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1. Introduction 

Over the past three decades, there has been a growing number of studies which have 
investigated the significance of travel time variability in traveller behaviour (e.g., Jackson and 
Jucker 1982, Small 1982, Bates et al. 2001, Senna 1994, Asensio and Matas 2008, see Li et al. 
2010 for a review). The majority of travel time variability studies have considered day-to-day 
variations in travel time. Some have also explicitly defined travel time variability as the random 
variation in travel time (see e.g., Bates et al. 2001; Hollander 2006), so as to emphasise the 
stochastic feature of travel time variability. The scheduling model and the mean-variance 
models based on the stated choice theoretic framework, are two dominant approaches to 
empirical measures of the value of travel time savings and the value of time variability, where 
utility is usually represented by either a linear function of the expected or mean travel time, the 
expected schedule delay early (ESDE), the expected schedule delay late (ESDL) and other 
attributes (e.g., travel cost) in the scheduling model, or a linear function of the expected travel 
time, the standard deviation of travel time (SD) and other attributes in a mean-variance model.  

Recent travel time variability studies have included a series of travel times (normally five or 10 
levels) for an alternative in their stated preference (SP) experiments to capture time variation 
(see, e.g., Senna 1994, Small et al. 1999, Bates et al. 2001, Hollander 2006, Asensio and Matas 
2008). Hamer et al. (2005) suggested that travel time variability is better presented as a series of 
travel times associated with each alternative, than it was in early SP experiments often presented 
as the extent and frequency of delay relative to normal travel time. In previous studies, the 
expected values of time and time variability are calculated over multiple possible travel times 
(assumed to be equi-probable) for an alternative within a choice set. Given that the majority of 
studies specified linear utility functional forms, the value of travel time savings is the ratio of 
the expected time parameter and the cost parameter (i.e., VTTS = Time Cos t/β β ). Similar to the 
VTTS, time variability related values are: the value of reliability (VoR = SD Cos t/β β ), the value 
of expected schedule delay early (VESDE = ESDE Cos t/β β ), and the value of expected schedule 
delay late (VESDL = ESDL Cos t/β β ).   

Linear utility maximisation is still the underlying behavioural framework of travel time 
variability studies, although some of them reported an association with a theory of Maximum 
Expected Utility (MEU) (see Noland and Small 1995), which still assumes linear utility 
specification, unlike full Expected Utility (EU) theoretic models and some other models (e.g., 
Rank-Dependent Utility Theory) that postulate a non-linear functional form to address attitudes 
towards risk. Unlike studies in psychology and behavioural economics where the investigation 
of risk attitudes is a primary focus, transport research has limited evidence on risk attitudes. In 
this paper, we embed a non-linear utility specification in a scheduling mode to accommodate 
both risk attitudes and preferences. We also allow for unobserved heterogeneity, using a mixed 
multinomial logit (MMNL) model, and reveal significant heterogeneity in risk attitudes and 
time-related parameters between individuals. WTP values for average trip time and reduced 
variability (earlier/later) are also calculated under the non-linear MNL and non-linear MMNL 
models. The non-linear scheduling model is then used to estimate preferred departure times for 
commuters. 
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2. Traditional scheduling model for travel time variability 

The scheduling model is a dominant approach to modelling travel time variability, which takes 
into account the consequences of unreliable travel time. Unlike the mean-variance model which 
assumes that travel time variability leads to the loss of utility by itself, the scheduling model 
considers that disutility is incurred when not arriving at the preferred arrival time (PAT), either 
early or late. Let SD be the schedule delay, defined as the difference between the PAT and the 
actual arrival time: 
 

( )( )h hSD PAT t T t= − +    (1) 

 

The total travel time ( ( )htT ) is determined by the departure time ( ht ). A late arrival (schedule 
delay late or SDL) relative to the PAT will occur if hh t(t T( )) PAT 0+ − > ; otherwise, it will 
be a schedule delay early (SDE). 

 

Figure 1:  The concept of schedule delay  

Given travel time variability, travel time (T) is not deterministic and can be modelled as a 
random variable (see Section 6); therefore, for some departure times it may be possible to be 
early or late at the same time. A typical scheduling model is shown in equation (2), where the 
possible early and late scheduling delays, relative to the preferred arrival time are modelled 
separately, and their consequences are measured by the estimated parameters.  
 

( ) [ ( )] [ ( )] [ ( )] ...h h h hU t E T t E SDE t E SDL tη β γ= + + +  (2) 
 

( )hU t  is a linear function of the expected travel time ( [ ( )]hE T t ), the expected schedule delay early (

[ ( )]hE SDE t = *E TP E∆ ), and the expected schedule delay late ( [ ( )]hE SDL t = *L TP L∆ ); EP  is the 

probability of early arrival; TE∆  is the amount of time arriving earlier than PAT; LP is the probability of 

late arrival shown to respondents; and TL∆  is the amount of time arriving later than PAT. 

 
3. The violation of linear utility maximisation 

Under Random Utility Maximisation (RUM), the utility function is usually given a linear form 
as in equation (3).  
 

( )k k kU xβ ε= +∑   (3) 
 

where βk are the marginal utility parameters and kx  are the attributes that underlie individual 
preferences; ε  is the unobserved component of utility and different assumptions on the 
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distributionε  would delivers different models (e.g., an extreme type 1 (EV1) distribution leads 
to logit models and a standard normal distribution leads to probit models). 

