0.000 0.000 
R201 0.987 17.8% 12.3% Coeff. 1.69 38.89 
        Prob. 0.000 0.000 
RC201 0.992 13.7% 8.9% Coeff. 1.56 52.22 
        Prob. 0.000 0.000 
AVERAGE 0.994 11.0% 6.8% AVERAGE 1.09 55.50 

 
Table 6 CVRP model – Depot at the center- Variable demand and Time Windows 
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Instance R2 MAPE MAP  k1 k2 k3 
C101 0.998 3.4% 0.0% Coeff. 1.25 -7.08 51.44 

    Prob. 0.000 0.000 0.000 
R101 0.999 3.8% -0.4% Coeff. 1.01 -7.25 55.48 

    Prob. 0.000 0.000 0.000 
RC101 0.999 2.8% -0.2% Coeff. 0.88 -5.37 65.62 

    Prob. 0.000 0.000 0.000 
C201 0.997 7.1% 0.2% Coeff. 1.40 -6.53 45.57 

    Prob. 0.000 0.000 0.000 
R201 0.998 6.6% -0.8% Coeff. 2.16 -12.83 34.00 

    Prob. 0.000 0.000 0.000 
RC201 0.998 5.4% -0.7% Coeff. 1.94 -13.04 48.50 

    Prob. 0.000 0.000 0.000 
AVERAGE 0.998 4.8% -0.3% AVERAGE 1.44 -8.68 50.10 

 
Table 7 Base Model – depot at the center- Variable demand and Time Windows 

 
 

Instance R2 MAPE MAP  kl kb km 
C101 0.999 3.0% 0.2% Coeff. 1.20 -2.49 65.44 

    Prob. 0.000 0.001 0.000 
    St. Dev. 0.042 0.690 1.248 

R101 0.999 2.8% -0.2% Coeff. 1.01 -4.72 63.24 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.057 0.402 1.299 

RC101 1.000 2.1% 0.0% Coeff. 0.84 -1.70 75.23 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.027 0.417 0.660 

C201 0.998 5.7% 0.3% Coeff. 1.35 -2.50 61.72 
    Prob. 0.000 0.002 0.000 
    St. Dev. 0.036 0.727 1.242 

R201 0.999 4.9% -0.5% Coeff. 2.09 -9.89 54.14 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.030 0.561 0.847 

RC201 0.999 3.8% -0.3% Coeff. 1.85 -6.63 71.01 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.025 0.602 0.726 

AVERAGE 0.999 3.7% -0.1% AVERAGE 1.39 -4.66 65.13 
 

Table 8 Adjusted Model – Depot at the center- Variable demand and Time Windows 
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Instance C101 R101 CR101 C201 R201 CR201 
Depot at the 

corner 136.5 104.9 130.1 135.1 104.9 130.1 

Depot at the 
center 57.7 49.9 66.2 59.4 49.9 66.2 

 
Table 9Average Distance between depot and customers 

 
 

Instance R2 MAPE MAP  k1 k3 
C101 1.000 3.7% -2.2% Coeff. 0.72 132.31 

    Prob. 0.000 0.000 
R101 0.999 1.9% 0.2% Coeff. 0.88 106.84 

    Prob. 0.000 0.000 
RC101 1.000 1.9% 0.9% Coeff. 1.04 121.20 

    Prob. 0.000 0.000 
C201 1.000 4.3% -2.3% Coeff. 0.75 129.56 

    Prob. 0.000 0.000 
R201 1.000 2.4% -0.9% Coeff. 0.90 103.60 

    Prob. 0.000 0.000 
RC201 1.000 4.4% -2.0% Coeff. 0.80 129.48 

    Prob. 0.000 0.000 
AVERAGE 1.000 3.1% -1.0% AVERAGE 0.85 120.50 

 
Table 10 CVRP model – Depot at the Corner- Variable demand and NO time Windows 

 
 

Instance R2 MAPE MAP  k1 K2 K3 
C101 1.000 1.3% -0.3% Coeff. 0.46 -0.34 134.70 

    Prob. 0.000 0.188 0.000 
R101 0.999 2.3% -0.4% Coeff. 0.79 -3.94 106.19 

    Prob. 0.000 0.000 0.000 
RC101 1.000 1.9% -0.1% Coeff. 1.02 -5.77 119.21 

    Prob. 0.000 0.000 0.000 
C201 1.000 2.0% -0.4% Coeff. 0.53 -0.72 131.00 

    Prob. 0.000 0.022 0.000 
R201 1.000 2.5% -0.7% Coeff. 0.76 -2.66 103.77 

    Prob. 0.000 0.000 0.000 
RC201 1.000 2.6% -0.5% Coeff. 0.60 -1.15 130.31 

    Prob. 0.000 0.021 0.000 
AVERAGE 1.000 2.1% -0.4% AVERAGE 0.69 -2.43 120.86 

 
Table 11 Base Model – Depot at the Corner- Variable demand and Time Windows 
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Instance R2 MAPE MAP  kl kb km 
C101 1.000 1.2% -0.1% Coeff. 0.45 1.16 140.10 

