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(IACE) methodology represents a recent development in the area of 
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1. Introduction 
The paramount motivation for choosing an optimal design above an orthogonal design in a 
stated choice (SC) experiment is to minimise the expected standard errors in choice models that 
utilise the data from the experiment. This appears to be a straightforward motivation in itself; 
after all, why would the analyst want to induce relatively large standard errors simply as an 
artefact of design specification? What may be overlooked in the discussion of the merits of 
optimal design is the dominant force governing the choice in the first place: sample size. 

There is nothing inherently wrong with orthogonal designs. Indeed, a lack of correlation across 
attributes in choice sets (should one be able to preserve this empirically after removing 
observations) is a desirable feature. Rather, orthogonal designs can require relatively large 
sample sizes to yield statistically significant parameter estimates in choice models. This is due 
to the non-linear nature of the discrete choice models, where the (co)variance matrices of such 
models, from which the standard errors are taken, are a function not only of the data (design), 
but also the choice probabilities and hence also the parameter estimates derived from the model. 
Whilst orthogonality relates to the correlation structure of a design, it says nothing about the 
choice probabilities that one is likely to obtain from models estimated using such data. Several 
researchers have shown that non-orthogonal designs, typically termed efficient designs, may 
produce lower standard errors than orthogonal designs for a given sample size (see e.g., Bunch 
et al., 1994; Bliemer and Rose, 2006; Carlsson and Martinsson, 2003; Huber and Zwerina, 
1996; Kanninen, 2002; Sándor and Wedel, 2001). Thus, in cases where the large samples 
expected to satisfy an orthogonal design may be difficult or impossible to source due to 
financial, temporal or population constraints, efficient designs offer a powerful alternative. 

When a choice experiment utilising an efficient design yields statistically significant parameter 
estimates, it is natural to assign some of the empirical success of the study to the design. 
Technically, however, the true power of the design is not identified simply through achieving 
statistical significance; after all, any given design could potentially achieve statistically 
significant parameter estimates despite being relatively inefficient. Fortunately, there are 
empirical means of identifying the robustness of experimental designs. The approach discussed 
in this paper, repeated bootstrapping analysis of sub-samples, is an intuitive tool for identifying 
the degree to which the design helped to derive the empirical results. Bootstrapping achieves 
this by examining the degree to which the sample size could have been further limited whilst 
maintaining statistical significance (and stability in behavioural implications).  

In an effort to demonstrate this concept, this paper investigates the observed efficiency of a 
particular type of efficient design known as a d-efficient design that was utilised in a choice 
study of interdependent road freight stakeholders in Sydney, Australia. The study centred on an 
interactive agency choice experiment involving buyers and sellers of road freight transport 
services under a hypothetical variable road user charging system. An efficient design was 
sought due to the empirical constraints governing the experiment: difficulty in sourcing eligible 
respondent dyads, relatively large amounts of time needed to recruit and administer the survey 
for each sampled group, and relatively high expenses in administering the survey. Given the 
complex modelling structure that was to be applied to the choice data, these constraints made a 
traditional orthogonal design unlikely to produce robust behavioural results. That is, the 
expected sample size was not large enough to have faith in the analysts’ ability to derive the 
desired model outputs. 

Ultimately, the choice data from the d-efficient design utilised in the study were sufficient to 
obtain robust model estimates. In this paper, we examine the specific contribution of the design 
to the empirical results in two ways. Firstly, we analyse the model estimates that would have 
resulted from subsets of the sample obtained in the original study. This enables us to identify the 
lower limit of sample size that would have been sufficient under the experimental design given 
the sampled groups we were able to source. We then contrast this with a search for the smallest 
sample size that would have been sufficient under an orthogonal design. The juxtaposition of 
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this information enables us to gauge the true power of the efficient design relative to an 
orthogonal design. 

We begin the discussion with an overview of efficient designs in Section 2, and then introduce 
the optimal design and empirical survey utilised in the choice study in Section 3. This is 
followed by our empirical exercise in Section 4, and a discussion of implications for future 
studies in Section 5. 
 

2. Optimal designs for multinomial logit models 
The state of practice in experimental design centres on orthogonal designs (Alpizar et al., 2003), 
which are suitable when applied to surveys with a large sample size, in general. When the 
expected sample size for a study is small, the analyst may have reason to doubt the effectiveness 
of an orthogonal design. As a safeguard against yielding an insufficient sample size, the analyst 
may opt to develop an optimal design to achieve statistically significant parameter estimates 
under a relatively low sample size (see Rose and Bliemer, 2006). 

An optimal design utilises extant information regarding the preferences and experiences of 
respondents, to specify attribute levels in choice sets that maximise the information captured 
when respondents select their preferred alternatives. That is, rather than setting attribute levels 
with respect to a constraint that they are uncorrelated across alternatives and observations as in 
an orthogonal design, efficient designs remove the implied assumption of equal preferences for 
all attributes (present in orthogonal designs) to develop alternatives that identify the preferences 
of respondents with greater efficiency. 

Orthogonal designs ignore any extant information with respect to the preferences and 
experiences of respondents (i.e., marginal utility parameter estimates and attribute levels 
experienced in the market, respectively), yielding designs that do not achieve efficient 
asymptotics. That is, orthogonal designs, of which there may be any number for a given 
research application (with a corresponding range of efficiency that is unknown to the analyst), 
essentially assume that all parameters to be estimated are equal to zero, and that the attribute 
levels within the design are immaterial to the outcome. D-efficient designs, conversely, utilise 
extant information regarding the preferences and experiences of respondents, allowing for 
greater inferential accuracy for a given sample size, or, of paramount interest to researchers 
facing sampling constraints, a relatively low sample size for a given desired significance level 
for parameter estimates (Carlsson and Martinsson, 2003).  

Other experimental design criteria can be utilised in this regard, although Kuhfeld et al. (1994) 
demonstrate that it is less difficult computationally to find a d-efficient design; given that the 
candidate efficiency criteria (e.g., a-efficiency and g-efficiency) are highly correlated with d-
efficiency, a preference for a d-efficient design was justified in the freight study examined here 
(Carlsson and Martinsson, 2003). A d-efficient design is one of the many candidate d-efficient 
profiles that satisfies a desired level of statistical efficiency by minimising the expected standard 
errors of resulting marginal utility parameters. The d-efficient design utilised in the experiment 
was derived by specifying prior information gathered through a literature review, previous 
studies and a pilot study within an iterative optimisation technique1. 

                                                           
1 The optimisation technique calculated the expected d-error for randomly-generated designs under the specified prior values for 
attribute levels and marginal utility coefficients. The design with the lowest expected d-error was stored within the program (a 
macro in Microsoft Excel); whenever a new design achieved an improved error measure, the new design was stored as the 
preferred design. This procedure was continued until no further improvements could be found over a period deemed by the 
analyst to be sufficiently long to end the optimisation. 
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The pros and cons of d-efficient and orthogonal designs are compared in Table 1: 
 

Table 1:  Benefits and constraints of d-efficient and orthogonal designs 

 D-Efficient Designs Orthogonal Designs 

Required Sample Size to Achieve 
Desired Standard Errors 

Generally small Generally large 

Statistical Knowledge Required Relatively large Relatively small 
Prevalence in the Literature Not utilised often Predominant design form 
Ease of Design Generation Designed through software or 

first principles 
Designed through software, first 

principles, websites and 
published arrays 

Evidence of Priors Required Yes No 
Flexibility in Generation User defines the constraints of 

the design 
Orthogonality is constrained by 

the number of alternatives, 
attributes and their levels 

 

Table 1 highlights the primary reasons that orthogonal designs are the most common choice in 
experimental design applications: orthogonal designs have relatively low user-input 
requirements, can be generated by using many readily available sources, and their use is widely 
accepted in the literature. Indeed, if the expected sample size is reasonably large, it is fair to 
expect an orthogonal design to lead to sufficiently small standard errors for model outputs. 
However, if the expected sample size is not large, the additional knowledge and resources 
required to derive a d-efficient design need not be prohibitive. The flexibility gained in 
removing the constraints relating to orthogonality is powerful, and may offset (perhaps greatly) 
the burden associated with establishing prior information and generating the design. 