To show the violation of linear utility maximisation, a simple time lottery is provided which has 
two alternatives (Route A and Route B). Under the same departure time, choosing Route A will 
definitely arrive 10 minutes later than the PAT from home to work, while taking Route B will 
has a 50 percent chance of arriving 5 minutes later and a 50 percent of chance of arriving 15 
minutes later. Under RUM, given the utility function is linear in the attribute parameter, these 
two alternative will have the same utility ( 10A LaterTimeU = β × =

5 0.5 15 0.5B LaterTime LaterTimeU = β × × +β × × ). Hence, these two alternatives are indifferent 
under RUM. However, evidence from psychology and behavioural economics suggests that this 
indifference exists only if subjects are risk neutral, and the two alternatives with equal expected 
value will be treated differently according to specific risk attitude (averse or taking).  

Given that monetary lottery ticket experiments are widely used in psychological and 
behavioural economics studies, we use a graph with monetary values to explain risk attitudes. 
Figure 2 shows a concave utility function, suggesting that the utility of a sure win (U($50)) is 
higher than the utility of a 50:50 chance of winning $100 or nothing (i.e., 1

2 U($100)), and 
hence the sure win is preferred in spite of the same expected value for two alternatives (i.e., 
$50). This is a typical risk-averse attitude, i.e., a sure alternative is preferred to a risky 
alternative (i.e., with multiple possible outcomes) of equal or even slightly higher expected 
value. A convex utility curve suggests risk taking, i.e., a risky alternative is preferred to a sure 
alternative of equal or even slightly higher expected value. However, almost all existing 
scheduling models in the transport literature assume that the utility specification is linear, which 
assumes a risk-neutral attitude in terms of the utility function (see equation 2). This assumption 
works fine in a deterministic environment (e.g., there is only one travel time with 100 percent 
chance of occurrence). However, this is often not realistic given that trip time variability is 
inherent to transport systems and results in multiple possible travel times for a trip. Hence, it 
may be inappropriate to assume a linear utility specification (risk neutral) in the presence of 
travel time variability. Compared with a few travel time variability studies where the non-linear 
scheduling models1 were estimated, we offer some differences and improvements including the 
investigation of unobserved heterogeneity, and the calculation of willingness to pay values for 
travel time savings and reduced variability, which are also influenced by the level of the 
attributes (see equations 6a-6c)2

  

.     

                                                           
1 Polak et al. (2008) estimated a non-linear scheduling model with a constant absolute risk aversion (CARA) assumption (i.e., an 
exponential specification), within a multinomial logit (MNL)  framework and a mixed MNL (MMNL) framework. The non-linear utility 
functional form in this paper is based on constant relative risk aversion (CRRA, a power specification), which often delivers “a 
better fit than alternative families” (Wakker 2008, p.1329). Michea and Polak (2006) estimated a non-linear scheduling model 
based on the simple power form, using the MNL model.  
2 Michea and Polak (2006) calculated WTP for mean lateness, which is linear in their utility specification. Given that the CARA 
utility form is used in Polak et al. (2008), the WTP values are the ratios between two corresponding parameters (e.g., VTTS =

Time Cos t/β β ; VESDE = ESDE Cos t/β β ; VESDL = ESDL Cos t/β β ), same as the traditional RUM or MEU model with a 
linear utility specification.  
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Figure 2: Utility function over states of wealth illustrating risk aversion (Fox and See 2003)  

 

4. Embedding risk attitudes in a scheduling model: 

Multinomial logit 

A non-linear scheduling model is estimated based on data drawn from a study undertaken in 
Australia in the context of route choice, which utilised a stated choice (SC) experiment 
involving two SC alternatives (i.e., route A and route B) pivoted around the knowledge base of 
travellers (i.e., the current trip). Each alternative has three travel scenarios - ‘arriving x minutes 
earlier than expected’, ‘arriving y minutes later than expected’, and ‘arriving at the time 
expected’. Each is associated with a corresponding probability3

Unlike RUM with a linear utility functional form, some alternative behavioural frameworks 
allow for non-linearity in utility. For example, Expected Utility Theory (EUT), originally 
developed by Bernoulli in 1738, is a normative modelling framework for risky choice. EUT 
models postulate a non-linear functional form, for example, 

 of occurrence, to indicate that 
travel time is not deterministic but varies from time to time. For a full description of the design 
and characteristics of the SC experiment, see Li et al. (2010, pp. 395-396).  

U xα=  where α is the risk attitude 
parameter which explains respondents’ attitudes towards risk. EUT assumes that an individual 
compares the expected utility values associated with particular options. That is, individuals are 
assumed to compare “the weighted sums obtained by adding the utility values of outcomes 
multiplied by their respective probabilities” (Mongin 1997, p.342). A basic EUT model is given 
in equation (4). 
 

( ) ( )m mmE U p xα=∑   (4) 
 

where ( )E U is the expected utility; mx  is  the mth

mp

 outcome of an alternative with multiple 
possible outcomes, and normally there is only one attribute for an alternative (e.g., monetary 
price) in psychological and experimental economics studies;  is the probability associated 
with the mth

Risk attitudes play a central role in decision making, especially in a non-deterministic 
environment. Given a departure time, one specific travel scenario would occur up to a 
probability with variability in travel time. Hence, travellers’ decision making is under risk. 

 outcome. 

