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Snowball effect and traffic equilibrium in a market entry game: a laboratory experiment
Denant-Boemont & Fortat

1 Introduction

Talking very generally, congestion refers to a situation where the cost (payoff) function
for a given agent is restricted to be solely a function of the number of people that might
use a given resource.

More precisely, congestion games (Rosenthal, 1973) are non-cooperative games in which
a player’s strategy is to choose a subset of resources, and the utility of each player only
depends on the number of players choosing the same or some overlapping strategy. For
such congestion games, it is generally shown that Nash equilibria lead to inefficient out-
come (See Correa et al., 2008). The lack of efficiency could be measured by the Price of
Anarchy (Papadimitriou, 2001), which denotes the ratio of the worst social cost of a Nash
equilibrium to the cost of an optimal solution.

Congestion cost might be represented in many ways, the easiest being a separable and
affine cost function where the cost is to be increased linearly when the utilization rate
grows.

In recent years, there had been a increasing number of experimental studies devoted to
traffic congestion games situations. All these studies relate to particular congestion games
based upon different theoretical models of congestion. For instance, Ziegelmeyer et al.,
2008 or Daniel et al., 2009 made lab experiments based on a discrete version of a bottleneck
model (Vickrey, 1969 ; Arnott, De Palma & Lindsey, 1993). Differently, Morgan et al.,
2009, Rapoport et al., 2009, Hartman, 2009 and Denant-Boemont & Hammiche (2012)
try to observe within the lab some paradoxes that could be produced by Wardrop-Nash
equilibrium when users have to choose among routes (Braess Paradox) or among modes
(Pigou-Knight-Downs Paradox, Downs-Thomson Paradox). The common feature of all
these experimental games is that congestion cost is assumed to be a linear function of
the entrants number on a given route, mode, etc. Such assumption implies in particular
that the marginal congestion cost of user is the same whatever the number of users having
already entered on a route is.

Such an assumption may be viewed as very specific since considering real-world traffic
congestion, one might expect that congestion cost increases not linearly, e.g. exponen-
tially with traffic level. Indeed, a very well-known stylized fact in transport economics is
that speed (cost) decreases (increases) very rapidly when the number of users on a given
route begins to rise. This stylized fact, formerly established in the 1930s years by traffic
engineers, is known as the ”speed (cost)-flow relationship” (Greenshields, 1935 ; Walters,
1961 ; Verhoef, 2005). In the recent years, this fundamental relationship had been ques-
tioned (See Kerner, 1999 ; 2004) but remains empirically a acceptable assumption at the
macroscopic level (see Taylor et al., 2008).

This paper investigates how variations in technology cost function might affect users’ co-
ordination in a very specific congestion game, the Market-Entry Game (MEG). Such a
coordination game, introduced by Selten & Guth, 1983, applies for various situations, not
only to traffic congestion, but also for competition between firms for instance (Goeree &
Holt, 2005). The MEG is a very simple game and represents an elegant stylization of
congestion problem: In the MEG situation, n players are simultaneously confronted to
simple binary decisions, whether to enter a market or not, entry payoff being a decreasing
function of the total number of entrants, and exit decision associated with a fixed pay-
off. MEG is a coordination game with many (asymmetric) pure or mixed - symmetric or
not - strategy Nash equilibria, but all these equilibria have the property to be inefficient.
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If agents are purely rational and selfish, MEG situation will produce therefore a social
dilemma (as defined by Kollock, 1998). Many experimental works, beginning with Kahne-
man, 1988, studied this particular class of coordination games (Erev and Rapoport, 1998
; Rapoport et al., 1998, 2000, 2002 ; Ochs, 1998 ; Camerer & Lovallo, 1999 ; Seale and
Rapoport, 2000 ; Duffy & Hopkins, 2005).

In particular, the experimental study by Anderson et al. (2008) uses a Market Entry
Game to simulate a traffic coordination problem, and aims at observing how congestion
charges (entry pricing) or real-time information given to participants as fictitious users
might improve efficiency. In the conclusion, Anderson et al. (2008) notice: ”The linear
congestion function used in this experiment is, for some purposes, a little too forgiving in
the sense that small increases in traffic often have “snowball effects” that increase con-
gestion dramatically”. Such a intuition is precisely what is suggested by a huge empirical
evidence related to speed-flow relationship, used for for instance by Vickrey (1963) to
represent travel time cost functions for road users.

Nevertheless, even if the empirical evidence in transport economics clearly suggests a non-
linear form for congestion cost, to our knowledge, no experimental study had ever been
done in order to observe how coordination process among users that will finally raise traffic
equilibrium might be affected by such a characteristic. Our idea is therefore to assess the
impact of non-linear congestion on the way users coordinate individual decisions and to
which traffic equilibrium they will converge. More precisely, the key question being about
the impact of a quadratic cost function - implying that average travel time increases at
an increasing rate as traffic flow rise -, what will be the behavior of experimental users
compared to others that are to be confronted to the usual linear cost function? We con-
jecture that, possibly suffering for very high transport costs as traffic level increases, road
users might hesitate much more about entering on a given road compared to a situation
where additional cost for a marginal user is constant. To test our conjecture, we build
a laboratory experiment where participants play different specifications of Market Entry
Games, some having to decide entering in a road where congestion cost increases rapidly
(snowball Market Entry Game), and others being placed in the usual linear Market Entry
Game. Theoretical predictions for both specifications result in the same Pure Strategy
Nash equilibrium entry rate, that enables us to compare clearly observed equilibrium
among specifications regarding congestion technology. Our results are the following. Even
if congestion cost grows rapidly in our snowball market entry game, the average entry
rate is not significantly different from the usual linear MEG, even if the number of par-
ticipants to our traffic games is to be increased. Moreover, entry rates that are observed
are very similar to Pure or Mixed Strategy Nash equilibrium predictions. Of course, as
observed behavior is close to equilibrium predictions, aggregated outcomes are inefficient,
and participants as road users do not succeed to solve the congestion externality problem.

