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1.  Introduction 
 
The growing evidence on the ability of stated choice (SC) experiments to represent 
decisions made in real markets (Burke et al. 1992; Carson et al. 1994) has made them a 
popular data paradigm in the elicitation of behavioral responses of individuals, 
households and organizations over diverse choice situations and contexts. An 
acknowledged limitation of SC experiments is that in order to produce asymptotically 
efficient parameter estimates, it is necessary that choice data from a number of 
respondents be pooled (Huber and Zwerina 1996), unless the number of person-specific 
observations captured is very large. A typical SC experiment might involve respondents 
being asked to undertake a number of choice tasks involving the choice from amongst a 
number of labeled or unlabeled alternatives defined on a number of attribute 
dimensions, each in turn described by pre-specified levels drawn from some underlying 
experimental design. The number of choice tasks undertaken will be up to the total 
number of choice sets drawn from the experimental design. Consequently, an archetypal 
SC experiment might require choice data collected from 200 respondents, each of whom 
were observed to have made eight choices each, thus producing a total of 1600 choice 
observations.  
 
The necessity to pool data has lead several authors to seek ways to reduce the number of 
choice observations necessary for reliable analysis of choice data (e.g., Huber and 
Zwerina 1996; Sándor and Wedel 2001; Carlsson and Martinsson 2002; Kanninen 
2002). Primarily, these research efforts have attempted to produce more statistically 
efficient experimental designs that for a given level of accuracy, allow for either a 
reduction in the number of choice set profiles shown to individual respondents or 
alternatively, a reduction in the number of respondents required to complete the 
experiment. Such designs have been widely studied within the literature. For example, 
Bunch, Louviere and Anderson (1994) studied statistically efficient main effects designs 
whilst Anderson and Wiley (1992) and Laziri and Anderson (1994) introduce methods 
to generate statistically efficient cross-effect designs.  
 
More recently, Huber and Zwerina (1996), Sándor and Wedel (2001) and Kanninen 
(2002), showed that the use of logit models to analyze discrete choice data requires that 
a priori information be known about the parameter estimates in order to derive greater 
statistical efficiency in the generation of SC experimental designs (Kanninen 
demonstrates, however, how the efficiency of a designs may be updated during the 
course of the experiment). Information on the parameter estimates may be used to 
calculate the expected utilities for each of the alternatives present within the design, 
which in turn may be used to calculate the likely choice probabilities via the now 
familiar logit formula. Given knowledge of the attribute levels, expected parameter 
estimate values and choice probabilities, it becomes a straightforward exercise to 
calculate the asymptotic variance-covariance matrix. By manipulating the attribute 
levels of the alternatives, for fixed parameter values, the analyst is able to minimize the 
elements within the variance-covariance matrix, which in the case of the diagonals 
means lower standard errors and hence greater reliability in the estimates at a fixed 
sample size.  
 
A common assumption within the literature dealing with the design of optimal SC 
experiments has been that the parameter estimates for each attribute are generic across 
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the alternatives within the experiment. Carlsson and Martinsson (2002) remain the sole 
exception, examining the case of optimal SC designs in which the utility functions of 
the alternatives present within the experiment differ only by a constant term. As we 
demonstrate, however, the designs generated by Carlson and Martinsson (2002) are not 
strictly optimal given a misspecification of the log-likelihood function they used in the 
calculation of the asymptotic variance-covariance matrix for the case of alternative-
specific choice models. 
 
The assumption of generic parameter estimates arises as a direct result of the way the 
log-likelihood function for the MNL model have been presented in the past. The 
literature on generation of optimal designs for SC experiments state as their basis, the 
seminal work by McFadden (1974) and described in detail in Ben-Akiva and Lerman 
(1985) and Louviere, Hensher and Swait (2000). An examination of the original 
derivation of the MNL model offered by McFadden (1974) reveals that this work is 
limited to that of the MNL assuming generic parameter estimates. The assumption of 
alternative-specific parameter estimates (or the presence/absence of different attributes 
across alternatives) requires a different derivation of the log-likelihood function used to 
obtain the asymptotic variance-covariance matrix of discrete choice models, without 
which, attempts to minimize the elements of the asymptotic variance-covariance matrix 
cannot be guaranteed.  
 
In this paper, we derive the log-likelihood function for the alternative specific MNL 
model and contrast this to that derived by McFadden. We then use the alternative 
specific derivation of the MNL log-likelihood function to demonstrate how optimal 
designs for alternative specific experiments may be generated, doing so for orthogonal 
and non-orthogonal designs. We next evaluate these designs by comparing the resulting 
asymptotic variance-covariance matrices, and in doing so, demonstrate how one can 
directly compare these results for any sample size without the use of Monte Carlo 
experiments. In the last section, we discuss limitations and extensions to our proposed 
methodology.  
 

