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1. Introduction 

Choice analysis has often been described as a way of explaining variations in the behaviour of a 
sample of individuals. The consequence of this view is that a key focus of model development has 
been the search for increasing sources of variance, or heterogeneity, in the candidate observed and 
unobserved influences on choice making.  

Recent emphasis has been given to the treatment of scale, in particular recognition of variance in 
utility over different choice situations. This is referred to as scale heterogeneity. Scale heterogeneity is 
a relatively old problem (see Louviere 1999, 2002, Hensher et al. 1999 for the historical context), but 
it is only in recent years that we have seen a concerted effort to develop estimation capability within 
the family of logit models to account for it at the respondent level. Fiebig et al. (2009) is the most 
recent paper, formalizing the campaign led by Louviere and colleagues (1999, 2002, 2006, 2008) to 
recognize this claimed important source of variability that has been neglected by a focus on revealing 
preference heterogeneity (now aligned with the mixed logit model). Papers by Breffle and Morey 
(2000) and Hess et al. (2009) are other contributions. 

It is early days to be definitive in the empirical implications of the role of scale and the extent which 
preference and scale heterogeneity are independent or proportional. What is clear however is that the 
specification of a model that allows for both sources of heterogeneity induces correlation amongst the 
observed attributes, and this should be accounted for (see Train and Weeks 2005). 

In investigating the potential role of scale heterogeneity, we need to estimate a number of models that 
accommodate mixtures of preference and scale heterogeneity. The set of interest include, in addition to 
the basic multinomial logit model, the standard mixed logit model (with random parameters), the 
multinomial logit model extended to allow for scale heterogeneity, and a generalized mixed logit 
model in which both random parameters (to account for preference heterogeneity) and variation on the 
variance condition associated with the random component (known as scale heterogeneity) are 
included. 

We utilize an existing stated choice data set for the choice amongst existing and potentially new modal 
alternatives for the commuter trip in Sydney in 2003, to estimate the four model forms, contrasting 
them on their overall goodness-of-fit and associated mode-specific direct elasticities for travel time 
and cost. 

The paper is organised as follows. The next section sets out the generalised logit model that explicitly 
defines the alternative specifications for identification of heterogeneity of tastes and scale. The 
empirical data are briefly overviewed, followed by model estimation and findings.  

 

2. Accounting for scale and taste heterogeneity 

The generalized mixed logit model employed here builds on the specifications of the mixed logit 
developed in Train (2003), Hensher and Greene (2003) and Greene (2007), amongst others, and the 
“generalized multinomial logit model” proposed in Fiebig et al. (2009). The mixed multinomial logit 
model is 

,
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zi = a set of M characteristics of individual i that influence the mean of the taste  

  parameters;  and 

vi = a vector of K random variables with zero means and known (usually unit)  

  variances and zero covariances. 

The multinomial choice model thus far embodies both observed and unobserved heterogeneity in the 
preference parameters of individual i.  Observed heterogeneity is reflected in the term Δzi while the 
unobserved heterogeneity is embodied in Γv i

A number of interesting special cases are straightforward modifications of the model.  Specific 
nonrandom parameters are specified by rows of zeros in Γ.  A pure random parameters MNL model 
results if Δ = 0 and Γ is diagonal. The basic multinomial logit model results

.  Structural parameters to be estimated are the constant 
vector, β, the K×M matrix of parameters Δ and the nonzero elements of the lower triangular Cholesky 
matrix, Γ.   

1 if Δ = 0 and Γ = 0.   

A growing number of authors have stated that the mixed logit model, and multinomial choice models 
more generally, do not adequately account for scale heterogeneity (e.g., Feibig et al. 2009 and Keane 
2006). Scale heterogeneity across choices is easily accommodated in the model already considered by 
random alternative-specific constants. As in the earlier implementation, we accommodate both 
observed and unobserved heterogeneity in the model.  The preceding is modified accordingly as 
equation (2). 