When working on the experimental design in our application, we expected the empirical 
framework to be relatively complex. Indeed, the empirical models were generalised mixed logit 
models. However, it should be noted that the experimental design was calibrated using a 
relatively simple multinomial logit (MNL) framework. At the time of the empirical study, the 
asymptotic variance-covariance matrix for the mixed logit model was unknown. The only 
available means for deriving a d-efficient design based upon a mixed logit model would have 
been simulation, which would have taken prohibitively long to carry out; a simulation of each 
iteration of the mixed logit model for each design to test would have been required, which was 
not a practical option. Fortunately, Bliemer and Rose (2008, 2009) have demonstrated that the 
MNL model offers a reasonable approximation of the mixed logit model when generating 
optimal designs. 

Following the exposition of Carlsson and Martinsson (2003) within an MNL framework, when 
developing a d-efficient design for a choice experiment involving a revealed-preference-based 
reference alternative and SC alternatives, the analyst’s task is to estimate, with the highest 
degree of precision feasible, the parameters of the utility functions for the reference alternative r 
and the SC alternatives s, respectively: 

 
irU α ε= + +βk kx     (1) 

 
isU ε= +βk kx  (2) 

 

where α represents an alternative-specific constant representing the real-market nature of the 
reference alternative, βk represents the vector of desired marginal utility parameter estimates, xk 
represents the levels of the corresponding vector of k attributes in the alternative, and ε 
represents the unobserved effects, which are assumed to be independently and identically 
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distributed type I extreme value. The fundamental difference between the two utility functions 
in the freight study is that the attribute level for variable road-user charges (VUCs) in the 
reference alternative is always equal to zero. 

As demonstrated by McFadden (1974), the covariance matrix of the expected maximum 
likelihood estimators (i.e., those based upon prior information) is a function of the observed 
marginal utilities of respondents, 

 

' 1

1 1
* *

N J

jn jn jn
n j

z P z−

= =

⎡ ⎤
Ω = ⎢ ⎥

⎣ ⎦
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and where xjn represents the vector of attribute levels for an alternative j (numbered 1 to J) in 
choice set n (numbered 1 to N), and Pjn represents the choice probability for alternative j in 
choice set n (Carlsson and Martinsson, 2003). 

This is intuitive, as the choice probabilities that are observed are a direct function of the 
preferences underlying the choices made. Therefore, the covariance matrix Ω is a function of 
both the marginal utilities of respondents, which are invariant across alternatives, and the 
attribute level combinations corresponding to a set of alternatives on offer, which, in the case of 
the SC alternatives, are under the control of the analyst. 

A d-efficient design is found when maximising the inverse of the determinant of Ω (scaled by 
an exponent incorporating the number of parameters to estimate K), which Kanninen (2002) 
points out is the (scaled) expected value of the Hessian of the log likelihood function, multiplied 
by -1: 

max 
11/K −

⎡ ⎤Ω⎣ ⎦    (5) 

Importantly, Kanninen clarifies that, due to the central role of the covariance matrix within the 
search for d-efficiency, by maximising d-efficiency (should the priors be correct), one 
minimises the magnitude of the asymptotic confidence region around the parameter estimates.  
Hence, the efficiency of the design is critically dependent upon the manner in which the 
attribute levels are specified for each alternative. Consequently, by utilising prior information 
about the likely preferences of respondents and the likely reference attribute levels they would 
specify, greater efficiency can be achieved through minimisation of the estimated covariances 
by manipulating the combination of attribute levels on offer across alternatives for each choice 
set (Huber and Zwerina, 1996; Carlsson and Martinsson, 2003). 
 

3. Freight survey and its d-efficient design 
3.1 Freight survey 
The primary focus of the freight study was to establish how the implementation of a variable 
user charging (VUC) system may affect both the levels of service offered by the traffic 
infrastructure and the costs of transporting freight. The SC experiment was designed to capture 
the preferences of freight stakeholders under the range of levels of services and costs that may 
be present under a distance-based road user charging system, each of whom interacts as 
described above. Respondents from freight firms and their clients were asked to choose from 
among a set of alternative urban freight trip options for a particular consignment, each of which 
contained its unique mix of levels of service components and cost. These alternatives represent 
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potential means of coping with a (hypothetical) VUC system. Each of these alternatives was 
framed in reference to recent experience that forms the basis for the SC alternatives; i.e., a 
recent goods movement, its corresponding performance measures, and indicators of the 
relationship between the two firms involved. 

The primary desired estimation outputs were the sensitivities of buyers and sellers of  urban 
freight services to trade-offs between elements of travel time and cost under VUCs. These 
include two measures of the value of time savings: one for travel time in free-flow traffic 
conditions (i.e., those where the truck can travel at the speed limit and manoeuvre without 
difficulty), and one for travel time in slowed-down conditions (i.e., those where the truck has 
difficulty in travelling at the speed limit, and where manoeuvring is impeded by the level of 
other vehicles present). The other two temporal measures are related to transactions time and 
reliability in arrival time. The former is measured as the value of waiting time savings (i.e., time 
spent waiting at delivery destinations whilst unable to unload goods due to queuing); the latter is 
measured as the value of reliability gains (i.e., percentage increases in the probability that a 
truck will reach its delivery destination without incurring a penalty due to missing a specified 
arrival time window). 

Respondents were asked to assume that, for each of the choice sets given, the same cargo needs 
to be carried out for the same client discussed earlier in the survey, subject to the same 
constraints faced when the reference trip was undertaken. Respondents were then informed that 
the choice sets involve three alternative methods of carrying out the trip: their experienced trip 
and two SC alternatives that involve VUCs. The choice tasks were described to respondents as 
involving two steps. The first step is to indicate which alternatives would be preferable if the 
two organisations had to reach agreement, whilst the second step is to indicate what information 
mattered when making each choice.  

Respondents were faced with four choice sets if representing a freight firm and eight choice sets 
if representing a client of a freight firm. The difference is attributable to the relatively larger 
burden placed on respondents from freight firms, in that they must supply the trip- and 
relationship-specific details required to establish the choice setting and reference alternative. 
The exact four choice sets answered by a given respondent from a freight firm are given to the 
corresponding sampled client. The additional four choice sets faced by the sampled client use 
the same reference alternative as the other four choice sets.  

The attributes within each choice set are: free-flow travel time, slowed-down travel time, total 
time waiting to unload goods, likelihood of on-time arrival, freight rate paid by the client, fuel 
cost, and variable charges, the latter of which always takes a value of zero for the reference 
alternative. Each of these attributes except for the freight rate (which is not a design attribute) 
are either an input into a road-user charging policy (i.e., changes in fuel taxes, road user 
charges), or direct functions of such a policy. The likelihood of on-time arrival was chosen in 
preference to other measures of reliability or travel time variability, as in-depth interviews 
revealed that on-time arrival rates (defined within the experiment as the likelihood of reaching 
the delivery destination(s) close enough to the time window agreed upon to avoid being 
penalised) are a key measure of reliability.  

The levels and ranges of the attributes were chosen to reflect a range of available routing and 
scheduling options under a hypothetical VUC system. The reference alternative was utilised to 
offer a base, around which the stated choice design levels were pivoted. The resulting mixes 
represent alternatives including: taking the same route at the same time as in the reference 
alternative under new traffic conditions, costs, or both; and taking alternative, previously less-
favourable routes, departing at alternative, previously less-favourable times, or both, with 
corresponding levels of traffic conditions and costs. 