    Prob. 0.000 0.000 0.000 
    St. Dev. 0.011 0.217 0.334 

R101 0.999 1.8% -0.3% Coeff. 0.78 -1.86 112.88 
    Probl. 0.000 0.003 0.000 
    St. Dev. 0.045 0.594 1.050 

RC101 1.000 1.4% 0.0% Coeff. 0.98 -1.69 130.60 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.025 0.367 0.585 

C201 1.000 2.1% -0.1% Coeff. 0.51 0.83 137.28 
    Prob. 0.000 0.003 0.000 
    St. Dev. 0.011 0.269 0.389 

R201 1.000 1.8% -0.3% Coeff. 0.73 -0.97 110.89 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.012 0.227 0.324 

RC201 1.000 2.2% -0.1% Coeff. 0.57 0.76 137.27 
    Prob. 0.000 0.054 0.000 
    St. Dev. 0.016 0.386 0.644 

AVERAGE 1.000 1.7% -0.1% AVERAGE 0.67 -0.30 128.17 
 

Table 12. Adjusted Model – Depot at the Corner- Variable demand and NO Time Windows 
 
 

Instance R2 MAPE MAP  k1 k3 
C101 0.999 3.8% 1.9% Coeff. 1.25 133.46 

    Prob. 0.000 0.000 
R101 0.999 2.4% 1.0% Coeff. 0.60 125.00 

    Prob. 0.000 0.000 
RC101 0.999 4.3% 2.3% Coeff. 1.17 126.38 

    Prob. 0.000 0.000 
C201 0.998 5.9% 1.1% Coeff. 1.49 116.68 

    Prob. 0.000 0.000 
R201 0.996 10.2% 6.2% Coeff. 1.80 92.69 

    Prob. 0.000 0.000 
RC201 0.998 7.0% 3.9% Coeff. 1.69 113.33 

    Prob. 0.000 0.000 
AVERAGE 0.998 5.6% 2.7% AVERAGE 1.34 117.92 

 
Table 13 CVRP model – Depot at the Corner- Variable demand and Time Windows 
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Instance R2 MAPE MAP  k1 K2 K3 
C101 1.000 2.1% -0.1% Coeff. 1.34 -8.57 128.32 

    Prob. 0.000 0.000 0.000 
R101 0.999 3.2% -0.3% Coeff. 0.99 -8.07 112.16 

    Prob. 0.000 0.000 0.000 
RC101 1.000 2.8% -0.3% Coeff. 1.78 -13.65 109.45 

    Prob. 0.000 0.000 0.000 
C201 0.999 5.6% -0.4% Coeff. 1.46 -5.98 115.45 

    Prob. 0.000 0.000 0.000 
R201 0.999 5.3% -0.9% Coeff. 2.06 -12.38 88.21 

    Prob. 0.000 0.000 0.000 
RC201 0.999 4.2% -0.7% Coeff. 1.85 -12.18 110.27 

    Prob. 0.000 0.000 0.000 
AVERAGE 0.999 3.9% -0.4% AVERAGE 1.58 -10.14 110.64 

 
Table 14 Base Model – depot at the Corner- Variable demand and Time Windows 

 
 

Instance R2 MAPE MAP  kl kb km 
C101 1.000 1.6% 0.0% Coeff. 1.29 -3.56 143.07 

    Prob. 0.000 0.000 0.000 
    St. Dev. 0.041 0.571 1.154 

R101 1.000 2.7% -0.2% Coeff. 1.20 -4.72 115.74 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.146 0.649 2.777 

RC101 1.000 1.7% -0.1% Coeff. 1.78 -5.12 127.11 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.059 0.478 1.092 

C201 0.999 4.5% -0.2% Coeff. 1.42 -1.81 132.33 
    Prob. 0.000 0.047 0.000 
    St. Dev. 0.039 0.888 1.330 

R201 0.999 4.1% -0.5% Coeff. 2.00 -7.69 107.37 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.033 0.621 0.943 

