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Constrained stated choice experimental designs 
Collins, Bliemer and Rose 

1. Introduction  
Stated choice experiments are commonly employed in the field of transportation to collect data 
which are used to model preferences or other outputs of interest to transport planners, such as 
the value of travel time. Such experiments typically require the generation of an experimental 
design, which controls what combinations of attribute levels are presented in each choice task 
that a survey respondent completes. 

The attribute levels in the experimental design can be created in many ways, e.g., randomly, by 
adopting orthogonal arrays, or by using efficient design procedures (Rose et al., 2008). 
Surprisingly, little attention has been placed on constraints that may need to be imposed that 
invalidate certain combinations of attribute levels. Such constraints may include 

• The elimination of choice tasks in which one alternative dominates the others; and 
• Rules that prevent or require certain combinations of attributes levels, either within or 

across choice alternatives, to ensure realism, plausibility, or logical consistency. 

These constraints, and their potential importance, are best illustrated with a number of 
examples. 

In the first example, consider three unlabelled motorway alternatives, each described by travel 
time, running cost, toll, and toll payment options. The example choice task depicted in Table 1 
presents a number of problems. Motorway B is an implausible alternative, as it has a longer 
travel time on the motorway than both A and C, and yet a toll is charged for B, but not A or C. 
For Motorway A, payment is via E-tag only, yet no toll need be paid, making the alternative 
logically inconsistent. Finally, C is equal or better than A and B on all attributes, and so 
dominates the other two alternatives. 

Table 1: Motorway example 

 Motorway A Motorway B Motorway C 
Travel time on motorway 
(time) 

25 minutes 35 minutes 25 minutes 

Running costs (run) $4.50 $5 $4 
Toll (toll) $0 $2 $0 
Toll payment options (pay) E-tag only  Cash or E-tag N/A 

A number of constraints could be formally specified with a set of logical statements, to make 
the scenario more plausible.  

• If (A.toll=0) and (A.time<B.time), then reject the choice task. Repeat the same logic for 
all pairs of alternatives. 

• If (A.toll=0) then (A.pay={N/A}). Repeat for B and C. 
• If (A.toll>0) then (A.pay={Cash or E-tag, E-tag only}). Repeat for B and C. 
• If (C.time<=A.time) and (C.run<=A.run) and (C.toll<=A.toll) then reject due to 

dominance. Repeat for all pairs of attributes. 

Next, consider mode choice between train, bus and light rail. Several aspects of the choice task 
in Table 2 are implausible or impossible. Despite train seat occupancy of only 40 percent, 30 
people are standing. The train has no transfers, yet five minutes is spent transferring, and the bus 
has one transfer but no transfer time. Finally, light rail dominates train and bus with respect to 
all of the attributes. Whilst it is feasible that modal preferences might break this dominance, it 
may be desirable from the analyst’s perspective to eliminate dominance in the attributes. 
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Table 1: Mode choice example 

 Train Bus Light rail 
Seats occupied (seats) 40% 75% 10% 
People standing (standing) 30 per carriage 0 0 
Number of transfers (transferNumber) 0 1 0 
Time spent transferring (transferTime) 5 minutes 0 minutes 0 minutes 
Travel time (travelTime) 20 minutes 15 minutes 10 minutes 
Fare (fare) $5 $7 $3 

The following constraints could be applied for each alternative.  
• If (seats<90%) then (standing=0). 
• If (transferNumber=0) then (transferTime=0). 
• If (transferNumber>0) then (transferTime>0). 
• Optionally, a dominance check could be applied. 

A final example is drawn from Daly et al. (2012), who conducted a stated choice experiment to 
investigate rail security. Numerous combinations of attributes were infeasible in their choice 
task. For example, metal detector/x-ray security checks are not possible if the time to pass 
through security is less than four minutes. Further, it is not plausible to have a uniformed 
military presence without a certain level of other security measures first being in place, such as 
closed circuit television with automatic identification of individuals. Whereas they implemented 
a near orthogonal design, we specify constraints within an efficient design. 