In all cases except for the VUC’s, referred to in the SC experiment as a distance-based charge, 
the attribute levels for each of the SC alternatives are expressed as deviations from the reference 
level, which is the exact value specified in the corresponding non-SC questions, unless noted:  
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(1) Free-flow time: –50%, –25%, 0, +25%, +50% 
(2) Slowed-down time: –50%, –25%, 0, +25%, +50% 
(3) Waiting time at destination: –50%, –25%, 0, +25%, +50% 
(4) Probability of on-time arrival: –50%, –25%, 0, +25%, +50%, with the resulting value 
rounded to the nearest 5% (e.g., a reference value of 75% reduced by 50% would yield a raw 
figure of 37.5%, which would be rounded to 40%). If the resulting value is 100%, the value is 
expressed as 99%. If the reference level is greater than 92%, the pivot base is set to 92%. If the 
pivot base is greater than 66% (i.e., if 1 ½ times the base would be greater than 100%) let the 
pivot base equal X, and let the difference between 99% and X equal Y. The range of attribute 
levels for on-time arrival when X > 66% are (in percentage terms): X–Y, X–.5*Y, X, X+.5*Y, 
X+Y. This yields five equally-spaced attribute levels between X–Y and 99%. 
(5) Fuel cost: –50%, –25%, 0, +25%, +50% (representing changes in fuel taxes of –100%, –
50%, 0, +50%, +100%). Note: Fuel taxes represented approximately half of fuel prices in 
Australia at the time of the study.  
(6) Distance-based (or variable user) charges: Pivot base equals one-half of the reference fuel 
cost, to reflect the amount of fuel taxes paid in the reference alternative. Variations around the 
pivot base are: –50%, –25%, 0, +25%, +50%  

One potential complication that we identified is that changes in levels of service and operating 
costs could lead to upward or downward adjustments in the freight rate charged by the transport 
company. Although obvious, incorporating an endogenous (at least to the freight transport 
provider) choice that could swamp the changes in costs into the experimental design is not a 
simple matter. To accommodate this, we developed a method to internalise this endogeneity and 
uncertainty, making it exogenous to the final choice. For each SC alternative involving a net 
change in direct operating costs (i.e., a decrease in fuel costs that is not equal in magnitude to 
the value of the new distance-based charges), respondents from freight firms are asked to 
indicate by how much of the net change in costs they would like to adjust their freight rate (Fig. 
5). Hence, the freight rate, which is not a design alternative, yet is clearly an important 
contextual effect, is allowed to vary across SC alternatives under changes in net operating costs. 
The specific range over which the freight rate may vary is bounded by the change in net 
operating cost for each alternative. 

 

3.2 D-efficient design 
As mentioned in Section 3.1, each choice set in the study contained a respondent-specified 
reference alternative, along with two SC design alternatives. Complicating the design generation 
process was the fact that the full design is partitioned into two groups of choice sets. 
Respondents from freight firms, who were hypothesised to have one set of marginal utilities, 
were given four choice sets; respondents from shippers, who were hypothesised to have a set of 
marginal utilities that differed to those of freight firm respondents, were given the identical four 
choice sets that were given to a corresponding freight firm respondent, along with four unique 
choice sets. 
When generating the experimental design, it was necessary to specify appropriate prior values 
for marginal utility parameters and attribute levels. The survey pre-testing phase and literature 
reviews identified a range of plausible prior specifications across the two respondent classes, to 
accommodate for the likely divergent preferences for transporters and shippers. The prior 
parameter estimates for the design are shown in Table 2:   
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Table 2:  Prior parameter values for d-efficient design 

 Transporters Shippers 
Free-flow Time -0.047 -0.024 
Slowed-down Time -0.066 -0.024 
Waiting Time -0.057 -0.024 
Probability of On-Time 
Arrival 

0.038 0.038 

Fuel Cost -0.058 -0.029 
Distance-Based Charges -0.116 -0.058 

 

Parameter estimates for free-flow travel time and fuel cost for freight transport operators from a 
previous study at the Institute of Transport and Logistics Studies were used as priors for the 
same attributes in the design for respondents from freight firms. The prior for likelihood of on-
time arrival was specified as the negative value of the prior for fuel cost, yielding a prior value 
of reliability gains of A$1 per percentage point increase in reliability, using the cost of fuel as a 
base measure. This figure was selected as a hedge between relatively lower and higher priors 
available. The parameter value for variability in travel time from the aforementioned study was 
a candidate prior (after being multiplied by negative one due to the inverse behavioural 
relationship between the two concepts of reliability and variability). The resulting prior value of 
reliability gains using this measure was approximately A$0.65 per percentage point increase in 
reliability. 

Priors for the remaining parameters for respondents from freight transport providers were 
developed using the following heuristics. Firstly, the value for slowed-down time was found by 
multiplying the prior for free-flow time by 1.4, which is a ratio supported by previous travel 
studies at ITLS. The prior for waiting time was set as a weighted average of the free-flow and 
slowed-down priors (two-thirds of the former and one-third of the latter). Lastly, the prior for 
distance-based charges was set as two times the prior for fuel cost, to account for scaling effects 
in attribute values; that is, the average attribute values for fuel cost are expected to be twice as 
high as those for distance-based charges, and hence a base assumption of equivalent aversion to 
both cost measures necessitates scaling the parameter for distance-based charges. 

These priors were adjusted for respondents from clients of freight transport providers using the 
following heuristics. Firstly, the value for free-flow time was specified as one-half the value of 
the prior for free-flow time for freight transporters. A value of one-half of the corresponding 
prior for freight transporters was chosen as a parsimonious hedge amongst uncertainty in which 
the plausible prior value ranged between zero and the value held by freight transporters. 
Secondly, we assumed no variation in preferences for types of travel time, and hence set the 
priors for slowed-down time and waiting time equal to this value. The priors for cost measures 
were set equal to the corresponding priors for freight transporters, due to the ability of freight 
transporters to pass along the new costs to shippers within the experiment. Lastly, the prior for 
reliability was set as equal to the corresponding prior for freight transporters, because shippers 
value reliability, and hence the established prior was the best value available for us to utilise. 

Once the prior parameter values were established, we needed to identify appropriate prior values 
for the corresponding attribute levels. Whilst it was known the attribute levels would be the 
same for transporters and shippers, we needed to establish whether one prior attribute level 
would be sufficient for each attribute in the design, or whether it was preferable to segment the 
design into multiple classes of trips. 

We chose to generate separate the design into two segments: those involving trips of less than 
two hours, and those lasting two to seven hours. The motivation for this segmentation arose 
from the data source utilised to set these priors. Global positioning systems (GPS) devices were 
placed in four freight vehicles operating for a major freight transport company in Sydney for 
one week. The data from the GPS devices was used to measure distances and times for freight 
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delivery tours for the vehicles. Approximately half of the trips measured took two hours or less 
to complete, whilst virtually all of the remainder fell within the seven-hour limit established for 
the choice experiment.   

Table 3 shows the prior attribute levels established for two broad trip-length segments, trips of 
two hours or less, and trips of two to seven hours:   

 
Table 3:  Prior attribute levels for the d-efficient design 

 Trips Less than Two 
Hours 

Trips Greater than Two 
Hours 

Free-flow Time 40 minutes 140 minutes 
Slowed-down Time 20 minutes 45 minutes 
Waiting Time 20 minutes 45 minutes 
Probability of On-Time 
Arrival 

75 percent 75 percent 

Fuel Cost $11.00 $30.00 
Distance-based Charges $5.50 $15.00 

 

The average travel time for each trip length segment was divided into two, with one half 
specified as the prior free-flow time and the other half specified as the prior slowed-down time. 
With no further information on the likely proportion of slowed-down time in total travel time, 
an even split was determined to be the most parsimonious decision. The minimum value of time 
spent unloading at a destination was used as the baseline for unloading time; this value was 
deducted from the average time spent at delivery destinations, with the difference multiplied by 
the average number of deliveries made in each segment to find the prior value for waiting time. 
The prior value for likelihood of on-time arrival was established as the arithmetic average of on-
time arrival rates for primary and secondary retail freight, as revealed by the in-depth 
interviews. The prior value for fuel cost was established by multiplying the average fuel 
efficiency of the predominant vehicle type (rigid truck) by the average distance travelled within 
each trip length segment, and multiplied by the current price of diesel fuel. This yielded a base 
value for distance-based charges in the design, equal to one half of the prior for fuel cost. 

The pilot data did not reveal significant parameter estimates when analysed within a basic 
multinomial logit model, and hence the prior parameter estimates were not amended as a result 
of the pilot. However, the pilot confirmed the presence of meaningful trade-offs within choice 
sets, in that the reference alternative did not dominate the SC alternatives. Likewise, the pilot 
confirmed the merit of the prior attribute levels utilised within the experimental design. That is, 
the observed RP data offered by respondents were consistent with the prior attribute levels.   

The d-efficient design ultimately utilised in this research was found through the use of a search 
algorithm designed at ITLS, which was adjusted for the complex nature of the interactive 
agency survey. The search algorithm was designed to accommodate: (1) the  presence of a mix 
of a reference alternative and two SC alternatives that are generic to one another; (2) the 
constraint that the four choice sets faced by a respondent from a freight firm must also be given 
to a respondent to a corresponding sampled client; and (3) hypothesised preference 
heterogeneity across agent types.   
Whilst extensive iteration of the algorithm could not guarantee that d-efficiency was maximised 
globally, the design selected by the algorithm achieved superior d-efficiency to the other designs 
generated in the search process.  The final d-efficient design utilised in this research is given in 
the Appendix. This design was selected as the design most capable of achieving precise 
parameter estimates, conditional on the prior values specified. 
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4. Empirical analysis 
The freight study yielded a sample of 145 transporters (for a total of 580 choice observations) 
and 138 shippers (for a total of 1106 choice observations). The analysis in this section centres 
on repeated bootstrapping procedures that were conducted within the software program Ngene. 
Utilising this software, we drew repeated sub-samples of transporters and shippers at 
increasingly restricted sample sizes. For each sub-sample, we re-estimated base empirical 
models of transporter and shipper preferences with respect to the choice sets faced within the 
freight study. 

