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1.  Introduction 
 
Discrete choice models are the primary sources of estimates of willingness to pay 
(WTP) for specific attributes such as travel time savings. As choice modelling matures 
into a suite of models with increasing degrees of behavioural richness typified by the 
progression from multinomial logit, nested logit (NL), cross-correlated NL and mixed 
logit, analysts are increasingly exploring the deep parameterisation of WTP as a way of 
accommodating the heterogeneity of trade-offs in a sampled population. Such 
distributions of WTP can be derived from a set of moments portraying the population-
level profile of a distribution (i.e., a mean and standard deviation with a specific 
analytical distribution (e.g., normal, lognormal, triangular, uniform etc.) or from 
parameters that are unique to each sampled individual. Individual-specific parameters 
are derived from conditional distributions in which known choices are taken into 
account in the spirit of the Bayesian posterior distributions.  
 
With a growing interest in the Bayesian approach and claims that it is a more attractive 
paradigm than classical inference methods, the objective of this paper is to show how 
easy it is to obtain the equivalent information on individual parameters within the 
classical inference framework, and to derive such rich indicators of WTP distributions. 
We contrast the Bayesian-like estimates with the population specification more 
commonly associated with classical inference. From a policy perspective the empirical 
evidence is very revealing and disturbing, suggesting that the aggregation inherent in 
the population approach has suppressed the main moments of the distribution, namely 
the mean WTP in contrast to that associated with the WTP derived from the individual-
specific parameterisation. The extant literature (e.g., Sillano and Ortuzar 2003) suggests 
that there is a greater incidence of negative WTP in the distribution derived from the 
population moments. We have found in our empirical setting the absence of any 
negative values under both approaches without imposing any constraints on the 
analytical distribution for the standard deviation of the random parameters in a mixed 
logit model. 
 
The paper is organised as follows. We begin with a brief overview of the Bayesian 
approach, followed by a summary of the mixed logit model that will deliver the 
parameters. The data setting is then presented (a stated mode choice experiment for non-
work trips in Sydney in 2003), followed by the findings and implications for deriving 
WTP from alternative interpretations of the mixed logit outputs. 
 

2.  The Bayesian Approach 
 
Bayesian methods are often promoted as behaviourally different from and preferable to 
classical estimation methods currently used in estimation of advanced discrete choice 
models such as mixed logit. Brownstone (2001) provides a useful overview as do Chen 
et al (2000), Geweke (1999) and Train (2001) of the Bayesian perspective. Use of 
information on priors (as structural parameters) and posterior individual-specific 
parameter estimates from conditional utility functions are included as information to 
capture sources of heterogeneity1. 

                                                           
1 We capture within the classical estimation framework the same information that hierarchical 
Bayes modellers capture. 
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The key difference between Bayesian and classical statistics is that Bayesians treat 
parameters as random variables. Bayesians summarise their prior knowledge about 
parameters, θ, by a prior distribution, π(θ). The sampling distribution, or likelihood 
function, is given by ( )θ|xf . After observing some data, the information about θ  is 
given by the posterior distribution: 
 

( ) ( ) ( )
( ) ( )

||
|

f xp x
f x d

π=
π∫

θ θθ
θ θ θ

 (1) 

 
We note for purposes below, that the posterior density is functionally equivalent to the 
conditional distribution of the parameters given the data. All inference is based on this 
posterior distribution. The usual Bayes estimator is the mean of the posterior 
distribution, and Bayesian confidence bands are typically given by the narrowest region 
of the posterior distribution with the specified coverage probability. Bayesian 
confidence regions are interpreted as fixed regions containing the random parameter θ 
with the specified coverage probability (i.e., the ‘highest posterior density’ or HPD 
interval). This is different from the classical confidence region, which is a region with 
random endpoints that contain the true value θ with the specified probability over 
independent repeated realisations of the data (Brownstone 2001). Classical inference 
therefore depends on the distribution of unobserved realisations of the data, whereas 
Bayesian inference conditions on the observed data. Bayesian inference is also exact 
and does not rely on asymptotic approximations.  
 