                                                           
3 The probabilities are designed and hence exogenously induced to respondents, similar to other travel time variability studies. 
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Given this, we embed risk attitudes in a scheduling model, shown in equation (5). We estimate 
the constant relative risk aversion (CRRA) model form as a general power specification (i.e.,

1

1
xU

α

α

−

=
−

), more widely used than the simple xα  form (Holt and Laury 2002). 

 
1 1 1

( )
( )

1 1 1
T T

E E L L E T Cost Age Tollasc
E L E TU P P Cost Age Tollasc

α α α

β β β β β β
α α α

− − −
∆ ∆= + + + + +
− − −

 (5) 

 

TE∆  and TL∆  are the minutes arriving earlier and later than the preferred arrival time; EP  and 

LP  are the probabilities of early arrival and late arrival shown to respondents; ( )E T  is the 
expected or average travel time; age is a person’s age in years4

( )E Tβ
. Tollasc is the dummy variable 

to indicate whether a specific alternative is a tolled road. , Eβ , Lβ  and βCost, are attribute-
associated parameters to be estimated along with βage, and βTollasc,, and α is an additional 
parameter to be estimated and the value of (1-α) indicates the attitude towards risk. The model 

is reduced to a linear scheduling model (see equation 2) when (1 ) 1α− = . Hence, the 
traditional scheduling model is a particular case of model (5). This model also offers some 
innovations relative to the standard EUT Model. Unlike EUT with one attribute only, which by 

implication sets the attribute-associated parameter equal to 1 (e.g., 

1

1
xU

α

α

−

=
− ), our model 

includes a number of attributes (e.g., the travel time and cost), but only if an attribute has 
multiple possible outcomes (i.e., the travel time in this study), is the risk attitude parameter 
applied. We also incorporate within-alternative referencing, i.e., minutes of arriving earlier/later 
relative to the expected or preferred arrival time (PAT), where utility is the highest when 
arriving at the PAT.5

 

 All existing travel time variability studies specified as non-linear in utility 
are estimated within a multinomial logit (MNL) framework. Hence to see the empirical gains 
when unobserved heterogeneity in preference and risk attitudes is introduced, we present 
empirical estimates of the MNL model first and then compare the evidence with a mixed MNL 
(MMNL) model in the following section. The MNL modelling results are given in Table 1.   

  

                                                           
4 We investigated a number of socioeconomic effects (e.g., income, gender) but did not find any statistically significant except 
age. 
5 In the transport literature, another type of referencing (which we refer to as ‘between-alternative’ referencing) is often used, 
where typically the reference point is defined as the status quo (the recently experienced preference (RP) alternative, e.g., the 
recent trip of an driver) and the utility function is defined over gains and losses around the reference alternative (see e.g., Hess et 
al. 2008; Hensher 2008).  
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Table 1: Scheduling model with embedded risk attitudes (MNL) 

(Estimated using Nlogit5)  
Variable Coefficient t-ratio 

Reference constant 0.4864 3.98 
Alpha (α) 0.3932 3.53 

Average Time (minutes) -0.3135 -2.44 
Earlier (minutes) -0.1522 -2.54 
Later (minutes) -0.2476 -5.08 

Cost ($) -0.2586 -12.00 
Tollasc -0.3099 -3.27 

Age (years) 0.0054 2.14 
No. of observations 4480 

Information Criterion: AIC 6840.75 
Pseudo R-squared 0.31 

Log-likelihood -3412.38 
 

All estimated parameters are significant at or above the 95 percent confidence interval. The 
estimated parameter for the Reference specific constant (i.e., the constant for the current trip) is 
positive, which suggests, after accounting for the observed influences, that sampled 
respondents, on average, prefer their current trip relative to the two stated choice alternatives, 
with this tendency stronger as the age of a respondent increases (0.0054). Tollasc is negative, 
which indicates that, on average after accounting for the time and cost of travel, other factors 
bundled into a ‘toll road quality bonus’ are less desirable for a tolled route than a non-tolled 
route, mainly due to the lack of exposure to tolls for our sampled respondents. Alpha is 
statistically significant from zero with a t-ratio of 3.53. For decision making related to travel 
time, a risk attitude parameter less than one suggests risk-taking attitudes; and a risk attitude 
parameter greater than one suggests risk-averse attitudes6

(1- )=0.6068α
 (see Senna 1994). The calculated risk 

attitude value ( <1) suggests that our sampled commuters tend to be risk-taking 
when making choices where this risk (probability of occurrence) is associated with a travel time 
distribution. This finding is in line with Senna (1994) which assumed that his sampled 
commuters with a fixed arrival time are risk-prone (-taking), where the assumed risk attitude 
parameter is 0.5(<1), and explained this in the following way: “commuters are frequently 
travelling in the same route and this situation provides them information about the distribution 
of travel time” (p.220). 

Under a model with a non-linear utility specification and linear probability weighting (i.e., 
probabilities of occurrence are directly used as the weights), the marginal (dis)utilities 
associated with arriving earlier/later than the preferred arrival time and the average travel time 
are not fixed values, but vary according to the minutes and probabilities of arriving earlier and 
later. The willingness to pay (WTP) formulae for avoiding arriving earlier/later, and reducing 
the average travel time are given in equations (6a)-(6c). 