The generation of efficient designs involves a search over what is typically a very large design 
space, even once that space has been reduced through the imposition of constraints. With one 
exception (ChoiceMetrics, 2012), existing generation algorithms do not give explicit 
consideration to the types of constraints suggested above. This paper first demonstrates that 
existing algorithms do not handle these constraints effectively. In particular, the problem is 
complicated by some constraints being imposed within choice task (dominance checks and 
realism constraints), and others across choice tasks (attribute level balance). The paper then 
proposes two algorithms that effectively handle all of these constraint types, and evaluates their 
performance on several examples. The solution is an improvement on the algorithm currently 
contained in the Ngene software package (ChoiceMetrics, 2012). Transportation researchers and 
practitioners will benefit, as it will allow them to specify complex constraints that allow for 
behaviorally plausible choice tasks, whilst also minimising sample size requirements through 
the generation of an efficient design. 

2. Background 
The typical experimental design task is to determine an experimental design x  which consists 
of the attribute levels presented in each choice task. Instead of randomly selecting a design, in 
most cases a certain optimality criterion is used to evaluate the design. The d-error is often used 
to determine its efficiency, such that the aim is to find an optimal design *x X∈  that minimises 
the d-error and as such maximises the efficiency (i.e., Fisher information), where X is the set of 
feasible attribute levels.  

An experimental design is in all cases restricted by some design dimensions, namely the number 
of choice tasks, and the total number of attributes. Let S denote the number of choice tasks, and 
let jK  be the number of attributes in alternative j, 1, , .j J=   Let jj

K K=∑  be the total 

number of attributes presented in each choice task. Hence, .S KX R ×⊆  Let [ ],jksx x≡  where jksx  

is the attribute level for attribute k, 1, , ,jk K=   in alternative j, 1, , ,j J=   and choice task s, 

1, , .s S=   Each attribute level jksx  has to be selected from a pre-defined set of feasible levels. 

Let jkL  denote the set of feasible levels for attribute k, 1, , ,jk K=   in alternative j, 1, , .j J=   
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This set can consist of a finite number of discrete elements, such as {1,2,3},jkL =  but can also 

be described by a continuous range of values, such as { :1 3}.jkL l R l= ∈ ≤ ≤  

The basic experimental design optimisation problem therefore can be formulated as follows: 
* arg min ( )

x X
x f x

∈
=  (1) 

where { : , 1, , ; 1, , ; 1, , }.S K
jks jk jX x R x L j J k K s S×= ∈ ∈ = = =     

This problem is well-defined and has a solution, but finding the optimal solution is often 
difficult due to the fact that it is a (mixed) integer programming problem with a huge number of 
feasible solutions. Therefore, one mostly aims to find a feasible experimental design that is as 
good as possible while realising that it may not be optimal. 

This paper discusses additional constraints that can be imposed on the attribute levels and 
therefore on set X and how optimisation problem (1) can be solved. Additional constraints result 
in a smaller set of feasible solutions, such that in some cases finding the optimal solution may 
become somewhat easier (although each additional constraint also makes the design less 
optimal). However, in most cases, either the number of feasible solutions is still extremely large, 
or the set of feasible solutions becomes relatively small such that finding a feasible solution 
turns out to be very challenging and sometimes even impossible.  

Well-known examples of additional constraints include attribute level balance and 
orthogonality. When requiring attribute level balance (referred to henceforth as just level 
balance), each level in set jkL  has to appear an equal number of times over the choice tasks. 
This ensures that data points are evenly spread. A more strict constraint is orthogonality, in 
which each column in matrix x is uncorrelated with any other column. This constraint is often so 
strict that problem (1) no longer has a solution (i.e., X =∅ ). Orthogonality is of importance in 
linear models, but less relevant for nonlinear models such as discrete choice models, particularly 
when the population parameter estimates are expected to be non-zero. Therefore, in recent years 
orthogonality is often no longer imposed.  

While level balance and orthogonality were imposed for statistical reasons, in recent years there 
has been a significant shift towards the desire to include constraints for behavioural reasons. 
Additional constraints can make the choice tasks often more realistic or plausible by removing 
impossible or implausible choice tasks from the set of feasible designs, X. The next section 
discusses the different types of constraints that can be imposed.  

3. Constraints in stated choice surveys  
Constraints in stated choice surveys can be classified into constraints across choice tasks, and 
constraints within a choice task. Each class of constraints will be discussed next. 