The Bayesian approach requires the a priori specification of prior distributions for all of 
the model parameters. In cases where this prior is summarising the results of previous 
empirical research, specifying the prior distribution is a useful exercise for quantifying 
previous knowledge (such as the alternative currently chosen). In most circumstances, 
however, the prior distribution cannot be fully based on previous empirical work. The 
resulting specification of prior distributions based on the analyst’s subjective beliefs is 
the most controversial part of Bayesian methodology. Poirier (1988) argues that the 
subjective Bayesian approach is the only approach consistent with the usual rational 
actor model to explain individuals’ choices under uncertainty. More importantly, the 
requirement to specify a prior distribution enforces intellectual honesty on Bayesian 
practitioners. All empirical work is guided by prior knowledge and the subjective 
reasons for excluding some variables and observations are usually only implicit in the 
classical framework. Bayesians are therefore forced to carry out sensitivity analysis 
(which they rarely do, unfortunately) across other reasonable prior distributions to 
convince others that their empirical results are not just reflections of their prior beliefs 
(Brownstone 2001). The simplicity of the formula defining the posterior distribution 
hides some difficult computational problems, explained in Brownstone (2001)2.  
                                                           
2 Computing the posterior distribution typically requires integrating over θ and this can be difficult for the 
number of parameters frequently encountered in choice modelling. Until recently Bayesians solved this 
problem by working with conjugate families. These are a family of prior distributions linked to a family 
of likelihood functions where the posterior distribution is in the same family as the prior distribution. For 
example, the Beta family is a conjugate prior for the binomial with fixed number of trials. Koop and 
Poirier (1993) have developed and applied a conjugate prior for the conditional (and multinomial) logit 
model, but there do not appear to be tractable conjugate priors for other GEV discrete choice models. 
Recent applications have circumvented these difficulties through the use of Gibbs Sampling and Markov 
Chain Monte Carlo Methods. 
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Huber and Train (2001) have explored the empirical similarities and differences 
between hierarchical Bayes and classical estimators in the context of estimating reliable 
individual-level parameters from sampled population data as a basis of market 
segmentation. The ability to combine information about the aggregate distributions of 
preferences with individuals’ choices to derive conditional estimates of the individual 
parameters is very attractive. They conclude, however, that the empirical results are 
virtually equivalent conditional estimates of marginal utilities of attributes for 
individuals. What this debate has achieved in particular is to show classical estimation 
choice modellers that there is indeed more information in their estimation procedure that 
enables one to improve on the behavioural explanation within sample3. Recent 
developments in classical inference methods that are rich in deep parameters enable the 
analyst to obtain information that is Bayesian-like4. The mixed-logit model is one 
choice specification with this capability. 
 

3.  The Mixed Logit Model5 
 
In the random utility model of the discrete choice family of models, we assume that a 
sampled individual (q = 1,…,Q) faces a choice among J alternatives in each of T choice 
situations6. The individual is assumed to consider the full set of offered alternatives in 
choice situation t and to choose the alternative with the highest utility. The (relative) 
utility associated with each alternative j as evaluated by each individual q in choice 
situation t is represented in a discrete choice model by a utility expression of the general 
form in (2).  
 
Ujtq = βq′xjtq + εjtq (2) 
 
where xjtq is a vector of explanatory variables that are observed by the analyst (from any 
source) and include attributes of the alternatives, socio-economic characteristics of the 
respondent and descriptors of the decision context and choice task itself (e.g., task 
complexity in stated choice experiments as defined by number of choice situations, 
number of alternatives, attribute ranges, data collection method etc) in choice situation t. 
                                                                                                                                                                          
 
3 Within-sample priors such as the actual choice can help a great deal. When applying a model out-of-
sample then Bayesians need some subjective priors. 
4 It is important to reinforce the fact that the nature of the randomness in Bayesian and classical 
approaches is different. In the classical view, the randomness is part of the model; it is the heterogeneity 
of the taste parameters, across individuals. In the Bayesian approach, the randomness ‘represents’ the 
uncertainty in the mind of the analyst (conjugate priors notwithstanding). Therefore, from the classical 
viewpoint, there is a 'true' distribution of the parameters across individuals. From the Bayesian viewpoint, 
in principle, there could be two analysts with two different, both legitimate but substantially different 
priors, who therefore could obtain very different, albeit both legitimate, posteriors. The idea that Bayesian 
estimation is exact in finite samples and has to cope with that proposition is worrying. We do not sense in 
the literature that this is actually considered appropriately. 
5 It is also referred to in various literatures as random parameter logit (RPL), mixed multinomial logit 
(MMNL), kernel logit, hybrid logit and error components logit. 
6 A single choice situation refers to a set of alternatives (or choice set) from which an individual chooses 
one alternative. They could also rank the alternatives but we focus on first preference choice. An 
individual who faces a choice situation on more than one occasion (e.g., in a longitudinal panel) or a 
number of choice sets, one after the other as in stated choice experiments, is described as facing a number 
of choice situations. Louviere et al (2000) provide a useful introduction to discrete choice methods that 
use data derived from repeated choice situations, commonly known as stated choice methods.  Note that 
the assumption of a fixed choice set size, J, is made purely for convenience at this point; it is inessential. 
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The components βq and εjtq are not observed by the analyst and are treated as stochastic 
influences.  
 
