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1. Introduction 

A growing number of empirical studies involve the assessment of influences on a choice 
amongst ordered discrete alternatives. Ordered logit and probit models are well known, 
including extensions to accommodate random parameters and heteroscedasticity in 
unobserved variance (see, e.g., Bhat and Pulugurtha 1998, Greene 2007). The ordered 
choice model allows for non-linear effects of any variable on the probabilities 
associated with each ordered level (see for example, Eluru et al., 2008).  However the 
traditional ordered choice model is potentially limited, behaviorally, in that it holds the 
threshold values to be fixed. This can lead to inconsistent (i.e., incorrect) estimates of 
the effects of variables. Extending the ordered choice random parameter model to 
account for threshold random heterogeneity, as well as underlying systematic sources of 
explanation for unobserved heterogeneity, is a logical extension in line with the growing 
interest in choice analysis in establishing additional candidate sources of observed and 
unobserved taste heterogeneity1.  

A substantive application herein is used to illustrate the behavioral gains from 
generalizing the ordered choice model to accommodate random thresholds in the 
presence of random parameters. It is focused on the influences on the role that a specific 
attribute processing strategy, of preserving each attribute or ignoring it, plays when 
choosing amongst unlabelled attribute packages of alternative tolled and non-tolled 
routes for the commuting trip in a stated choice experiment (see Hensher et al. 2005a, 
Hensher 2006b, 2008). The ordering represents the number of attributes attended to 
from the full set. Despite a growing number of studies focusing on these issues (see for 
example Cantillo et al. 2006, Hensher 2006, Swait 2001, Campbell et al. 2008), the 
entire domain of every attribute is treated as relevant to some degree, and included in 
the utility expressions for every individual. While acknowledging the extensive study of 
nonlinearity in attribute specification, which permits varying marginal (dis)utility over 
an attribute’s range, including account for asymmetric preferences under conditions of 
gain and loss (see Hess at al. 2008), this is not the same as establishing ex ante the 
extent to which a specific attribute might be totally excluded from consideration for all 
manner of reasons, including the influence of the design of a choice experiment when 
stated choice data is being used. 

The paper is organised as follows. The next section sets out the econometric 
specification of the generalised ordered choice model, focusing on the derivation of the 
random threshold structure and its behavioral appeal. We then introduce the empirical 
context used to test this new model, focusing on the design of the stated choice 
experiment and associated questions used to define the choice setting and the process 
used by each respondent in establishing relevance of each attribute. The empirical 
analysis that follows presents the estimated models – a traditional model and the 
extended ordered choice model, together with the associated marginal effects that are 
the basis of behavioral assessment. The paper concludes with some observations on the 
merits of the extended model form. 

                                                            
1 A number of authors have introduced random thresholds (e.g., Cameron and Heckman 1998, Cunha et al.  2007, Eluru et al. 
2008) but have not integrated this into a generalized model with random parameters and/or decomposition of random thresholds 
by systematic sources.   
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2. Generalizations of the ordered choice model to 

accommodate preference heterogeneity 

2.1 The traditional ordered probit model 
The ordered probit model was proposed by Zavoina and McElvey (1975) for the analysis of 
categorical, nonquantitative choices, outcomes and responses.  Familiar applications now 
include bond ratings, discrete opinion surveys such as those on political questions, obesity 
measures (Greene et al. 2008), preferences in consumption, and satisfaction and health status 
surveys such as those analyzed by Boes and Winkelmann (2004, 2007).   

The model foundation is an underlying random utility or latent regression model, 

 
yi* = β′xi + εi, (1) 
 
in which the continuous latent utility, yi* is observed in discrete form through a 
censoring mechanism (equation 2). 
 
yi   =  0  if    μ-1  <  yi* < μ0, 

=  1  if    μ0  <  yi*  < μ1, 
=  2  if    μ1  <   yi* < μ2 (2) 
=  ... 
=  J  if   μJ-1 <  yi*  < μJ. 

 
The model contains the unknown marginal utilities, β, as well as J+2 unknown threshold 
parameters, μj, all to be estimated using a sample of n observations, indexed by i = 1,...,n.  The 
data consist of the covariates, xi and the observed discrete outcome, yi = 0,1,...,J.  The 
assumption of the properties of the “disturbance,” εi, completes the model specification.  The 
conventional assumptions are that εi is a continuous disturbance with conventional cdf, F(εi|xi) 
= F(εi) with support equal to the real line, and with density f(εi) = F′(εi). The assumption of the 
distribution of εi includes independence from (or exogeneity of) xi. The probabilities associated 
with the observed outcomes are given as equation (3). 

 
Prob[yi = j | xi]  =  Prob[εi <  μj - β′xi]  -  Prob[μj-1 - β′xi], j = 0,1,...,J.  (3) 
 
Several normalizations are needed to identify the model parameters.  First, given the 
continuity assumption, in order to preserve the positive signs of the probabilities, we 
require μj > μj-1.  Second, if the support is to be the entire real line, then μ-1 = -∞ and 
μJ = +∞.  Finally, assuming (as we will) that xi contains a constant term, we will require 
μ0 = 0.  With a constant term present, if this normalization is not imposed, then adding 
any nonzero constant to μ0 and the same constant to the intercept term in β will leave 
the probability unchanged.  Given the assumption of an overall constant, only J-1 threshold 
parameters are needed to partition the real line into the J+1 distinct intervals. 

Given that data such as ranking data defining the observed ordered choice contain no 
unconditional information on scaling of the underlying unobserved variable, if yi* is scaled by 
any positive value, then scaling the unknown μj and β by the same value preserves the observed 
outcomes; and hence a free unconditional variance parameter, Var[εi] = σε2, is not identified 
without further restriction.  We thus impose the identifying restriction σε = a known constant, 
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σ .  The usual approach to this normalization, assuming that ε is independent of x, is to assume 
that Var[εi|xi] = 1 in the probit model and π2/3 in the logit model – in both cases to eliminate 
the free structural scaling parameter. The standard treatments in the received literature complete 
the ordered choice model by assuming either a standard normal distribution for εi, producing the 
ordered probit model or a standardized logistic distribution (mean zero, variance π2/3), which 
produces the ordered logit model. Applications appear to be well divided between the two. A 
compelling case for a particular distribution remains to be put forth. 

With the full set of normalizations in place, the likelihood function for estimation of the model 
parameters is based on the implied probabilities given in equation (4). 

 
Prob[yi = j | xi]  =  F(μj - β′xi)  -  F(μj-1 - β′xi)  > 0, j = 0,1,...,J. (4) 
 
Estimation of the parameters is a straightforward problem in maximum likelihood estimation 
(see, e.g., Greene 2008 and Pratt 1981).  Interpretation of the model parameters is, however, 
much less so (see, e.g., Daykin and Moffitt 2002).  There is no natural conditional mean 
function, so in order to attach behavioral meaning to the parameters, one typically refers to the 
probabilities themselves.  The partial effects in the ordered choice model are: 

 

1
Prob[y | ] ( ) ( )i i

j i j i
i

j f f−

∂ = ′ ′⎡ ⎤= μ − − μ −⎣ ⎦∂
x x x

x
β β β

. (5) 
The result shows that neither the sign nor the magnitude of a coefficient is informative 
about the corresponding behavioral characteristic in the model, so the direct 
interpretation of the coefficients (or their “significance”) is fundamentally ambiguous.  
A counterpart result for a dummy variable in the model would be obtained by using a 
difference of probabilities, rather than a derivative (Boes and Winkelmann 2007 and 
Greene 2008, Chapter E22).  One might also be interested in cumulative values of the 
partial effects, such as shown in equation (6) (see, e.g., Brewer et al. 2006). The last 
term in this set is zero by construction. 