The use of repeated sub-samples for each target sample size allows us to identify trends in the 
mean and standard deviation of model outputs as the sample size decreases. With this 
information we can gauge whether the experimental design used in the study would have been 
sufficient to achieve the desired statistical significance under a given restricted sample size. 
Likewise, trends in the mean and standard deviation of the model outputs across restricted 
sample sizes enable us to identify whether there is a potential for model outputs to be biased or 
unreliable at a given sample size. 

 

4.1 Results for transporters 
We begin the analysis by estimating the most complete replica of the base empirical model for 
transporters in the original freight study, with three key differences. Firstly, we estimated a 
model that includes every transporter choice observation, rather than excluding potential outliers 
as in the original study; this gives us the largest possible sample size to use as a benchmark 
when comparing sub-sample sizes. Secondly, we only tested unconstrained normal and uniform 
distributions for possible effects of unobserved preference heterogeneity; this restriction is due 
to a limitation in the software utilised in the bootstrapping exercise. Thirdly, we isolated 
transporters for their own model rather than pooling transporters and shippers into one model; 
this was done to avoid sub-samples with implausible membership (e.g., shippers whose 
corresponding transporter partner are not included in the sample). 

Given these constraints, we settled upon a base model for transporters with each of the attribute 
constructs in the original transporter model (travel time, probability of on-time arrival, fuel cost, 
freight rate, distance-based charges), plus one interaction term that was in the original model 
(free-flow travel time multiplied by distance travelled), which serves to isolate separate 
disutilities for free-flow travel time and slowed-down travel time. The probability of on-time 
arrival, freight rate and distance-based charges are modelled as normally-distributed random 
parameters. 

Table 4A highlights both the statistical significance of the explanatory variables and the degree 
of misspecification for each of the prior parameter values (expressed as marginal rates of 
substitution with respect to fuel cost): 
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Table 4A:  Transporter base model versus priors  

(t-statistics in parentheses; all random parameters distributed normally) 

 Full Sample Marginal Rates of 
Substitution* 

(MRS) 

Prior MRS* 

Parameter    
Reference Alternative 0.861 (3.209)   
Free-Flow Time (min) -0.009 (-2.284, 1.669**) 0.819 0.810 
Slowed-Down Time (min) -0.015 (-2.284) 1.364 1.138 
Probability of On-Time Arrival (%) - Mean 0.030 (1.985) -2.727 -1 
Probability of On-Time Arrival (%) – Std. Dev. 0.056 (2.07)   
Fuel Cost ($) -0.011 (-2.383) 1 1 
Freight Rate ($) - Mean 0.002 (0.354) -0.182 -- 
Freight Rate ($) – Std. Dev. 0.008 (2.213)   
Distance-Based Charges ($) - Mean -0.008 (-1.377) 0.727 2 
Distance-Based Charges ($) – Std. Dev. 0.011 (2.344)   
Waiting Time (min) 0 (Not in model) 0 0.983 

*-Marginal rates of substitution are for mean values with respect to the mean value for fuel cost. 

**-t-statistic for an interaction term involving distance travelled; the mean effect of this interaction is 
included in the parameter for free-flow time for comparison with the prior 

 

Each of the linear effects without a random specification shows a high level of statistical 
significance, with the appropriate sign. Transporters show a strong preference for the reference 
alternative (which has no distance-based charging component), and disutility for travel time and 
fuel cost. The mean and standard deviation for on-time arrival probability enters the model 
highly significantly, demonstrating both a general preference for reliable travel and 
heterogeneity in the degree to which this is preferred. The freight rate shows an insignificant 
positive marginal utility, which confirms a hypothesis of rational passing of distance-based 
charges and fuel costs along to shippers (i.e., once transporters decide how much of the changes 
in their costs to pass along to customers via the freight rate, they are indifferent to the amount 
they are compensated across alternatives). However, there is a highly significant degree of 
preference heterogeneity with respect to the freight rate, suggesting that there are some 
transporters who are much more sensitive to the freight rate than others; hence, the low mean 
utility could also be related to other effects. Lastly, distance-based charges have a mean 
negative effect on utility less than the disutility of fuel cost, although this effect has only minor 
statistical significance. Transporters appear to have strongly varying sensitivities to distance-
based charges, with a highly significant standard deviation of marginal disutilities for the 
charges. 

Some relationships between these parameter estimates are close to those amongst the assumed 
prior parameter values, whilst others reveal relative sensitivities that differ strongly from the 
priors. Most notably, the mean estimated marginal rates of substitution for both free-flow and 
slowed-down travel time with respect to fuel cost are quite similar to their corresponding prior 
values, at 0.82 dollars per minute in free-flow conditions versus a prior value of 0.81 and 1.36 
dollars per minute in slowed-down conditions versus a prior value of 1.14. Conversely, sampled 
transporters demonstrated mean sensitivities to on-time arrival reliability and distance-based 
charges with respect to fuel cost that were highly divergent from the assumed prior 
relationships, at –2.73 dollars per percentage point of reliability versus a prior value of 1 and 
0.73 dollar spent on fuel per dollar spent on distance-based charges versus a prior value of 2. 

We can also compare the assumed prior attribute levels for the reference alternative versus those 
observed in the study (which, unlike the preference estimates are constant across decision-
maker class). In contrast to the relatively large discrepancies with respect to prior and observed 
marginal utility parameters, Table 4B shows that the observed mean attribute levels were 
generally similar to the prior values: 
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Table 4B:  Observed mean attribute levels by segment versus priors 

Trips Less than Two Hours Trips Greater than Two Hours 
Assumed 
Priors 

Observed 
Mean 

Assumed 
Priors 

Observed 
Mean 

Free-flow Time 
(min) 

40 50.39 140 234.68 

Slowed-down Time 
(min) 

20 26.49 45 51.02 

Waiting Time (min) 20 34.07 45 64.58 
Probability of On-
Time Arrival (%) 

75 82.54 75 81.54 

Fuel Cost $11.00 $31.69 $30.00 $237.99 

 

In the two-hour-or-less segment, each of the observed travel time and on-time arrival values are 
similar to the priors, with free-flow travel time, slowed-down travel time and waiting time only 
around 10, 6 and 14 minutes greater than the prior values, respectively. Likewise, the mean on-
time arrival probability is only around eight percent (in magnitude) greater than the prior value. 
The observed cost measures are much higher, however, with levels almost three times as large 
as the priors. 

In the over-two-hours segment, the priors reflect a mean trip involving considerably less free-
flow time and distance travelled than observed in the sample. The observed free-flow time and 
costs are much higher than the prior values. Still, the observed values for slowed-down time, 
waiting time and on-time arrival probability are relatively close to the priors, with discrepancies 
of only around six minutes, 20 minutes, and six percent, respectively. 

Considering the marginal utility parameters and the mean reference alternative attribute levels 
together, the picture that emerges is that the prior specification was subject to some considerable 
error and uncertainty that was more pronounced for some attributes. Despite the degree of prior 
misspecification, which could be expected in many choice studies (after all, why should we 
collect the data if we already knew the answers we were searching for?), the presence of 
statistically significant parameter estimates under a small sample and smaller sub-samples (to 
follow) confirms the power of optimal designs. 