Within a logit context we impose the condition that εjtq is independent and identically 
distributed (IID) extreme value type 1. The IID assumption is restrictive in that its does 
not allow for the error components of different alternatives to be correlated. We would 
want to be able to take this into account in some way.  One way to do this is to partition 
the stochastic component additively into two parts. One part is correlated over 
alternatives and heteroskedastic, and another part is IID over alternatives and 
individuals as shown in equation (3) (ignoring the t subscript for the present):  
 

Ujq = βq′xjq + [ηjq +εjq]  (3) 
 
where ηjq is a random term with zero mean whose distribution over individuals and 
alternatives depends in general on underlying parameters and observed data relating to 
alternative j and individual q; and εjq is a random term with zero mean that is IID over 
alternatives and does not depend on underlying parameters or data.  
 
The Mixed Logit class of models assumes a general distribution for ηjq and an IID extreme 
value type 1 distribution for εjq

 7. That is, ηjq can take on a number of distributional forms 
such as normal, lognormal, or triangular. Denote the joint density of [η1q, η2q,..., ηJq] by f(ηq |Ω) 
where the elements of Ω are the fixed parameters of the distribution and ηq denotes the 
vector of J random components in the set of utility functions. For a given value of ηq, the 
conditional probability for choice j is logit, since the remaining error term is IID extreme 
value type 1:  
 

Ljq(βq|ηq) = exp(βq′xjq + ηjq) / ∑jexp(βq′xjq + ηjq ). (4) 
 
The unconditional choice probability would be this logit probability integrated over all 
values of ηq weighted by the density of ηq is as shown in equation (5):  
 

Pjq (βq| Ω)  =∫η1q ∫η2q ... ∫ηJq Liq(βq|ηq ) f(ηq |Ω)dηJq ... dη2q dη1q . (5) 
 
Models of this form are called mixed logit because the choice probability Pjq is a mixture 
of logits with f as the mixing distribution. The probabilities do not exhibit the questionable 
independence from irrelevant alternatives property (IIA), and different substitution patterns 
may be obtained by appropriate specification of f. This is handled in two ways. The first, 
known as the random parameters specification, involves specifying each element of βq 
associated with an attribute of an alternative as having both a mean and a standard 
deviation (i.e., it is treated as a random parameter instead of a fixed parameter8). The 
second, known as the error components approach, treats the unobserved information as 
a single separate error component in the random component (as done above in equations 
(4) and (5)). 
 
                                                           
7 The proof in McFadden and Train (2000) that mixed logit can approximate any choice model including 
any multinomial probit model is an important message. The reverse cannot be said: the multinomial 
probit model cannot approximate all mixed logit models since the multinomial probit relies critically on 
normal distributions. If a random term in utility is not normal, then mixed logit can handle it and 
multinomial probit cannot. The description of mixed logit follows that given by Brownstone and Train 
(1999). 
8 A fixed parameter essentially treats the standard deviation as zero such that all the behavioural 
information is captured by the mean.  
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The standard deviation of an element of the βq parameter vector, which we denote σqk, 
accommodates the presence of preference heterogeneity in the sampled population. 
While one might handle this heterogeneity in the context of a fixed βqk parameter 
through data segmentation (e.g., a different model for each trip length range, age, 
gender and income of each traveller) and/or attribute segmentation (e.g., separate βqks 
for different trip length ranges), in contrast to treating it all as random, the challenge of 
these (deterministic) segmentation strategies is in picking the right segmentation criteria 
and range cut-offs that account for  statistically significant sources of preference 
heterogeneity. The random parameters representation of preference heterogeneity is 
more general. However such a specification carries a challenge in that these parameters 
have a distribution that is unknown. Selecting such a distribution presents a challenge. 
The concern that one might not know the location of each individual’s preferences on 
the distribution can be accommodated by retrieving estimates of individual-specific 
preferences by deriving the individual’s conditional distribution based (within-sample) 
on their choices (i.e., prior knowledge). Using Bayes Rule, we first define the 
conditional choice probability as in equation (6): 
 