 

2.  Derivation of the Generic and Alternative Specific 
MNL models 

 
In this section, we outline the derivation of the MNL model for both the generic and 
alternative specific case. Both the alternative-specific and generic cases follow the work 
of McFadden (1974) on random utility theory (RUT) and are summarized in a number 
of sources (e.g., Ben-Akiva and Lerman 1985; Louviere et al. 2000; Train 2003; 
Hensher et al. 2005). To demonstrate RUT, consider a situation in which an individual 
is faced with a number of choice tasks in each of which they must make a discrete 
choice from a universal but finite number of alternatives. Let subscripts n and j refer to 
choice task n = 1, 2, …, N, and alternative j = 1, 2, …, J. RUT posits that the utility 
possessed by an individual for alternative j present in choice set n may be expressed as: 
 
(1)  ( | ) ,jn jn jn j jnU V x β ε= +  
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where Ujn is the overall utility associated with alternative j in choice set n, Vjn is the 
component of utility observed by the analyst for alternative j in choice set n, and xjn is a 
vector of attribute levels for different alternative-specific attributes k = 1, 2, …, Kj of 
alternative j.  Further, βj denotes the vector of Kj parameters for each of the alternative-
specific attributes, and εjn represents the component of utility that is not observed by the 
analyst.  
 
The subscript j in βj allows for the estimation of alterative-specific parameter estimates 
across the j utility specifications, such that the number of estimated parameters is equal 
to Sj Kj. In the case of an unlabeled or generic experiment, for each attribute k, a single 
parameter is estimated independent of the number of alternatives resulting in the 
estimation of only K parameter estimates across all j, where K is the common number of 
attributes for all alternatives. Assuming linear additive utility functions, the observed 
components of the alternative-specific and generic cases are given in Equations (2a) and 
(2b) respectively. 
 

(2a) 
1

( | ) ,
jK

jn jn j jnk jk
k

V x xβ β
=

= ∑         (alternative-specific attributes) 

 

(2b) 
1

( | ) .
K

jn jn jnk k
k

V x xβ β
=

= ∑               (generic attributes) 

 
Under the assumption that the unobserved component of utility, ,jnε  are independently 
and identically extreme value type I distributed, we are able to derive the multinomial 
logit model in which inP  is the probability of choosing alternative i in choice set n: 
 

(3a)  
( )

( )
1

exp ( | )
( | ) ,

exp ( | )

in in i
in n J

jn jn j
j

V x
P x

V x

β
β

β
=

=

∑
       (alternative-specific attributes) 

 

(3b) 
( )

( )
1

exp ( | )
( | ) .

exp ( | )

in in
in n J

jn jn
j

V x
P x

V x

β
β

β
=

=

∑
    (generic attributes) 

 
The log-likelihood as a function of the parameters is given by 
 

(4) 
1 1

( | , ) log ( ),
N J

jn jn n
n j

L x y y P xβ β
= =

= ∑∑  

 
where the vector y describes the outcomes of all choice tasks, that is, yjn is one if 
alternative j is chosen in choice task n and is zero otherwise. The asymptotic variance-
covariance matrix can be derived from the second derivative of the log-likelihood 
function. For the alternative-specific case this leads to the following (see Appendix A): 
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(5a) 
( )

1 1 2 2 1 2

1 1 2 2

1 1 2 2 1 2

1 22
1

1 2
1

( ) 1 ( ) , if  ,

( ) ( ), if  .

N

j k n j k n j n n j n n
n

N
j k j k

j k n j k n j n n j n n
n

x x P x P x j j
L

x x P x P x j j

β β

β β
β β

=

=


− − =∂ = ∂ ∂  ≠



∑

∑
 

 
This differs to that of the second derivative in the case of generic parameters, which is 
given by (see e.g., Kanninen 2002) 
 

(5b) 
1 2 2

1 2

2

1 1 1

( ) ( ) .
N J J

jk n jn n jk n ik n in n
n j ik k

L
x P x x x P xβ β

β β = = =

 ∂  = − −  ∂ ∂   
∑ ∑ ∑  

 
Note that these second derivatives do not depend on the outcomes y. Suppose there are 
M respondents each completing the same N choice tasks. Then the second derivates are 
merely multiplied by M.  
 