3.1 Constraints across choice tasks 
In the past, analysts have mainly put constraints over multiple rows in the design, i.e., across 
choice tasks (ACT1). Level balance is a good example of a column-based constraint over choice 
tasks (see e.g., Huber and Zwerina, 1996), where the number of occurrences of each of an 
attribute’s levels should be as equal as possible. Level balance is implicit for orthogonal 
designs, but has sometimes been enforced for efficient designs as well. For continuous 
attributes, this prevents cases in which nonlinearities cannot be identified, while for categorical 
attributes it prevents cases in which there are insufficient occurrences of a category to estimate 
an associated taste parameter. However, whilst too much imbalance may be problematic, 
complete balance may not be necessary. One mechanism for achieving the appropriate amount 
of balance is through the parameter priors and the efficiency measure, by using dummy or 

1 A glossary is presented at the end of the paper. 
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effects coding (Sándor and Wedel, 2001). The levels will be balanced to the extent that 
information gain is maximised. Whilst this works well for categorical attributes, the parametric 
cost may be too great for continuous attributes. 

Orthogonality can also be considered a column-based constraint, in which the levels over choice 
tasks are constructed such that the entire column is orthogonal to all other columns. Further, one 
usually does not want repeating choice tasks in the survey. In many cases such duplicates are 
not noticed easily, especially in an unlabelled experiment in which swapping the levels of two 
alternatives essentially yields the same choice question. Filtering out such duplicate choice tasks 
requires additional constraints. 

More recent are constraints to reduce complexity and fatigue in the survey. In particular, 
reducing the number of alternatives or attributes presented in each choice task has been subject 
of study. In labelled experiments, in which the label has a specific meaning like a brand name 
(e.g., Qantas, Virgin Airlines) or refers to a specific product (e.g., bus, train), sometimes the 
number of possible alternatives is too large to present all of them in each choice task. In that 
case it is possible to show only a subset of alternatives (e.g., Rose and Hensher, 2006; Rose et 
al., 2013). In other cases, the number of attributes is too large to present in each choice task. In 
this case, partial profile designs can assist in which only a subset of attribute levels change 
values from choice task to choice task in order to reduce the information burden on the 
respondent (e.g., Kessels et al., 2011). 

None of these constraints serve the purpose of avoiding unrealistic, implausible, or silly choice 
tasks in terms of the attribute levels presented (The constraining of alternatives only to a 
relevant set may assist in making certain choices more relevant however. For example, Rose and 
Hensher (2006) restrict the alternatives presented to each respondent in the experiment to reflect 
only those alternatives that they would have available to them in real life, such that if a 
respondent did not own a car, they would not have a car alternative available to them). 

3.2 Constraints within a choice task 
In the past few years, an increasing number of analysts have questioned the plausibility and 
realism of choice tasks as commonly represented in stated choice experiments, and have 
indicated a  desire to focus more on the behavioural interpretation of the choice tasks, as 
opposed to the statistical properties of the underlying design which is used to construct them. 
We will illustrate the issues raised with several silly choice tasks that often reside in 
experimental designs that are computer generated using existing techniques. Consider a travel 
choice in which the respondent has to choose between Route A and Route B, or decide to Stay 
home. Both unlabelled route alternatives are described by several attributes, namely whether it 
is a toll road (levels: Yes, No), travel time (levels: 10, 20 minutes), and toll costs (levels: $0, $1, 
$2). Further, there is a scenario variable that describes the weather conditions (levels: Sunny, 
Rain). The level of the scenario variable is expected to be constant across the alternatives (that 
is, it may vary between choice tasks, but must stay the same for all alternatives within a task). 
The labelled alternative Stay home is a no-choice option and does not have any attributes. In 
total there are 2 2(2 2 2 3) 24 576⋅ ⋅ ⋅ = =  possible choice tasks that could be constructed for this 
example, however, many of these 576 possible tasks are not behaviourally sensible.  

For example, consider the choice task in Table 2. Route A is not a toll road, but there is a 
positive toll cost, which is inconsistent. Hence, we should impose a constraint within each route 
alternative that if it is not a toll road, then the toll cost should be zero. Note that a zero toll cost 
is not per se inconsistent with using a toll road, hence in the example we do not remove any 
route alternatives that use a toll road. We shall refer to these types of constraints as plausibility 
and realism (PAR) constraints. 
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Table 2: Silly choice task: inconsistent alternative 

 Route A Route B Stay home 
Weather Rain Rain  
Uses toll road? No Yes  
Travel time 30 min. 20 min.  
Toll cost $1 $2  
Your choice: □ □ □ 

Even if inconsistent alternatives are removed, choice tasks may still be silly even if the 
alternatives themselves are plausible. The next three examples illustrate problematic 
combinations of alternatives.  