Hjq(βq|Ω) = Ljq(βq)g(βq|Ω)/ Pjq (βq| Ω) (6) 
 
where Ljq(βq)  is now the likelihood of an individual’s choice if they had this specific βq, 
g(βq|Ω) is the distribution in the population of βqs, and Pjq(Ω) is the choice probability 
function defined in open-form as (seeTrain (2003)): 
 

Pjq (Ω) = ?βq Ljq(βq)g(βq|Ω) dβq. (7) 
 
This shows how one can estimate the person specific choice probabilities as a function 
of the underlying parameters of the distribution of the random parameters. 
 
The choice probability in (5) or (7) generally cannot be calculated exactly because the 
integral will not have a closed form. The integral is approximated through simulation. For 
a given value of the parameters, Ω, a value of βq is drawn from its distribution. Using this 
draw, the logit formula (4) for Liq(βq) is calculated. This process is repeated for many 
draws, and the mean of the resulting Ljq(βq)’s is taken as the approximate choice 
probability  giving the simulated probability in equation (8).  
 

SPjq(Ω) = (1/R)
1

R

r=∑ Ljq(βqr) (8) 

 
where R is the number of replications (i.e., draws of βqr), βqr is the rth draw, and SPjq is the 
simulated probability that an individual chooses alternative i.9  It remains to specify the 
structure of the random vector βq.  In our application of this model, we will use the 
structure βq  =  β + ∆zq + Γvq where the fixed underlying parameters are Ω = (β,∆,Γ), β 
is the fixed mean of the distribution, zq is a set of person-specific characteristics, ∆ is a 
matrix of parameters, vq is a vector of uncorrelated random variables with known 
variances on the diagonals of Σ, and Γ is a lower triangular matrix which, because 
                                                           
9 By construction, SPj is a consistent estimator of Pj for any R; its variance decreases as R increases. It is 
strictly positive for any R, so that ln(SPj) is always defined in a log-likelihood function. It is smooth (i.e., 
twice differentiable) in parameters and variables, which helps in the numerical search for the maximum of the 
likelihood function. The simulated probabilities sum to one over alternatives. Train (1998) provides further 
commentary on this. 
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Var[βq] = ΓΣΓ′, allows free correlation of the parameters. Thus, a ‘draw’ from the 
distribution of βq consists of a ‘draw’ from the distribution of vq which is then used to 
compute βq as shown above. 
 
The simulation method was initially introduced by Geweke (and improved by Keane, 
McFadden, Börsch-Supan and Hajivassiliou - see Geweke et al 1994, McFadden and 
Ruud 1994) to compute random variates from a multivariate truncated normal 
distribution. The method produces consistent estimators of the choice probabilities. The 
cumulative distribution function in their research is assumed to be multivariate normal 
and characterised by the covariance matrix M. The approach is quick and generated 
draws and simulated probabilities depend smoothly on the parameters β and M. This 
latter dependence enables one to use conventional numerical methods such as quadratic 
hill climbing or gradient methods to solve the first order conditions for maximising the 
simulated likelihood function (equation 8) across a sample of q = 1,…,Q individuals; 
hence the term maximum simulated likelihood (MSL) (Stern 1997). 
 

4.  An Empirical Example 
 
In the application of models, the posterior information accounts for the parameter 
variation across the sampled population, with the standard deviation (or spread) of each 
random β and the correlated inclusion for alternatives and choice situations being taken 
into account. This information is ignored in the priors. The procedure to distinguish 
prior and posterior information within sample is applied to a mode choice data set of 
230 non-commuting trips of a sample of residents of the north-west sector of the 
Sydney metropolitan area interviewed in 2003. The centrepiece of the data collection 
activity is a stated choice experiment in which each sampled individual reviewed 10 
mode choice sets. The main mode alternatives are car, existing bus, existing train, 
existing busway, new light rail (LR), new heavy rail (HR) and new busway (BW). Each 
public transport mode has an access and an egress component (see below). The data is 
collected using a Computer Aided Survey Instrument (CAPI), with all data being 
automatically captured in the CAPI into a data base formatted for immediate choice 
model estimation. More details are given in Hensher and Rose (2003). 
 