The maximum likelihood (ML) estimates of β  can be found by maximizing the log-
likelihood function, or alternatively, setting the first derivatives (the score vector) equal 
to zero (it can be shown that the log-likelihood function is concave). Call these ML 
estimates ˆ,β  that is: 
 
(6) ˆ arg max ( , ).L x y

β
β β=  

 
McFadden (1974) has shown for the generic case that the ML estimates β̂  are 
asymptotically normally distributed with mean β  and variance-covariance matrix Ω  
which is equal to the negative inverse of the Fisher information matrix. The Fisher 
information matrix I  is defined as the expected values of the second derivative of the 
log-likelihood function, that is: 
 

(7) 
2

( | ) .
'

L
I x Mβ

β β
∂

= ⋅
∂ ∂

 

 
Hence, the asymptotic variance-covariance matrix can be computed as  
 

(8) [ ]
12

1 1
( | ) .

'
L

I x
M

β
β β

−
−  ∂

Ω = − = −  ∂ ∂ 
 

 
It can be shown that the same holds for the alternative-specific case. Clearly, the 
(co)variances become smaller with larger sample sizes, that is, with an increasing 
number of respondents M. 
 
The resulting asymptotic variance-covariance matrix for the alternative-specific case 
using equations (5a), (7), and (8), will be a matrix of jj

K∑  rows and columns in which 

each row/column represents a separate alternative-specific parameter estimate. The 
asymptotic variance-covariance matrix derived for the generic case using Equation (5b) 
will possess only K rows and columns.  
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This last point is important in light of claims made by Carlsson and Martinsson (2002). 
In their paper, Carlson and Martinsson claim to construct alternative-specific designs 
(albeit, only through the addition of an alternative specific constant) using algorithms 
designed to locate optimal designs for unlabeled or generic choice experiments. Using 
the procedures outlined here, it can be shown that the D-efficient design that they derive 
has a near singular variance-covariance matrix producing an extremely large D-
efficiency value. Indeed, examination of the design reveals that the X3 attribute for 
alternatives one and two are perfectly negatively correlated.  
  
 

3. Measuring Statistical Efficiency in SC Experimental 
Designs 
 
A statistically efficient design is a design that minimizes the elements of the asymptotic 
variance-covariance matrix, resulting in more reliable parameter estimates for a fixed 
number of choice observations. In order to be able to compare the statistical efficiency 
of SC experimental designs, a number of alternative approaches have been proposed 
within the literature (see e.g., Bunch et al. 1994). The most commonly used measure 
within the literature is that of D-error. The D-error of a design can be computed by 
taking the determinant of the asymptotic variance-covariance matrix and applying a 
scaling factor 1/ j jK∑  in order to take the number of parameters into account: 
 

(9) ( )
1

1
21

D-error det det ,
'

K jj

K jj
L

M β β

∑

∑

−
  ∂

= Ω = −   ∂ ∂  
 

 
where usually only one complete design for a single respondent is taken into account, 
that is, M = 1. The determinant will always yield a positive value due to the fact that the 
covariance matrix is positive definite as the log-likelihood function is concave. If the D-
error is low, meaning that the (co)variances of the parameter estimates are low, then the 
statistical efficiency is high. 
 
Two popular approaches exist for computing the D-error. The first approach assumes 
there is no information on the true parameter values; that is, the prior parameters for 
all β  are zero. This leads to the so-called Dz-error measure. In contrast, if prior 
information is available, then these priors for β  can be used to compute the D-error, 
yielding the so-called Dp-error measure. Hence, the Dz-error can be computed as: 
 
(10) ( )

1

zD -error det (0 | ) ,K jjI x ∑−=  
 
while the Dp-error assuming knowledge of prior parameter estimates β%  can be 
computed as 
 

(11) ( )
1

pD -error det ( | ) .K jjI xβ ∑−
= %  
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For designs of the same dimensions (i.e., number of choice sets, alternatives, attributes 
and attribute levels), the design(s) with the lowest D-error is (are) termed the D-optimal 
design(s). Given the large number of possible attribute level combinations for a design 
of fixed dimensions, it will be unlikely that for all but the smallest of designs the D-
error measure will be calculable for all possible design permutations. Unless one can 
examine all design permutations keeping the design dimensions constant, it will 
therefore be impossible to demonstrate that a design has the lowest possible D-error, 
and hence, it will often be more appropriate to discuss D-efficient designs rather than D-
optimal designs.  
 
Manipulation of the attribute levels of the alternatives within a design will result in 
different D-error values (Dz or Dp), assuming fixed prior parameter estimates. Over a 
number of iterations, it may be possible to locate designs with lower D-error values. 
Methods of manipulating the attribute levels so as to generate and locate D-efficient 
designs are discussed in detail in Kuhfeld, Tobias and Garrett (1994), Huber and 
Zwerina (1996), Sándor and Wedel (2001), Kanninen (2002), Carlsson and Martinsson 
(2002), and Burgess and Street (2005) amongst other sources. 
 