We now turn to the bootstrapping exercise for transporters. We re-estimated the base model for 
100 randomly-selected sub-samples for restricted sample sizes (i.e., cohort sizes) of decreasing 
multiples of ten. Beginning with a cohort size of 140 (the closest multiple of ten below the full 
sample size of 145) we estimated repeated sub-samples on increasingly smaller cohort sizes to 
gauge the strength of the experimental design. Table 5 shows the relative stability in mean 
parameter estimates as the sample size is increasingly restricted: 
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Table 5:  Mean bootstrap parameter estimates by cohort size 

(Transporters, 100 Sub-samples per Cohort Size, 4 Observations per Respondent) 

 All  (145) 140 130 120 110 100 90 80 70 
Reference Alternative 0.8614 0.8662 0.8560 0.8563 0.8458 0.8586 0.8473 0.8661 0.8385
Travel Time (min) -0.0146 -0.0145 -0.0145 -0.0144 -0.0147 -0.0146 -0.0149 -0.0147 -0.0148
Probability of On-Time Arrival (%) - Mean 0.0304 0.0305 0.0309 0.0312 0.0310 0.0310 0.0308 0.0307 0.0299
Probability of On-Time Arrival (%) – Std. Dev. 0.0560 0.0560 0.0557 0.0561 0.0547 0.0550 0.0542 0.0545 0.0534
Fuel Cost ($) -0.0105 -0.0106 -0.0106 -0.0105 -0.0105 -0.0105 -0.0105 -0.0106 -0.0107
Freight Rate ($) - Mean 0.0015 0.0017 0.0017 0.0015 0.0014 0.0013 0.0013 0.0014 0.0014
Freight Rate ($) – Std. Dev. 0.0077 0.0077 0.0077 0.0078 0.0078 0.0077 0.0076 0.0075 0.0074
Free-Flow Time (min) *  
Distance (in ‘000 km) 0.0239 0.0238 0.0241 0.0237 0.0242 0.0241 0.0249 0.0240 0.0241
Distance-Based Charges ($) - Mean -0.0080 -0.0080 -0.0082 -0.0082 -0.0083 -0.0081 -0.0085 -0.0083 -0.0094
Distance-Based Charges ($) – Std. Dev. 0.0111 0.0111 0.0112 0.0115 0.0115 0.0114 0.0117 0.0111 0.0121

 

The mean parameter estimates appear fairly stable as the cohort size falls, implying no general 
tendency toward bias under small samples. That is, other than some small fluctuations in mean 
values as the sample size is reduced, a relatively small sample size would have given similar 
results as the full sample, on average. Indeed, the mean parameter values show no general 
misbehaviour until the cohort size falls below 80, which approaches only one-half of the 
sample. 

The mean parameter estimates across cohort sizes do not tell the whole story, however. In 
practice, under any given restricted sample size the analyst would only have one sample with 
which to work. One question that follows the first test for consistency directly is whether the 
parameter estimates that one would obtain under a restricted sample size would tend to be 
statistically significant. Table 6 compares the frequencies (out of 100) with which each 
parameter estimate meets the standard of a p-value below .05 and .1, respectively, as the sample 
size is reduced: 

Table 6:  Frequency of parameter estimates significant at target confidence levels  

by cohort size (transporters) 

Frequency of Significance at the 95% Confidence Level 

                                                                                                             Cohort Size 

Attribute 140 130 120 110 100 90 80 70 

Reference Alternative 100 100 100 99 91 86 80 61 
Travel Time (min) 100 87 69 59 38 30 14 11 
Probability of On-Time Arrival (%) - Mean 52 41 25 21 15 12 6 2 
Probability of On-Time Arrival (%) – Std. Dev. 72 51 35 16 13 12 5 3 
Fuel Cost ($) 100 99 90 72 46 28 15 7 
Freight Rate ($) - Mean 0 0 0 0 0 0 0 0 
Freight Rate ($) – Std. Dev. 96 77 60 45 37 25 13 8 
Free-Flow Time (min) * Distance (in ‘000 km) 0 0 0 1 5 3 4 1 
Distance-Based Charges ($) - Mean 0 0 0 0 0 1 0 0 
Distance-Based Charges ($) – Std. Dev. 99 90 81 60 47 32 10 11 
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Frequency of Significance at the 90% Confidence Level 

                                                                                                            Cohort Size 

Attribute 140 130 120 110 100 90 80 70 

Reference Alternative 100 100 100 99 96 95 93 84 
Travel Time (min) 100 100 100 97 81 74 54 39 
Probability of On-Time Arrival (%) - Mean 100 91 82 67 51 38 26 14 
Probability of On-Time Arrival (%) – Std. Dev. 100 93 86 74 55 42 32 18 
Fuel Cost ($) 100 100 100 95 89 79 57 40 
Freight Rate ($) - Mean 0 0 0 0 0 0 0 0 
Freight Rate ($) – Std. Dev. 98 93 84 72 60 51 42 27 
Free-Flow Time (min) * Distance (in ‘000 km) 40 37 19 21 19 22 10 11 
Distance-Based Charges ($) - Mean 0 1 0 3 1 4 1 2 
Distance-Based Charges ($) – Std. Dev. 100 99 97 91 81 69 56 40 

 

A preference for the reference alternative was the strongest effect statistically in the base model, 
and hence serves as a useful initial gauge of the relative strength of the experimental design at 
each cohort size. The reference alternative has a statistically significant at the 95 percent 
confidence level in every sub-sample, save one outlier, through a sample size of 110; the 
reference alternative maintained a statistically significant effect at the 90% level consistently in 
sample sizes as low as 80. Given that the reference alternative was the strongest explanatory 
variable in the base model, it would follow that other explanatory variables would require larger 
sample sizes to reach a desired significance level. Indeed, travel time has difficulty in achieving 
a p-value below .05 under mildly-restricted sample sizes; travel time does maintain a p-value 
below .1 in almost all cases down to a sample size of 110. On-time arrival probability appears to 
require more choice observations than travel time to achieve a given p-value, although its status 
as a random parameter may contribute to this. Fuel cost performs well under relatively sample 
sizes, generally maintaining statistical significance at the 95% and 90% levels at sample sizes of 
120 and 100, respectively. The interaction between free-flow travel time and trip distance loses 
significance quickly as the sample size is reduced, implying that at lower sample sizes a 
different modelling construct would be needed to identify separate effects for free-flow and 
slowed-down travel time. Lastly, the mean disutility of distance-based charges is insignificant at 
all restricted sample sizes, but heterogeneity around the mean is generally statistically 
significant at the 95% and 90% confidence levels at sample sizes of 130 and 110, respectively. 

Now that we have looked into the mean values of each marginal utility estimate and the relative 
tendencies for each parameter estimate to be statistically significant at increasingly restricted 
sample sizes, it is important to consider the degree to which estimates from any given sub-
sample would tend to differ from the full sample value. It is possible to observe repeated sub-
samples that yield mean parameter estimates that are both close to the full sample values and 
which have a high probability of being statistically significant, yet display the potential to 
include individual sub-samples with parameter estimates that are different from the mean value 
and are statistically significant, which is problematic. Table 7 shows the normalised standard 
deviation of each parameter estimate by cohort size. This gives us a scaled indicator of how 
closely grouped each parameter estimate is across repeated sub-samples: 
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Table 7:  Standard deviation of parameter estimates as a percentage of the mean by cohort size 
(transporters) 

 

 140 130 120 110 100 90 80 70 

Reference Alternative 0.035 0.074 0.112 0.150 0.185 0.179 0.200 0.246
Travel Time (min) -0.046 -0.079 -0.093 -0.121 -0.154 -0.177 -0.195 -0.215
Probability of On-Time Arrival (%) - Mean 0.057 0.110 0.148 0.187 0.209 0.232 0.265 0.317
Probability of On-Time Arrival (%) – Std. Dev. 0.057 0.096 0.134 0.175 0.197 0.246 0.277 0.307
Fuel Cost ($) -0.052 -0.095 -0.124 -0.167 -0.187 -0.252 -0.271 -0.327
Freight Rate ($) - Mean 0.424 0.779 1.151 1.522 1.870 2.473 2.560 3.193
Freight Rate ($) – Std. Dev. 0.098 0.183 0.239 0.305 0.367 0.403 0.484 0.544
Free-Flow Time (min) * Distance (in ‘000 km) 0.070 0.121 0.141 0.188 0.243 0.308 0.336 0.365
Distance-Based Charges ($) - Mean -0.100 -0.193 -0.221 -0.325 -0.406 -0.466 -0.526 -0.600
Distance-Based Charges ($) – Std. Dev. 0.054 0.108 0.154 0.202 0.298 0.289 0.359 0.428

 

Under an assumption of normality, we would expect a little more than 95 percent of the 
parameter estimates to lie within a range of two times the normalised standard deviation away 
from the mean. Beginning with the marginal utility of the reference alternative, a little more 
than 95 percent of the parameter estimates lie within seven percent of the mean value at a 
restricted sample size of 140. This range grows quickly as the sample size is reduced, doubling 
then the sample size is restricted to 130 (indeed, each of the parameter estimate distribution 
ranges from the mean roughly doubles when the sample size is reduced from 140 to 130). This 
degree of uncertainty is stepped up incrementally again when restricting the sample size to 120 
(the lowest sample size at which one may be reasonably confident in achieving strong statistical 
significance throughout the model), at which point about 95 percent of the marginal utility 
estimates lie within 25 percent of the mean.  