Table 1 shows the descriptive statistics for the sample. The median age of the sample is 
50, and the median employment category is casual. The average household size is 3.3 
and the annual personal income level is $10,000-$15,000. 83.04 percent of the non-
work segment had a car available for the surveyed trip (Table 2). 

 
Table 1:  Descriptive statistics for Non-Work segment 

 
 N Mean Median Std. Deviation Minimum Maximum 
Age  230 N/A 50 70.97 0 70 
No. of employed household 
members 230 N/A 3 1.25 1 4 
Hours worked per week 230 15.60 8 18.98 0 80 
Annual Personal Income 
($000’s) 230 N/A 15 28.59 0 140 
Household size 230 3.30 3 1.46 1 8 
No. of children in household 230 0.73 0 1.04 0 4 
Gender (male =1) 230 N/A 0 0.48 0 1 
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Table 2:  Percentage of Non-Work segment who had a motor vehicle available for the trip 
 

Car available Frequency Percent 
yes 191 83.04 
no 39 16.96 
Total 230 100 

 
The majority of the Non-Work trips consisted of Social/recreational trips (Table 3). 
 

Table 3:  Frequencies of trip purposes for Non-Work segment 
 

Trip purpose Frequency 
Shopping 31 
Visiting friends/relatives 27 
Education 49 
Social/recreational 81 
Personal business 32 
Other 10 
Total 230 

 
5.  Stated Choice Experimental Design 
 
The experimental design has 47 variables (46 in four levels and one in six levels for the 
blocks) in 60 runs; yielding six blocks of ten scenarios each. The design is almost 
orthogonal with maximum correlations between ± 0.06. The design allows the 
estimation of all alternative-specific main effects. Within each block the order of the 
runs has been randomised to control for order effect. There are different task 
configurations: with/without car, inter/intra regional, new LR & New HR versus new 
HR & new BW. A maximum number of complete designs have to be filled within each 
configuration. This is achieved in the field as follows: if the first respondent has a car on 
an intra regional trip with new LR & HR he is randomly assigned to a block (e.g., block 
three). If the second respondent is in the exact same configuration she sees the next 
immediate block (e.g., block four) otherwise she sees another randomly assigned block 
in one of the other configurations. Once all blocks in a configuration have been viewed, 
we randomly start at with another block.  
 
The trip attributes associated with each mode are summarised in Table 4. 
 
 

Table 4:  Trip Attributes in Stated Choice Design 

 
 
 

For existing public transport modes For new public transport modes For the existing car mode 
Fare (one-way) Fare (one-way) Running Cost 
In-vehicle travel time In-vehicle travel time In-vehicle Travel time 
Waiting time Waiting time Toll Cost (One way) 
Access Mode:   Walk time Transfer waiting time Daily Parking Cost 

            Car time Access Mode:   Walk time Egress time 
             Bus time             Car time  
           Bus fare              Bus time  

Egress time Access Mode Fare (one-way)  
            Bus fare  
 Egress time  
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Each design attribute has four levels. These were chosen as the following variations 
around the base level: -25%, 0%, +25%, +50%. The base times and costs used for new 
modes are shown in Table 5 where the locations are rail or busway stations. An example 
of a stated choice screen is shown as Figure 1. 
 

Table 5:  Base times and costs for new public transport modes  
 

 Dollars Busway Heavy rail Light Rail 
  $ min min min 
Mungerie Park 1.8 33 22 33 
Burns Road 1 27 18 27 
Norwest Business Park 1 22.5 15 22.5 
Hills Centre 1 18 12 18 
Castle Hill 0.2 13.5 9 13.5 
Franklin Road 0.2 7.5 5 7.5 
Beecroft         

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 1 Example stated preference choice screen 

 
 
 

6.  Findings 
 
The final multinomial logit and mixed logit models are given in Table 6. The overall 
goodness of fit is similar to MNL and mixed logit. Although mixed logit is not a 
statistically significant improvement overall on the multinomial logit model, the 
statistically significant standard deviation parameter for in-vehicle time for public 
transport (with an unconstrained triangular distribution10) suggests that there is a 

                                                           
10 For the triangular distribution, the density function looks like a tent: a peak in the centre and dropping 
off linearly on both sides of the centre. Let c be the centre and s the spread. The density starts at c-s, rises 
linearly to c, and then drops linearly to c+s. It is zero below c-s and above c+s. The mean and mode are c. 