 

[ ]( )10

Prob[ | ] ( ) ( )ji i
m i m im

i

y j f f−=

∂ ≤ ′ ′= μ − − μ −
∂ ∑x x x
x

β β β
. (6) 

 
2.2 A generalized ordered choice model 

A number of authors, beginning with Terza (1985), have questioned some of the less 
flexible aspects of the model specification.   The partial effects shown above vary with 
the data and the parameters.  It can be shown that for the probit and logit models, this 
set of partial derivatives will change sign exactly once in the sequence from 0 to J, a 
property that Boes and Winkelmann (2007) label the “single crossing” characteristic.  
Boes and Winkelmann (2007) also note that for any two continuous covariates, xik and 
xil 
 

     

,

,

Prob[ | ] /
Prob[ | ]/

i i i k k

i i i l l

y j x
y j x

∂ = ∂ β
=

∂ = ∂ β
x
x  (7) 
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This result in (7) is independent of the outcomes. The ordered choice models above 
have the property in equation (8); that is, the partial effects are each a multiple of the 
same β.   
 

∂Prob[yi >  j | xi]/∂xi  =  Kjβ (8) 
 
where Kj depends on Xj. This is a feature of the model that has been labeled the 
“parallel regressions” assumption.   Another way to view this feature of the ordered 
choice model is through the J implied binary choices implied by (8).  Let zij denote the 
binary variable defined by 

 zij  =  1 if y > j, j = 0,1,...,J-1. 
 
The choice model implies  
 
 Prob[zij = 1 | xi]  = F(β′xi - μj). 
 
The threshold parameter can be absorbed into the constant term.  In principle, one can fit these 
J-1 binary choice models separately.   That the same β appears in all of the models is implied by 
the ordered choice model.  However, one need not impose this restriction; the binary choice 
models can be fit separately and independently.  Thus, the null hypothesis of the ordered choice 
model is that the βs in the binary choice equations are all the same (apart from the constant 
terms).  A standard test of this null hypothesis, due to Brant (1990), is used to detect the 
condition that the βj vectors are different.  The Brant test frequently rejects the null hypothesis 
of a common slope vector in the ordered choice model. It is unclear what the alternative 
hypothesis should be in this context.  The generalized ordered choice model that might seem to 
be the natural alternative is, in fact, internally inconsistent – it does not constrain the 
probabilities of the outcomes to be positive.  It would seem that the Brant test is more about 
functional form or, perhaps, some other specification error.  See Greene and Hensher (2009, 
Chapter 6). 

Recent analyses, e.g., Long (1993), Long and Frees (2005) and Williams (2006), have 
proposed a “generalized ordered choice model. 
 
”  An extended form of the ordered choice model that has attracted much (perhaps most) of the recent 
attention, is the “Generalized Ordered Logit” (or Probit) model e.g., by Williams (2006).  This model is 
defined in equation (9). 
 
Prob[yi = j | xi]  =  Prob[εi <  μj - βj′xi]  -  Prob[μj-1 - βj-1′xi], j = 0,1,..., J  (9) 
 

where β-1 = 0 (see e.g., Williams 2006, Long 1997, Long and Frees 2006). The 
extension provides for a separate vector of marginal utilities for each jth outcome. Bhat 
and Zhao (2002) introduce heteroscedasticity across observational units, in a spatial 
ordered response analysis context, along the lines of the generalised ordered logit form. 
The generalization of the model suggested above deals with both problems (single 
crossing and parallel regressions), but it creates new ones.  The heterogeneity in the 
parameter vector is an artifact of the coding of the dependent variable, not a 
manifestation of underlying heterogeneity in the dependent variable induced by 
behavioral differences.  It is unclear what it means for the marginal utility parameters to 
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be structured in this way.  Consider, for example, that there is no underlying structure 
that could be written down in such a way as to provide a means of simulating the data 
generating mechanism.  By implication, yi* = βj′xi + εi if yi = j.  That is, the model 
structure is endogenous – one could not simulate a value of yi from the data generating 
mechanism without knowing in advance the value being simulated.  There is no reduced 
form. The more difficult problem of this generalization is that the probabilities in this 
model need not be positive, and there is no parametric restriction (other than the 
restrictive model version we started with) that could achieve this. The probability model 
is internally inconsistent. The restrictions would have to be functions of the data. The 
problem is noted by Williams (2006), but dismissed as a minor issue. Boes and 
Winkelmann (2007) suggest that the problem could be handled through a “nonlinear 
specification.”  Essentially, this generalized choice model does not treat the outcome as 
a single choice, even though that is what it is. 

To put a more positive view, we might interpret this as a semi-parametric approach to 
modeling what is underlying heterogeneity. However, it is not clear why this 
heterogeneity should be manifest in parameter variation across the outcomes instead of 
across the individuals in the sample.  One would assume that the failure of the Brant test 
to support the model with parameter homogeneity is, indeed, signalling some failure of 
the model.  A shortcoming of the functional form as listed above (compared to a 
different internally consistent specification) is certainly a possibility.  We hypothesize 
that it might also be picking up unobserved heterogeneity across individuals.  The 
model we develop here accounts for individual heterogeneity in several possible forms. 

 

2.3 Modeling observed and unobserved heterogeneity 

Since Terza (1985), with the exception of Pudney and Shields (2000), most of the 
“generalizations” suggested for the ordered choice models have been about functional 
form – the single crossing feature and the parallel regressions (see, also, Greene 2008). 
Our interest in this paper is, rather, in a specification that accommodates both observed 
and unobserved heterogeneity across individuals.  We suggest that the basic model 
structure, when fully specified, provides for sufficient nonlinearity to capture the 
important features of choice behavior.  The generalization that interests us herein will 
incorporate both observed and unobserved heterogeneity in the model itself. 

The basic model assumes that the thresholds μj are the same for every individual in the 
sample.  Terza (1985), Pudney and Shields (2000), Boes and Winkelmann (2007), Bhat 
and Pulugurta (1998), and Greene et al. (2008), all present cases that suggest individual 
variation in the set of thresholds is a degree of heterogeneity that is likely to be present 
in the data, but is not accommodated in the model. Pudney and Shields discuss a clear 
example in the context of job promotion, in which the steps on the promotion ladder for 
nurses are somewhat individual specific. 

Greene (2002, 2008) argues that the fixed parameter version of the ordered choice 
model, and more generally, many microeconometric specifications, do not adequately 
account for the underlying, unobserved heterogeneity likely to be present in observed 
data.  Further extensions of the ordered choice model presented in Greene (2008) 
include full random parameters treatments and discrete approximations under the form 
of latent class, or finite mixture models.  These two specific extensions are also listed by 
Boes and Winkelmann (2004, 2007), who also describe a common effects model for 
panel data, and Bhat and Pulugurta (1998) as candidates for extending the model.  
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The model that assumes homogeneity of the preference parameters, β, across 
individuals, also assumes homogeneity in the scaling of the random term, εi.  That is, 
the homoscedasticity assumption, Var[εi|xi] = 1 is restrictive in the same way that the 
homogeneity assumption is.  Heteroscedasticity in terms of observables in the ordered 
choice model is proposed in Greene (1997) and reappears as a theme in Williams 
(2006). 