Our paper is organized as follows. The first section is devoted to a literature review about
the speed-flow relationship, which gives us empirical support for our theoretical model for
snowball MEG. The second section presents theoretical models (linear MEG and snowball
MEG) and the experimental design. The third section is related to experimental results
and the last section is to conclude.
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2 Congestion Cost and Speed-Flow Relationship

Relationship between speed and traffic flow, defined generally as the number of vehicles per
unit of time, is generally viewed as being non linear (Sorensen et al., 2008). Implication of
this is that the effects of adding few more vehicles onto the road depend on the number of
vehicles already using the car. Indeed, the effect of an additional vehicle on a given road
is more and more damaging for average vehicle speed. Nevertheless, the initial calibration
by Greenshields (1935) describes a linear relationship between speed and flow (see the
left side of figure 1). But since that, there is much more empirical evidence indicating
that time-average speed-flow relationships as being non linear, and potentially described
by a power law that was initially used by Vickrey (1963). Such hyperbolic functions are
chosen in order to take into account the fact that the impact of increasing traffic density
is very minor for low traffic volumes and gets more and more obvious when traffic density
increases. Of course, with such functions, marginal cost of congestion could be very high
if traffic flow becomes important compared to linear congestion function, as it is pointed
by Doll & Jansson (2005).

Figure 1: (Empirical) Speed-Flow Relationships (source: Taylor et al, 2008)

Walters (1961) observed that the inverse of speed (travel time per unit road length) mul-
tiplied by the constant length X of the road and by the value of time (assumed to be
exogenous and constant) reflects the average (time) costs AC per trip (ignoring other
costs of travel). Consequently, the backward-bending speed-flow function thus implies a
backward-bending AC-curve, which is depicted in Figure 2.
Two areas can be distinguished in the following figure. The first one, named ”normal
congestion”, corresponds to a situation where average cost increases first very slowly as
traffic flow rises and then begin to increase very rapidly when capacity is to be reached. In
this area, average cost increases with traffic flow. When traffic flow equals road capacity,
average cost continues to rise but traffic flow begins to decrease, i.e. a negatively sloped
backward bending part, which corresponds to what is called ”hypercongestion” (Small &
Chu, 2003). In this latter part, average cost could grow to infinite value whereas traffic
flow can be very reduced, and, at limit, as traffic could be totally stopped, flow equals
zero and AC grows to infinite.
As speed is inversely related to (average) private transport time (or cost) for users, Small
(1992) shows that is possible to approximate the relationship between average time travel
during a given period and average flow over that period (time-averaged relationship) by
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Figure 2. The backward-bending average cost curve (AC) and two inverse demand
curves (E and E0) defined over traffic flow (F) (source: Verhoef, 2005)

using, as suggested by Vickrey (1963), the power law function (See also Small & Chu,
2003). The relationship resembles typically to the following:

AT = T0 + T1

(
λ

qb

)ξ
(1)

with ξ >>> 1, where λ is vehicle flow, qb the capacity of the way.

In the transport economics literature, the estimated value of ξ depends necessarily on
the kind of road infrastructure, lying between 2.5 from 5 (Small & Verhoef, 2007). For
instance, for a freeway, this value lies around 4 whereas for arterials, it is nearly 2.5. In
our experimental design, we will assume that this parameter equals 2, since our goal is
simply to implement a snowball effect in a public facility that is congestible.

3 Theoretical model and experimental design

3.1 Characterization of Market Entry Games

3.1.1 Traffic Equilibriums in the case of a Linear Market Entry Game

The Market Entry Game is a very elegant stylization of a congestion process. In this game,
introduced by Selten and Güth, 1982 and Gary-Bobo, 1990, a given number of n players
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have to choose simultaneously and independently whether or not to enter a market. In
the most simple formulation (See Erev and Rapoport, 1998), payoffs are linear with the
number of entrants. For instance, if player i strategy is δi = 0 stay out, or δi = 1 enter,
then her payoff is

πi (δ) =

{
k, if δi = 0
k + r (c−m) , if δi = 1

(2)

k, r and c are positive constants and 0 ≤ m ≤ n being the number of entrants. The
constant c can be interpreted as the capacity of the market. In such a model, the return
of entry exceeds the return of staying out iif m ≤ c.
There are many (asymmetric) pure strategy Nash equilibria for this class of games. If c is
an integer, any profile of pure strategies which is consistent with either c or c− 1 entrants
is a Nash equilibrium. If c is not an integer, a pure strategy Nash equilibrium involves
exactly c entrants where c is the largest integer smaller than c. Moreover, if c is not an
integer the number of Nash equilibria is finite, while if c is an integer there is a continuum
of equilibria1.
The latter have the following form: c − 1 players enter, N − c stay out, and one player
enters with any probability. Furthermore, this implies that only when c is not an integer
are the pure equilibria strict.
Additionally, for c > 1, there is a Symmetric Mixed-Strategy Nash Equilibrium (MSNE)
where p∗ = c−1

n−1 (See Rapoport, 1995 ; Sundali et al., 1995), p being the probability for
player i to enter, under the assumption that players are risk neutral. The symmetric mixed
strategy Nash equilibrium (for risk-neutral players) is given by equating the expected
payoff of entry for a player i and the certain payoff of staying out, that is:

s=n−1
s=0

Csn−1p
s (1− p)n−s−1 {k + r (c− s− 1)} = k (3)

Where s is the number others players to enter. The expected number of entrants assuming
that each player follows MSNE, is then defined by:

t (c) = np∗ =
n (c− 1)

n− 1
(4)

As the probability to enter can be viewed as the parameter of the binomial law, the

standard deviation of the expected number of entrants np∗ is

√(
c−1
n−1

)(
1−

(
c−1
n−1

))
n.

(See Rapoport, 1995 ; Erev & Rapoport, 1998).
Moreover, as it is reported by Duffy & Hopkins (2005), there is also in such a one-shot
game Asymmetric Mixed Strategy Equilibriums2.

1An interesting discussion about the theoretical properties of several coordination games, in particular
the Market-Entry game, but also other games, can be found in Anderson & Engers, 2005.