 

4. Generating D-efficient Alternative Specific Stated 
Choice Designs 
 
Using Equations (5a), (7), and (8), we generate a number of alternative-specific SC 
designs for a choice experiment involving two alternatives, one with three attributes and 
the second with two attributes. Fixing the prior parameter estimates, we generate 
designs with wide and narrow attribute level ranges and construct Dp-efficient designs 
assuming both orthogonality and non-orthogonality in the construction of these designs. 
In all cases, we have assumed attribute level balance, though such an assumption is not 
necessary to locate either Dp-efficient orthogonal or non-orthogonal designs (indeed, it 
is possible that such an assumption will result in less than efficient designs). For 
purpose of comparison, we also generate the least Dp-efficient orthogonal designs for 
the wide and narrow cases. The assumed parameter estimates and attribute levels are 
shown in Table 1. The designs were generated with 12 choice sets each, which is the 
minimum amount of choice sets for a balanced orthogonal alternative-specific SC 
design with this number of attributes and attribute levels. 
 

Table 1:  Prior parameters and design attribute levels 

Alternative 
Attribute 

Parameter Wide 
levels 

Narrow 
levels 

A Constant -0.5 - - 
A x11 0.8 1, 3, 5 2, 3, 4 
A x12 0.4 3, 5, 7 4, 5, 6 
A x13 0.3 3, 6 4, 5 
B x21 0.9 1, 3, 5 2, 3, 4 
B x22 0.5 3, 5, 7 4, 5, 6 

 
A total of six alternative-specific SC designs were generated and are shown in Tables 2 
and 3. Designs 1 through 3 represent designs generated using the wider attribute level 
ranges, designs 4 through 6 represent the designs with narrow attribute levels.  Designs 
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1, 2, 4, and 5 are orthogonal whilst designs 3 and 6 are non-orthogonal. Designs 1 and 4 
are the most Dp-efficient (balanced) orthogonal designs we were able to construct using 
wide and narrow attribute levels, whilst designs 2 and 5 represent the worst possible Dp-
efficient (balanced) orthogonal designs given the parameter priors assumed. The reason 
for including these worst possible Dp-efficient designs is because many researchers tend 
to consider only one orthogonal design, which can have a high Dp-efficiency or a low 
Dp-efficiency (which is generally not computed). The generation of the two designs will 
allow for an examination of the impact upon the reliability in parameter estimates 
obtained from two different orthogonal designs of the same dimensions. Designs 3 and 
6 have even a lower Dp-error than the designs 1 and 4 as we do not impose 
orthogonality on these designs. 
 

Table 2:  Wide designs  

 
Design 1: Best Dp-error  

Orthogonal Design  
Design 2: Worst Dp-error  

Orthogonal Design 
Design 3: Best Dp-error  

(Non-Orthogonal Design) 
 Alt A Alt B   Alt A Alt B   Alt A Alt B   

Cset # x11 x12 x13 x21 x22 PA PB x11 x12 x13 x21 x22 PA PB x11 x12 x13 x21 x22 PA PB 
1 1 3 6 3 3 0.29 0.71 3 5 3 1 5 0.80 0.20 5 5 3 3 5 0.77 0.23 
2 1 7 3 3 3 0.45 0.55 1 3 3 5 3 0.03 0.97 3 3 6 5 3 0.25 0.75 
3 5 5 6 5 5 0.57 0.43 5 3 6 3 3 0.91 0.09 3 3 3 1 7 0.40 0.60 
4 3 3 6 3 3 0.67 0.33 3 3 6 5 7 0.04 0.96 3 5 3 3 7 0.20 0.80 
5 1 7 6 1 7 0.62 0.38 1 7 6 1 3 0.92 0.08 1 5 3 1 3 0.69 0.31 
6 5 5 3 1 5 0.95 0.05 5 7 3 5 5 0.55 0.45 3 7 6 5 3 0.62 0.38 
7 5 5 6 1 5 0.98 0.02 5 5 3 3 5 0.77 0.23 1 7 3 3 3 0.45 0.55 
8 3 7 3 3 3 0.80 0.20 3 7 3 3 5 0.60 0.40 5 3 6 3 5 0.79 0.21 
9 5 5 3 5 5 0.35 0.65 5 5 6 1 7 0.95 0.05 5 7 6 5 7 0.52 0.48 
10 1 3 3 5 7 0.00 1.00 1 7 6 5 7 0.04 0.96 1 7 6 1 7 0.62 0.38 
11 3 7 6 5 7 0.18 0.82 1 3 3 1 7 0.12 0.88 5 5 3 5 5 0.35 0.65 
12 3 3 3 1 7 0.40 0.60 3 5 6 3 3 0.82 0.18 1 3 6 1 5 0.48 0.52 
 Dp = 0.2694, Dz = 0.1514 Dp = 0.4501, Dz = 0.1514 Dp = 0.2233, Dz = 0.1906 