 

β i = σ i[β  +  Δz i ]  + [γ + σ i(1 – γ)] Γv i (2) 
 
where 
 
σ i σ = exp[  +  δ′h i + τwi] , the individual specific standard deviation of the idiosyncratic error term 
 
h i = a set of L characteristics of individual i that may overlap with z i, 
 
δ = parameters in the observed heterogeneity in the scale term 
 
wi

σ

 = the unobserved heterogeneity, standard normally distributed 
 

 = a mean parameter in the variance 
 
τ = the coefficient on the unobserved scale heterogeneity 
 
γ = a weighting parameter that indicates how variance in residual preference heterogeneity varies with 

scale, with 0 < γ < 1;  
 

and 
 

The weighting parameter, γ, is central to the generalized model.  It controls the relative importance of 
the overall scaling of the utility function, σi, versus the scaling of the individual preference weights 
contained in the diagonal elements of Γ.  Note that if σi equals one, (i.e., τ = 0), then γ falls out of the 
model and (2) reverts back to the base case random parameters model.  A nonzero γ cannot be 
estimated apart from Γ when σi equals one.  When σi

                                                           
1 One can however allow for deterministic taste heterogeneity via interaction terms with respondent-specific characteristics. 

 is not equal to one, then γ will spread the 
influence of the random components between overall scaling and the scaling of the preference 
weights. In addition to the useful special cases of the original mixed model, some useful special cases 
arise in this model.  If γ = 0, then a scaled mixed logit model emerges, given in (3). 
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 β i =  σ i[β  +  Δz i  + Γv i]  (3) 
 
If, further, Γ = 0 and Δ = 0, a “scaled multinomial logit model” model is implied; 
 
 β i =  σ iβ.   (4) 
 

This generalized mixed model also provides a straightforward method of reparameterizing the model 
to estimate the taste parameters in willingness to pay (WTP) space, which has recently become a 
behaviourally appealing alternative way of directly obtaining an estimate of WTP (See Train and 
Weeks 2005, Fosgerau 2007, 2007, Scarpa et al. 2008, 2008a, Sonnier et al. 2007, and Hensher and 
Greene 2009).  If γ = 0, Δ = 0 and the element of β corresponding to the price or cost variable is 
normalized to 1.0 while a nonzero constant is moved outside the brackets, the following 
reparameterized model emerges: 
 

β i ( )( )1

1 1

c

i c i c
i c c iβ

   
σ β = σ β   + +    v vβ Γ θ Γ

  =  . (5) 

 

In the simple multinomial logit case (σ i = 1, Γ = 0), this is a one to one transformation of the 
parameters of the original model.  Where the parameters are random, however, the transformation is 
no longer that simple.  We, as well as Train and Week (2005),  have found, in application, that this 
form of the transformed model produces generally much more reasonable estimates of willingness to 
pay for individuals in the sample than the model in the original form in which WTP is computed using 
ratios of parameters (Hensher and Greene 2009)2

σ

. 

The full model, in the unrestricted form or in any of the modifications, is estimated by maximum 
simulated likelihood (see Greene 2007).  Fiebig et al. (2009) note two minor complications in 
estimation.  First, the parameter  in σ i is not separately identified from the other parameters of the 
model.  We will assume that the variance heterogeneity is normally distributed.  Neglecting the 
observed heterogeneity (i.e., δ′hi) for the moment, it will follow from the general result for the 
expected value of a lognormal variable that E[σi σ] = exp(  + τ2/2 ).  That is, σi σ  = exp( )exp(τwi) 
where wi ~ N(0,1), so E[σi σ] = exp( )E[exp(τwi σ)] = exp( )exp(E[τwi] + ½ Var[τwi σ]) = exp(  + 
τ2 σ/2).  It follows that  is not identified separately from τ, which appears nowhere else in the model.  
Some normalization is required.  A natural normalization would be to set σ  = 0.  However, it is more 
convenient to normalize σi so that E[σ i

2 σ]  =  1, by setting  = -τ2/2 instead of zero.   