The model proposed here generalizes the ordered choice model in the directions of 
accommodating heterogeneity, rather than in the direction of adding nonlinearities to the 
underlying functional form. The earliest extensions of the ordered choice model focused 
on the threshold parameters. Terza’s (1985) extension suggested 
 
μij  =  μj  +  δ′zi. (10) 
 
where zi are individual-specific exogenous variables that represent sources of 
systematic variation around the mean estimate of a threshold parameter. The analysis of 
this model continued with Pudney and Shields’s (2000) “Generalized Ordered Probit 
Model,” whose motivation, like Terza’s was to accommodate observable individual 
heterogeneity in the threshold parameters as well as in the mean of the regression.   We 
(and Pudney and Shields) note an obvious problem of identification in this specification. 
Consider the generic probability with this extension, 
 

Prob[yi <  j | xi,zi]  =  F(μj + δ′zi - β′xi) = F[μj + (δ*′zi + β′xi)], δ* = -δ. (11) 
 

It is less than obvious whether the variables zi are actually in the threshold or in the 
mean of the regression. Either interpretation is consistent with the model.   Pudney and 
Shields argue that the distinction is of no substantive consequence for their analysis. 

Formal modeling of heterogeneity in the parameters as representing a feature of the 
underlying data, also appears in Greene (2002) (version 8.0) and Boes and 
Winkelmann (2004), both of whom suggest a random parameters (RP) approach to the 
model.  In Boes and Winkelmann, it is noted that the nature of an RP specification 
induces heteroscedasticity, and could be modeled as such.  The model would appear as 
follows: 
 
βi  =  β  +  ui  (12) 
 

where ui ~ N[0,Ω].  Inserting this in the base case model and simplifying, we obtain 
equation (13). 
 

Prob[yi  <  j | xi ]  =  Prob[εi + ui′xi < μj - β′xi]  = 
1

j i

i i

F
⎛ ⎞′μ −
⎜ ⎟⎜ ⎟′+⎝ ⎠

x
x x
β

Ω
, (13) 
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Equation (13) could be estimated by ordinary means, albeit with a new source of 
nonlinearity – the elements of Ω must now be estimated as well2.  Boes and 
Winkelmann (2004, 2007) did not pursue this approach.  Greene (2002) analyzes 
essentially the same model, but proposes to estimate the parameters by maximum 
simulated likelihood. 

Curiously, none of the studies listed above focus on the issue of scaling, although 
Williams (2006), citing Allison (1999) does mention it.  A heteroscedastic ordered 
probit model with the functional form in (14) appears at length in Greene (1997), and is 
discussed in some detail in Williams (2006).   
 
Var[εi|hi]  =  exp(γ′hi)2 (14) 
 

In microeconomic data, scaling of the underlying preferences is as important a source of 
heterogeneity as displacement of the mean, perhaps even more so.  But, it has received 
considerably less attention than heterogeneity in location.   

In what follows, we will propose a formulation of the ordered choice model that treats 
heterogeneity in a unified, internally consistent fashion.  The model contains three 
points at which individual heterogeneity can substantively appear: in the random utility 
model (the marginal utilities), in the threshold parameters, and in the scaling (variance) 
of the random components.  As argued above, this form of treatment seems more likely 
to capture the salient features of the data generating mechanism than the received 
“generalized ordered logit model,” which is more narrowly focused on functional form. 
 

2.4 Random thresholds and heterogeneity in the ordered choice model 

We depart from the base case of the usual ordered choice model, 
 

Prob[yi = j | xi]  =  F(μj - β′xi)  -  F(μj-1 - β′xi)  > 0, j = 0,1,...,J. (15) 
 

In order to model heterogeneity in the utility functions across individuals, we construct 
a hierarchical model in which the coefficients vary with observable variables, zi 
(typically such as demographics like age and gender), and randomly due to individual 
specific unobservables, vi.  The coefficients appear as: 
 
βi  =  β  +  Δzi  + Γvi (16) 
 

where Γ is a lower triangular matrix and vi ~ N[0,I]. The coefficient vector in the utility 
function, βi is normally distributed across individuals with conditional mean  
 
E[βi|xi,zi]  =  β  +  Δzi (17) 
 

                                                            
2 The authors’ suggestion that this could be handled semiparametrically without specifying a distribution for ui is incorrect, 
because the resulting heteroscedastic probability written above only preserves the standard normal form assumed if ui is normally 
distributed as well as εi 
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and conditional variance 
 
Var[βi|xi,zi]  =  ΓIΓ′  =  Ω. (18) 
 

The model is formulated with Γvi rather than, say just vi with covariance matrix Ω 
purely for convenience in setting up the estimation method.  This is a random 
parameters formulation that appears elsewhere, e.g., Greene (2002, 2005).  The random 
effects model is a special case in which only the constant is random.  The Mundlak 
(1978) and Chamberlain (1980) approach to modeling fixed effects is also 
accommodated by letting zi = ix  in the equation for the overall constant term.   

We are also interested in allowing the thresholds to vary across individuals.  See, for 
example, King et al. (2004) for a striking demonstration of the payoff to this 
generalisation.  The thresholds are modeled randomly and nonlinearly as 
 
μij  =  μi,j-1 +  exp(αj + δ′ri + σjwij), wij ~ N[0,1]  (19) 
 

with normalizations and restrictions μ-1 = -∞, μ0= 0, μJ = +∞.  For the remaining 
thresholds, we have (20). 
 
μ1 =   exp(α1 + δ′ri + σ1wj1)   
 
     =  exp(δ′ri) exp(α1  + σ1wj1) (20) 
 
μ2  =  exp(δ′ri) [exp(α1  + σ1wj1) + exp(α2  + σ2wj2)], 
 
μj  =  exp(δ′ri) ( )1 exp( )j

m m m imw=Σ α + σ , j = 1,...,J-1 

 
μJ  =  +∞. 
 

Though it is relatively complex, this formulation is necessary for several reasons:  (1) It 
ensures that all of the thresholds are positive. (2) It preserves the ordering of the 
thresholds. (3) It incorporates the necessary normalizations.  Most importantly, it also 
allows observed variables and unobserved heterogeneity to play a role both in the utility 
function and in the thresholds. The thresholds, like the regression itself, are shifted by 
both observable (ri) and unobservable (wij) heterogeneity.  The model is fully consistent, 
in that the probabilities are all positive and sum to one by construction.  If δ = 0 and σj = 
0, then the original model is returned, with μ1 = exp(α1), μ2 = μ1 + exp(α2) and so on.  
Note that if the threshold parameters were specified as linear functions rather than as in 
(19), then it would not be possible to identify separate parameters in the regression 
function and in the threshold functions. 

Finally, we allow for individual heterogeneity in the variance of the utility function as 
well as in the mean.  This is likely to be an important feature of data on individual 
behaviour. The disturbance variance is allowed to be heteroscedastic, now specified 
randomly as well as deterministically. Thus, 
 
Var[εi|hi,ei]  =  σi

2   =  exp(γ′hi + τei)2 (21) 
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where ei ~ N[0,1].  Let vi = (vi1,...,viK)′ and wi = (wi1,...,wi,J-1)′.   
 