 
Table 3:  Narrow designs 

 
Design 4: Best Dp-error  

Orthogonal Design  
Design 5: Worst Dp-error  

Orthogonal Design 
Design 6: Best Dp-error  

(Non-Orthogonal Design) 
 Alt A Alt B   Alt A Alt B   Alt A Alt B   

Cset # x11 x12 x13 x21 x22 PA PB x11 x12 x13 x21 x22 PA PB x11 x12 x13 x21 x22 PA PB 
1 4 4 4 4 4 0.50 0.50 2 5 5 2 5 0.29 0.71 3 6 4 3 4 0.69 0.31 
2 3 6 5 3 4 0.43 0.57 4 6 5 4 5 0.44 0.56 3 5 5 4 6 0.23 0.77 
3 4 6 5 4 6 0.40 0.60 3 5 4 3 6 0.33 0.67 4 6 5 4 6 0.50 0.50 
4 3 6 4 3 4 0.43 0.57 4 4 5 2 6 0.25 0.75 4 4 4 2 6 0.67 0.33 
5 3 6 4 2 5 0.29 0.71 2 4 5 4 6 0.40 0.60 2 4 5 3 4 0.38 0.62 
6 3 4 5 2 5 0.29 0.71 3 6 4 3 5 0.38 0.63 2 5 5 2 5 0.57 0.43 
7 2 5 4 2 6 0.25 0.75 3 5 4 3 5 0.38 0.63 4 4 4 4 5 0.35 0.65 
8 4 4 4 3 6 0.33 0.67 4 4 4 2 4 0.33 0.67 3 5 5 2 5 0.75 0.25 
9 2 5 4 4 5 0.44 0.56 2 6 5 2 4 0.33 0.67 2 6 4 2 6 0.48 0.52 
10 4 5 5 2 5 0.29 0.71 4 5 5 4 4 0.50 0.50 3 6 4 4 4 0.48 0.52 
11 2 5 5 4 6 0.40 0.60 2 4 4 4 4 0.50 0.50 4 5 5 3 4 0.82 0.18 
12 2 4 5 3 4 0.43 0.57 3 6 4 3 6 0.33 0.67 2 4 4 3 5 0.21 0.79 
 Dp = 0.6972, Dz = 0.5503 Dp = 0.7734, Dz = 0.5503 Dp = 0.6633, Dz = 0.5774 
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All designs were generated using algorithms programmed in Matlab, which used a 
heuristic to generate a large number of orthogonal and non-orthogonal designs and 
determine which of these was the most Dp-(in)efficient. For the non-orthogonal designs, 
the algorithm employed a simple swapping procedure similar to that discussed in Huber 
and Zwerina (1996) and Sándor and Wedel (2001).  
 
Note that the Dz–efficiency measures for the orthogonal designs with the same attribute 
level ranges are identical. This will hold in general, as the following theorem states. 
 
Theorem 1 – All balanced orthogonal alternative-specific designs using the same 
attribute levels have the same Dz-error. 
 
Proof: Consider the Fisher information matrix of such designs. For the Dz-efficiency 
measure, the Fisher information matrix, (0 | )I x , assumes that all true parameters are 
equal to zero. Since ( | 0) 1/jn nP x J=  for all alternatives j and all choice tasks n, the 

Fisher information matrix will be a j j j jK KΣ ×Σ  matrix, which can be written as 
follows. 

(12) 
( )

1 1 2 2

1 1 2 2
2 1 1 2 2

1 1
1 22

1

10
1 2

1

1 , if  ,
(0 | )

, if  .

N

j k n j k nJ J
n

N
j k j k

j k n j k nJ
n

x x j j
L

I x
x x j jβ

β β
=

=

=

 − =∂ = − = ∂ ∂ − ≠


∑

∑
 

 
Given the imposed restriction of attribute level balance, the diagonals of this matrix will 
be the same for any design of the same dimension. The off-diagonals however, may be 
different for a balanced design. Since we also assumed that the design matrix is 
orthogonal, all correlations between two (alternative-specific) attributes must be zero. 
Using the definition of correlation it therefore holds that 

1 1 2 2 1 1 2 2j k n j k n j k n j k nn n n
N x x x x=∑ ∑ ∑  for any combination of any two attributes. Since the 

design is balanced in the attribute levels, the right-hand side will be the same for each 
orthogonal design and hence the Fisher information matrix will also be the same for all 
orthogonal designs. ?  
 