 

 
 

                                                           
6 This is the opposite to decision making related to monetary outcomes, common to lottery experiments. For example, if a risk 
attitude parameter is estimated to lie between 0 and 1, the utility function over money would be similar to the curve shown in 
Figure 2, suggesting decreasing marginal utility (i.e., risk averse), given that money is a source of utility. However travel time 
along with its associated variability is a source of disutility; the corresponding utility function over travel time or variability would 
show decreasing marginal disutility (see e.g., Figure 4) or increasing marginal utility (i.e., risk taking). 
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 (1 ) 1 /( ) ( ) (1 ) /(1 )
( ) ( ) Cost CostE E T E E T

T

U U P E P E
E Cost

α αβ βα β α β− − −
∆ ∆

∆

∂ ∂ = − − =
∂ ∂

 (6a) 

 

 (1 ) 1 /( ) ( ) (1 ) /(1 )
( ) ( ) Cost CostL L T L L T

T

U U P L P L
L Cost

α αβ βα β α β− − −
∆ ∆

∆

∂ ∂ = − − =
∂ ∂

 (6b) 

 

 (1 ) 1
( ) ( )

( ) (1 ) ( ) /(1 ) ( ) /
[ ( )]

( )
( ) E T Cost E T Cost

U E T E T
E T

U
Cost

α αα β α β β β− − −∂
= − − =

∂
∂

∂
 (6c) 

 

The parameters estimated from the non-linear scheduling model (MNL) are: -0.1522Eβ = , 
=-0.2476Lβ , ( ) -0.3135E Tβ =  and -0.2586Costβ = . The calculation of WTP values (values of 

variability (earlier/later) and VTTS) also requires the assumption of a travel time distribution 
(e.g., the minutes and probabilities of arriving earlier and later) to account for the specific trip 
time variability. Suppose the average travel time is 60 minutes, the calculated WTP is Au$14.54 
($2008), i.e., each car commuter is willing to pay on average Au$14.54 to reduce one hour’s 
mean travel time. Suppose the probabilities of arriving earlier/later are 0.1 and the minutes of 
arriving earlier/later are five minutes, the values of variability are calculated to be Au$0.16 and 
Au$0.25, i.e., a car commuter is willing to pay Au$0.16 to avoid a 5-minute earlier arrival with 
a 10 percent chance of occurrence, and Au$0.25 to avoid a 5-minute later arrival with a 10 
percent chance of occurrence. Under the same probabilities (0.1 for both earlier and later), we 
graph the relationship between the WTP and the minutes of being earlier/later (5-60 minutes) in 
Figure 1, which shows that the WTP values increase nonlinearly7

                                                           
7 Although WTP for total time or  schedule delay increases, WTP for reducing one unit of travel time or variability (schedule delay) 
is lower for longer trips with longer travel time and longer schedule delays, given that the utility curve over travel time and 
variability (

 with the increase in the 
minutes of being earlier/later (from Au$0.16 to Au$0.71 for avoiding earlier minutes and from 
Au$0.25 to Au$1.15 for avoiding corresponding later minutes). The gap between the two WTP 
values grows substantially as the minutes of arriving earlier/later increase, where the difference 
between a 5-minute earlier and 5-minute later arrival time is Au$0.10, and increases to Au$0.44 
for a 60-minute earlier/later arrival time. This is mainly attributed to the consequence (penalty) 
of arriving too late (e.g., after the work starting time).  

(1- )<1α ) suggests decreasing marginal disutility. This explains why WTP for one unit of time or schedule delay 
reduces as average travel time and schedule delay (earlier or later) increase. Empirical studies show that WTP can either 
decrease or increase with trip length, depending on the context (see Hensher 2010). 
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Figure 3: WTP and the minutes of being earlier/later (probability=0.1) 

 

We can also calculate WTP values under different probabilities of occurrence by multiplying 
corresponding probabilities of arriving earlier and later, given that the probability of occurrence 
is linear to WTP (see equations 6a-6c). For example, the WTP for avoiding a 10-minute later 
arrival time with a probability of 0.25 is Au$0.97 per person. Using the above values as an 
example, if we improve the traffic condition from a 10-minute later arrival time with a 
probability of 0.25 to a 5-minute later arrival time with a probability of 0.1, the WTP is Au$0.81 
per person (=Au$0.97 - Au$0.16). We argue that this is more realistic in the context of a 
specific transportation project, although it clearly requires knowledge of such a predicted 
distribution. 