Most of the parameter estimates behave similarly at a restricted sample size of 120, with around 
95 percent of the marginal utility estimates for travel time, on-time arrival, fuel cost, free flow 
time multiplied by trip distance, and distance-based charges between 20 percent and 30 percent 
of their respective means. The mean estimate for distance-based charges and the estimated 
standard deviation of the freight rate (not a design attribute) do show larger divergence from the 
mean, however, at a restricted sample size of 120 (whilst performing reasonably well at a 
sample size of 130). Considered together with Table 6, this evidence suggests that a sample size 
of 130 should have been sufficient to yield significant parameter estimates that are also reliable, 
but that further reductions in sample size could result in small sample size effects of 
heterogeneity (i.e., unrepresentative samples) leading to either insignificant parameter estimates 
or significant parameter estimates that are considerably different from the values that one would 
expect under a larger sample. 

 

4.2 Results for shippers 
Turning to the shipper portion of the study, our analysis centres on a relatively complex base 
model. In this model, the marginal utility of each attribute in the design (other than waiting 
time, which is insignificant just as in the transporter model), along with the reference alternative 
and freight rate, is represented as a random parameter. This flexibility in model selection is 
likely due in large part to the near doubling of choice observations relative to the transporter 
model (138 respondents with 8 choice observations each, versus 145 transporters with 4 choice 
observations each). Such a hypothesis leads directly to the central theme of this section, the 
potential degree to which the sample could have been restricted whilst still yielding statistically 
significant parameter estimates for shippers. 
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We begin the discussion with a look into the discrepancies between the assumed prior parameter 
values and the observed parameter estimate values in the full sample. Table 8 highlights the 
differences between the priors and the observed marginal utility parameters: 

 

Table 8:  Shipper base model versus priors 

(t-statistics in parentheses; all random parameters distributed normally) 

 Full Sample Marginal Rates of 
Substitution* 

(MRS) 

Prior MRS* 

Parameter    
Reference Alternative 0.985 (4.302)   
Free-Flow Time (min) - Mean -0.016 (-4.095) 1.6 0.828 
Free-Flow Time (min) – Std. Dev. 0.020 (4.187)   
Slowed-Down Time (min) - Mean -0.030 (-3.392) 3.0 0.828 
Slowed-Down Time (min) – Std. Dev. 0.026 (1.840)   
Probability of On-Time Arrival (%) - Mean 0.179 (5.549) -17.9 -2 
Probability of On-Time Arrival (%) – Std. Dev. 0.167 (5.126)   
Fuel Cost ($) - Mean -0.010 (-2.866) 1 1 
Fuel Cost ($) – Std. Dev. 0.006 (2.041)   
Freight Rate ($) - Mean -0.006 (-1.727) 0.6 -- 
Freight Rate ($) – Std. Dev. 0.020 (4.955)   
Distance-Based Charges ($) - Mean -0.013 (-3.149) 1.3 2 
Distance-Based Charges ($) – Std. Dev. 0.010 (3.191)   
Waiting Time (min) 0 (Not in model) 0 0.828 

*-Marginal rates of substitution are for mean values with respect to the mean value for fuel cost. 

 
The relationships amongst parameter estimates for shippers are generally, and in some cases 
drastically, different to the assumed prior relationships. The mean marginal rates of substitution 
with respect to fuel cost reveal much stronger sensitivities to travel time components than 
assumed, with values of 1.6 and 3.0 dollars per minute in free-flow and slowed-down 
conditions, respectively, versus prior values of 0.83 for both travel time components. That is, 
the base model implies that shippers, on average, are both more sensitive to travel time relative 
to fuel cost than assumed, and more sensitive to slowed-down time relative to free-flow time 
than assumed. Consistent with the transporter model, shippers appeared to be less sensitive to 
distance-based charges than assumed, on average, with a mean marginal rate of substitution 
between distance-based charges and fuel cost of 1.3 dollars spent on fuel per dollar spent on 
distance-based charges, compared to an assumed rate of 2. Most strikingly, the estimated mean 
marginal rate of substitution between the probability of on-time arrival and fuel cost is almost 
eight times higher than assumed, at –17.9 dollars per percentage point in reliability compared to 
–2. Hence, the assumed prior sensitivity to reliability was much lower than observed. 

As with the transporter model, we estimated 100 sub-samples for decreasing multiples of ten 
respondents starting from the full sample size. The mean parameter estimates under each cohort 
size are shown in Table 9: 
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Table 9:  Mean bootstrap parameter estimates by cohort size 

(shippers, 100 Sub-samples per cohort size, 8 choice observations per respondent) 

 

 All  (138) 130 120 110 100 90 80 70 60 50 40 
Reference Alternative 0.9847 0.9947 0.9959 0.9868 0.9853 0.9704 0.9526 0.9634 0.9392 0.9579 0.9249
Free-Flow Time (min) - Mean -0.0163 -0.0151 -0.0151 -0.0155 -0.0158 -0.0157 -0.0160 -0.0160 -0.0161 -0.0163 -0.0177
Free-Flow Time (min) – Std. Dev. 0.0203 0.0204 0.0206 0.0209 0.0215 0.0213 0.0225 0.0226 0.0225 0.0226 0.0247
Slowed-Down Time (min) - Mean -0.0295 -0.0287 -0.0284 -0.0287 -0.0291 -0.0294 -0.0302 -0.0305 -0.0326 -0.0325 -0.0357
Slowed-Down Time (min) – Std. Dev. 0.0256 0.0242 0.0241 0.0246 0.0252 0.0248 0.0270 0.0274 0.0284 0.0288 0.0324
Probability of On-Time Arrival (%) - 
Mean 0.1785 0.1699 0.1698 0.1739 0.1777 0.1772 0.1795 0.1800 0.1773 0.1802 0.1947
Probability of On-Time Arrival (%) – 
Std. Dev. 0.1670 0.1627 0.1648 0.1680 0.1714 0.1714 0.1744 0.1754 0.1781 0.1774 0.1935
Fuel Cost ($) - Mean -0.0100 -0.0082 -0.0085 -0.0089 -0.0096 -0.0089 -0.0097 -0.0105 -0.0113 -0.0120 -0.0119
Fuel Cost ($) – Std. Dev. 0.0065 0.0038 0.0038 0.0043 0.0044 0.0047 0.0049 0.0054 0.0062 0.0066 0.0076
Freight Rate ($) - Mean -0.0058 -0.0111 -0.0111 -0.0115 -0.0105 -0.0121 -0.0125 -0.0121 -0.0113 -0.0106 -0.0144
Freight Rate ($) – Std. Dev. 0.0199 0.0205 0.0201 0.0210 0.0205 0.0206 0.0209 0.0214 0.0188 0.0211 0.0221
Distance-Based Charges ($) - Mean -0.0132 -0.0095 -0.0097 -0.0107 -0.0116 -0.0111 -0.0121 -0.0127 -0.0149 -0.0154 -0.0182
Distance-Based Charges ($) – Std. Dev. 0.0102 0.0096 0.0102 0.0099 0.0109 0.0102 0.0111 0.0118 0.0138 0.0147 0.0174

Unlike the transporter model, which demonstrated fairly steady mean parameter estimates 
across cohort sizes up to around one-half of the full sample, we observe two separate tendencies 
in the shipper model. The first tendency is the aforementioned tendency, in which 
approximately half of the attributes’ marginal utility estimates show no major trend as sample 
size is reduced until the sample size approaches one half of the sample. That is, marginal utility 
estimates for the reference alternative, free-flow mean effect, slowed-down time mean effect, 
on-time arrival mean effect, freight rate and distance-based charge standard deviation are 
generally steady as the cohort size falls from 138 toward around 80.  