A second complication concerns the variation in σi during the simulations.  The lognormal distribution 
implied by exp(-τ2/2 + τwi) can produce extremely large draws and lead to overflows and instability of 
the estimator.  To accommodate this concern, we have truncated the standard normal distribution of wi 
at -1.96 and +1.96.  In contrast to Fiebig et al. who propose an acceptance/rejection method for the 
random draws, we have used a one draw method, wir = Φ-1[.025 + .95Uir] where Φ-1(t) is the inverse 
of the standard normal cdf and Uir

Finally, in order to impose the limits on γ (equation 2), γ is reparameterized in terms of α, where γ = 
exp(α)/[1 + exp(α)] and α is unrestricted.  Likewise, to ensure τ > 0, the model is fit in terms of λ, 
where τ = exp(λ) and λ is unrestricted.  Restricted versions in which it is desired to restrict γ = 1 or 0 

 is a random draw from the standard uniform population.  This will 
maintain the smoothness of the estimator in the random draws. The acceptance/rejection approach 
requires, on average, 1/.95 draws to obtain an acceptable draw, while the inverse probability approach 
always requires exactly one. 

                                                           
2 The paper by Hensher and Greene (2009), like Train and Weeks (2005) supports the WTP space framework for estimating WTP 
distributions given that the evidence on the range is behaviourally more plausible, despite the overall goodness-of-fit being inferior to the 
utility space specifications. 
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and/or τ = 0 are imposed directly during the estimation, rather than using extreme values of the 
underlying parameters, as in previous studies.  Thus, in estimation, the restriction γ = 0 is imposed 
directly, rather than using, for example, α = -10.0 or some other large value. 

The fully specified model is given in equation (6).  Combining all terms, the simulated log likelihood 
function for the sample of data is shown in equation (6). 
 

,

1 1 1 1

1log log ( , , )i it it jT JN R d
it iri r t j

L P j
R= = = =

 =  
 

∑ ∑ ∏ ∏ X β  (6) 

where 
 
 β ir =  σ ir[β  +  Δz i ]  + [γ + σ ir(1 – γ)] Γv ir, 
 
 σ ir =  exp[-τ2/2 +  δ′h i + τwir], 
 
 v ir and wir = the R simulated draws on v i and wi, 
 

 d itj
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x
X

x
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  =  1 if individual i makes choice j in choice situation t and 0 otherwise, 
 
and 
 

 (7) 

 

3. Empirical application 

To illustrate the empirical implications of the four model forms, we use a stated preference data set on 
commuting mode choice collected in July 2003 in Sydney. The primary objective of the survey was to 
establish the preferences of a sample of residents of the study area for alternative modes of transport 
for commuting and to use this information in forecasting patronage levels for a number of ‘new’ 
transport modes – especially the extension of the heavy rail system versus light rail or a busway along 
the same corridor.  

Details of the survey are given in Hensher and Rose (2007). Using the computer aided personal 
interview (CAPI) technology, sampled residents were invited to review a number of alternative main 
and access modes, in terms of levels of service and costs within the context of a recent trip, and to 
indicate which main mode and access mode would be the most preferred. This process of review was 
repeated 10 times under alternative scenarios of attribute levels, each time requiring the individual to 
indicate the preferred main and access mode. The choice sets comprised all existing available main 
modes (i.e., subsets of bus, heavy rail, car, busway) and access modes (i.e., subsets of walk, bus, car), 
plus two of the new modal options from the full set of three evaluated across the entire sample (i.e., 
new heavy rail, new light rail, new busway).3

                                                           
3 Extensive development work was undertaken in the design of the CAPI instrument followed by a pre-pilot of 80 respondents. The pre-
pilot data was used to estimate a series of multinomial and nested logit models for the pooled data. On the basis of the review of the pilot 
output, minor changes to the survey instrument were made.  

 Respondents were sampled to cover travel both within 
and outside of the region.   

An example of a stated choice screen is shown as Figure 1, derived as one row of a D-optimal stated 
choice design. See Rose and Bliemer (2008) and Rose et al. (2008) for details of these design methods. 
All design attributes had four levels, including those that are mode-specific. These were chosen as the 
following variations around the base level: -25%, 0%, +25%, +50%.  