The calculated WTP values present another way to explain the identified risk-taking attitude. 
Suppose there are two scenarios, A: arriving 10 minutes later than the PAT with 100 percent 
chance of occurrence; B: a 50:50 chance of arriving 5 minutes or 15 minutes later than the PAT. 
Although both travel scenarios have the same expected later arrival time (10 minutes later), the 
average WTP for avoiding Scenario A (sure) is Au$3.87, which is slightly higher than the WTP 
for avoiding Scenario B (risky) which is Au$3.74(= Au$1.27+ Au$2.47). This implies that the 
sure one incurs higher disutility than the risky one, and hence the risky one is preferred (i.e., 
risk-taking). The underlying reason is implied decreasing marginal disutility (see Figure 4) due 
to the curvature of the estimated non-linear utility function where1- <1α  over the expected 
travel time or variability (minutes of arriving earlier/later than the PAT). We plot, in Figure 4, 
the utility curve over minutes of arriving later than PAT, all other attributes remaining 
unchanged. The disutility incurred by a 10-minute later arrival is -1.65, and the disutility 
incurred by a 50:50 chance of arriving 5 minutes or 15 minutes later is -1.60(=(1.08+2.11)/2). 
Under this utility shape, a risky scenario is preferred to a sure scenario with the equivalent 
expected later minutes. This also applies to the average travel time and time arriving earlier than 
the PAT with the same risk attitude parameter. Many prospect theoretical studies revealed risk-
seeking attitudes (less than one) over monetary losses (e.g., 0.88 in Tversky and Kahneman 
1992). The increase in travel time would have a similar effect as the increase in monetary losses 
and hence induce risk-taking attitudes, when the risk attitude parameter is less than one. 
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Figure 4: Non-linear utility curve over minuets of arriving later where the risk 

 attitude parameter (1-α) is less than 1 

 

5. Accounting for unobserved heterogeneity: Mixed 

multinomial logit 

Previous transportation studies that have incorporated a non-linear utility specification under the 
CRRA assumption have been estimated in a multinomial logit or probit framework (see e.g., 
Schwanen and Ettema 2009, Michea and Polak 2006).8 In order to analyse unobserved 
heterogeneity in time-related parameters and risk attitudes, we extend our MNL non-linear 
scheduling model to a mixed MNL (MMNL) model. We also compare the behavioural 
responses and the values of WTP under MMNL and MNL. Constrained triangular distributions 
are used to ensure all individuals’ time parameters are negative9

 

 and a non-constrained 
triangular distribution is applied to represent individual risk attitudes. The final MMNL model 
is given in Table 2. 

  

                                                           
8 The MMNL model of Polak et al. (2008) is under the assumption of CARA.  
9 Although a normal distribution can also be constrained and a lognormal distribution can produce all positive or 
negative individual parameters, they have some serious problems when estimating models (see Cherchi 2009 for a 
review).  
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Table 2: Scheduling model with embedded risk attitudes (MMNL)  

(Estimated using Nlogit5) 

Variable Coefficient t-Ratio 
Non-random parameters: 

Reference constant 0.6624 4.27 
Cost ($) -0.4307 -9.46 
Tollasc -0.3084 -1.83 

Age (years) 0.0244 7.53 
Means for random parameters: 

Average Time (minutes) -1.3337 -18.18 
Earlier (minutes) -0.1938 -2.65 
Later (minutes) -0.3099 -4.52 

Alpha (α) 0.7001 42.20 
Standard deviations for random parameters: 

Average Time (minutes) 1.3337 18.18 
Earlier (minutes) 0.1938 2.65 
Later (minutes) 0.3099 4.52 

Alpha (α) 0.1081 2.26 
No. of observations 4480 

Information Criterion : AIC 5666.87 
Pseudo R-squared 0.43 

Log-likelihood -2824.44 
                  Notes: Simulation based on 100 Halton draws 
 

Compared with the MNL model in Table 1, the MMNL model delivers a significant 
improvement in model fit (AIC (scaled by sample size): 5666.87 vs. 6840.75). Non-random 
parameters of the MMNL model in Table 2 have the same sign relative to the MNL estimates, 
suggesting similar behavioural explanations as those presented in Section 4. All random 
parameters are significant at or above the 95 percent confidence interval, with the exception of 
the Tollasc parameter which is significant at the 90 percent confidence interval. The MMNL 
model also delivers a stronger mean risk-taking attitude (i.e., 1-0.7001=0.2999) relative to the 
MNL model (i.e., 1-0.3932=0.6068).  

The parameter estimates at the individual level (for 280 respondents)10

1- <1α
 are shown in Figure 5. 

All individual estimates of Alpha are between 0 and 1, hence , i.e., risk taking. 
Heterogeneity in risk attitudes is significantly less compared with heterogeneity in the Average 
Time parameter (-2.5546 to -0.5905). 
 

                                                           
10 One respondent will have a corresponding value for Alpha, Earlier, later and Average Time.  
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Figure 5: Individual-level parameter estimates 

 

Under the MMNL model, on average, each car commuter is willing to pay Au$10.79 per hour 
(standard deviation: Au$1.97) to reduce mean travel time, which is lower than the 
corresponding value under MNL (i.e., Au$14.54). The MMNL non-linear model delivers lower 
mean values of variability than the MNL model. For example, for a 5-minute earlier and a 5-
minute later both with a probability of occurrence being 0.1, the WTP values are Au$0.07 and 
Au$0.12 correspondingly (vs. Au$0.16 and Au$0.25 under MNL). Based on a linear mean-
variance model, Brownstone and Small (2005) estimated lower value of variability and lower 
value of travel time savings under MMNL where the constant, travel time and variability 
parameters are treated as random parameters than under MNL.    

 
6. Optimal departure time 

In this section we develop a model to estimate the optimal (preferred) departure time (ODT) of 
commuters, for the MMNL non-linear scheduling model estimated in Section 5. To this end, we 
construct a utility function with stochastic travel times, which allows us to find expected travel 
times, probabilities of being early or late and expected early or late schedule delay for every 
possible departure time, choosing then the ODT as the one that maximises utility.  