2These additional asymmetric mixed equilibria imply that j < c− 1 players enter with probability one,
k < N−c players stay out with probability one, and the remaining N−j−k players enter with probability
(c − 1 − j)/(N − j − k − 1) . In one of these asymmetric mixed Nash equilibria, the expected number of
entrants is j + (c− 1− j)(N − j − k)/(N − j − k − 1) which again is between c and c− 1 . Note though
that as k approaches N−c, the expected number of entrants approaches c.
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To sum up, the important common feature of all these Nash equilibria is that the expected
number of entrants is between c and c − 1. On the welfare level, such a game implies a
social dilemma since all possible equilibria are inefficient (Erev & Rapoport, 1998), i.e.
efficiency is not maximized when n = c or n = c−1 if c is sufficiently high3. If we compute
social welfare, defined as the sum of payoffs for the entire group and assuming that c is to
be an integer, we have

W = m (k + r (c−m)) + (n−m) k (5)

Social welfare is maximized when m∗∗ =
{
1
2c
}

. Then, Nash equilibrium will be consistent
with maximizing efficiency if and only if c is sufficiently small (here c ≤ 2). Moreover, in
this characterization, m∗∗ does not depend upon the total number of users.
As it is noted by Duffy & Hopkins (2005), the (linear) MEG does not belong to pure
coordination games, where agents have an incentive to take alltogether the same action.
In this case, the successful coordination involves that agents take different actions, where
some should enter and the others staying out. The consequence is that, given that sym-
metric outcome should be particularly salient (all players enter or all players stay out),
repeating the one-shot game will help individuals to learn to condition their behavior on
the behavior of others and hence converge to an asymmetric equilibrium.

3.1.2 Traffic equilibriums in the case of a Market Entry Game with Snowball
effect

Using eqn (1) which defines Average Travel time (cost) per user, and if it is assumed that
each user get a fix reward F per journey, we can define Average Payoff AP as

AP = (F − T0)− T1
(
λ

qb

)ξ
If users are homogenous, and if entry decision is simultaneous, average payoffs are sym-
metric for users, i.e. AP corresponds to user’s individual payoff. Assuming that parameter
ξ equals 2 (congestion function is quadratic), we can define payoff function for MEG with
Snowball effect as:

πi (δ) =

{
v, if δi = 0

k − r
(
m
c

)2
, if δi = 1

(6)

With the same notations that in linear MEG, with v > 0 and assuming that c is an
integer, any profile of pure strategies which is consistent with either c or c− 1 entrants is
a Nash equilibrium, as in the linear MEG. Moreover, there is a symmetric mixed-strategy

Nash equilibrium where the probability to enter is p∗ =
c

(√
(k−v)

r

)
−1

n−1
4. If we assume that

(k − v) = r, the probability to enter is the same as in the linear MEG, i.e. p∗ = c−1
n−1 .

3But PSNE are Pareto-rankable since the total payoff for m = c− 1 is higher than for m = c. The same
remark applies for Snowball MEG.

4The probability to enter is obtained by equating the payoff of entry to the payoff of non-entry in the
Snowball MEG, and by replacing m by the following equation that m = p (n− 1) + 1.
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In the same vein, for Snowball MEG, the maximum level of Welfare - defined as the total
payoff for the entire group - is

W = m

(
k − r

(m
c

)2)
+ (n−m) v (7)

Applying simply F.O.C. regarding m variable derives the number of entrants that max-
imizes social welfare. The maximizing-welfare solution corresponds therefore to m∗∗ =

c

(√
(k−v)
3r

)
.

That is, snowball MEG and linear MEG have the same Nash equilibriums, but entry rate
that maximizes efficiency is higher for snowball MEG i.i.f k − v >

(
3
4

)
r. Of course, the

same remark as before applies here: Like Linear MEG, Snowball MEG implies asymmetry
in actions to be taken by individuals, which means that repetition might help them to
coordinate better.

3.2 Experimental design

3.2.1 Calibration of One-Shot Congestion Games and Theoretical Predictions

Our aim is to compare coordination and efficiency levels in our two games, the linear MEG
and the quadratic MEG. Our conjecture is that, by incurring a payoff that decreases very
sharply as the entry rate grows in the snowball MEG, with potential very high losses in
case of high entry rates, participants should hesitate more much to enter the market than
in the linear MEG. Moreover, if Pure strategy Nash entry rate do not depend on group
size, it is not the case for Mixed Strategy entry rate that depends on n. For this reason, we
have two additional treatments that consist in doubling group size, all others parameters
being kept constant.

In the linear MEG studied by Anderson et al. (2008), the payoff function corresponds
to

πi (δ) =

{
0.5, if δi = 0

0.5 + 0.5 (8−m) , if δi = 1
(8)

This payoff function will correspond to our benchmark treatments, corresponding to Linear
Market-Entry Game.

In MEG with Snowball effect, we will have the following payoff function

πi (δ) =

{
0.5, if δi = 0

4.5− 4
(
m
8

)2
, if δi = 1

(9)

For the two games, for a common capacity c = 8, and for our ad hoc specific values
of parameters k, r and v, (Asymmetric) Pure Strategy Nash Equilibrium (PSNE) occur
when entry rate m equals 8 or 7. Symmetric Mixed-Strategy Nash Equilibrium (MSNE)
corresponds to a probability to enter the market that is p (e)∗ = 7

11 in the case when
n = 12 and p (e)∗ = 7

23 in the case when n = 24. If it is assumed that players adhere to
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MSNE, then standard deviation of entry rate is respectivly σ (e) = 1.67 when n = 12 and
σ (e) = 2.25 when n = 24.

In the case of Linear MEG, maximum efficiency is reached whenm∗∗ = 2 = c
2 . For Snowball

MEG, as it was indicated above, maximum efficiency is to be obtained for 4 < m∗∗ < 5.