Consider Table 3 in which Route A and Route B are identical. These duplicated alternatives not 
only mean that little information will be captured by this question, but also that the respondent 
may have doubts about the survey and not take it seriously. Therefore, we typically want to 
impose the constraint that the attribute levels across alternatives are not completely overlapping. 

Table 3: Silly choice task: duplicated alternative 

 Route A Route B Stay home 
Weather Rain Rain  
Uses toll road? Yes Yes  
Travel time 20 min. 20 min.  
Toll cost $1 $1  
Your choice: □ □ □ 

In Table 4 we illustrate a choice task in which the scenario variable between the routes is 
different, while it is clear that the weather should be the same across the two route alternatives. 
This was also the case in the example shown in Table 2. This requires yet another constraint on 
the set of feasible attribute levels.  

Table 4: Silly choice task: inconsistent scenario 

 Route A Route B Stay home 
Weather Rain Sunny  
Uses toll road? No Yes  
Travel time 30 min. 20 min.  
Toll cost $1 $2  
Your choice: □ □ □ 

Finally, Table 5 shows yet another silly choice task in the form of a strictly dominant 
alternative. It is clear that Route B is strictly preferred over Route A, since its attribute levels are 
all better than or equal to the attribute levels of Route B. Not only may the respondent doubt the 
survey, but having one or more strictly dominant alternative in the data is also problematic in 
estimation (see Bliemer et al., 2014). Therefore, in case of an unlabelled experiment it is 
important to add constraints in order to avoid strictly dominant alternatives.   

Table 5: Silly choice task: dominant alternative 

 Route A Route B Stay home 
Weather Rain Rain  
Uses toll road? Yes Yes  
Travel time 30 min. 20 min.  
Toll cost $2 $1  
Your choice: □ □ □ 

Out of the 24 possible attribute level combinations for each of the route alternatives, we should 
first remove inconsistent alternatives. This means removing eight combinations (Sunny/Rain, 
No, 20/30 minutes, $1/$2), such that 16 possible alternatives remain. The number of possible 
choice tasks is now 16 16 256.⋅ =  If we further would like to remove duplicate alternatives, this 
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number further decreases to 16 (16 1) 240.⋅ − =  Removing inconsistent scenarios (i.e., removing 
Sunny/Rain and Rain/Sunny) yields  16 (16 8 1) 112⋅ − − =  feasible choice tasks. Finally, 
removing choice tasks with strictly dominant alternatives results in only 8 feasible choice tasks 
as listed in Table 6. 

Table 6: Feasible choice tasks 

 Road A Road B 
s Weather Toll road Travel 

time 
Toll cost Weather Toll road Travel time Toll cost 

1 Sunny No 30 min. $0 Sunny Yes 20 min. $1 
2 Sunny No 30 min. $0 Sunny Yes 20 min. $2 
3 Sunny Yes 30 min. $0 Sunny Yes 20 min. $1 
4 Sunny Yes 30 min. $0 Sunny Yes 20 min. $2 
5 Rain No 30 min. $0 Rain Yes 20 min. $1 
6 Rain No 30 min. $0 Rain Yes 20 min. $2 
7 Rain Yes 30 min. $0 Rain Yes 20 min. $1 
8 Rain Yes 30 min. $0 Rain Yes 20 min. $2 

4. Existing algorithms  
There are numerous stated choice experimental design algorithms in existence, where these can 
broadly be classified as column-based or row-based. With column-based algorithms (CBAs), in 
each iteration attribute levels are changed within a certain column (i.e., attribute). In contrast, 
during each iteration, row-based algorithms (RBAs) change two or more levels within a choice 
task, but make no changes across choice tasks. It is useful to conceptualise all algorithms as 
having three key steps. In step 1, associated data structures, such as candidate sets, may be 
populated, although not all algorithms require this step. In step 2, an initial design is populated. 
In step 3 the design is updated successively over many iterations. Optionally, these steps may be 
rerun, with multiple global iterations, where this may help overcome local optima.  