Travel time variability is mainly explained by inherent fluctuations in traffic demand and road 
supply (capacity). Notable sources of variability in traffic demand are (Tu 2008): temporal 
effects (e.g., peak/off-peak, weekday/weekend), network effects (effect of traffic in one lane or 
road over travel times on other parallel or intersecting lanes/roads), spatial and temporal 
differences in driving attitude, etc. On the other hand, factors such as volatile or adverse weather 
conditions, traffic incidents and accidents, and traffic composition influence both the value of 
instant road capacity. An increasing number of studies have treated capacity as a random 
variable rather than as a constant factor (Chen et al. 2002; Lo and Tung 2003; Li et. al 2008; Li 
2009 among others). As an illustrative example, Figure 6 shows the variations in capacity 
measured at different times for a 2-lane freeway section in the Netherlands. 
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Figure 6: Capacity on a 2-lane freeway section (Source: Tu 2008) 

 

In their model of departure time choice, Noland and Small (1995) disaggregate travel time into 
three components: free flow travel time, extra delay due to recurrent congestion, and extra delay 
due to non-recurrent congestion or incidents. The variability in travel times comes from 
modelling the incident related delay as a random variable that increases travel time over the 
other two (deterministic) components. In this paper we consider random capacities as the source 
of travel time variability. Different probability distributions for the random capacity have been 
proposed in the literature (e.g., uniform, normal, exponential, gamma and weibull). For the sake 
of simplicity, we will assume a uniform distribution, as in Chen et al. (2002) and Li et al. 
(2008).  

Let k be the random capacity, with minimum and maximum values minK  and maxK  and a 

uniform probability density function, ( ) ( )1 max minf k K K= − . Consequently, travel time T is 

also a random variable as a function of k: ( )y T k= . We use the U.S. Bureau of Public Roads 
(BPR) travel time function: 
 

( ) 1
b

f
qT k T a
k

  = +  
   

 (7) 

 

where fT is the free flow travel time, q is the (deterministic) flow on a link and a and b are 
parameters (with conventional values a=0.15 and b=4). In order to calculate expected early and 
late schedule cost, we need to identify the probability density function ( )g y  for ( )y T k= , 
which can be calculated as equation (8). 
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( ) ( )( )
( )

1
1 1

1( )

1

b

b
b

f max min
f

d a qg y f T y T y
dy

ybT K K
T

− −
+= =

 
− −  

 

 (8) 

 

Note that given (7), we are assuming that different departure times DEP do not affect travel 
time itself, but they do affect the probability of being early or late, as in Noland and Small 
(1995). With this, let ( )U DEP  be the component of utility (5) that depends on departure time:  

( )
( ) ( ) ( )1 1

1 1
E L

E E L L

PAT DEP E T E T PAT DEP
U DEP P P

α α

β β
α α

− −
− − − −      = +

− −
  (9) 

 

where EP  and LP  are the probabilities of early and late arrival, and ( )EE T  and ( )LE T  are the 
expected travel times, given that the arrival is early and late, respectively. Assuming that both 

EP  and LP  are positive we have: 

 

( )
min

depPAT t

E
T

P g y dy
−

= ∫     and   ( )
max

dep

T

L
PAT t

P g y dy
−

= ∫  (10a) 

 

( )
( )

( )

min

min

dep

dep

PAT t

T
E PAT t

T

y g y dy
E T

g y dy

−

−=
∫

∫
  and    ( )

( )

( )

max

max

dep

dep

T

PAT t
L T

PAT t

y g y dy

E T
g y dy

−

−

=
∫

∫
      (10b) 

 
where minT  and maxT  are the minimum and maximum travel times: 
 

1
b

min f
max

qT T a
K

  
 = +  
   

  and     1
b

max f
min

qT T a
K

  
 = +  
   

 (11) 

 
Thus, the optimal departure time (ODT) is obtained as the one that maximises (9).11

 
 

( )arg max
DEP

ODT U DEP=    (12) 

 

This must be found numerically. To analyse how the ODT varies with the variability of capacity 
(and consequently, with the variability of travel time), a dispersion factorθ  around the mean is 
defined, such that mean max minK K Kθ = − . Then, given θ  and meanK , the maximum and 

minimum capacities are ( )1 2min meanK Kθ= −  and ( )1 2max meanK Kθ= + . Assuming 

meanK = 1500 veh/h, fT = 30 min, a=0.15 and b=4, PAT=9 AM, 0.1938Eβ = − , 

0.3084Lβ = −  and 0.7001α = , Figure 7 depicts the optimal departure time for the 

                                                           
11 Note that maximising this utility function is equivalent to minimising the usual schedule cost function.   
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deterministic case (with capacity meanK ) and three stochastic scenarios with different levels of 

dispersion in capacity { }0.1,0.5,1.0θ ∈ . As expected, after introducing stochasticity in 
capacity and travel time, optimal or preferred departure time is earlier than in a deterministic 
environment, and the greater the variability in capacity, the earlier commuters depart from 
home.   
 