Our experiment consists in a 2X2 design, depending on group size (n = 12 or n = 24) and
on congestion technology (snowball MEG or linear MEG), implying as a consequence four
possible experimental treatments. Each subject participate to a session that consists in
a total number of 24 participants, with three distinct parts. For the first two parts, and
in order to control for subjects heterogeneity, we choose to implement a within-subject
design where each subject participate to two successive market entry games with two
different group sizes, congestion technology remaining constant for a given participant.
More precisely, two experimental conditions were implemented, the first one where group
size is to be increased (INC condition) whereas in the second one it is to be decreased
(DEC condition). In the INC condition, a given participant belongs in a first step to a
group of 12 participants, including himself, and has to decide whether or not he enters
a market with a specific payoff function depending on entry rate (from 1 entrant to 12
entrants). Such a decision is repeated 20 periods, such an information being given at the
beginning of the experiment, groups being held constant (partners design). In the second
step, group size rises from 12 to 24 and the same participant interacts with subjects
that belong to the entire session, i.e. 23 other participants, and such during another 20
periods. In the DEC condition, we simply reverse the order for group size, that is a given
participant interacts first in a group of 24 players during 20 periods and second in a group
of 12 subjects during another 20 periods. Such a procedure enables to control for order
effect. The last part is a real-payoff experiment that aims at eliciting loss aversion for each
participant. Participants were aware that the experiment will have three parts and know
that, the two first parts will consist in the same situation repeated during 20 periods. But
they did not know at the beginning of the experiment what they will face as a situation
during parts 2 & 3.

At the end each period, in parts 1 & 2, subjects get information about total number
of entrants and their own individual payoff. This information reveals both payoffs, for
entrants and non-entrants of course, and also enables them to calculate the entire group
payoff5. Moreover, during all periods of parts 1 & 2, their computer screen displays a
table that describes past history, i.e. if participants are to choose to enter or to stay out
in period 3, they were aware about entry rate and their own individual payoff for periods
1 & 2

The linear MEG is our benchmark treatment, and for this benchmark, only the INC
condition was implemented. Moreover, after parts related to congestion games (parts
1&2), participants loss aversion was elicited by using the procedure based on Fehr & Goette
(2007) and used for instance in Gaechter et al. (2007). This procedure is the following.
Each subject was to choose between participating to a given lottery with 50% chances of
incurring a potential loss L and 50% chances for a potential gain G and abandoning. Six
similar choices are to be made, all things being constant but the potential loss. Lottery
choices can be made in any order that is chosen by a participant. The following table
describes the six lottery choice situations.

5Informations available for each subject are similar to the ”aggregate information” treatment imple-
mented in Duffy & Hopkins, 2005 for a linear MEG.
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Table 1. Loss aversion task (real payoffs, adapted from Gaechter et al., 2007)

situation gain or loss accept reject

1 if ”blue”, you looses 2 euros ; if ”red” you gain 6 euros
2 if ”blue”, you looses 3 euros ; if ”red” you gain 6 euros
3 if ”blue”, you looses 4 euros ; if ”red” you gain 6 euros
4 if ”blue”, you looses 5 euros ; if ”red” you gain 6 euros
5 if ”blue”, you looses 6 euros ; if ”red” you gain 6 euros
6 if ”blue”, you looses 7 euros ; if ”red” you gain 6 euros

Loss aversion in the risky task is determined by using cumulative prospect theory, as in
Gächter et al, 2007. A decision maker is indifferent between participating to the lottery or
quitting if w+ (0.5) v (G) = w− (0.5) v (L)λrisky . Here, v (x) is the value of the outcome
x ∈ {G,L} , w+ (0.5) and w− (0.5) are respectivly the weights associated to a 50% chances
of gaining G or loosing L, and λrisky denotes the coefficient of loss aversion in the task. If
it is assumed that w+ (0.5) = w− (0.5), like in the parametrization of Prelec (1998) about
weighting function for probabilities, and considering that, due to the small size of G and
L, we assume that v (x) = x, then level of loss aversion is λrisky = G

L .
Details are now to be given in the next subsection regarding the way experimental data
were collected.

3.2.2 Experimental sessions

Our sessions were conducted from June to November 2010 in the LABEX, University of
Rennes 1. We had 360 participants, all being students from various formations, with a
majority of first year of Bachelor in economics or business administration. The average
payoff was around 15 euros, for an average total duration of 1h30’. All sessions were
computerized by using ZTREE software (Fischbacher, 2007) and instructions were not
framed in order to fit for a specific transport situation choice. Participants were invited
to sessions by using ORSEE software (Greiner, 2004).
The following table describes more precisely our combinations of treatments and conditions
(see table 1).

Table 2. Experimental treatments and conditions
Condition treatments subjects groups sessions

INC-SNOW Snowball MEG n = 12 / n = 24 120 10 (5) 5
DEC-SNOW Snowball MEG n = 24 / n = 12 120 5 (10) 5
INC-MEG Linear MEG n = 12 / n = 24 120 10 (5) 5

360 15

Our experimental set-up enables us to conduct therefore within-subjects comparison (for
instance by comparing sequence INC-SNOW to sequence INC-MEG) in order to assess
the effect of congestion technology on coordination level, and also to analyze group size
effect in a between-subjects comparison.
In each technology (Linear MEG or Snowball MEG), the payoff function is defined accord-
ing equations given above. Participant individual payoff is represented in figure 3 below.
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Figure 3. Individual payoff (in experimental points) for linear and snowball MEG

In particular, it has to be noticed that participants could experience losses, that could
be very high for the treatment SNOW in the case of large groups. For instance, given
the exchange rate that was given at the beginning of the experiment to participants (50
points for 1 euro), potential loss could be 63 Euros (namely 90 US dollars in June 2011) if
group size was 24 and each participant enters. For limiting the impact of potential losses
on decisions, we indicate to participants that 2 periods in the first part of the experiment
and 2 other ones in the next part were to be randomly drawn as support for final payoff.
The final payoff was a compound payoff of periods of part 1 and part 2, plus one among
the six lottery choices made by each subject that is to be randomly chosen.