Furthermore, we conjecture that any balanced orthogonal design has minimum Dz-error, 
as we have not been able to find non-orthogonal designs with a lower Dz-error. 
 
Conjecture 1 – A balanced orthogonal alternative-specific design has minimum Dz-
error among all other balanced alternative-specific designs using the same attribute 
levels.  
 
As such, the Dz-efficiency measure represents an inadequate method of comparison 
between orthogonal alternative-specific designs. Although the Dz-error may be useful in 
order to create efficient generic designs, the Dz-error will fail to distinguish between 
different design efficiency of any two alternative-specific orthogonal designs. Thus, the 
most efficient alternative-specific design when there is no prior information on the 
parameters available is an orthogonal design.  
 
Table 4 demonstrates the asymptotic variance-covariance matrix derived for the first 
design, assuming a single respondent. From this, it can be seen that despite the use of an 
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orthogonal design, the resulting covariances are non-zero. This result demonstrates an 
important property of the MNL model. Whilst the design (data) employed may be 
orthogonal, the estimation procedure works by taking the differences in the attribute 
levels of the chosen and non-chosen alternatives (see Louviere, Hensher and Swait 
2000; Lindsey 1996). Thus, whilst the design itself may be orthogonal, the differences 
between the chosen and non-chosen alternatives will likely be correlated, resulting in 
non-zero covariances from the estimated model. This result will hold for any orthogonal 
design when the parameter estimates from the experiment are non-zero. The 
enforcement of orthogonality may represent a limiting assumption and actually result in 
greater covariances than would be induced from a non-orthogonal design given the 
greater number of possible combinations of attribute levels available for non-orthogonal 
designs in which to locate designs with lower Dp-efficiency values. As such, non-
orthogonal designs may actually produce more reliable estimates than orthogonal 
designs when estimating MNL models. In the example above, assuming that the 
specified priors are correct, lower Dp-efficiency values are obtained from the two non-
orthogonal designs represented in Tables 2 and 3 than for the equivalent best-case 
orthogonal designs.  
 

Table 4:  Asymptotic variance-covariance matrix of Design 1 

 const x11 x12 x13 x21 x22 
const 16.95 -0.89 -1.12 -1.26 0.01 0.49 
x11 -0.89 0.46 0.15 0.14 0.33 0.16 
x12 -1.12 0.15 0.23 0.08 0.15 0.09 
x13 -1.26 0.14 0.08 0.28 0.14 0.08 
x21 0.01 0.33 0.15 0.14 0.48 0.18 
x22 0.49 0.16 0.09 0.08 0.18 0.25 

 
The presence of M in equation (8) provides a useful result for comparing designs over 
various sample sizes without having to resort to the use of Monte Carlo 
experimentation. Dividing each element of the asymptotic variance-covariance matrix 
by M will produce the asymptotic variance-covariance matrix for that sample size. This 
will be equivalent to the asymptotic variance-covariance matrix obtained from Monte 
Carlo experiments conducted over a large number of iterations, thus negating the need 
to conduct such experiments for problems of this type. Denote the asymptotic standard 
errors when the number of respondents are M by ˆ( ).M jkse β  Then 

1
ˆ ˆ( ) ( ) / .M jk jkse se Mβ β=  For example, for design 1, 1 11

ˆ( ) 0.46.se β =  The asymptotic 

standard error with 50 respondents will therefore be 50 11
ˆ( ) 0.46 / 50 0.096.se β = ≈  

Using this property, we are able to plot the asymptotic standard errors for each of the 
designs shown in Tables 2 and 3 over sample sizes ranging from 50 to 300 respondents. 
These are shown in Figure 1.  
 
It is worth noting that dividing the asymptotic standard errors by the square root of M as 
explained above will produce diminishing improvements to ˆ( )M jkse β  as M increases. 
As such, the MNL model will exhibit diminishing increases in reliability (as measured 
by lower asymptotic standard errors) as we increase the sample size, which is 
demonstrated by the shape of the curves represented in Figure 1. 
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Figure 1:  Expected standard errors for designs 1 through 6 for sample sizes between 50 and 300. 
 
In general, the orthogonal and non-orthogonal Dp-efficient designs with wide attribute 
levels (designs 1 and 3) are competitive in producing low asymptotic standard errors 
compared to all other designs. The designs with narrow attribute levels (designs 4 
through 6) appear to perform relatively poorly. Statistically, the wider the attribute 
levels used, the greater the range of values the utility functions may take for a given set 
of parameter values. This will allow for a greater examination of utility space, with the 
resulting increase in information leading to better estimates (i.e., the application area of 
the model is larger). This, however, ignores any behavioral influences that may result in 
the use of attribute level ranges which vary too far from experience in terms of existing 
attributes, or from expectations for currently non-existing attributes. Comparing the two 
orthogonal designs with wide attribute levels, we observe big differences in the 
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asymptotic standard errors based on which orthogonal design is used. The Dp-efficient 
design (design 1) performs in general much better than the Dp-inefficient design (design 
2).  
 