The standard deviation is the spread divided by 6 ; hence the spread is the standard deviation times 6 . 



Using Classical Inference Methods to reveal individual-specific parameter estimates to avoid the 
potential complexities of WTP derived from population moments 

Hensher, Greene & Rose 
 

 9 

structural advantage in selecting the mixed logit specification. In-vehicle cost and in-
vehicle time for all public modes were specified as generic and separated from car costs 
and times. For car, the combination of running cost and toll was selected with parking 
cost treated separately. 
 
A generic access time parameter (and likewise for wait time) best represents the 
marginal disutility of access time for all trips where the main mode is public transport. 
We found that the number of transfers enters into the public transport utility expressions 
as a separate effect. The age of the respondent and their gender both have a statistically 
significant influence on choice between public transport and car. All others things equal, 
the probability of choosing public transport decreases as age increases, more so for 
males.  
 

Table 6:  Summary of Empirical Results for Non-work Trips 
 

Note: All public transport = (new heavy rail, new light rail, new busway, bus, train, busway); time is in minutes 
and cost is in dollars ($2003). T-values in brackets in columns 3 and 4. 

 
Attribute Alternatives Multinomial Logit Mixed Logit 

New light rail constant New light rail 3.3289 (7.54) 3.3701 (7.43) 
New busway constant New busway 1.6664 (3.74) 1.6988 (3.72) 
Existing bus constant Bus 1.5640 (4.02) 1.5705 (3.92) 
Train constant Existing and new Train 2.5478 (6.38) 2.5678 (6.25) 
Existing busway constant busway 1.8105 (4.52) 1.8270 (4.43) 
Main mode fares  All public transport -.3056 (-18.99) -.3095 (-18.60) 
Car mode running and toll cost Car -.20638 (-6.88) -.2185 (-6.61) 
Car parking cost Car -.12309 (-6.89) -.1265 (-6.79) 
Main mode in-vehicle time All public transport -.0350 (-17.62) -.03679 (-14.26) 
Number of transfers All public transport -.3707 (-5.90) -.3753 (-5.90) 
Access time All public transport -.0304 (-7.51) -.03078 (-7.49) 
Wait time All public transport -.04628 (-4.44) -.04728 (-4.48) 
Main mode in-vehicle time Car -.03455 (-6.8) -.03715 (-6.43) 
Egress travel time  All public transport -.05011 (-10.85) -.05061 (-10.78) 
Egress travel time Car -.05637 (-3.50) -.05765 (-3.47) 
Access bus mode fare Where bus is access mode -.1746 (-5.36) -.1773 (-5.38) 
Age of respondent (yrs) Public transport -.0152 (-2.37) -.01652 (-2.46) 
Gender (male = 1) Public transport -.4472 (-2.26) -.4484 (-2.18) 
Standard deviation of parameters 
(triangular distribution) 

   

In--vehicle time  All public transport  .02871 (2.14) 
In-vehicle time Car  .00079 (.02) 
    
Log-likelihood at zero  -3777.01 -3777.01 
Log-likelihood at convergence  -2433.71 -2432.8 
Pseudo-R2  0.3542 0.3544 
Sample Size  1941 1941 
 
* The access mode travel time relates to the chosen access mode associated with public transport main 
 
Behavioural values of travel time savings (VTTS) are summarised in Table 7 for the 
mixed logit non-work trip model using the population parameter estimates (i.e., priors). 
The only statistically significant random parameter is related to in-vehicle time for 
public transport. We limited the investigation of random parameters to in-vehicle time, 
access time and wait time. The mean VTTS’s for in-vehicle time are intuitively 
plausible in absolute values and as a percentage of the average gross wage rate, with car 
higher than public transport. Wait time valuation is 2.1 times greater than the main 

                                                                                                                                                                          
The height of the tent at c is 1/s (such that each side of the tent has area s×(1/s)×(1/2)=1/2, and both sides 
have area 1/2+1/2=1, as required for a density). The slope is 1/s2. See Evans et al (1993) for formal 
proofs. 
 



Using Classical Inference Methods to reveal individual-specific parameter estimates to avoid the 
potential complexities of WTP derived from population moments 
Hensher, Greene & Rose 
 

10 

mode in-vehicle time value while the access time (essentially in vehicle except for 
walking) is 1.36 times greater than the main mode time. Egress values are much higher 
than in-vehicle values for both public transport (2.25 times higher) and car (1.55 times 
higher). Overall there is evidence to support the position that VTTS for non main mode 
in-vehicle time savings is higher than for main mode in-vehicle time. 
 