For the loss aversion task, the payoff was determined in the following way. First, a color
corresponding to the issue of each outcome was randomly drawn (Blue for Gain, Red for
Loss, with 50% chances for each). After that, one of the six decisions was randomly drawn
for each subject. If the selected decision correspond to abandoning the lottery, the payoff
was zero Euro. If she chooses to play the lottery, depending on color, Gain or Loss in
Euros begins effective. At the end of the session, final payoff was the total payoffs over
the 4 periods randomly drawn plus or less the payoff for the loss aversion task.

4 Experimental results

4.1 Aggregate Behavior: Entry rate

4.1.1 Is there a Snowball effect on coordination levels?

One key question settled by our study is to determine whether or not agents tend to
under entry with snowball treatment than with MEG treatment. The conjecture is the
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following: As participants might suffer from potential higher losses in the case of an
increasing marginal congestion cost described through the snowball technology, individual
risk or loss aversion should make entry decision to be considered very cautiously. Such
a problem should be enhanced when group size is to grow. Table 2 indicates average
entrants number and statistical dispersion around average entry rate for sessions that had
been run under INC condition.6

Table 3. Average Entry rate (s.d.) per Treatment and Group Size

Congestion Technology snowball linear

group size

n = 12 7.685 7.89
(1.71) (1.71)

n = 24 8.91 8.61
(2.49) (2.05)

The first empirical evidence is that participants successfully coordinate around Pure Strat-
egy Nash Equilibrium on average, which is in line with previous experimental works on
Market Entry Game (see among others Rapoport,1995 ; Sundali et al., 1995 ; Erev et al.,
1998 ; Erev et al., 2010), The correlation level between equilibrium predictions (MSNE)
and observed entry rate is 0.75 for snowball MEG and 0.79 for linear MEG. Whatever
experimental conditions, the average observed entry rate (defined as the ratio m

n ) is very
close to probabilities to enter predicted by MSNE, but tends to be higher when group
size is large, indicating a propensity to over-enter when groups are to be large, or equiv-
alently when relative capacity c/n is low. Again, it is a common feature of experimental
stylized facts about MEG, since subjects tend to over-enter when capacity is low and to
under-enter when capacity is high (See Camerer and Lovallo, 1999).

In the INC condition, average entry rate m
n is respectively 0.64 when n = 12 and 0.36 when

n = 24 for snowball MEG, and respectively 0.66 and 0.38 for Linear MEG, to be compared
to a common probability to enter being p = 0.64 when n = 12 and p = 0.30 when n = 24
at MSNE. But, from period to period, there is huge variations about entry rate, whatever
technology is (see figure 4 below). Moreover, the level of coordination remains around
trend that is consistent with Nash equilibriums and does not significantly improve with
repetition, suggesting very few learning for participants.

Moreover, Kahneman (1988) states that the vast majority of trials in a linear MEG where
capacity is exogenously changed at every period could be explained by a very simple
equilibrium rule where c− 2 ≤ m ≤ c+ 27.

Concerning our data, considering that capacity does not change, we have the following
results (see table 4).

6As we do not run linear MEG in DEC condition (see table 1), we are not able to compare with our
snowball sessions in DEC conditions. The only comparison to have is therefore for different technologies
(linear vs snowball) that had been run for each under INC condition.

7As in Rapoport et al. (1995), we relax slightly the assumption of Kahneman by considering |c−m| ≤ 2.
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Table 4. Average frequency for the number of entrants close to capacity

treatment cumulative frequency of entrants number for 6 < m < 10

snowball, n=12 87.5
snowball n=24 67.5
linear MEG, n=12 87
linear MEG, n=24 81

These results indicate that more than 80% of observed number of entrants lie between 6
and 10, which corresponds to the capacity more or less 2 units. The noticeable exception
is the snowball MEG treatment with large groups, where this proportion is only around
2/3. Figure 4 below indicates the distribution of entrants number for each treatment.

Figure 4. Distribution of Entrants Number per Treatment

This figure shows that the distribution of entrants number is rather similar for both
technologies when group size is small, modal value being just at the capacity level (m =
c = 8). But for larger groups, the spread of distribution for snowball MEG is larger than
for linear MEG, suggesting higher dispersion for aggregate entry choice. Nevertheless,
such an observation is not confirmed by a deeper statistical analysis, as it will be shown
below.
The first surprising result is that, even if subjects could experience very high losses in
the Snowball case, and given possible loss aversion for them, the average entry rate for
Snowball technology is very near theoretical prediction given by PSNE assuming risk
neutrality. Indeed, entry rates for both technologies are very close.
Our first result indicates consequently that the average entry rate do not significantly
differ for snowball technology compared to linear one.
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• Result 1. Entry rate is not significantly different under Snowball MEG compared to
Linear MEG treatment, whatever group size.

Empirical evidence is here quite intriguing: When group size was equal to 12, average
number of entrants was not significantly lower under Snowball technology than under
linear MEG one (Wilcoxon Mann-Whitney rank-sum test, z = 1.368 ; p = 0.1713). The
difference remained also not significant when group size was equal to 24 (Wilcoxon Mann-
Whitney rank-sum test, p = 0.8335).

Last but not least, standard deviation was not significantly different under snowball MEG
compared to linear MEG regardless the group size (for n = 12, a Wilcoxon Mann-Whitney
rank-sum test indicates a critical probability being p = 0.65, whereas for n = 24, a similar
statistical test indicates a critical probability p = 0.4647, which do not enable to reject
the null hypothesis of equal standard deviation among our different MEG technologies).

Our second result relates to dispersion around Pure Strategy Nash equilibrium for each
technology.