Combining all terms, the conditional probability of outcome j is 
 

Prob[yi = j | xi,zi,hi,ri,vi,wi,ei]  =  

, 1

exp( ) exp( )
ij i i i j i i

i i i i

F F
e e

−′ ′μ − μ −⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥′ ′+ τ + τ⎣ ⎦ ⎣ ⎦

x x
h h
β β

γ γ , (22) 
 

where it is noted, once again, both μij and βi vary with observed variables and with 
unobserved random terms. The log likelihood is constructed from the terms in (22).  
However, the probability in (22) contains the unobserved random terms, vi, wi and ei.  
The term that enters the log likelihood function for estimation purposes must be 
unconditioned on the unobservables.  Thus, they are integrated out, to obtain the 
unconditional probabilities, 

Prob[yi = j | xi,zi,hi,ri]  = 

                      

, 1

, ,
( , , ) .

exp( ) exp( )i i i

ij i i i j i i
i i i i i ie

i i i i

F F f e d d de
e e

−′ ′⎛ ⎞μ − μ −⎡ ⎤ ⎡ ⎤
−⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟′ ′+ τ + τ⎣ ⎦ ⎣ ⎦⎝ ⎠

∫v w

x x
v w v w

h h
β β

γ γ   (23) 
 
The model is estimated by maximum simulated likelihood.  The simulated log 
likelihood function is given in (24). 
 
logLS(β,Δ,α,δ,γ,Γ,σ,τ)= 

                     

, , , 1, ,
1 1

, ,

1log
exp( ) exp( )

n M ij m i m i i j m i m i
i m

i i m i i m

F F
M e e

−

= =

⎛ ⎞′ ′⎡ ⎤ ⎡ ⎤μ − μ −
−⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟′ ′+ τ + τ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ ∑
x x

h h
β β

γ γ
 (24) 

 
vi,m, wi,m, ei,m are a set of M multivariate random draws for the simulation3. This is the 
model in its full generality.  Whether a particular data set will be rich enough to support 
this much parameterization, particularly the elements of the covariances of the 
unobservables in Γ, is an empirical question that will depend on the application. 

One is typically interested in estimation of parameters such as β in (24) to learn about 
the impact of the observed independent variables on the outcome of interest.  This 
generalized ordered choice model contains four points at which changes in observed 
variables can induce changes in the probabilities of the outcomes, in the thresholds, μij, 
in the marginal utilities, βi, in the utility function, xi and in the variance, σi2. These 
could involve different variables or they could have variables in common.  Again, 
demographics such as age, sex, and income, could appear anywhere in the model.  In 
principle, then, if we are interested in all of these, we should compute all the partial 
effects, 

                                                            

3 We use Halton sequences rather than pseudo-random numbers.  See Train (2003) for discussion.   



Ordered choices and heterogeneity in attribute processing 
Greene & Hensher 
 

10 

 

Prob( | , , , )  = direct of variables in the utility function,

Prob( | , , , )  = indirect of variables that affect the parameters ,

Prob( | , , , )  = indirect of variab

i i i i i

i

i i i i i

i

i i i i i

i

y j

y j

y j

∂ =
∂

∂ =
∂

∂ =
∂

x z r h
x

x z r h
z

x z r h
h

β

iles that affect the variance of 

Prob( | , , , )  = indirect of variables that affect the thresholds,i i i i i

i

y j

ε

∂ =
∂

x z r h
r   

 
The four terms (in order) are the components of the partial effects (a) due directly to 
change in xi, (b) indirectly due to change in the variables zi that influence βi, (c) due to 
change in the variables, hi in the variance and (d) due to changes in the variables ri that 
appear in the threshold parameters, respectively.  The, probability of interest is 

       

 , ,
, 1

( )
exp( )

Prob( | , , , ) ( , , ) ,
( )

exp( )

i i i

ij i i i

i i
i i i i i i i i i i ie

i j i i i

i i

F
e

y j f e d d de
F

e
−

′⎛ ⎞μ − + +⎡ ⎤
−⎜ ⎟⎢ ⎥′ + τ⎣ ⎦⎜ ⎟= = ⎜ ⎟′μ − + +⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟′ + τ⎣ ⎦⎝ ⎠

∫ v w

z LDv x
h

x z h r v w v w
z LDv x

h

β Δ

γ

β Δ

γ
 

        μij  =  exp(δ′ri) ( )1 exp( )j
m m m imw=Σ α + σ , j = 1,..., J-1.   (25) 

 
The set of partial effects is shown in equation set (26). 
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Effects for particular variables that appear in more than one part of the model are added from 
the corresponding parts. Like the log likelihood function, the partial effects must be 
computed by simulation.  If a variable appears only in xi, then this formulation retains 
both the “parallel regressions” and “single crossing” features of the original model. 
Nonetheless, the effects are highly nonlinear in any event.  However, if a variable 
appears anywhere else in the specification, then neither of these properties will 
necessarily remain. 
 

3. Empirical application 

The context of the application, using stated choice data from a larger study reported in 
Hensher (2006a,b), is an individual’s choice amongst unlabelled attribute packages of 
alternative tolled and non-tolled routes for the car commuting trip in Sydney (Australia) 
in 2002. In this paper we are interested in one feature of the way in which individual’s 
process attribute information, namely attribute inclusion or exclusion, given a maximum 
of five attributes per alternative. The dependent variable in the ordered choice model is 
the number of ignored attributes, or the number of attributes attended to from the full 
fixed set associated with each alternative package of route attributes. The utility 
function is defined over the attribute information processed by each individual, with 
candidate influences on the each individual’s decision heuristic including the 
dimensions of the choice experiment (e.g., number of alternatives, range of attributes), 
the framing of the design attribute levels relative to a reference alternative (see below), 
an individuals socioeconomic characteristics, and attribute accumulation where 
attributes are in common units (see also Hensher 2006b).   

The establishment of attribute inclusion/exclusion in making choices in a stated choice 
(SC) context is often associated with design dimensionality and the so-called 
complexity of the SC experiment (Hensher 2006a). It is typically implied that designs 
with more items to evaluate are more complex than those with less items4 (for example, 
                                                            
4 Complexity also includes attributes that are lowly correlated, in contrast to highly correlated, the latter supporting greater ease of 
assessment in that one attribute represents other attributes.  
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Arentze et al., 2003, Swait and Adamowicz 2001a, 2001b), impose cognitive burden, 
and are consequently less reliable, in a behavioral sense, in revealing preference 
information. This is potentially misleading, since it suggests that complexity is an 
artefact of the quantity of information, in contrast to the relevance of information 
(Hensher 2006b). In any setting where an individual has to process information on offer 
and make a choice, psychologists interested in human judgement theory have studied 
numerous heuristics that are brought to bear in aiding simplification of the decision task 
(Gilovich et al. 2002). The accumulating life experiences of individuals are also often 
brought to bear as reference points to assist in selectively evaluating information placed 
in front of them. These features of human processing and cognition are not new to the 
broad literature on judgment and decision making, where heuristics are offered up as 
deliberative analytic procedures intentionally designed to simplify choice. The presence 
of a large amount of information, whether requiring active search and consideration or 
simply assessment when placed in front of an individual (the latter being the case in 
choice experiments), has elements of cognitive overload (or burden) that results in the 
adoption of rules to make processing manageable and acceptable (presumably implying 
that the simplification is worth it in terms of trading off the benefits and costs of a 
consideration of all information on offer or potentially available with some effort). It is 
not easy to distinguish between simplified processing because the context is of little 
interest or the effort is not worth it, versus a genuine interest in the task but with some 
ex ante biases that translate into heuristics that capture how an individual desires to treat 
specific pieces of information. Either way, we see gains in investigating attribute 
processing and in time being able to separate out real behavioral processing from 
processing for convenience (that lacks behavioral validity in respect to the choice if 
interest) given the task. Importantly we suggest that the amount of information to 
process is less important than the relevance of the information, and indeed there are 
situations where so little information makes processing ‘complex’ in the sense that the 
decision maker requires much more detail to define a choice of relevance.  