The behavioral implications of attribute level range (beyond the assumed priors), 
although ignored above, is an important consideration in the construction of SC 
experiments. We note, however, that the literature examining the behavioral 
implications for using wider or narrow attribute level ranges appears somewhat 
fragmented. Verlegh et al. (2002) found that consumers judging the importance of an 
attribute tend to consider the range of levels for this attribute, such that an increase in 
range results in an increase in self-rated importance. Ohler et al. (2000) concluded that 
variations in attribute ranges affect the (i) complexity of model functional forms; (ii) 
model fits; (ii) (possibly) the power to detect non-additivity; and (iv) between-subject 
response variability. In their study, range differences had little to no effect upon (v) 
logistic regression model parameters; (vi) within subject response variability, or (vii) 
error variance. Mellers and Cooke (1994) on the other hand found that the effect of a 
given difference in attribute range was greater when presented in a narrow range than a 
wide range. 
 
Minimization of a single global measure (i.e., either Dp-error or Dz-error) representing 
all elements contained within the asymptotic variance-covariance matrix explains why 
in his case, no single design performs best in terms of producing the lowest standard 
errors for all attributes considered. The D-error criterion will minimize the (co)variances 
of all attributes concurrently resulting in trade-offs being made between the efficiencies 
displayed for each of the individual parameter estimates. Thus, only in the special case 
where there exists a design in which all elements in the asymptotic variance-covariance 
matrix are smaller than all for other designs, will that design produce lower asymptotic 
standard errors for all attributes. The existence of such a design on the efficiency 
frontier in design space, however, will likely be rare.   
 
The results shown in Figure 1 assume that the prior parameter estimates were correctly 
specified over the sample. An interesting question is what impact a misspecification of 
the priors has upon the reliability of a given design. Keeping the generated design 
constant (based on some prior parameter estimates), we are able to change the true 
parameter estimates over a range of values and observe the effects upon the asymptotic 
standard errors obtained from the resulting asymptotic variance-covariance matrices. 
Figure 2 shows the impact upon the standard errors of each parameter (disregarding the 
constant) given a range of true parameter values for the first attribute of alternative one 
( 11β ), assuming a sample size of one, as would occur for generated design 3. The prior 

parameter value that was used to create the design was 11 0.8,β% =  while we assume that 
the true parameter value lies between 0 and 2.  
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Figure 2:  Expected standard errors given changes in the true value assumed by 11β   

 
Note that, keeping the design constant, a misspecification of a parameter prior for any 
attribute will have an impact upon the asymptotic standard errors for all parameter 
estimates within the model. This is because for any given design, a change in any 
parameter value for an attribute will influence the choice probabilities within all choice 
sets n where that attribute appears. Changes in the choice probabilities will in turn feed 
through to the asymptotic variance-covariance matrix and hence influence the resulting 
expected standard errors for all parameters. It is interesting to note that in Figure 2, 
lower standard errors will likely be obtained if the true parameter value is between 0.6 
and 0.7 rather than the prior specified for that attribute (i.e., 0.8) used in generating the 
design. Again, this is as a result of attempting to minimize a single measure representing 
the overall asymptotic variance-covariance matrix rather than a measure that minimizes 
each individual element contained within the matrix (which may only be possible given 
the unlikely presence of a corner solution in efficiency space). 
  
 

5. Conclusion and Discussion  
 
In this paper, we have extended the proof offered by McFadden (1974) for the generic 
(or unlabeled) MNL model to the more general case of the alternative-specific model. In 
doing so, we have been able to demonstrate the appropriate asymptotic variance-
covariance matrix for the alternative-specific model, thus allowing for the first time, the 
correct generation of efficient designs for alternative-specific SC experiments. Beyond 
the ability to generate efficient designs for alternative-specific SC experiments, a 
number of additional aspects contained within this paper are worth emphasizing. 
 
First, for an experiment of given dimensions, it may be possible to generate a number of 
different orthogonal designs, each with differing levels of efficiency as measured after 
model estimation (assuming that the estimated parameters are non-zero). Within this 
paper, we have shown that the Dz-efficiency measure often employed within the 
literature on the generation of efficient generic (or unlabeled) SC experiments, provides 
a meaningless basis of comparison amongst orthogonal designs when used to 
distinguish between alternative specific experiments. Using the properties of the MNL 
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model, one can examine the influence non-zero priors will likely have upon the 
statistical efficiency of generated orthogonal designs, as well as the ramifications upon 
the results of the experiment of mis-specifying these priors. Such information will allow 
for selection of which orthogonal design should then be used. The implication however, 
is that the Dz-efficiency measure should not be used to select between alternative-
specific orthogonal SC designs.  
 