• Result 2: Variation around average observed entry rate and PSNE is not different
between snowball and MEG treatments, regardless group size

Indeed, it is possible to conjecture that, under snowball technology, coordination around
Nash equilibrium could be more difficult. The first reason for such a conjecture is that
the variance of payoffs for snowball technology is much higher than in the linear case.
The absolute range of payoffs is more than 3 times higher for snowball MEG and variance
is 10 times higher when group size equals 24 (see figure 3). When group size is to be
12, the ratio of payoffs range is 1.625 when snowball is compared to linear MEG, and
the variance ratio is around 2.8. In all cases, average payoff is higher for linear MEG.
In fact, entry decision is very risky in Snowball MEG, and consequently, participants
should be more reluctant to enter when exposed to this congestion technology. Moreover,
since subjects could experience higher losses than in Linear MEG, potentially loss averse
participants should try to find a stable outcome, avoiding too much deviations around
it. Therefore, the possible consequence of that should be higher variance around average
entry rate under Linear MEG compared to Snowball MEG. Such a conjecture is not totally
supported by experimental data, as non parametrical statistics given previously show that
standard deviations around average entry rate do not differ significantly between our
two kinds of MEG, which is quite surprising. Figures 5 & 6 describe average entry rate
respectively for INC condition and for DEC condition. In INC Condition, it is possible to
compare aggregate behavior in Linear MEG compared to snowball MEG. In fact, even if
non parametric statistics do not confirm such evidence, the dispersion around equilibrium
seems to be less for Snowball treatments than for linear ones.

Such a result could be partially explained by heterogeneity in subject’s loss aversion re-
garding our two different kind of sessions, i.e. snowball MEG vs Linear MEG. The basic
results about loss aversion levels are reported in table 5 below.
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Figure 5. Entry Rate for each technology (Linear and Snowball MEG), ”INCreasing”
condition (NB: PSNE is Pure-Strategy Nash Equilibrium ; MSNE is Mixed-Strategy

Nash Eq.)

Table 5. Summary statistics for participants loss aversion level λrisky

treatments statistic value

snowball MEG average 1.88
(s.d.) (0.91)
median 2
Frequency of λ > 1 79%

linear MEG average 1.86
(s.d) (1.01)
median 1.5
Frequency of λ > 1 71%

Aggregate results about loss aversion levels are slightly above results obtained by Gaechter
et al. (2007) for median values but very close for the frequency of having a λ higher than
1, indicating strict loss aversion. They obtained a median value of 1.2 and a frequency
around 70%. These results also indicate that loss aversion level is slightly higher for
snowball treatments compared to linear treatments. But such an empirical evidence fails
to be confirmed by parametric or non parametric statistics, difference between our two
samples being non significant.
In DEC condition (see figure 6), average entry rate for snowball treatments lies around
PSNE and MSNE, as in INC condition (see figure 5). But it is possible to notice that
observed average entry rate is above Equilibrium entry rate when group size is to be
low, indicating difficult coordination process for participants. Such empirical evidence is
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Figure 6. Entry Rate for each technology (Linear and Snowball MEG), ”DECreasing”
condition (NB: PSNE is Pure-Strategy Nash Equilibrium ; MSNE is Mixed-Strategy

Nash Eq.)

underlined by a Mann-Whitney Rank Sum non-parametrical test about observed entry
rate per group when n = 24 for DEC condition compared to theoretical MSNE entry rate
(z = −2.795 ; p = 0.0052***), suggesting that observed entry rate is higher compared
to the predicted one. The fact that there is no difference about entry rate between our
two kind of MEG can be illustrated by parametric evidence. The table below reports the
results of a Panel Probit analysis with Random Effects about the probability to enter, by
controlling in particular individual loss aversion level, and group size and technology as
dummies. More precisely, the estimated model is:

Pr
(
δti = 1

)
= β1 (Order)+β2 (Snow)+β3 (size)+β4λ

risky
i +β5δ

t−1
i +β6π

t−1
i +β7m

t−1+β0

Results of this parametric analysis are given in the table 6 below.
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Table 6. Estimates of a Panel Probit model with Random Effects about the probability
to enter (pooled data)

Explanatory variable coeff
(st. error)

Order (=1 if INC condition) 0.041
(0.085)

Snow (=1 if Snowball MEG) -0.075
(0.085)

Big Size (=1 if n = 24) -0.711***
(0.029)

λriskyi -0.221***
(0.038)

δt−1
i 0.889***

(0.031)

πt−1
i -0.0007***

(0.000)
mt−1 -0.055***

(0.008)
constant 0.797***

(0.147)

obs. 12616
number of subjects 332

NB: ***: sign. at the 1% level ; **: at the 5% level ; *: at the 10% level

The results indicate that loss aversion tends to decrease propensity to enter, as past
individual payoff and past entry level. The role of loss aversion is not in line with previous
results obtained for instance in Erev et al. (2010), since in their experimental study,
the proportion of choices of the risky alternative (to enter) does not appear to reflect
risk aversion and/or loss aversion. Moreover, entering in the last period increases the
probability to enter at the current period, and explanation for such a fact is difficult to
find. As we noticed earlier in non parametrical evidence, the fact of being confronted to
a snowball effect of congestion do not seem to play a different role on the probability to
enter compared to linear MEG. But the propensity to enter is decreased when group size
is large, since individuals could anticipate the difficulty of coordinating themselves on a
reasonable issue, i.e. around entry levels above 6 and 10 for instance. This fact is not
explained only by individual loss aversion, since regression controls for that variable.

4.1.2 Size effect

The impact of group size on coordination at the aggregate level is clear on a theoretical
point of view. First, if it is assumed that participants adhere to PSNE or to MSNE,
there should not be any difference about group size for the number of entrants since at
the PSNE, the number of entrants equals capacity (or capacity minus one), and that, at
MSNE, entrants number is the product of group size by the probability to enter. In all
cases, the number of entrants m should lies between c − 1 and c, without any difference
regarding MEG technology (Linear or Snowball). The entry rate is of course impacted
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by group size, whatever concept of equilibrium is used, since n is a variable both of the
probability to enter (MSNE) or a variable in the entry rate frequency.

An important result here is that, when group size is higher, even is capacity do not change
from one treatment to the other, and all thing being held constant, the average number
of entrants is higher when group size is large.

• Result 3: Group size impacts positively on the number of entrants and entry rates.
Larger is the group, the highest the number of entrants or entry rate.