The alternative attribute packages offered to individuals to evaluate are pivoted around 
the car commuting experiences of sampled respondents. The use of a respondent’s 
experience, embodied in a reference alternative, to derive the attribute levels of the 
experiment, is supported by a number of theories in behavioural and cognitive 
psychology, and economics, such as prospect theory, case-based decision theory and 
minimum-regret theory (see Starmer 2000, Hensher 2006b). Reference alternatives in 
SC experiments5 act to frame the decision context of the choice task within some 
existing memory schema of the individual respondents, and hence make preference-
revelation more meaningful at the level of the individual.  

Four stated choice sub-designs have been embedded in one overall design (Table 1). 
Each commuter evaluated one randomly assigned sub-design; however, across the full 
set of stated choice experiments, the designs differed in terms of the range and levels of 
attributes, the number of alternatives and the number of choice sets. The combination of 
these dimensions of each design is often seen as the source of design ‘complexity’, and 
it is within this setting that we have varied the dimensions of an SC experiment that 
each respondent is asked to evaluate, and through supplementary questions, established 
which attributes were ‘ignored’ in the evaluation and selection of an alternative.  

Previous studies were used to identify candidate design dimensions. The five design 
dimensions are shown in Table 2. Five attributes were selected for each alternative, 
                                                            
5 Hensher (2004), Train and Wilson (2008), and Rose et al. (2008) provide details of the design of pivot-based experiments. 
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based on previous evidence (see Hensher 2001), to characterise the options: free-flow 
time, slowed down time, stop/start time, variability of trip time, and total cost. Hensher 
(2006) explored how varying the number of attributes affects information processing, 
aggregating attributes according to four patterns, noting that aggregated attributes are 
combinations of existing attributes6. We have selected a generic design (i.e., unlabeled 
alternatives) to avoid confounding the effect of the number of alternatives with the 
labeling (e.g., car, train). The sub-design dimensions are shown in Table 1 with the 
attribute ranges in Table 2. 

 
Table 1:  The sub-designs of the overall design for five attributes 

Choice set of 
size 

Number of 
alternatives

Number of 
attributes 

Number of levels 
of attributes 

Range of          
attribute levels 

15 2 5 2 Wider than base 
9 2 5 4 Base 
6 3 5 4 Narrower than base 
12 4 5 3 Narrower than base 

Note: Column 1 refers to the number of choice sets. The four rows represent the set 
of designs (see Appendix A). The number of alternatives does not include the 
reference alternative. 

 
Table 2:  The Attribute Profiles for the Design 

(units = %) Base range  Wider range  Narrower range 
Levels: 2 3 4 2 3 4 2 3 4 
Free flow time ± 20 -20, 0, +20 -20,-10,+10,+20 -20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5, +2.5, +5 
Slow down time ± 40 -40, 0, +40 -40,-20,+20,+40 -30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5, +2.5, +20 
Stop/start time ± 40 -40, 0, +40 -40,-20,+20,+40 -30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5, +2.5, +20 
Uncertainty of  travel 
time 

± 40 -40, 0, +40 -40,-20,+20,+40 -30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5, +2.5, +20 

Total costs ± 20 -20, 0, +20 -20,-10,+10,+20 -20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5, +2.5, +5 

 

As a generic design, each of the alternatives, added as we move from 2 to 3 to 4 
alternatives in a choice set (based on Table 1), are exactly the same. That is, for any two 
alternatives associated with a given design, we should not expect to find the parameter 
for an attribute (e.g., ‘free flow travel time’) to be different for the set of non-reference 
alternatives. Therefore we do not need the attribute ‘free flow time alternative one’ to be 
orthogonal to the attribute ‘free flow time alternative two’ etc up to ‘free flow time J-
1alternatives’. The designs are computer-generated. A preferred choice experiment 
design is one that maximizes the determinant of the covariance matrix, which is itself a 
function of the estimated parameters. Knowledge of the parameters, or at least some 
priors (such as signs) for each attribute, from past studies, provides a useful input. We 
found that in so doing, the search eliminates dominant alternatives. The method used 
finds the D-optimality plan very quickly (see Rose and Bliemer 2007). 

The actual levels of the attributes shown to respondents are calculated relative to those 
of the experienced reference alternative – a recent car commuter trip. The levels applied 
to the choice task differ depending on the range of attribute levels and the number of 
levels for each attribute. The design dimensions are translated into SC screens, 
illustrated in Figure 1. The range of the attribute levels vary across designs. Each 
sampled commuter is given a varying number of choice sets (or scenarios), but the 

                                                            
6 This is an important point because we did not want the analysis to be confounded by extra attribute dimensions. 
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number of alternatives remain fixed. Elicitation questions associated with attribute 
inclusion and exclusion shown in Figure 2. 
 

 
 

Figure1:  An example of a stated choice screen 

 
 

 
 

Figure 2:  CAPI questions on attribute relevance 

 
 

4. Empirical analysis 

Computer-aided personal interview (CAPI) surveys were completed in the Sydney 
metropolitan area in 20027. A stratified random sample was applied, based on the 
residential location of the household. Screening questions established eligibility in 

                                                            
7 Interviews took between 20 and 35 minutes, with an interviewer present who entered an individual’s responses directly into the 
CAPI instrument on a laptop. 
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respect of commuting by car. Further details are given in Hensher (2006a). Final models 
are given in Table 3 for 2,562 observations.  

The explanatory variables in the model were guided by the extant literature on heuristics 
and biases in choice and judgment (see Gilovich et al. 2002), as well as empirical 
evidence from previous studies on attribute processing by Hensher (2006a,b). We 
selected candidate influences on the number of attributes actually processed (i.e., 
deemed relevant) under three broad categories: (i) design dimensions of the choice 
experiment, (ii) framing around the reference or base alternative, in line with the 
theoretical argument promoted in prospect theory for reference points, and (iii) the 
literature on heuristics that suggests that attribute packaging or attribute-accumulation is 
a legitimate rule for some individuals in stage 1 editing under prospect theory (Gilovich 
et al. 2002). 

The generalized ordered logit model has a preferred goodness of fit over the traditional 
ordered logit model. With four degrees of freedom difference, the likelihood ratio of 
181.92 is statistically significant on any acceptable chi-squared test level.  The 
generalized model has included a random parameter form for congestion time framing 
and has accounted for two systematic sources of variation around the mean of the 
random threshold parameter (i.e., the accumulation of travel time and gender).  

The evidence identifies a number of statistically significant influences on the number of 
attributes attended to, given the maximum number of attributes provided. The range of 
the attributes and the number of alternatives8 in the choice set condition mean attribute 
preservation, and the number of levels of an attribute has a systematic influence on the 
variance of the unobserved effects (or the error term). We framed the level of each 
attribute relative to that of the experienced car commute as (i) free flow time for 
reference (or base) minus the level associated with an alternative in the SC design, and 
(ii) the congested travel time for the base minus the level associated with each SC 
alternative’s attribute level. The parameter estimates are statistically significant and 
negative suggesting that the more that an SC attribute level (‘free flow time’ and 
‘congested time (=slowed down plus stop/start time)) deviates from the reference 
alternative’s level, the more likely that an individual will process an increased number 
of attributes. The attribute packaging effect for travel time has a negative parameter, 
suggesting that those individuals who add up components of travel time tend to preserve 
more attributes; indeed aggregation is a way of simplifying the choice task without 
ignoring attributes. In the sample, 82 percent of observations undertook some attribute 
packaging. 