Second, ignoring the behavioral implications of attribute level range (beyond the 
assumed priors), wider attribute level ranges are preferred in designing D-efficient 
(orthogonal and non-orthogonal) experiments. The downside of using narrow attribute 
ranges is twofold. First, they tend towards larger standard errors in the asymptotic 
efficiencies of the parameter estimates. Secondly, the application area of the model is 
smaller, resulting in less coverage in utility space. Attribute level range appears to have 
particular relevance with regards to the design efficiencies achieved for alternative-
specific SC orthogonal designs, which tend to yield greater variation in efficiencies 
when wider attribute ranges are used. The behavioral implications associated with 
choice of attribute level range should not be ignored in real studies. 
 
Third, for any given sample size, one may examine the likely standard errors of a design 
to be estimated using the MNL model directly from the asymptotic variance-covariance 
matrix. This means that for this class of models, one does not have to rely on Monte 
Carlo simulations to determine the expected standard errors for various sample sizes for 
different designs as has been done by some researchers in the past (e.g., Sándor and 
Wedel 2001). The ability to use the asymptotic variance-covariance matrix to estimate 
the standard errors directly extends to being able to examine likely biases in the 
expected standard errors given misspecification of the parameter priors. This can be 
done relatively quickly, allowing for an assessment of the implications of 
misspecification of the priors even before an experiment has been implemented.   
 
The ability to derive efficient alternative specific designs introduces a number of 
possible interesting research directions. First, the limitation of being able to estimate 
efficient designs for generic SC experiments has meant that the literature has not 
addressed the issue of efficient designs assuming differences in scale across alternatives. 
An interesting research direction therefore would be to extend the designing of SC 
experiments beyond the MNL model to models that allow for scale differences such as 
the nested logit model (Sándor and Wedel (2002) have examined efficient design 
generation for the mixed logit model). Second, the designs generated here do not 
assume the presence of a no-choice base alternative. Although only a simple extension, 
the effect of having a no-choice alternative needs to be examined for alternative-specific 
designs, as has occurred with the unlabeled SC case (see Carlsson and Martinsson 
2002).  
 
Although not specific to the generation of alternative-specific SC experiments, we 
would also promote research into wider aspects of constructing efficient experimental 
designs. Of particular interest is the construction of efficient designs for experiments in 
which the attribute levels are pivoted from the revealed levels obtained from 
respondents prior to the commencement of a SC experiment (see for example, Greene et 
al. 2005). Of issue for such designs is that not only are the prior parameter estimates 
needed to generate efficient designs not known with any certainty, but so are the 
attribute levels for each respondent. Urgent research examining the use of internet or 
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CAPI technology with in-built design optimization routines is required for such 
experiments. 
 
Finally, we propose further research be conducted into various possible measures for 
defining the efficiency of designs. Although for this paper, we have relied upon D-error 
as our measure of, numerous other possible measures exist. One such possible measure 
not yet considered by the literature is that of using some form of weighting procedure to 
indicate which elements within the asymptotic variance-covariance matrix should 
receive priority in terms of minimization. Such a measure would be of interest, if for 
example, one were mainly interested in estimating the willingness to pay for a specific 
attribute. In such a case, it would be conceivable that the researcher could believe that it 
is more important to produce lower standard errors for both this and the cost attribute 
within the design whilst other attributes are of less importance to the study. In such a 
case, the reliance on a global measure to determine the efficiency of the overall 
asymptotic variance-covariance matrix will be inadequate. 
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Appendix A 
 
Generic case 
 
Under the assumption of generic parameters, the log-likelihood function looks like the 
following: 
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Note that we assume that respondents have to select exactly one alternative such that 
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The first derivative of the log-likelihood function (i.e., the score function) is:  
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The K K×  matrix of second derivatives of the log-likelihood function can now be 
derived. 
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This is the same equation as stated in, for example, Kanninen (2002). See McFadden 
(1974) for more details on the second derivatives for the generic case.  
 
Alternative-specific case 
 
For the alternative-specific case, the second derivatives are different as we will show 
here. The log-likelihood function can be stated as  
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The first derivative of the log-likelihood function then becomes 
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the derivatives of the above score function. We consider two cases: the case in which 
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Hence, the second derivatives of the log-likelihood function for the alternative-specific 
case can be summarizes as 
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