 



Does scale heterogeneity across individuals matter?  An empirical assessment of alternative logit models 
Greene & Hensher 

 

5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example stated choice screen 

 

4. Empirical analysis 

Four models of interest are summarised in Table 24

All random parameters are specified with unconstrained triangular distributions and correlation 
amongst the set of random parameters. The correlation is accommodated by an unrestricted lower 
triangular matrix, Γ. All random parameters are estimated using a panel specification. We ran a series 
of models (MXL, GMXL, SMNL) with varying numbers of intelligent draws (50 through to 1,000). 
The results stabilised at 500 draws. The fixed and random parameter estimates associated with the trip 
time and cost attributes are of the expected sign and statistically significant

. Model 1 (M1) is the standard multinomial logit 
(MNL) model, Model 2 (M2) is the base random parameter (or mixed logit) model (MXL) in utility 
space, Model 3 (M3) is the generalized random parameter or mixed logit model (GMXL) that accounts 
for taste and scale heterogeneity, and Model 4 (M4) is the scale heterogeneity model (SMNL)without 
taste heterogeneity.  

5

The overall goodness-of-fit (pseudo R

. Personal income (only 
significant for GMXL) appears in the utility expression for public transport, indicating that a person on 
a higher income has a lower probability of choosing public transport (compared to car use). 

2) varies from 0.410 for GMXL3 to 0.295 for MNL. MXL and 
GMXL that allow for taste heterogeneity are a substantial improvement over the multinomial logit 
model, whose log-likelihood at convergence is -2422.49. In contrast scale MNL is marginally 
improved over MNL. The Akaike Information Criterion (AIC)6

The elements of the Cholesky matrix (shown in Table 2 as the diagonal and below diagonal values) 
show strong evidence of correlated attributes, which makes an uncorrelated specification 

 clearly indicates that one should 
choose GMXL over the other models. 

                                                           
4 All models are estimated using (pre-release) Nlogit5. 
5 We did not find any statistically significant ‘h’ effects as per equations (2) and (6). 
6 AIC = 2k-2Ln(L) where k is the number of parameters in the model, and L is the maximised value of the likelihood function for the 
estimated model. 
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inappropriate. Of particular note is the statistically significant variance parameter for scale (or τ in 
equation 2), equal to 0.4109 in the GMXL model and 1.418 for SMNL. This suggests that scale 
heterogeneity is present even after accounting for correlated random parameters. The estimate of γ in 
GMXL, which governs how the variance of residual taste heterogeneity varies with scale, is 0.00028, 
but is statistically not significantly different from zero. What this suggests is that, in equation (2), βi = 
σ i[β  +  Δzi  + Γv i

Note: All public transport is new heavy rail, light rail, and busway; and existing bus, train, and busway; time is in minutes and cost is in 
dollars ($2003). T-values are in brackets. 

]. 
Table 1:  Summary of model results 

 
Attribute Alternatives M1: Multinomial 

Logit (MNL) 
M2: Mixed Logit 

(MXL) 
M3: Generalised 

Mixed Logit 
(GMXL) 

M4: Scale MNL 
(SMNL) 

Random 
Parameters: Mean 

 All non-random  
parameters 

   

Main mode in-
vehicle time 

All public 
modes 

-0.0481 (23.67)* -0.0537 (12.6) -0.0735 (9.95) -0.0576 (22.10)* 

Wait time All public 
modes 

-0.0270 (2.11)* -0.0747 (3.17) -0.0660 (2.36) -0.0306 (3.39)* 

Access time All public 
modes 

-0.0592 (12.6)* -0.1064 (8.25) -0.1087 (7.97) -0.0666 (14.53)* 

Egress travel time  All public 
transport 

-0.0150 (3.1)* -0.1127 (6.45) -0.0985 (4.11) -0.0196 (6.17)* 

Main mode in-
vehicle cost 

All public 
modes 

-0.1845 (13.5)* -0.2947 (7.70) -0.3164 (8.48) -0.2358 (18.66)* 

Non-Random 
Parameters: 

     

New light rail 
constant 

New light 
rail 

2.4098 (6.44) 1.9450 (4.38) 3.3733 (6.84) 2.4026 (13.70) 

New busway 
constant 

New busway 1.249 (3.56) 1.628 (4.37) 2.8672 (6.08) 1.2493 (6.92.) 