 
Table 7:  Behavioural Values of travel Time savings ($/person hour): mixed logit model, non- 

work trips (mean gross personal income per hour = $14.27) 
 

Willingness to Pay Attribute VTTS ($/person Hour) VTTS as Percentage of 
average gross wage rate 

In-vehicle time – public transport 4.37 (1.61) 30.6 
In-vehicle time – car 10.21 71.55 
Waiting time – all public transport 9.18 64.3 
Access time – all public transport 5.97 41.8 
Egress time – all public transport 9.83 68.9 
Egress time - car 15.87 112.2 
 
 
Of particular interest herein is the derivation of the conditional individual-specific 
parameter estimates and the associated values of travel time savings for each individual.  
As described in Train (2002), we can obtain the conditional estimator for any individual 
by using Bayes Theorem.  The estimator will be 
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This is the empirical counterpart to (1). The prior density, p(βq) is specified after (8) 
where the distribution is induced by the stochastic specification of vq. The conditional 
density is the contribution of individual q to the likelihood function. The denominator in 
the conditional mean is the theoretical contribution of individual q to the likelihood 
function for the observed data.  That is, the choice probability defined in (7). The 
numerator of the expectation is a weighted mixture of the values of βq over the range of 
βq where the weighting function is, again, the likelihood function. Since the integrals 
cannot be computed analytically, we compute them, once again, by simulation.  
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The simulation estimator of the conditional mean for βq is 
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where the weighting function in each case is the contribution to the likelihood function 
(not its log), computed at the rth draw of βq,r in the simulation (see equation (8)). The 
approach in (10) can also be used to estimate the conditional variance or standard 
deviation of βq by estimating the expected square and subtracting the square of the 
mean. This estimated conditional variance will be smaller than the average variance 
obtained simply by computing the sample variance of the estimated conditional means, 
as the latter is averaged over all the data in the sample while the former is averaged with 
respect only to the data for individual q.   
 
The moments for the individual-specific parameter-derived VTTS are summarised in 
Table 8 for public transport in-vehicle time. The mean VTTS is $7.13 (49.9% of the 
average gross wage rate) in contrast to $4.37 based on the unconditional population-
level distribution.  The population distribution derived VTTS has a range of $1.56 to 
$7.13 with a standard deviation of $1.61; in contrast the range for the individual-
specific VTTS is $4.31-$8.90 and a standard deviation of $0.41. Figure 2 graphs the 
VTTS distribution for the conditional distribution. 
 
Table 8:  Profile of VTTS based in Individual-Specific Parameters (Public transport 

in-vehicle time) 
 

Mean 7.131 
Standard Error 0.0093 

Median 7.172 
Mode 6.365 

Standard Deviation 0.411 
Sample Variance 0.169 

Kurtosis 4.645 
Skewness -0.695 

Range 4.586 
Minimum 4.308 
Maximum 8.895 

Sample size 1941 
 
 
Figure 3 shows a sample of the observations on individual willingness to pay. The 
figure shows the estimate and an interval defined by the mean plus and minus 2.5 
conditional standard deviations. This is roughly the counterpart to the Bayesian HPD 
interval. Since the conditional distribution need not be symmetric, this interval may not 
be the narrowest interval containing 99% of the distribution, and, indeed, may contain 
slightly less than 95% of the distribution.  However, it will contain at least 95% in any 
event. 
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Figure 2:  VTTS Distribution from Individual-Specific Parameters  
 

 
 
 

Figure 3:  A random sample of VTTS from Individual-Specific Parameters  
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7.  Conclusions 
 
Allenby and Rossi (1999) have carried out an extensive Bayesian analysis of discrete 
brand choice and discussed a number of methodological issues relating to the estimation 
of individual level preferences. In comparison of the Bayesian and classical methods, 
they state the simulation based classical methods are likely to be extremely cumbersome 
and are approximate whereas the Bayesian methods are much simpler and are exact in 
addition. Both of these are overstated. The main premise of this study is to illustrate the 
simplicity of estimating individual level parameters in the random parameters discrete 
choice model. This can be applied to measures of willingness to pay, or other functions 
of the model components (see Greene 2003 for another example). The computation of 
individual level functions such as WTP or part worths is a simple by product of the 
computation of the simulation estimator (and is already incorporated in NLOGIT 3.0 
and LIMDEP 8.0).   
 