4.1 Column-based algorithms 
There exist several CBAs for generating experimental designs, including the RSC algorithm 
(Huber and Zwerina, 1996), the coordinate exchange algorithm (Kuhfeld and Tobias, 2005), and 
the randomised exchange algorithm (Quan et al., 2011). Step 1 is typically not required under 
the column-based approach, although the column-based, constraint friendly algorithm we 
propose in this paper will require the generation of one or more candidate sets. 

Column-based algorithms can typically handle constraints across choice tasks quite well. For 
example, the level balance constraint can be easily imposed by starting with an initial level 
balanced design in step 2 and in step 3 only permitting swaps or permutations within each 
column, thereby preserving level balance. Similarly, starting with an orthogonal design 
populated from an orthogonal table, orthogonality can be preserved by swapping columns 
within a design (between attributes that have the same number of attribute levels), swapping 
columns between the design and any spare columns in the orthogonal table (again if the number 
of attribute levels match), or by performing these swaps with orthogonal columns that are 
merged to create columns with the appropriate number of levels. However, CBAs usually 
cannot deal with constraints within choice tasks. Any change within a certain column may 
violate one or more constraints that exist between attributes. 
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4.2 Row-based algorithms 
A well-known RBA is the Modified Federov algorithm (Cook and Nachtsheim, 1980). The 
basis of this algorithm is building a candidate set of feasible choice tasks2 in step 1, populating 
the experimental design from this candidate set in step 2, and in step 3 iteratively swapping all 
candidate set choice tasks with all tasks in the design, testing for improvements in the optimality 
criterion. Due to the dimensions of the design, it may not be feasible to generate a candidate set 
that contains all possible combinations of attributes, thus it is common to randomly select a 
fractional factorial for this purpose. The within choice task (WCT) constraints are applied in the 
first stage when constructing the candidate set by testing all combinations of attributes which 
are constrained in some way. This guarantees that any design based on these candidates will 
always satisfy the WCT constraints. However, ACT constraints, such as level balance and 
orthogonality, can no longer be guaranteed and will in most cases be violated. 

4.3 Assessment of existing algorithms 
Although several algorithms have been proposed in the literature, none of them are able to 
effectively handle constraints that are both within and across choice tasks. However, we believe 
that WCT constraints, which are typically imposed to ensure consistency, plausibility and 
realism, are most important and therefore need to strictly be satisfied, while ACT constraints, 
which are typically imposed for statistical reasons or for choice task complexity, are less 
important and may be relaxed. In the next section we propose both a new CBA and a new RBA. 
In both, the WCT constraints are strictly satisfied, while ACT constraints may be weakly 
satisfied, i.e., they aim to satisfy them as much as possible but allow some flexibility. 

5. Novel constrained design algorithm 

5.1 Specifying constraints 
The integration of constraints into stated choice experimental designs requires an unambiguous 
specification of what constraints are required, and may also require some additional information 
beyond the various dimensions of the design (attributes, levels, etc.).  

It must be made clear whether the design is unlabelled, as this will require the checking of 
repeated alternatives within a choice task, and have implications when testing for repeated 
choice tasks (i.e., the order of the alternatives will be irrelevant). If dominated alternatives are to 
be avoided, it must be clear whether an increase in an attribute’s magnitude leads to an increase 
or a decrease in utility3 (see Bliemer et al., 2014). 

We suggest that PAR constraints be specified using one of three rule structures, where A, B, C 
and D are logical expressions: 
Reject if A 
Any choice task in which logical expression A evaluates to true must be excluded from the 
design.  
e.g., Reject if number of train transfers is greater than zero and train transfer time is zero. 
The next two structures can also be expressed using the reject logic. 
Require B 
Any choice task in which logical expression B evaluates to false must be excluded from the 
design. 
e.g., Require busway travel time to be less than or equal to regular bus travel time. 

2 While candidate sets may also be generated for each alternative, in this paper we only consider choice 
task candidate sets. 
3 This can be easily determined if non-zero parameter priors are specified. 
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If C then D  
Any choice task in which C is true but D is false is rejected. 
e.g., If bus seat occupancy is less than 90 percent, then zero people are standing. 