 

Figure 7: Optimal departure time under the non-linear scheduling model 

In the case of a linear scheduling cost ( 0α = ), it can be shown that the probability of late 
arrival for the ODT is ( )*

L E E LP β β β= + (Bates et al. 2001), regardless of the distribution of 

travel time; nevertheless, when the utility is a non-linear function of schedule delays, *
LP  

depends on the variability of travel time. As shown in Figure 8, the probability of being late for 
the optimal departure time increases with travel time variability, i.e., it is more likely that users 
will arrive late at destination despite the fact that they depart earlier to adjust to the greater 
uncertainty in travel times. 

We are interested in comparing optimal departure times resulting from this non-linear model 
with a linear model. If we impose 0α =  in utility expression (5), the MMNL parameters 
estimated for early and late arrival are 0.0782linear

Eβ = −  and 0.1606linear
Lβ = − . With these 

parameter estimates, we can calculate the constant value of optimal probability of late departure 
as ( )* linear linear linear

L E E LP β β β= + =0.33, which in Figure 8 intersects *
LP  of the non-linear model 

at 0.83θ = . This means that for relatively low variability on travel times ( )0.83θ < , the non-
linear utility model will predict an earlier departure time than the linear utility model, whilst the 
opposite result holds if travel time is highly unpredictable ( )0.83θ > . Figure 9 illustrates this 
for q=2000 veh/h. 
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Figure 8: Probability of late arrival for optimal departure time, comparison of 

linear and non-linear models 

 
 

 

Figure 9: Optimal departure time, comparison of linear and non-linear models 

(Traffic flow=2000 veh/h) 
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In order to provide an educated guess about what model predicts an earlier departure time, we 
need empirical estimation of random capacity and their dispersions to obtain a range for the 
parameter θ  for real roads. There is very little evidence on the empirical distribution on random 
capacities. We use results from Brilon et al. (2007) that estimate the expected values (EV) and 
standard deviations (SD) of the capacity for German highways (they find that the weibull 
distribution is the one that better suits the estimated values), and also the example of Figure 6 to 
have rough empirical estimations of θ , even though none of these examples follow a uniform 
distribution (see Figure 10).  

Brilon et al. (2007, p. 4) report the EV and SD for two highways, whose values are 1 4367EV =  
veh/h, 1 379SD =  veh/h, 2 6874EV =  veh/h and 2 690SD =  veh/h. If we assume an uniform 

distribution for these numbers, it yields 1 1 112 0.30SD EVθ = =  and 

2 2 212 0.35SD EVθ = = . On the other hand, for the example of Figure 6 we would have 

( ) ( )3 5500 3000 4246 0.59max min meanK K Kθ = − = − = . These three values fall in the range 
in which, for our estimated parameters, the non-linear model predicts an earlier departure time 
than the linear model ( )0.83θ < , which in turn suggests that the non-linear scheduling model 
predicts that our sampled commuters are more conservative when deciding on departure times, 
compared to the prediction of the traditional linear scheduling model. 

Relative to the traditional linear scheduling model with a risk-neutral assumption, the empirical 
risk attitude estimation (1-α<1) of our non-linear scheduling model suggests that the sampled 
car commuters tend to be risk taking when making travel time-related decisions. On the other 
hand, the non-linear scheduling model suggests a more conservative behaviour in terms of 
departure time, based on empirical estimations of the capacity dispersion parameter ( 0.83θ < ). 
This dichotomy can be explained with an example: given a equivalent expected later arrival 
time of 10 minutes, our sampled commuters would prefer a trip which has a 50 percent chance 
of arriving 5 minutes later and a 50 percent chance of arriving 15 minutes later, in contrast to a 
100 percent (sure) chance of arriving 10 minutes later. As the consequence of this risk-taking 
attitude, they may have a prospect of a better or worse trip relative the sure one. At the same 
time, travellers may have conservative beliefs and hence tend to underweight the probability of 
a good trip. Therefore, they would depart earlier so as to reduce the likelihood of arriving too 
late relative to the preferred arrival time that may be due to the risk-taking attitude, given that 
the consequence of arriving late is much more serious than arriving early.  

The appropriate interpretation of a behavioural outcome requires both risk attitudes and beliefs 
of the individual (see e.g., Wakker 2004; Dickinson 2009). For example, Dickinson (2009) 
found that his subjects are ‘risk-averse yet optimistic’ using a controlled bargaining experiment. 
He explained that risk aversion would have an opposite effect relative to optimism. It is 
expected that conservative beliefs would also offset the effect of risk-taking attitudes, which 
supports the behavioural implications described earlier.     
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Figure 10: Histogram of frequencies of observed capacities for example of Figure 6 

 
7. Does non-linearity matter? 

In the previous section, we showed that non-linear scheduling would predict an earlier departure 
time, relative to the linear scheduling model. In this section, a comparison of the non-linear and 
linear models (MNL and MMNL) is carried out in terms of model fit and willingness to pay 
values, given in Table 3. In order to deliver a meaningful comparison, the same dataset is used 
and the same utility function is used, with the only difference being that the Alpha value is 
assumed to be 0 for the linear models. For MMNL, the simulation is based on 100 Halton draws 
for both non-linear and linear models, and constrained triangular distributions are applied to 
represent time-related random parameters (average travel time and variability). 