RC201 1.000 3.1% -0.2% Coeff. 1.77 -6.01 131.78 
    Prob. 0.000 0.000 0.000 
    St. Dev. 0.028 0.647 1.785 

AVERAGE 0.999 2.9% -0.2% AVERAGE 1.58 -4.82 126.23 
 

Table 15 Adjusted Model – Depot at the Corner- Variable demand and Time Windows 
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( )nΔ  ( )mΔ  
Instance Cust. (n) Routes 

(m) 
No TW TW No TW TW 

1 5.3 15.5 20 
5 6.5 18.3 

52.4 34.5 

1 3.2 8.2 
C201 

60 
15 3.9 10.1 

57.1 46.0 

1 7.4 20.9 20 
5 8.8 24.3 

43.0 20.4 

1 4.0 10.5 
R201 

60 
15 4.9 12.8 

48.6 34.7 

1 6.3 22.9 20 
5 7.5 26.7 

61.5 33.7 

1 3.7 11.6 
RC201 

60 
15 4.5 14.1 

66.9 49.5 

 
Table 16. Type 2 Problems, Central Depot, Distance Increase per Additional Customer or Route 

 
 

( )nΔ  ( )mΔ  
Instance Cust. (n) Routes 

(m) 
No TW TW No TW TW 

1 5.0 15.9 20 
5 6.0 18.7 

126.9 103.8 

1 3.0 8.5 
C201 

60 
15 3.6 10.5 

131.3 115.9 

1 6.6 20.0 20 
5 7.8 23.2 

99.1 75.2 

1 3.5 10.0 
R201 

60 
15 4.3 12.2 

104.1 88.8 

1 5.6 21.8 20 
5 6.8 25.3 

125.8 96.1 

1 3.3 11.1 
RC201 

60 
15 4.1 13.5 

130.7 111.2 

 
Table 17. Type 2 Problems, Corner Depot, Distance Increase per Additional Customer or Route 
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Instance R2 MAPE MAP  kl kb km 
C1 0.997 6.6% 0.3% Coeff. 0.51 1.48 62.64 

    Prob. 0.000 0.000 0.000 
R1 0.996 6.1% 0.4% Coeff. 0.80 -1.40 56.53 

    Probl. 0.000 0.000 0.000 
RC1 0.998 5.2% -0.1% Coeff. 0.63 0.31 75.06 

    Prob. 0.000 0.111 0.000 
C2 0.997 6.4% 0.2% Coeff. 0.58 0.37 62.93 

    Prob. 0.000 0.026 0.000 
R2 0.996 6.3% 0.5% Coeff. 0.84 -1.75 55.83 

    Prob. 0.000 0.000 0.000 
RC2 0.998 5.2% 0.0% Coeff. 0.65 0.39 74.00 

    Prob. 0.000 0.033 0.000 
AVERAGE 0.997 6.0% 0.2% AVERAGE 0.668 -0.099 64.499 

 
Table 18. Adjusted Model – Depot at the center- Variable demand and NO Time Windows- Operational 

Estimate 
 

 
Instance R2 MAPE MAP  kl kc1 kc2 
Distance 0.999 4.2% -0.1% Coeff. 0.78 0.25 49.52 

    Prob. 0.001 0.709 0.000 
Time 0.994 7.9% -0.6% Coeff. 0.40 -0.60 2.88 

    Prob. 0.000 0.000 0.000 
 

Table 19. Adjusted Model – Estimating distance and durations in Bankstown distribution area 
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Figure 1 Random Problem (R) 
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Figure 2 Clustered Problem (C) 
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Figure 3 Random-Clustered Problem (RC) 
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Figure 4. Tour and Connecting distances in TSP problems – R1 problem 
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Figure 5 Tour distances and number of customers in VRP problems– R1 problem 
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Figure 6 Connecting distances and number of customers in VRP problems– R1 problem 
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Figure 7. Tour and Connecting distances vs. routes in VRP problems– R1 problem 
 
 

 
 

Figure 8. Relative Location of the Port of Sydney and Delivery Industrial Areas 
(Toll Freeways in thick orange, main arterial routes in thick yellow)3 

 

                                                           
3 Map adapted from Google maps (http://maps.google.com/ ) 
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Figure 9. Euclidian Distance vs. Shortest Time distance among customers and depot-customers 

 
 

 
 

Figure 10 Distance Traveled and Time Driven 
 

y = 36.046x
R 2 = 0.9978

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

0 2 4 6 8 10 12

Driving Time (hs)

D
is

ta
nc

e 
(k

m
s)

 