5.2 A measure of level balance 
In order to facilitate the weak satisfaction of level balance, we propose a measure of attribute 
level (im)balance over K attributes, which may be a subset of all attributes. Consider an 
experimental design x, which contains S choice tasks. Each attribute k has Lk levels. We 
calculate the level imbalance (LIB) as: 

{ }

( )

2

2 2

1
1

1 .

k

ks

L S

x lK
l sk

k

k
k k

S
L

LIB
K S SS L

L L

=

  
 − 
  =      − + −        

∑ ∑
∑  

In essence, for each attribute, the difference is calculated between the number of times each 
attribute level occurs, and the number of times it should occur under level balance. Imbalance of 
greater magnitude is penalised by squaring the difference. The denominator represents the 
balance measure in the worst case. The final level imbalance measure lies between 0 (full 
balance) and 1 (full imbalance), and is useful for combining with an efficiency measure in the 
optimisation function. Alternatively, the level balance LB can be expressed as 1-LIB. 

Another measure which may be useful in some contexts is one which considers the average 
‘distance’ from level balance, without any comparison to the worst balance outcome, or 
penalisation of larger distances. Again over the K attributes of interest, the average distance 
from level balance (ADFLB) is: 

{ }
1 1

k

ks

LK S

x l
k l sk

SADFLB
K L == −∑∑ ∑  

As an example of ADFLB for one attribute only, if that attribute has three levels and the design 
12 choice tasks, balance is achieved if each level occurs four times. If the frequency of each of 
the levels is actually 2, 4 and 6, then 4 2 4 4 4 6 4ADFLB = − + − + − = . When comparing 
the level balance properties of alternative designs in this paper, we will report both LB and 
ADFLB. 

5.3 Step 1: Generation of candidate set(s) of constrained attributes 
When PAR constraints are specified, we propose that one or more candidate sets be generated 
for the PAR constrained attributes, irrespective of whether the CBA or RBA are employed. 
Define a cluster as all attributes linked together logically by one or more PAR constraints. For 
example, if there are three PAR constraints, concerning attributes A and B, C and D, and A and 
E, respectively, then there will be two clusters: ABE and CD. For each cluster, we wish to 
determine the full factorial of PAR compliant attribute combinations. One approach, which we 
call naïve iteration, is to generate the full factorial of all combinations, then eliminate any 
combination that violates a constraint. However, if each cluster has many attributes, such an 
enumeration may be prohibitively large and intractable, even if the resulting factorial of valid 
combinations is not very large. 

As an alternative, we propose a bottom up approach. Maintain a collection of sets, where each 
set contains one or more of the K attributes4. For each set, maintain a full factorial of valid 

4 Note that an attribute is actually an alternative-attribute combination, but will be referred to simply as an 
attribute here. 
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attribute levels combinations. A combination is valid if it does not violate any of the constraints 
considered thus far. Initially, generate K unique sets, each populated solely with one of the K 
attributes. Then, for each rule, generate a set which contains only the attributes referenced in the 
rule. Generate the full factorial of all level combinations for these attributes. Eliminate all 
combinations that violate the constraint. Then merge this set and all sets that contain these 
attributes. This process is repeated for each of the rules, where the final sets will be the clusters 
that we seek. 

This process is best illustrated with an example. We have a design with the following attributes 
and levels, partitioned into sets. 

Initial sets 
A 

 
B 

 
C 

 
D 

 
E 

1 
 

1 
 

1 
 

1 
 

1 
2 

 
2 

 
2 

 
2 

 
2 

3 
 

3 
 

3 
 

3 
 

3 
4 

        
Additionally, the following PAR constraints are specified: 

1. Require A>=B 
2. If (C=1) then (D={2,3}) 
3. Require A+E<5 

For constraint 1, we combine A and B, generate the full factorial, and remove three 
combinations that violate the constraint. A similar process is performed for constraint 2. 