The comparison suggests some interesting findings. First, the non-linear MNL and MMNL 
models deliver better model fit than their corresponding linear models. Although the non-linear 
MMNL model has two additional parameters (i.e., the mean and the standard deviation of 
Alpha), given its much better log-likelihood, the improvement of model fit over the linear 
MMNL model is substantial (AIC: 5666.87 vs. 6688.21). Secondly, the linear models tend to 
produce a higher mean WTP than the non-linear models. Given the MMNL model is superior to 
the MNL model, we focus on the empirical values of MMNL only, where the linear MMNL 
delivers a much higher mean value of time savings (e.g., Au$24.39 vs. Au$10.79) as well as the 
WTP for reduced variability, compared to the non-linear model’s estimates. The better model fit 
suggests that the WTP values derived from the non-linear scheduling model should be used for 
calculating time and reliability benefits. 
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Table 3: Comparison of non-linear and linear models (WTP value: Au$2008) 

 Non-linear MNL Non-linear 
MMNL 

Linear MNL Linear MMNL 

         WTPs 
60-min mean travel 

time 
14.54 10.79(1.97) 16.80 24.36(9.94) 

5-min earlier 
(probability=0.1) 

0.16 0.07(0.005) 0.18 0.13(0.05) 

5-min later 
(probability=0.1) 

0.25 0.12(0.008) 0.25 0.27(0.11) 

     Model fit 
Information 

Criterion : AIC 
6840.75 5666.87 6850.05    6688.21 

Log-likelihood -3412.38 -2824.44 -3418.02 -3337.10 
             Notes:   4480 observations (280 respondents); 
                             For MMNL models, the standard deviations are given in parentheses. 
 

The above comparison shows that non-linearity in the utility function form does have a 
significant impact on model performance, and in this study, the non-linear scheduling model is 
superior to the linear model. Does this evidence suggest that we should always estimate non-
linear utility models? This depends on the content of the stated choice experiment. If the 
experiment assumes a deterministic or risk-neutral environment (e.g., there is only one travel 
time (100 percent of occurrence) for an alternative within a choice set), the non-linear utility 
function seems to be unnecessary, although this assumption may not be realistic, given that 
travel time variability is embedded in real transport systems. However, if the design itself is 
embedded with risk (i.e., with multiple possible outcomes for an alternative within a choice set), 
the non-linear utility model should be estimated to reveal the real attitude towards risk. 

In the transportation literature, there are some alternative non-linear utility models. For 
example, Masiero and Hensher (2010) applied the piecewise linear approximation technique to 
investigate ‘quasi-nonlinearity’ which is introduced in the punctuality attribute identifying two 
decrease and two increase levels with respect to the reference point. However, this approach still 
maintains the utility function linear in the parameters, and hence assumes that people are risk 
neutral.  Another commonly used approach is to assume a level of non-linearity, e.g., squared 
attribute ( 2x ). For example, Small et al. (1999) included the squared expected SDE in their 
scheduling model, using a risky experiment with five equi-probable arrival scenarios (early, late 
or on time) for each alternative within a choice set, which implicitly assumes their sampled 
commuters are risk averse.  Assuming risk attitude and using a squared time-related attributes 
may lead to biased findings and conclusions, unless the sampled respondents are indeed risk 
averse. Even is individuals are assumed to be risk averse, the assumed value (e.g., the risk 
attitude parameter is two when the squared attribute is used) may not properly address the extent 
of risk aversion. We suggest that the attitude towards risk should be empirically estimated. 
 

8. Conclusions 

A primary interest of travel behaviour studies is the empirical evaluation of willingness to pay 
for travel time savings and reduced trip time variability. The majority of studies are established 
on a linear utility specification to reveal preferences of specific attributes. However, this 
specification overlooks the attitude towards risk, which also plays an important role in decision 
making. We develop a non-linear scheduling model to address both preferences and risk 
attitude. The study context is a stated choice experiment of commuter’s choice amongst 
alternative packages of trip times (average and variability) and costs, where the risk is 
associated with trip times (i.e., there are more than one possible trip times), like other travel 
time variability studies.  
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Compared with a few transportation studies using a non-linear utility specification, a significant 
improvement of this study is the investigation of unobserved between-individual heterogeneity 
in time-related parameters and risk attitudes, based on a mixed multinomial (MMNL) model. 
We estimate taste, risk attitude and some socioeconomic parameters under both MNL and 
MMNL. Both models produce some similar behavioural explanations, for example, the sampled 
commuters tend to be risk taking when making time-related choices. In addition to a significant 
improvement in model fit, the MMNL model delivers much stronger risk-taking attitude than 
the MNL model. We also calculate willingness to pay (WTP) values under our non-linear 
scheduling model. With a non-linear utility specification and linear probability weighting, the 
WTP values for avoiding arriving earlier/later are influenced by the minutes of arriving 
earlier/later than the preferred time and associated probabilities of occurrence.  

Assuming that travel time is a function of stochastic road capacity, we formulated a model to 
derive preferred or optimal departure times for commuting, given a flow-delay function and 
random distribution of capacity. It is found that the more variable travel times are, the earlier 
commuters depart, and that based on empirical estimation of the capacity dispersion, the non-
linear scheduling model would predict earlier optimal departure times than the traditional linear 
scheduling model. The non-linear MMNL model also delivers a much better model fit and 
lower mean WTP values than the linear MMNL model.  
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