However, this is countered by the second tendency, in which the remaining explanatory 
variables tend to reveal a mean estimate that changes quickly from the full sample value as the 
cohort size falls. This indicates a strong statistical influence by a relatively small group of 
observations (i.e., outlier effects) over these variables. Indeed, the main empirical models 
arising from the original study removed some observations to control for outlier effects (chiefly 
unusually long trips and vehicles with unusual stated fuel economy). The new values taken by 
the mean parameter estimates at a sample size of 130 appear to represent a steady baseline for 
these variables, as the marginal utility estimates for these variables demonstrate stability from a 
sample size of 130 down to around the same threshold as the other attributes. This confirms the 
general trend throughout both the transporter and shipper sides of the sample for sub-samples to 
yield unbiased estimates relative to the full sample until the cohort size falls to around 80; in the 
case of this subset of attributes, this tendency is only apparent once controlling for outlier 
effects. 

We now turn to Table 10 to examine the frequencies with which the marginal utility parameter 
estimates reached statistical significance at each restricted sample size: 
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Table 10:  Frequency of parameter estimates significant at target confidence levels 

by cohort size (shippers) 

Frequency of Significance at the 95% Confidence Level 

                                                                       Cohort Size 

Attribute 130 120 110 100 90 80 70 60 50 40 
Reference Alternative 100 100 100 99 99 96 89 75 67 63 
Free-Flow Time (min) - Mean 100 100 100 100 99 98 99 86 79 62 
Free-Flow Time (min) – Std. Dev. 100 100 99 99 100 98 97 85 79 57 
Slowed-Down Time (min) - Mean 100 100 100 100 95 88 81 72 53 41 
Slowed-Down Time (min) – Std. Dev. 18 18 13 11 18 19 19 14 14 17 
Probability of On-Time Arrival (%) - Mean 100 100 99 99 100 100 100 100 100 100 
Probability of On-Time Arrival (%) – Std. Dev. 100 100 99 99 100 100 100 99 100 91 
Fuel Cost ($) - Mean 97 90 82 74 61 53 48 34 32 25 
Fuel Cost ($) – Std. Dev. 15 7 18 15 17 16 18 22 20 21 
Freight Rate ($) - Mean 87 81 75 59 64 59 58 51 38 41 
Freight Rate ($) – Std. Dev. 100 100 99 97 98 99 94 86 84 78 
Distance-Based Charges ($) - Mean 98 95 85 75 63 59 52 44 39 34 
Distance-Based Charges ($) – Std. Dev. 93 91 78 76 66 57 51 55 40 39 

 

Frequency of Significance at the 90% Confidence Level 

                                                                      Cohort Size 

Attribute 130 120 110 100 90 80 70 60 50 40 
Reference Alternative 100 100 100 100 99 99 94 85 81 71 
Free-Flow Time (min) - Mean 100 100 100 100 100 100 100 97 92 84 
Free-Flow Time (min) – Std. Dev. 100 100 99 99 100 98 100 94 89 78 
Slowed-Down Time (min) - Mean 100 100 100 100 98 98 93 86 77 60 
Slowed-Down Time (min) – Std. Dev. 59 43 48 35 34 35 30 29 25 25 
Probability of On-Time Arrival (%) - Mean 100 100 99 99 100 100 100 100 100 100 
Probability of On-Time Arrival (%) – Std. Dev. 100 100 99 99 100 100 100 99 100 99 
Fuel Cost ($) - Mean 100 97 88 84 78 72 65 52 47 38 
Fuel Cost ($) – Std. Dev. 21 12 25 22 26 25 27 30 26 26 
Freight Rate ($) - Mean 92 90 80 71 73 65 62 56 46 55 
Freight Rate ($) – Std. Dev. 100 100 99 97 98 99 95 90 91 84 
Distance-Based Charges ($) - Mean 100 98 94 90 88 80 73 63 53 43 
Distance-Based Charges ($) – Std. Dev. 97 94 86 85 78 69 59 66 56 51 

 

Many of the attributes in the design maintain significance up to and even beyond the 80 
respondent level. The mean effects for free-flow time, slowed-down time and on-time arrival 
probability, along with the standard deviations for free-flow time and on-time arrival 
probability, each maintain a strong tendency to reach statistical significance at restricted sample 
sizes. The reference alternative also enters the model significantly in almost all cases down to a 
sample size of 80. Two heterogeneous effects that are significant in the full model are seldom 
significant at any of the restricted sample sizes; preferences for slowed-down time and fuel cost 
appear to be homogeneous at small sample sizes, in general. Indeed, the statistical significance 
of fuel cost is not assured when the sample size is restricted to around 100. This is not a terribly 
difficult outcome to justify (i.e., after controlling for the freight rate, the shipper may not be 
terribly sensitive to fuel cost). However, if the large sample estimates showing a sensitivity to 
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fuel cost are correct, this uncertainty in significance for fuel cost at moderate sample sizes is a 
concern. Some of this could feasibly be mitigated by re-specifying to marginal utility parameter 
as non-random, which may increase the explanatory power of the mean effect. The freight rate 
(not a design attribute) demonstrates significant preference heterogeneity at sample sizes of 70 
and even lower. Lastly, the mean marginal disutility of distance-based charges tends to enter the 
model with a p-value less than 0.1 in sample sizes as low as 90, with preference heterogeneity 
apparent at a somewhat smaller frequency. This shares the implications for fuel cost, in that 
whilst a low sensitivity to distance-based charges by shippers may be intuitive after accounting 
for the freight rate, at larger sample sizes shippers’ sensitivities to distance-based charges are 
indeed statistically significant. Hence, if the model fails to show this under a restricted sample 
size, it may be a case of observing too few choices to identify shippers’ true behaviour. 

Turning to Table 11, we observe a rather large spread of most parameter estimates relative to 
their mean values at even moderately restricted sample sizes: 
 

Table 11:  Standard deviation of parameter estimates as a percentage of the mean  

by cohort size (shippers) 

 130 120 110 100 90 80 70 60 50 40 
Reference Alternative 0.066 0.111 0.142 0.161 0.178 0.212 0.251 0.342 0.338 0.474
Free-Flow Time (min) - Mean -0.082 -0.119 -0.137 -0.184 -0.202 -0.237 -0.240 -0.308 -0.368 -0.576
Free-Flow Time (min) – Std. Dev. 0.106 0.143 0.170 0.200 0.227 0.274 0.302 0.351 0.358 0.573
Slowed-Down Time (min) - Mean -0.074 -0.098 -0.139 -0.169 -0.208 -0.250 -0.284 -0.307 -0.358 -0.479
Slowed-Down Time (min) – Std. Dev. 0.135 0.168 0.222 0.245 0.380 0.381 0.453 0.487 0.561 0.673
Probability of On-Time Arrival (%) - Mean 0.070 0.083 0.109 0.130 0.164 0.198 0.206 0.208 0.280 0.378
Probability of On-Time Arrival (%) – Std. Dev. 0.052 0.071 0.090 0.104 0.133 0.171 0.203 0.218 0.238 0.378
Fuel Cost ($) - Mean -0.209 -0.292 -0.366 -0.416 -0.508 -0.564 -0.595 -0.736 -0.714 -1.104
Fuel Cost ($) – Std. Dev. 0.542 0.559 0.716 0.760 0.843 0.914 0.963 1.005 1.140 1.187
Freight Rate ($) - Mean -0.296 -0.346 -0.401 -0.538 -0.543 -0.600 -0.708 -0.942 -1.130 -1.155
Freight Rate ($) – Std. Dev. 0.099 0.142 0.183 0.283 0.303 0.390 0.422 0.497 0.519 0.695
Distance-Based Charges ($) - Mean -0.263 -0.332 -0.436 -0.469 -0.516 -0.536 -0.598 -0.803 -0.707 -0.970
Distance-Based Charges ($) – Std. Dev. 0.268 0.273 0.416 0.476 0.582 0.622 0.698 0.846 0.867 0.997

 

This is important, in that the preceding tables show strong tendencies for the marginal utility 
estimates to reach statistical significance even when the sample size is reduced to around 80 
respondents. Hence, under a restricted sample there would have been a risk of observing 
significant parameter estimates that would be considerably different from the values found 
under a large sample. The lowest sample size that yielded a reasonably tight set of parameter 
value distributions was 110; at this sample size, around 95 percent of the sub-samples taken 
resulted in parameter estimates with 36 percent of the mean for the reference alternative, free-
flow time (both mean and standard deviation), standard deviation of slowed-down time, on-time 
arrival probability (both mean and standard deviation), and the standard deviation of the freight 
rate. The distributions for the standard deviations of free-flow time and the freight rate become 
wide at a sample size of 100, with the distributions of the mean estimates for free-flow and 
slowed-down time growing in spread at a sample size of 90. At a sample size of 80, the 
distributions for all but on-time arrival probability (mean and standard deviation) are wide 
enough that a spread of 40 percent of the mean is insufficient to account for 95 percent of 
estimates. 