Empirical evidence for this result is the following. Table 3 indicates that, on average,
number of entrants is 8.91 for snowball treatment when n = 24 and 8.61 for linear MEG
when n = 24 (recall that number of entrants predicted by MSNE is 7.64 when n = 12 and
7.30 when n = 24). Non parametric statistics indicate that the number of entrants is indeed
significantly higher for both technologies when group size is to be large (Wilcoxon matched
pairs signed-rank tests gave the same statistics for both technologies, i.e. Z = −2.023 ;
p = 0.0431**) under the INC condition. Pooled data for snowball when group size is large
indicate also a significant difference with MSNE entry rate (Mann Whitney Wilcoxon
rank sum test, Z = −4.042, p = 0.001***) as for linear MEG (idem, Z = −2.795,
p = 0.0052***).

The regression given previously in table 6 indicates clearly that size also plays a major
role in coordination process for individuals, suggesting decreasing propensity to enter as
size grows. Such a empirical result is in line with theoretical predictions, as it was pointed
above.

When groups are large, coordination is more difficult to achieve and this suggests more
deviation around a given equilibrium. Concerning theoretical predictions, if participants
play PSNE, there should not be any deviation from period to the other, and dispersion
around Nash Equilibriums should be zero. But theoretical predictions based on MSNE
concept indicate that standard deviation should be 35% higher when groups are large
compared to small groups (see above). In fact, at the aggregate level, standard deviations
that are observed in our experimental data are very close theoretical predictions obtained
with MSNE (see table 1). Standard deviation is 45.6% higher for snowball MEG when
n = 24 compared to n=12, and only but 20% higher for linear MEG.

4.2 Individual behavior

The goal of this section is to check wether or not participants play at the individual level
Pure Strategy Nash Equilibrium or Mixed Strategy Nash Equilibrium. At the aggregate
level, MSNE and PSNE organize quite well the data about entry rate, thus being a very
common result in the experimental literature related to MEG. But it is also observed that,
at the individual level, very few subjects play pure or mixed strategy Nash equilibriums
(See among others, Rapoport, 1995 ; Sundali et al., 1995 ; Erev & Rapoport, 1998).

As it is noted in Rapoport (1995), if all the n agents adhere to the symmetric mixed
strategy Nash equilibrium, the distribution of number of entrants should conform to
binomial law where the expected number of entrants is np and standard deviation is√(

c−1
n−1

)(
1−

(
c−1
n−1

))
n. If all agents adhere to the asymmetric Pure strategy Nash equi-

librium, standard deviation of the number of entrants should of course be zero.
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We compute the between-subjects standard deviation about the number of entries per
individual. If subjects play MSNE, then the expected number of entries for a given agent
for each treatment iterated 20 times should be respectivly for n = 12

(
7
11

)
20 = 12.73

and for similar reason for n = 24 should be
(

7
23

)
20 = 6.09. The following table gives the

average number of entries per treatment and subsequent standard deviations, recalling
levels given by MSNE theoretical predictions.

Table 7: Comparison between MSNE theoretical predictions and observed number of
entries per subject

Treatment Linear MEG Snowball MEG
n = 12 n = 24 n = 12 n = 24

expected number of entries (MSNE) 12.73 6.09 12.73 6.09
expected standard deviation (MSNE) (1.67) (2.25) (1.67) (2.25)
observed number of entries 13.15 7.18 12.81 7.43
observed standard deviation (4.94) (7.08) (5.33) (5.50)

A statistical test is useless to observe that (between-subjects) standard deviations are
always larger than predicted ones, such a result being in line with previous experimental
results about this game (see Erev & Rapoport, 1998 for instance).

This reveals that equilibrium predictions at the individual level explain quite poorly the
experimental data. To investigate more precisely this issue, it is possible to check possible
behaviors that are or not in line with PSNE or MSNE. If an agent adhere to MSNE, he
should display at the individual level at least on average a number of entries that are in
line with theoretical predictions, i.e. should reveal a decrease from 13 entries to 6 entries
in INC condition and the reverse sequence for DEC condition. If another agent adhere to
Asymmetric PSNE, he should either always enter or never enter,whatever group size is,
since PSNE is theoretically not affected by group size. Consequently, the total number
of entries for such an agent should be around 40 or around 0 (assuming a certain level of
error).

Regarding experimental data, such behaviors are barely revealed. A strong criteria for
assessing the adequacy of PSNE is to consider that a given individual should be consistent
within a condition (i.e. ”always enter” whatever group size or ”never enter” whatever
group size). The frequency of subjects who always enter or never enter in linear MEG
is near to be the same, around 1.25%. In the case of Snowball MEG, the frequency of
subjects who always enter8 whatever group size equals 14.1%. The frequency of subjects
who never enter is 54.6%, this last result being easily explained by loss aversion.

Moreover, in order to qualify these parametric results, as it is pointed by Erev et al.
(2010), one key experimental result in such Market Entry Game is the high sensitivity of
subjects to forgone payoffs. To illustrate that, we compute the correlation between the
probability of repeating the same choice as in previous period (1 for repetition, 0 otherwise)
to previous obtained payoff and to previous forgone payoff. The absolute correlations are
0.0382 for obtained payoff and 0.1106 for forgone payoff. The same observation applies for

8We consider that a particular subject ”always enter” if the frequency of entry is equal or higher than
80% (i.e. total number of entries in a given treatment is higher than 15 among the 20 possible).
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both technologies, but the sensitivity seems to be higher for linear MEG, as table 8 below
reports.