Existing bus 
constant 

Bus 1.8142 (5.87) 1.8458 (5.31) 3.1042 (7.33) 1.8140 (11.61) 

Train constant Existing and 
new Train 

2.1039 (6.63) 2.215 (5.89) 3.4937 (7.87) 2.1132 (13.85) 

Existing busway 
constant 

busway 1.6058 (5.07) 1.8235 (4.99) 3.0240 (6.82) 1.6088 (10.7) 

Access bus mode 
fare 

Where bus is 
access mode 

-0.07673 (2.41) -0.0547 (1.50) -0.0321 (1.02) -0.0735 (3.14) 

Car cost Car -0.1128 (4.05) -0.2044 (4.53) -0.1634 (3.09) -0.1367 (5.51) 
Car invehicle time Car -0.0340 (8.80) -0.0480 (8.16) -0.0482 (7.62) -0.0307 (10.21) 
Car parking cost Car -0.0139 (1.97) -0.0429 (3.25) -0.06278 (4.27) -0.0675 (7.07) 
Egress travel time Car -0.0561 (4.07) -0.0957 (5.96) -0.1206 (5.13) -0.0902 (6.65) 
Personal income 
($‘000s) 

Public 
transport 

-0.0026 (1.4) -0.0016 (1.56) -0.0099 (2.72) -0.0003 (1.71) 

Random 
Parameters: 
Standard deviation 

     

Main mode in-
vehicle time 

All public 
modes 

- 0.0753 (8.35) 0.1030 (7.68) - 

Wait time All public 
modes 

- 0.2795(7.07) 0.4318 (8.52) - 

Access time All public 
modes 

- 0.1937 (5.97) 0.2230 (6.07) - 

Egress travel time  All public 
transport 

- 0.3012 (8.55) 0.3974 (9,87) - 

Main mode in-
vehicle cost 

All public 
modes 

- 0.6502 (6.45) 0.6961 (7.08) - 

Cholesky matrix: 
diagonal values 

     

Main mode in-
vehicle time 

All public 
modes 

- 0.0753 (8.35) 0.1030 (7.68) - 

Wait time All public 
modes 

- 0.2243(7.65) 0.3274 (7.31) - 

Access time All public 
modes 

- 0.0995 (2.98) 0.1919 (5.28) - 

Egress travel time  All public 
transport 

- 0.2447 (7.58) 0.2741 (6.63) - 

Main mode in- All public - 0.5325 (6.91) 0.4146 (3.38) - 
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vehicle cost modes 
Cholesky matrix: 
Below diagonal 
values 

     

Wait: In-vehicle 
time 

All public 
modes 

- 0.1667 (4.16) -0.2814 (4.93) - 

Access: In-vehicle  
time 

All public 
modes 

- 0.0104 (0.36) -0.0893 (2.08) - 

Access: Wait time All public 
modes 

- -0.1658 (5.44) 0.0703 (2.27) - 

Egress: In-vehicle 
time 

All public 
transport 

- 0.1381 (3.41) -0.2505 (4.66) - 

Egress: Wait time All public 
modes 

- -0.1077 (2.67) 0.1240 (2.33) - 

Egress: Access 
Time 

All public 
modes 

- -0.0129 (0.30) 0.0684 (1.09) - 

In-vehicle cost: In-
vehicle time 

All public 
modes 

- -0.0865 (0.75) 0.0613 (0.47) - 

In-vehicle cost: 
Wait time 

All public 
modes 

- 0.2490 (2.32) -0.4509 (3.79) - 

In-vehicle cost: 
Access time 

All public 
transport 

- 0.1192 (1.22) 0.3006 (2.88) - 

In-vehicle cost: 
Egress time 

All public 
modes 

- 0.2358 (2.48) -0.1238 (1.02) - 

Variance Parameter 
in Scale (τ): 