The evidence herein cannot establish whether an attribute reduction strategy is strictly 
linked to behavioral relevance, or to a coping strategy for handling cognitive burden, 
both being legitimate paradigms. It does, however, provide indications on what features 
of a specific choice experiment have an influence on how many attributes provided 
within a specific context are processed. It is likely that the evidence is application 
specific, but extremely useful when analysts compare the different studies and draw 
inferences about the role of specific attributes. 

The threshold parameter has a statistically significant mean and two sources of 
systematic variation across the sample around the mean threshold parameter estimate. 

                                                            
8 The difference in the number of alternatives (from two to four, excluding the reference alternative) represents a range typically 
found in SC studies. The actual screens, with the reference alternative is in place, have between three and five alternatives. The 
number of alternatives is fixed per respondent but it varies across the sample.  
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Across the sample, there were three levels of the ordered choice observed; level 0 is 
where all attributes are preserved, level 1 is where 4 of the 5 attributes were preserved, 
and level 3 is where 3 of the 5 attributes were preserved. No respondent preserved only 
1 or 2 attributes. Hence given three levels of the choice variable, there are two threshold 
parameters, one between levels 0 and 1 and one between levels 1 and 2 (see the 
explanation in paragraph following equation 3). As indicated in section 2.1, a 
normalisation is required so that a constant can be identified. We set the threshold 
parameter for between levels 0 and 1 equal to zero (μ1) and estimate the parameter 
between levels 1 and 2 (μ2)9. 

We investigated an unconstrained random parameter normal distribution; however the 
standard deviation parameter estimate was not statistically significant from zero. The 
evidence however justifies the inclusion of a non-fixed threshold parameter, with a 
higher mean estimate across the sampled population when an individual aggregates the 
travel time components and when they are male. This is an important finding since it 
justifies the new formulation of the threshold parameters in ordered choice models as 
behaviorally meaningful.  

 
Table 3:  Ordered logit models (2,562 observations) 

 
 

Attribute 
 

Units 
Ordered Logit Generalised Ordered 

Logit 
Constant  2.9682 (4.17) 2.9504 (2.79) 

Design Dimensions:  

Narrow attribute range 1,0 1.3738 (3.59) 1.4275 (2.35) 

No. of alternatives Number -0.9204 (-4.1) -1.0205 (-2.87) 

Framing around Base Alt:  

Free flow time for Base  minus SC alternative 

level 

Minutes 0.0329 (4.02) 0.0599 (3.44) 

Congested  time for Base minus  SC alternative 

level 

Minutes -0.0083 (-1.80) 0.0761 (2.20) 

Attribute Packaging (or grouping):  

Adding travel time components 1.0 -0.7407 (-4.25) -0.8700 (-3.33) 

Variance decomposition:  

Number of  levels  Number 0.1043 (2.35) 0.3357 (4.48) 

Free flow time for Base 

minus SC alternative level 

Minutes -0.0164 (-2.75) -0.0332 (-4.04) 

Who pays (1= commuter personally) 1,0 -0.3070 (5.74) -0.3721 (-3.89) 

Threshold Parameters:  

μ1  0 0 

μ2 mean  3.0973 (5.74) 0.8753 (3.71) 

                                                            
9 Estimation of the threshold parameters is not a main object of fitting the ordered choice model per se. The flexibility of the 
threshold parameters is there to accommodate the variety of ways that individuals will translate their underlying continuous 
preferences into the discrete outcome. The main objective of the estimation is the prediction of and analysis of the probabilities, 
e.g., the partial effects.  The threshold parameters do not have any interesting interpretation of their numerical values in their own 
right. 
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Standard deviation of Mu2 threshold parameter   0.0767 (0.018) 

Threshold Parameter Decomposition:  

Adding travel time components 1,0  1.7447 (10.83) 

Gender (male =1) 1,0  0.3366 (2.80) 

Standard deviation of random regression  
parameters: 

 

Congested  time for Base minus  SC alternative 

level 

1,0  0.2652 (2.48) 

Count of Choice Responses:  

 max # attributes minus #ignored obs 

0 5-0 1415 
1 5-1 1080 
2 5-2 66 
Log-Likelihood  -1871.80 -1780.85 

 

A direct interpretation of the parameter estimates is not informative, given the logit 
transformation of the choice dependent variable (see equations 5 and 26). We therefore 
provide the marginal (or partial) effects in Table 4 which have substantive behavioral 
meaning, defined as the derivatives of the choice probabilities (equation 25). A marginal 
effect is the influence a one unit change in an explanatory variable has on the 
probability of selecting a particular outcome, ceteris paribus10. The marginal effects need 
not have the same sign as the model parameters. Hence, the statistical significance of an 
estimated parameter does not imply the same significance for the marginal effect. 

We take a closer look at each model, discussing the evidence for design dimensions, 
framing around the base, attribute packaging, variance decomposition, and other effects. 
The magnitude and direction of influence is given in Table 4 for the marginal effects 
which have to be interpreted relative to each of the three levels of the number of 
attributes ignored. 
 

Table 4:  Marginal effects derived from ordered logit models 

 
Ordered Logit Generalised Ordered Logit  

Attribute Average No. of Attributes 
Ignored 

Average No. of Attributes Ignored 

                                                     Design Dimensions: 

Narrow attribute range -0.4148, 0.3893, 0.0255 -0.2502, 0.2242, 0.0259 

No. of alternatives 0.2779, -0.2608, -0.0171 0.1789, -0.1603, -0.0256 

Framing around Base Alt:   

Free flow time for Base minus SC 

alternative level 

-0.0099, 0.0093, 0.0006 -01017, 0.0094, 0.0011 

Congested  time for Base  minus SC 

alternative level 

0.0025, -0.0024, -0.0002 -0.0134, 0.0119, 0.0014 

Attribute Packaging: 

Adding travel time components 0.2237, -.2099, -0.0137 0.1525, -0.1367, -0.0158 

                                                            
10 This holds for continuous variables only. For dummy (1,0) variables, the marginal effects are the derivatives of the probabilities 
given a change in the level of the dummy variable. 
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Variables in threshold 

Add travel time components - 0.0000, 0.06510, -0.06510 

Gender (male =1) - 0.0000, 0.01785, -0.01785 

Variance Decomposition: 

No. of levels -0.1104, 0.0249, 0.0856 -0.01740, 0.0103, 0.0071 

Free flow time for Base minus SC 

alternative level 

-0.2386, 0.0537, 0.1849 0.0026, -0.0015, -0.0010 

Who pays (1=individual, 0=a business) 0.0740, -0.0167, -0.0573 0.0502, -0.0297, -0.0071 

Note: the three marginal effects per attribute refer to the levels of the dependent variable. 
 

In commenting on the marginal effects, it should be noted that, for the generalised 
ordered logit model, some attributes have more than one role; for example the framing 
of free flow time is both a main effect influence as well as a source of variance 
decomposition (i.e., systematic source of heterogeneity) for the unobserved variance; 
and the attribute accumulation for travel time is both a main effect and a systematic 
source of influence on the distribution of the random threshold parameter. The 
generalised ordered choice model (GOCM) takes all of these sources into account in 
identifying the marginal effects for each level of the choice variable. In contrast, where 
an attribute has multiple roles in the traditional ordered choice model (TOCM), the 
marginal effects are calculated separately. The marginal effects associated with variance 
decomposition in GOCM has two unique influences (i.e., number of levels of an 
attribute and ‘who pays for the trip’, together with the framing around the base 
alternative for free flow time which is present elsewhere11). 