Constraint 1 
  

Constraint 2 
A B 

 
C 

 
D 

 
E 

  
A B 

 
C D 

 
E 

1 1 
 

1 
 

1 
 

1 
  

1 1 
 

1 1 
 

1 
1 2 

 
2 

 
2 

 
2 

  
2 1 

 
1 2 

 
2 

1 3 
 

3 
 

3 
 

3 
  

2 2 
 

1 3 
 

3 
2 1 

        
3 1 

 
2 1 

  2 2 
        

3 2 
 

2 2 
  2 3 

        
3 3 

 
2 3 

  3 1 
        

4 1 
 

3 1 
  3 2 

        
4 2 

 
3 2 

  3 3 
        

4 3 
 

3 3 
  4 1 

               4 2 
               4 3 
               

For constraint 3, even though A and B exist in a set, a full factorial for A and E is first generated 
and three combinations removed. Then this set AE is merged with set AB, due to the overlap in 
attribute A. The final result is two clusters, ABE with 18 combinations and CD with six 
combinations. The efficiency of this algorithm may not be apparent here, but the improvement 
over the naïve iteration approach will become greater as the number and overlap of PAR 
constraints increases. 
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2 1 3 

 
3 2 

4 1 
    

3 1 
  

2 2 1 
   4 2 

    
3 2 

  
2 2 2 

   4 3 
    

3 3 
  

2 2 3 
   

      
4 1 

  
3 1 1 

   
      

4 2 
  

3 1 2 
   

      
4 3 

  
3 2 1 

   
          

3 2 2 
   

          
3 3 1 

   
          

3 3 2 
   

          
4 1 1 

   
          

4 2 1 
   

          
4 3 1 

   
What results from the above algorithm is, for each cluster of attributes which are related through 
constraints, a full factorial of attribute combinations which do not violate any of the specified 
PAR constraints. For the CBA, nothing further is done in step 1. For the RBA, a single 
candidate set is generated, where each candidate is comprised of all attributes in each choice 
task. For smaller designs, this can constitute all combinations of attribute levels that do not 
violate the PAR constraints. For most design specifications, it is necessary to draw randomly 
with replacement from each of the clusters of attributes (which satisfy all PAR constraints). The 
choice task thus generated is then only accepted into the candidate set if it is not a repetition of 
choice tasks already drawn, and, if applicable, it does not contain any dominated or repeated 
alternatives. The analyst decides how many such successful draws are required, i.e., the size of 
the final candidate set. Global iterations of the RBA may overcome local optima that result from 
the stochastic nature of the candidate set generation for larger designs. 

5.4 Step 2: Populating the initial design 
For the RBA, the initial design is populated by drawing candidate choice tasks from the 
candidate set. No further constraints of any form are imposed at this stage – in particular, level 
balance will be sought during the iterations of step 3. 

For the CBA, the population method will depend on whether level balance is sought. If not, 
attributes that are not associated with PAR constraints are randomly assigned, and combinations 
from the clusters of PAR constrained attributes from step 1 are assigned. Any remaining WCT 
constraints (duplicate alternatives, dominance) must be satisfied and choice tasks must not be 
repeated. This may necessitate an iterative approach until all constraints are met, and in 
particular if there are many WCT constraints, design generation may fail at step 2. 

If level balance is sought under the CBA, attributes unassociated with PAR constraints are 
assigned by cycling through and assigning each level, thereby maximising balance. For PAR 
constrained attributes, each cluster can be assigned with a variant of the Modified Federov 
algorithm. Combinations of attributes are initially assigned from the clusters’ candidate set that 
was generated in step 1. Each row is swapped with every candidate that remains in the candidate 
set. These swaps are accepted if there is a reduction in LIB, here calculated over the attributes in 
the cluster. The degree of level balance that can be achieved may depend on the nature of the 
PAR constraints, and some upper bound on the duration of balancing per cluster should be 
applied. 
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For the CBA, local optima might stem from the initial design population, and multiple global 
iterations are strongly recommended. 

5.5 Step 3: Iterating over alternative designs 
Under the CBA, pairs of attribute levels are swapped, as with the randomised exchange 
algorithm (Quan et al., 2011). However, if one attribute in a cluster of attributes linked by PAR 
constraints is swapped, the swap is also performed for all attributes in the cluster, ensuring that 
the associated PAR constraint is not violated. The swap is not accepted if dominance or 
duplicated alternative checks fail, nor if the swap results in a choice task repetition. 

Under the RBA, the conventional Modified Federov algorithm is employed (see Section 4.2). 
However, if level balance is sought, then the level imbalance measure is calculated, and entered 
into the optimisation function together with the desired efficiency measure. A weighting LIBα
can be employed such that the final measure is (1 )LIB LIBLIBα ⋅ + −α ⋅ efficiency measure. The 
best weighting to use will be case specific, and will depend on the relative magnitude of the two 
component measures, and the degree to which the analyst wishes to trade off efficiency with 
level balance. This trade-off is investigated in this paper. 