  - 0.4109 (7.39) 1.1418 (12.11) 

Weighting 
Parameter γ: 

 - - 0.00028 (0.007) - 

Sigma:    -  
Sample Mean  - - 0.9758 0.8185 
Sample Standard 
deviation 

 - - 0.3504 0.8347 

Model Fit:      
Log-likelihood at 
zero 

 -3580.48 

Log-likelihood at 
convergence 

 -2522.49 -2156.88 -2111.62 -2415.54 

McFadden Pseudo-
R

 
2 

0.295 0.398 0.410 0.325 

Info. Criterion: AIC  5076.97 4375.75 4289.25 4865.07 
Sample Size  1840 
VTTS ($/person hr)      
Main mode in-
vehicle time 

All public 
modes 

15.64 10.92 (16.92) 12.60 (6.58) 14.66 

Wait time All public 
modes 

8.78 17.09 (33.84) 13.01 (48.9) 7.79 

Access time All public 
modes 

19.25 18.94 (19.94) 20.94 (4.60) 16.95 

Egress travel time  All public 
transport 

4.88 18.80 (30.79) 15.55 (30.25) 4.99 

In-vehicle time Car 18.08 14.09 17.60 13.48 

* fixed parameters 

 

A useful behavioural output to compare models is the mean estimates of direct elasticity (Table 3 and 
Figure 2), since these provide direct evidence on the relative sensitivity of each model in respect of 
modal shares associated with a change in the level of a specific trip attribute. The formula for 
calculating the mean elasticities for models MXL and GMXL is given in equation (8). 

 

, , ,1
,

log 1. . [ ( , )]
log i

Nj
j l l i i k k l i ii

k l

P
Est Avg P x d

x N =

∂
= δ − β

∂ ∑ ∫ X
β

β β  (8) 
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where j and l index alternatives, x indexes the attribute and i indicates the individual.  The integrals 
cannot be computed directly, so they are simulated in the same fashion (and at the same time) as the 
log likelihood function.  Using R simulated draws from the distribution of β i

 

, we obtain the simulated 
values of the means of the elasticities (equation 9): 

, , , , , ,1 1
,

log 1 1. . [ ( , )]
log

N Rj
j l l i r i k i r k l ii r

k l

P
Est Avg P x

x N R= =

∂
= δ − β

∂ ∑ ∑ Xβ  (9) 

 

Although some models are capable of producing elasticity distributions, the scale heterogeneity model 
SMNL is of the MNL form, and hence only mean estimates for each person are meaningful. The best 
way to compare the evidence across the four models is to take the Mixed Logit model (essentially the 
‘reference’ given the focus on contrasting GMXL and SMNL with MXL) and difference the mean 
estimates for each other model against this model (Figure 3).  

 

Table 2:  Direct time and cost elasticities 

(Note: uncalibrated models, standard deviations in brackets) 
 

Attribute Alternative M1: Multinomial 
Logit* 

M2: 
Mixed Logit 

M3: 
Generalised 
Mixed Logit 

M4:  
Scale  

MNL* 
In-vehicle 
time 

New light rail (invt-NLR) -1.674 (1.021) -1.421 (0.758) -1.481 (0.796) -1.106 (0.462) 

 New heavy rail (invt-NHR) -1.595 (0.945) -1.399 (0.684) -1.533 (0.752) -1.172 (0.530) 
 New busway (invt-

NBWY) 
-2.133 (0.976) -1.744 (0.652) -1.936 (0.747) -1.415 (0.465) 