The dummy variable for ‘narrow attribute range’ has the highest marginal effect, 
although its influence is moderated in GOCM compared to TOCM. The probability of 
considering more (compared to less) attributes from the offered set decreases as an 
attribute’s range narrows, ceteris paribus. That is, respondents tend to ignore more 
attributes when the difference between attribute levels is small. This result is perhaps 
due to the fact that evaluation of small differences is more difficult or perceptually less 
relevant than evaluation of large differences. An important implication is that if an 
analyst continues to include, in model estimation, an attribute across the entire sample 
that is ignored by a respondent, then there is a much greater likelihood of mis-specified 
parameter estimates in circumstances where the attribute range is narrower than wider.  

The marginal effects for the narrow attribute range are positive when one (i.e., 5-1) or 
two attributes (i.e., 5-2) are ignored. Importantly the positive effect is greater when one 
attribute is ignored than when two are ignored. This suggests that the probability of 
considering four or three attributes from the offered set increases as an attribute’s range 
goes from narrow to non-narrow, ceteris paribus, but to a greater extent for four 
attributes. What we are observing across all three levels of the dependent variable is U-
(or inverted U-) shaped response, which appears to be the case for all attributes in 
GOCM. Thus for the narrow attribute range we have the highest probability of 
preserving four attributes than of preserving three attributes, given that the probability 
of preserving all attributes is decreased. Given the observed profile of the sampled 
respondents preserving five, four and three attributes (Table 2), where there are only 66 
observations in the last category (compared to 1415 and 1080 in 5-0 and 5-1), we have 
                                                            
11 For ‘Free flow time for base minus SC alternative level’ we report this in variance decomposition to show its relatively small 
effect compared to the overall effect of this variable given in another row in the table. 
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greater confidence in the relative marginal effects of preserving all (i.e., five) attributes 
and four attributes. 

As we increase the ‘number of alternatives’ to evaluate (over the range of 2 to 4 plus the 
reference alternative), ceteris paribus, the importance of considering all attributes 
increases, as a way of making it easier to differentiate between the alternatives. This 
finding runs counter to some views, for example, that individuals will tend to ignore 
increasing amounts of attribute information as the number of alternatives increases. Our 
evidence suggests that the processing strategy is dependent on the nature of the attribute 
information, and not strictly on the quantity. The negative marginal effects for ignoring 
one and two attributes (or preserving four and three attributes) suggest that these rules 
are less likely to be adopted as the number of alternatives increases. 

The theoretical argument promoted in prospect theory for reference points is supported 
by our empirical evidence. We have framed the level of each attribute relative to that of 
the experienced car commute trip as (i) free flow time for current (or base) minus the 
level associated with an attribute and alternative in the SC design, and (ii) the congested 
travel time for the base minus the level associated with each SC alternative’s attribute. 
The more that an SC attribute level deviates from the reference alternative’s level, the 
more likely that an individual will process an increased number of attributes. This 
evidence was found for both the ‘free flow time’ and ‘congested time’ framing effects. 
Conversely, as the SC design attribute level moves closer to the reference alternative’s 
level, individuals appear to use some approximation rule, in which closeness suggests 
similarity, and hence ease of eliminating specific attributes, because their role is limiting 
in differentiation.   

Reference dependency not only has a direct (mean) influence on the number of 
attributes ignored; it also plays a role via its contribution to explaining 
heteroscedasticity in the variance of the unobserved effects. This has already been 
accounted for in the GOCM marginal effects for free flow time framing. It is separated 
out in the TOCM. The effect of widening the gap between the base and SC ‘free flow 
time’ reduces the heteroscedasticty of the unobserved effects across the respondents, 
increasing the acceptability of the constant variance condition when simpler models are 
specified.  

In GOCM, the congested time framing effect is represented by a distribution across the 
sample. The random parameter has a statistically significant standard deviation 
parameter estimate, resulting in a distribution shown in Figure 3. The range is from -
0.857 to 1.257; hence there is a sign change around the mean of 0.70833 and standard 
deviation of 0.2657. This results in the same mean marginal effect sign in GOCM as 
free flow time framing; however when we treated congested time framing as having a 
fixed parameters (in TOCM, where the standard deviation parameter was not 
statistically significant), the signs are swapped for all levels of the choice variable. The 
evidence from the GOCM is intuitively more plausible. 
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Figure 3:  Distribution of preference heterogeneity for congested time framing 

 

The attribute-accumulation rule in stage 1 editing under prospect theory is consistently 
strong for the aggregation of travel time components. The positive marginal effect for 
the dummy variable ‘adding three travel time components’ indicates that, on average, 
respondents who add up the time components, in assessing the alternatives, tend also to 
ignore more attributes. There is clear evidence that a relevant simplification rule is re-
packaging of the attribute set, where possible, through addition. This is not a 
cancellation strategy, but a rational way of processing the information content of 
component attributes, and then weighting this information (in some unobserved way) in 
comparing alternatives.  

The socio-economic characteristics of respondent’s proxy for other excluded contextual 
influences. A respondent’s role in paying the toll was identified, through its influence 
on variance decomposition of the unobserved effects, as a statistically significant socio-
economic influence on the number of attributes considered. We have no priors on the 
likely sign of the influence on variance. The positive marginal effect for who pays 
suggests that those who pay themselves (in contrast to a business paying) tend to 
resulting in a higher probability of preserving more attributes, although the influence is 
slightly less in GOCM compared to TOCM. This might mean that males do care more 
about the time/cost trade-off, in contrast to a situation where only time matters if 
someone else pays for the travel. Gender was a systematic source of influence on the 
threshold parameter, increasing its mean estimate for males. 
 

5. Conclusions 

The recognition of randomness in the threshold parameters in the presence of random 
parameters and the identification of systematic sources of heterogeneity in the mean 
threshold parameter estimate is an important extension of the existing ordered choice 
model. This paper has brought together all of the key contributions in the literature and 
extended them, in particular to ensure preservation of the ordering of thresholds in the 
context of random parameterisation of the thresholds (equations 16 to 20).  

The specific application herein, on the role that attributes play in choice making in 
stated choice experiments, pivoted around a real market experience, has highlighted the 
role of random thresholds and decomposition, suggesting that the generalized empirical 



Ordered choices and heterogeneity in attribute processing 
Greene & Hensher 

 

21 

model is a rich behavioral addition to the literature on ordered choice modeling. We 
need, however, many studies in differing contexts before we can make general 
conclusions about the specific empirical evidence on sources of influence on the 
propensity for individuals to invoke specific attribute preservation heuristics. 
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Appendix A: Designs for five-attributes 
Alternative 1 Alternative 2 

Block Scenarios 
Free Flow time Slowed down time Stop/Start time Uncert  of travel time Total cost Free Flow time Slowed down time Stop/Start time Uncert of travel time Total cost