Table 8. Absolute correlations between probability of repetition and payoffs

variable Probability of having δt−1
i =

δti for subject i

Snowball MEG πt−1
i 0.037

πt−1
i 0.117

Linear MEG πt−1
i 0.021

πt−1
i 0.134

NB: πt−1
i is obtained payoff at last period, πt−1

i is the forgone payoff for last period

Another point relates to alternation rate exhibited by participants. Alternation could
be explained by learning, but also by reactions an individual has when he gets information
about past actions of other players. In our setup, participants obtain at the end of each
period aggregate entry rate and were perfectly aware about the payoff structure. Moreover,
at period t, participants obtained information about past entry rates for periods going from
1 to t− 1. Alternation rate is defined as the number of actual changes in choice from one
period to the other compared to the total changes that are possible for a subject. For
instance, keeping in mind that subjects are confronted to binary choices, a given subject
that should repeat 20 times a given situation of choice could at most make 19 alternations.
A first result is that, on average, alternation rate is around 0.25, i.e. the representative
subject that could change 20 times from current period to the immediate next one, change
5 times on average and repeats 15 times the same choice. This result is in line with
previous results on linear MEG (see for instance Erev et al., 2010). The following table
gives summary statistics about alternation rate for each treatment.

Table 9. Average Alternation Rate (s.d.) per Treatment and Group Size

Congestion Technology snowball linear
group size

n = 12 0.28 0.27
(0.20) (0.17)

n = 24 0.26 0.16
(0.19) (0.16)

There is no significant difference between snowball MEG and linear MEG when group size
is low, but in linear MEG, alternation rate decreases when group size is to be increased,
contrary to snowball MEG where it remains roughly the same. A non-parametric Wilcoxon
Mann-Whitney sign-rank test indicates that alternation rate is higher for snowball MEG
played by 24 participants compared to linear MEG with the same group size (Z = 5.043
; p = 0.000***). Such profile regarding alternation rate for snowball MEG could also be
observed in the following figure (see figure 7). We observe than 36% of alternation rates
revealed by participants are less than 6% for linear MEG, which represent the highest
frequency for such rates that lie between 0 and a maximum of 0.63. For Snowball MEG, the
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highest frequency is obtained with AR between 0.31 and 0.37 (22,5%) and the frequency
for lowest AR (less than 6%) is only around 20%. The maximum AR is 68.4% in this
situation.

We observe than 36% of alternation rates revealed by participants are less than 6% for
linear MEG, which represent the highest frequency for such rates that lie between 0 and a
maximum of 0.63. For Snowball MEG, the highest frequency is obtained with AR between
0.31 and 0.37 (22,5%) and the frequency for lowest AR (less than 6%) is only around 20%.
The maximum AR is 68.4% in this situation.

Figure 7. Histogram of Alternation Rate for Snowball and linear MEG (n = 24) NB :
Blue line corresponds to Linear MEG, red line to Snowball MEG

A parametrical analysis can give more support to the fact that switching from one period
to the next is more sensitive to forgone payoffs than to obtained payoff. A Probit regression
analysis where the explained variable is the decision to switch (=1 when a given participant
change binary decision in t from 0 to 1 or from 1 to 0) is given in the next table (please
see table 10), where the first column gives the explanatory variables, the second one the
estimated coefficients and the last one reports marginal effects of each explanatory variable.
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Table 10. Estimates of a Probit regression model reporting marginal effects about the
probability to switch (pooled data)

Explanatory variable coeff dF/dx
(st. error)

Order (=1 if INC condition) 0.060 0.018
(0.030) (0.009)

Snow1 (=1 if Snowball MEG) 0.139*** 0.042
(0.030) (0.009)

BigSize1 (=1 if n = 24) -0.103*** -0.032
(0.013) (0.008)

λriskyi -0.028** -0.009
(0.038) (0.004)

πt−1
i -0.0003*** -0.0001

(0.000) (0.000)

πt−1
i 0.001*** 0.0003

(0.000) (0.000)
constant -0.826***

(0.048)

obs. 12616
number of subjects 332

Pseudo R2 0.0183
1 : dF/dx is for discrete change of dummy variable from 0 to 1

Results of the regression analysis indicate that probability to switch tend to be higher in
the snowball MEG environment and lower for large groups, revealing the highest difficulty
to coordinate and the propensity to maintain stable decisions. Loss aversion tend to lower
the probability to modify choice, as past obtained payoffs.for evident reason, as increasing
forgone payoff tend to increase the probability of switching9. The marginal effect of forgone
payoff is here three time higher on average that the marginal effect of obtained payoff,
indicated a strong sensitivity of participants to forgone payoffs in the switching decision.

5 Concluding comments

The aim of our experiment was to observe whether or not individual behavior in a traffic
congestion game is to be changed due to sharp increase in transport cost compared to a
more usual linear form. To this aim, we build an experiment where a snowball congestion
game was to be compared to the usual Market Entry Game (MEG), where congestion cost
is to be linear. We conjecture that potential huge travel costs could have a detrimental
effect on observed entry rate on road compared to theoretical level predicted by Nash
equilibrium if loss aversion is to considered. To our surprise, such a major difference does
not exist, since no significant difference between experimental entry rates or experimental
efficiency levels is to be observed throughout different congestion technologies, that consist
either to implement a linear or a quadratic travel cost function for users. Moreover, as in

9A Panel Probit Analysis with Random effects with the same variables gives very similar results, with
a noticeable exception about loss aversion, that fails to explain significantly the probability to switch.
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the usual MEG, participants succeed -at an aggregate level- to coordinate repeatedly and
quite successfully around Nash Equilibriums. Nevertheless, at the individual level, things
are more complex, as often. First, if Nash equilibrium is quite successful at a macro-
scopic level, a more detailed analysis about individual behavior shows huge deviations
from theoretical predictions, such being also well underlined in past experimental studies
about Linear MEG. Last but not least, when it is impossible to find significant differences
regarding aggregate behavior in Snowball MEG compared to linear MEG, at the individ-
ual level, deviations tend to be more important in Snowball Game, such deviations being
more drastically important when group size is to be increased. Another important result
relates to size effect: We observe that deviation from equilibrium tends to increase when
group size is to be higher, even at the macroscopic level, enhancing the difficult coordi-
nation process when groups become larger. This size effect, which is particularly strong,
combines itself with the improved difficulty of coordination for agents when they could
face snowball congestion costs. This suggests that the number of road users that should
interact in real-life situations could be a critical aspect of the coordination process, as well
as an essential component for designing policies aiming to solve congestion problems by
implementing for instance road-pricing schemes or real-time information providing tools.
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