 Bus (invt-Bus) -1.773 (0.995) -1.356 (0.581) -1.475 (0.650) -1.260 (0.456) 
 Busway (invt-Bway) -1.540 (0.880) -1.317 (0.703) -1.465 (0.809) -1.188 (0.530) 
 Train (invt-Train) -1.344 (0.752) -1.227 (0.609) -1.340 (0.731) -1.035 (0.469) 
 Car (invt-Car) -1.215 (0.709) -0.894 (0.648) -0.763 (0.441) -0.847 (0.853) 
Cost New light rail (cost-NLR) -0.699 (0.446) -0.883 (0.512) -0.775 (0.475) -0.493 (0.236) 
 New heavy rail (cost-

NHR) 
-0.704 (0.452) -0.756 (0.391) -0.733 (0.389) -0.547 (0.272) 

 New busway (cost-
NBWY) 

-1.143 (0.496) -0.917 (0.507) -0.943 (0.468) -0.806 (0.319) 

 Bus (cost-Bus) -0.942 (0.486) -0.826 (0.384) -0.815 (0.389) -0.770 (0.326) 
 Busway (cost-Bway) -0.646 (0.414) -0.758 (0.396) -0.739 (0.427) -0.522 (0.264) 
 Train (cost-Train) -0.832 (0.483) -0.713 (0.368) -0.686 (0.351) -0.626 (0.281) 
 Car (cost-Car) -0.580 (0.339) -0.537 (0.387) -0.363 (0.209) -0.528 (0.530) 

* The standard deviations are an artifact of different choice probabilities and not a result of preference heterogeneity 
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Figure 2:  Contrasts of direct elasticities  
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Figure 3:  Contrasts of direct elasticities: MXL (M2) vs. MNL ( M1), GMXL (M3) and SMNL (M4) 

 

Beginning with the in-vehicle time mean elasticities7 (the left half of Figure 3), the SMNL model (M4) 
has the greatest consistently negative difference8

This evidence, albeit from one study, suggests that the SMNL model, that excludes consideration of 
attribute preference heterogeneity, produces noticeably lower mean estimates of the elasticities for in-

 relative to MXL (M2), remaining directionally 
negative for all modal alternatives, indicating that all mean elasticities are higher for mixed logit 
compared to scale MNL. In contrast, mixed logit has higher mean elasticity estimates than MNL (M1) 
and GMXL (M3) with the one exception of car in-vehicle time for GMXL.  

                                                           
7 The elasticities are based on uncalibrated models and as such the numerical magnitudes are only valid in the comparisons across 
models. These models cannot be used to forecast patronage without calibration using revealed preference shares on existing modes. 
8 Since all elasticities are negative, a lower value is an absolute lower value (e.g. -0.435 is lower than -0.650). 
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vehicle travel time. For the cost attribute, the same findings apply for mixed logit compared to SMNL; 
however the directional implication is not clear in comparisons of MXL with MNL and GMXL.  

When we undertake a statistical test of differences (using the mean and standard deviation) between 
various model pairs (see Table 4), we find on the t-ratio of differences test, that there is no statistically 
significant difference between the mean estimates, without exception9

Attribute 

. Hence the extension from 
MNL to mixed logit to generalized mixed logit, and the focus only on scale heterogeneity, does not 
impact materially on the evidence on direct elasticities, despite the actual mean estimates that are 
typically used in practice being different in absolute terms. 

This empirical evidence suggests that although recognition of preference and scale heterogeneity 
through observed attributes improves on the goodness-of-fit of the models (Table 2), and aligns the 
mean elasticity estimates ‘closer’ to those of the popular mixed logit model (which assumes scale 
homogeneity), the differences are not statistically significant. However, despite this evidence, 
practitioners tend to focus on applying the mean estimates, and hence when only scale heterogeneity is 
accommodated, the mean elasticity estimates are, with a few exceptions, noticeably lower than both 
mixed logit and generalized mixed logit. 
 

Table 4:  Tests of statistical significance between elasticity estimates 

 
Alternative MXL vs. MNL MXL vs. 