As to whether the Bayesian estimates are exact while sampling theory estimates are 
approximate, one must keep in mind what is being characterised by this statement. The 
two estimators are not competing for measuring the same population quantity with 
alternative tools.  In the Bayesian approach, the ‘exact’ computation is of the analysts 
posterior belief about the distribution of the parameter (conditioned, one might note on a 
conjugate prior virtually never formulated based on prior experience), not an exact copy 
of some now revealed population parameter. The sampling theory ‘estimate’ is of an 
underlying ‘truth’ also measured with the uncertainty of sampling variability. The virtue 
of one over the other is not established on any but methodological grounds – no 
objective, numerical comparison is provided by any of the preceding or the received 
literature. 
 

References 
 
Allenby, G.M. and Rossi, P.E. (1999) Marketing Models of Consumer Heterogeneity, 
Journal of Econometrics, 89, 57-78. 
 
Brownstone, D. (2001) Discrete choice modelling for transportation, in Hensher, D.A. 
(ed.) Travel Behaviour Research: The Leading Edge, Pergamon Press, Oxford, 97-124. 
 
Brownstone, D. and K. Train (1999) Forecasting new product penetration with flexible 
substitution patterns. Journal of Econometrics, 89, 109-129 
 
Chen, M-H., Shao, Q-M and Ibrahim, J. (2000) Monte Carlo Methods in Bayesian 
Computation, New York, Springer. 
 
Evans, M., N Hastings and B. Peacock (1993) Statistical Distributions, New York, John 
Wiley and Sons. 
 
Geweke, J. F. (1999) Using simulation methods for Bayesian econometric models: 
inference, development, and communication (with discussion and reply). Econometric 
Reviews, 18, 1-126 
 



Using Classical Inference Methods to reveal individual-specific parameter estimates to avoid the 
potential complexities of WTP derived from population moments 
Hensher, Greene & Rose 
 

14 

Greene, W. H. (2003) Interpreting estimated parameters and measuring individual 
heterogeneity in random coefficient models, Department of Economics, Stern School of 
Business, New York University. 
 
Hensher, D.A. and Greene, W.H. (2003) Mixed logit models: state of practice, 
Transportation, 30 (2), 133-176. 
 
Hensher, D.A. and Rose, J. (2003) The North-West Transport Study Patronage Survey: 
Stated Choice Model Estimation for Work and Non-Work Travel, Report prepared for 
the North-West Sydney Transportation Study, Institute of Transport Studies, The 
University of Sydney, July. 
 
Hensher, D.A., Louviere, J.J. and Swait, J. (1999) Combining Sources of Preference 
Data, Journal of Econometrics, 89, 197-221. 
 
Huber, J. and Train, K. (2001) On the similarity of classical and Bayesian estimates of 
individual mean partworths, Marketing Letters, 12, August, 259-270. 
 
Koop, G. and D. J. Poirier (1993) Bayesian analysis of logit models using natural 
conjugate priors. Journal of Econometrics, 56, 323-340 
 
Louviere, J.J., Hensher, D.A. and Swait, J.F. (2000) Stated Choice Methods and 
Analysis, Cambridge University Press, Cambridge. (reprinted 2003). 
 
McFadden, D. and Ruud, P.A. (1994) Estimation by simulation, Review of Economics 
and Statistics, LXXVI, (4), 591-608. 
 
McFadden, D. and K. Train (2000) Mixed MNL models for discrete response, Journal 
of Applied Econometrics, 15, 447-470. 
 
Poirier, D. J. (1988) Frequentist and subjectivist perspectives on the problems of model 
building in economics (with discussion and reply). Journal of Economic Perspectives, 2, 
121-170. 
 
Sillano, M. and Ortuzar, J. de Dios (2003) WTP estimation with mixed logit models: 
some new evidence, Department of Transport Engineering, Pontificia Universidad 
Católica de Chile, Santiago. 
 
Stern, S. (1997) Simulation-based estimation, Journal of Economic Literature, XXXV. 
December, 2006-2039. 
 
Train, K. (2001) A comparison of hierarchical Bayes and maximum simulated 
likelihood for mixed logit, Paper presented at the Asilomar Invitational Choice 
Symposium, California, June. 
 
Train, K., (2003) Discrete Choice Methods with Simulation, Cambridge University 
Press, Cambridge. 
 
 
 