Ultimately, it appears that the design itself was strong enough to accommodate a sample size as 
small as 80 shippers; the choice observations that would have been captured under a sample of 
80 shippers would likely have led to an econometric model of shipper choice behaviour that 
yielded statistically significant parameter estimates. However, the strength of the design would 

18 



Observed efficiency of a d-optimal design in an interactive agency choice experiment 
Puckett & Rose 

 
not necessarily have been sufficient to obtain marginal utility estimates that are reasonably close 
to the values that would be obtained under a larger sample. This may be less an issue of optimal 
design itself, and more an issue of heterogeneity dominating statistical efficiency concerns 
under small sample sizes. 

 

5. Conclusions 
The experimental design for the freight study was viewed as a strong success upon the 
completion of the survey, in that it led to the capture of sufficient preference information to 
estimate a series of complex econometric models despite the limited sample size of 145 
transporters (with 580 choice observations) and 138 shippers (with 1106 choice observations). 
The bootstrapping exercise examined in this paper served to gauge just how far the design could 
have been pushed, had there been greater difficulty in sourcing respondents for the study. The 
initial analysis indicates that the design would likely have been sufficient to yield accurate and 
significant behavioural implications had the sample been restricted to around 130 transporters 
and 100 shippers. If the sample had been restricted to between 80 and 100 respondents from 
both decision-making classes, the sample size may have been small enough to yield an 
unrepresentative sample whilst still offering enough choice observations under the optimal 
design to achieve statistically significant parameter estimates. In such an unfortunate case, the 
significant parameter estimates could have been biased away from the values that would be 
found under a larger sample. 

Hence, it is important to acknowledge that, whilst optimal designs can be a powerful tool in 
achieving statistically significant parameter estimates under small sample sizes, behavioural 
factors can outweigh statistical factors in determining an appropriate sample size. Ultimately, 
although statistical significance is a necessary condition for identifying preference information, 
it may not be sufficient. Rather, one must ensure that stability in parameter estimates has been 
reached before one can have confidence that the statistically significant parameter estimates 
obtained are also plausible estimates. 

We are confident that we have found such stability in the estimates obtained in the study at 
levels near the full sample and even restricted as low as around 100 respondents of both classes 
of decision makers. Some instability found in interaction terms and random parameter 
distributions could be remedied through alternative model specifications, further solidifying the 
models under restricted sample sizes. 

In addition to the implications found relating to each half of the sample, the bootstrapping 
exercise revealed some interesting implications regarding experimental designs for studies 
involving multiple classes of decision makers, in general. In the freight study, the restriction of 
having capturing half as many choice observations per transporter compared to each shipper led 
to the design algorithm sacrificing some statistical efficiency with respect to the choices made 
by shippers over the choice sets faced jointly by transporters and shippers. This allowed the 
experimental design to have a greater ability to ensure statistical significance for transporters 
under a smaller number of choice observations relative to a design that weighted the prior 
information on transporters and shippers equally. The design appears to have successfully struck 
such a balance, in that both the transporter and shipper models demonstrated similar rates of 
decline in performance as the sample size was decreased. That is, despite the fact that the 
transporter model was calibrated against one-half the number of observations for a given sample 
size relative to the shipper model, statistical confidence in the behavioural implications for both 
sides of the sample decreased in a similar manner as the sample size was increasingly restricted. 

This similarity across the two decision-making classes likely reflects one of two effects. The 
first effect would be the optimal one, in which the design accomplished what it was intended to 
accomplish. If this is true, we would recommend the same approach in similar studies involving 
multiple decision-making classes. A caveat should be issued, however, in that it may be 
appropriate to find an additional weighting mechanism in the experimental design process if one 
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would expect to have greater difficulty in sourcing respondents from a particular class of 
decision maker. In such a case, rather than using the number of choice observations per survey 
instrument for each class as a primary weighting criterion, the expected ratio of choice 
observations to be obtained in the study across classes may be important to consider. For 
example, in the freight study, if one had expected to only have the ability to recruit half as many 
shippers as transporters (and hence obtain an equal number of choice observations for the two 
classes), the design would likely have been improved if it had been calibrated to weight each 
class equally. 

The other effect that may have resulted in similar behaviour across the two models as the 
sample size was increasingly restricted is that the shipper model is more complex than the 
transporter model, and hence requires more data than the transporter model to reach a desired 
level of statistical significance. This is certainly a plausible explanation for at least some of the 
similarity in performance across the models, and it would be beneficial to re-examine the design 
under a simpler, common modelling structure for both transporters and shippers. We selected 
the more complex shipper model in this study because it takes the same form as in the original 
freight study, and because it allows us to examine a more complex model under restricted 
sample sizes. We will isolate this effect in ongoing research by establishing an appropriate 
common modelling structure and conducting repeated bootstrapping exercises as in this study. 

In other ongoing research, we will attempt to account for flexibility in model specification as 
sample size is reduced, giving a more thorough picture of the potential for an optimal design to 
produce meaningful inference under small sample sizes. We will also test the performance of a 
range of orthogonal designs as a benchmark to reveal the sample sizes that would be required to 
achieve the same quality of inference in the absence of an optimal design. These exercises 
should demonstrate further the value and limitations of optimal designs in econometric studies 
of choice behaviour. 
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Appendix 
A1: Choice sets common across sampled group members – trips of two hours or less 
(attribute levels relative to reference alternative) 
Choice Set Alternative Free-Flow 

Time 
Slowed-Down 

Time 
Waiting 

Time 
Fuel Cost Likelihood 

of On-Time 
Arrival 

Distance-
Based 

Charges 
1 B -25% +50% -25% -25% 0 -50% 
1 C 0 -50% +25% 0 +50% -25% 
2 B -25% -25% 0 -50% 0 +25% 
2 C +50% +50% +25% +50% +25% -50% 
3 B 0 -50% +25% +25% +50% +50% 
3 C -25% -25% 0 0 0 -25% 
4 B +25% +50% +50% +25% 0 0 
4 C +50% -25% 0 +25% +50% -25% 

 
 
A2: Choice sets common across sampled group members – trips of more than two hours 
(attribute levels relative to reference alternative) 
Choice Set Alternative Free-Flow 

Time 
Slowed-Down 

Time 
Waiting 

Time 
Fuel Cost Likelihood 

of On-Time 
Arrival 

Distance-
Based 

Charges 
1 B -25% -25% -25% +50% +50% -50% 
1 C -25% 0 +50% -50% +50% -50% 
2 B 0 -25% +25% 0 0 +50% 
2 C -25% +50% -25% +50% +50% -50% 
3 B -50% 0 +25% +50% -50% -50% 
3 C -50% +50% -50% -25% 0 +50% 
4 B 0 -50% -25% +50% +50% +50% 
4 C +25% +25% +25% +50% +25% +25% 

 
 
A3: Choice sets for shippers only – trips of two hours or less (attribute levels relative to 
reference alternative) 
Choice Set Alternative Free-Flow 

Time 
Slowed-Down 

Time 
Waiting 

Time 
Fuel Cost Likelihood 

of On-Time 
Arrival 

Distance-
Based 

Charges 
5 B +25% 0 -50% -50% +25% 0 
5 C -50% +25% +50% +50% -50% +50% 
6 B +50% +25% -50% -25% +25% -25% 
6 C -50% -25% -25% +25% -50% +25% 
7 B -50% +50% +50% 0 +25% 0 
7 C -25% -25% 0 -25% -25% -50% 
8 B -50% +25% 0 +25% -25% 0 
8 C +25% -50% -25% -50% 0 -25% 

 
 
A4: Choice sets for shippers only – trips of more than two hours (attribute levels relative 
to reference alternative) 
Choice Set Alternative Free-Flow 

Time 
Slowed-Down 

Time 
Waiting 

Time 
Fuel Cost Likelihood 

of On-Time 
Arrival 

Distance-
Based 

Charges 
5 B +25% 0 -50% +50% -50% +50% 
5 C +25% -25% -25% -25% +50% +25% 
6 B +50% +25% +25% 0 0 -25% 
6 C -25% +50% -50% +25% +25% 0 
7 B -50% -50% +50% +25% +50% +25% 
7 C +25% 0 +25% -50% -25% 0 
8 B 0 -50% -50% +25% -50% -25% 
8 C -50% 0 -50% +25% +25% -25% 
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