GMXL 
MXL vs. 
SMNL 

GMXL vs. 
SMNL 

In-vehicle time New light rail (invt-NLR) 0.199 -0.055 0.355 0.407 
 New heavy rail (invt-NHR) 0.168 -0.131 0.193 0.393 
 New busway (invt-NBWY) 0.331 -0.194 0.411 0.592 
 Bus (invt-Bus) 0.362 -0.137 0.130 0.271 
 Busway (invt-Bway) 0.198 -0.138 0.147 0.286 
 Train (invt-Train) 0.121 -0.119 0.250 0.351 
 Car (invt-Car) 0.334 0.167 0.044 0.087 
Cost New light rail (cost-NLR) -0.197 0.155 0.692 0.532 
 New heavy rail (cost-NHR) 0.087 0.042 0.439 0.392 
 New busway (cost-NBWY) 0.319 -0.038 0.185 0.242 
 Bus (cost-Bus) 0.187 0.020 0.111 0.089 
 Busway (cost-Bway) -0.196 0.033 0.496 0.432 
 Train (cost-Train) 0.196 0.053 0.188 0.133 
 Car (cost-Car) 0.084 0.396 0.014 -0.290 

 

This evidence, admittedly from a single study, raises doubts about the substantive empirical merits of 
allowing for scale heterogeneity in the absence of the influence of preference heterogeneity, given that 
Model 3 is the preferred model. When both sources of heterogeneity are captured, the statistical fit of 
the GMXL model is superior (with a two degrees of freedom difference), suggesting that accounting 
for both preference and scale heterogeneity is a significant improvement over the standard mixed logit 
model. In terms of the behavioural implications associated with mean direct elasticities, however, this 
tends to result in slightly lower travel time estimates and slightly higher travel cost estimates; however 
given the standard deviations, the difference is not statistically significant. 

Finally, we report the mean estimates of values of travel time savings (Table 2)10

                                                           
9 We also undertook a bootstrap calculation for two of the variables to ensure that the t-ratio test was a useful approximation. The resulting 
standard errors confirm that the t-ratios are a good approximation. 
10 In this paper all models are estimated in preference space. We have estimated a GMXL model using the same data in WTP space in 
Hensher and Greene (2009).  

. We calculated the 
mean WTP (and standard deviation where appropriate) using the unconditional estimates, and we used 
the generic in-vehicle cost parameter to obtain VTTS. There are differences in the mean estimates for 
all time attributes; however the differences between ML and GMXL are not statistically significant on 
a test of differences, given the standard errors. What does appear notable is the presence of lower 
mean estimates for SMNL compared to MNL (recognising the value for egress time is very similar). 
The behavioural implications are far from clear other than that the mixed logit and generalized mixed 
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logit models appear to produce higher mean estimates than the models that assume preference 
homogeneity. This finding is known from other studies (see Hensher 2010). 

 

Conclusions 

This paper has set out a number of discrete choice model forms that are able to account for sources of 
observed and unobserved heterogeneity across individuals. The particular focus is on identification of 
preference (or taste) heterogeneity and scale heterogeneity, and the incremental contribution of 
allowing for preference heterogeneity, scale heterogeneity, and both sources of heterogeneity, with 
scale heterogeneity suggested by a number of authors as a neglected source of heterogeneity. 

Our empirical assessment suggests that accommodating scale heterogeneity in the absence of 
accounting for preference heterogeneity may be of limited empirical interest, resulting in a statistically 
inferior model form, despite it being an improvement over the standard MNL model, as might be 
expected. Scale heterogeneity in the presence of preference heterogeneity does garner favour, with the 
generalised mixed logit model an improvement over the standard mixed logit model. These findings 
accord with the evidence in Fiebig et al. (2009) where, across 10 data sets, on the AIC test, the 
generalized mixed logit model performs better than mixed logit in eight data sets; however the SMNL 
model performs relatively poorly in all cases.  

Compared to a failure to account for preference heterogeneity that is consequential, failure to account 
for scale heterogeneity may not be of such great empirical consequence in respect of behavioural 
outputs such as direct elasticities and willingness to pay.  

Clearly, a library of empirical evidence from other data sets is required before we can make any 
definitive statements about the extent to which analysts should routinely allow for scale heterogeneity 
across individuals in the presence and/or absence of taste heterogeneity. 
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