1 1 1 1 0 1 1 0 1 0 0 1 

1 2 0 1 0 1 0 1 0 1 1 0 

1 3 1 1 0 1 1 0 1 0 1 1 

1 4 0 0 1 1 0 1 1 0 0 1 

1 5 0 1 0 0 1 1 0 1 1 1 

1 6 0 0 0 1 1 0 0 0 0 1 

1 7 0 1 1 1 1 1 0 0 0 1 

1 8 1 1 1 1 0 0 1 0 1 1 

1 9 0 0 1 1 0 0 1 1 0 1 

1 10 0 0 1 0 0 0 0 0 0 0 

1 11 0 1 1 1 1 0 0 1 0 1 

1 12 0 0 1 0 0 1 0 0 0 0 

1 13 1 1 1 0 1 0 0 1 1 1 

1 14 1 1 0 0 1 0 0 1 1 0 

1 15 1 0 0 0 1 1 1 1 0 1 

2 1 0 0 1 0 0 0 0 0 1 0 

2 2 1 1 1 1 0 0 1 0 0 0 

2 3 1 1 1 1 1 1 1 1 1 0 

2 4 0 1 1 0 0 1 0 1 0 0 

2 5 1 0 0 0 1 1 0 1 1 0 

2 6 1 0 0 0 1 1 0 0 0 0 

2 7 1 1 0 0 0 0 0 1 1 0 

2 8 0 1 0 0 1 1 1 1 0 1 

2 9 1 1 1 1 0 0 0 0 0 1 

2 10 1 0 1 0 0 0 1 0 1 0 

2 11 1 1 0 1 1 0 0 1 1 1 

2 12 1 0 0 1 0 1 0 0 1 1 

2 13 1 0 1 0 0 0 1 0 1 0 

2 14 0 1 1 1 0 1 1 1 1 1 

2 15 1 0 0 0 0 0 1 0 0 0 
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Alternative 1 Alternative 2 

Block Scenarios Free Flow 
time 

Slowed down 
time 

Stop/Start 
time 

Uncertainty 
of travel time Total cost Free Flow 

time 
Slowed down 

time 
Stop/Start 

time 
Uncertainty 

of travel time Total cost 

1 1 1 0 0 3 3 3 3 1 1 1 

1 2 2 0 3 2 1 0 1 0 1 2 

1 3 1 1 3 2 2 3 0 1 0 3 

1 4 2 3 1 3 2 0 1 2 2 3 

1 5 2 1 2 1 1 1 3 0 0 0 

1 6 2 1 1 0 0 3 2 0 3 1 

1 7 3 0 2 1 3 2 2 3 3 2 

1 8 0 3 2 0 1 3 2 1 2 0 

1 9 0 0 3 1 1 3 3 2 2 0 

2 1 1 3 3 1 3 2 2 2 0 2 

2 2 0 0 0 2 2 1 2 2 1 0 

2 3 0 3 3 3 0 1 1 0 0 1 

2 4 1 1 1 3 1 2 2 0 1 0 

2 5 2 3 0 2 3 1 2 3 0 3 

2 6 0 2 1 3 3 3 3 3 0 2 

2 7 3 1 3 0 0 1 0 1 1 2 

2 8 2 1 0 3 3 0 0 2 2 2 

2 9 0 2 1 2 1 3 0 2 3 0 
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Alternative 1 Alternative 2 Alternative 3 

Block Scenarios Free Flow 
time 

Slowed 
down time 

Stop/Start 
time 

Uncertainty 
of travel time Total cost Free Flow 

time 
Slowed 

down time 
Stop/Start 

time 
Uncertainty of 

travel time Total cost Free Flow 
time 

Slowed down 
time 

Stop/Start 
time 

Uncertainty 
of travel time Total cost 

1 1 2 3 3 3 1 3 1 1 0 2 1 0 0 2 3 

1 2 0 2 0 2 1 2 0 2 1 0 3 1 3 3 0 

1 3 2 0 1 3 2 0 1 2 0 1 1 3 3 1 0 

1 4 0 3 1 3 0 3 2 0 1 0 2 1 3 0 1 

1 5 3 2 2 3 2 0 3 3 0 3 1 1 1 2 3 

1 6 2 2 1 0 0 0 0 0 1 2 1 3 2 2 1 

2 1 0 1 0 3 3 2 2 1 2 3 1 3 2 0 2 

2 2 3 1 2 2 0 0 2 3 1 2 1 0 0 3 1 

2 3 3 3 0 0 0 1 1 1 1 1 0 0 3 2 2 

2 4 2 3 0 1 3 3 0 3 2 1 1 2 2 3 2 

2 5 2 0 2 3 3 3 3 1 1 1 1 2 3 0 0 

2 6 2 1 0 2 2 3 0 1 0 3 0 2 2 1 3 
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Alternative 1 Alternative 2 Alternative 3 Alternative 4 

Block Scenarios Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncertainty 
of travel 

time 

Total 
cost 

Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncert 
of 

travel 
time 

Total 
cost 

Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncert 
of 

travel 
time 

Total 
cost 

Free 
Flow 
time 

Slowed 
down 
time 

Stop/Start 
time 

Uncert 
of 

travel 
time 

Total 
cost 

1 1 2 1 0 0 2 0 2 0 0 2 1 0 1 1 1 0 1 2 2 2 

1 2 1 0 0 0 1 2 1 2 2 0 0 2 1 1 2 0 2 1 1 2 

1 3 1 2 2 0 0 2 0 0 1 0 0 2 2 2 2 0 1 1 2 1 

1 4 1 2 2 0 1 0 0 1 2 2 1 2 2 2 2 2 1 0 1 1 

1 5 2 2 2 1 1 1 1 1 0 1 2 2 2 1 2 0 0 0 2 2 

1 6 2 2 0 2 1 1 0 1 0 2 1 0 1 0 2 0 1 2 1 1 

1 7 0 0 0 1 2 1 2 2 2 1 2 1 1 0 2 2 1 1 0 2 

1 8 0 1 1 1 0 1 2 0 2 0 2 0 2 0 1 2 0 2 0 1 

1 9 1 1 0 2 2 2 2 2 1 0 1 1 0 2 2 0 0 1 0 1 

1 10 2 2 1 2 1 0 0 2 0 0 1 1 0 1 0 2 2 1 2 1 

1 11 1 2 1 0 0 2 0 0 1 1 0 1 2 2 0 2 0 0 0 2 

1 12 0 2 0 0 0 2 1 1 2 0 1 0 2 1 1 1 0 2 1 1 

2 1 2 0 1 1 2 2 0 1 1 1 0 2 2 2 0 1 1 0 0 0 

2 2 0 0 1 2 1 2 2 2 0 0 1 1 0 1 2 1 1 0 1 2 

2 3 0 1 1 0 2 2 0 2 1 0 1 2 0 2 0 0 1 1 0 1 

2 4 2 2 1 2 0 1 0 2 1 0 0 1 0 0 1 0 1 0 0 2 

2 5 1 2 2 2 2 1 2 1 1 0 0 1 2 0 0 2 0 0 2 1 

2 6 1 1 0 2 1 0 0 2 1 2 0 0 2 1 2 2 2 1 0 0 

2 7 1 1 2 2 0 0 2 1 1 1 2 0 0 0 0 0 2 1 1 1 

2 8 1 0 1 2 2 2 1 2 1 0 1 0 1 2 2 0 2 0 0 1 

2 9 1 2 0 1 1 0 1 2 0 1 2 0 1 2 0 0 1 0 1 2 

2 10 2 1 1 0 0 1 0 2 2 2 1 0 2 2 1 0 2 0 1 0 

2 11 2 2 0 0 2 0 0 0 2 1 2 2 2 0 0 1 1 1 1 0 

2 12 1 0 2 0 0 0 2 1 1 0 2 1 0 2 2 2 1 0 2 1 
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