Table 7 presents a summary of how the constraints are handled under the RBA and CBA. For 
each constraint type, the table presents whether it is categorised as across or within choice task, 
the motivation for its implementation, the stage (i.e., step) of the RBA and CBA it is 
implemented in, and for each algorithm how difficult it is to implement.  
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Table 7: Integration of various constraints into row and column based algorithms 

 

  

Constraint type Motivation Stage of algorithm and difficulty to implement 
Row-based algorithm Column-based 

algorithm 
Across choice tasks 
Orthogonality Alternative optimality 

criterion 
Not possible Per iteration. 

Can use orthogonal 
tables as candidate sets 
of columns for the 
design 

Level balance  
(hard constraint) 

Information gain Per iteration. 
Hard (design rejections 
every iteration, could 
also accept near level 
balance using hard 
constraints) 

Design population. 
Easy. 

Level balance  
(soft constraint) 

Information gain Per iteration.  
Moderate difficulty. 

Design population. 
Easy. 

Prevent repeated choice 
tasks 

Prevent duplication Candidate generation 
(if a single candidate 
set across all 
alternatives). Easy. 

Per iteration. 
Moderate difficulty 
(some designs 
rejected). 

Subsets of alternatives Complexity/fatigue N/A N/A 
Subsets of attributes Complexity/fatigue N/A N/A 
Within choice tasks 
Within choice task 
constraints for realism 
and plausibility 

Plausibility/consistency Candidate generation. 
Moderate difficulty. 

Candidate generation. 
Moderate difficulty. 

Prevent duplicate 
unlabelled alternatives 

Prevent duplication Candidate generation. 
Easy. 

Per iteration. 
Moderate difficulty 
(some designs 
rejected). 

Scenario attributes Plausibility/consistency Candidate generation. 
Easy 

Candidate generation. 
Moderate difficulty. 

Prevent dominance Plausibility and 
information gain 

Candidate generation. 
Easy. 

Per iteration. 
Moderate difficulty 
(some designs 
rejected). 

Combination of across and within choice tasks 
Level balance  
(hard constraint) +  
any within choice task 
constraints 

Various Per iteration. 
Hard (as above, but 
(near) balance may be 
even harder due to 
constraints).  

Design population. 
Hard. 

Level balance  
(soft constraint) +  
any within choice task 
constraints 

Various Per iteration.  
Moderate difficulty. 

Design population. 
Moderate difficulty. 
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6. Case studies 
In this section we will present two case studies, drawing from two of the examples in the 
introduction, to illustrate the operation of the proposed row and column based algorithms. Each 
case study contains a selection of constraints of various types, where the impact of these 
constraints on the design efficiency, as measured by the d-error, will be examined, as will the 
trade-off between efficiency and a soft level balance constraint.  

6.1 Case study 1: motorway choice 
In this example, the choice tasks contain three unlabelled motorway alternatives {A, B, C}. The 
alternatives as described by the following attributes and levels:  

• Travel time on motorway {20, 25, 30 minutes} 
• Running costs {$4, $4.50, $5} 
• Toll {$0, $2, $3} 
• Toll payment options {electronic tag (E-tag) only, cash or E-tag, not applicable (N/A)} 

Toll payment options is dummy coded, whilst the remaining attributes employ linear coding. 
The design is generated with 12 choice tasks. 

Since the choice tasks are unlabelled, it is necessary to check for dominance and repeated 
alternatives within each choice task. Additional WCT constraints are specified on the grounds of 
plausibility: 

• If (A.toll=0) and (A.time<B.time), then reject the choice task. Repeat the same logic for 
all pairs of alternatives. 

• If (A.toll=0) then (A.pay={N/A}). Repeat for all alternatives. 
• If (A.toll>0) then (A.pay={Cash or E-tag, E-tag only}). Repeat for all alternatives. 

These suggest that the design attributes are highly interrelated within each choice task, in terms 
of logical constraints that need to be imposed. Toll, time and pay are linked not only within each 
alternative, but across alternatives as well. A full factorial of these nine attributes (three 
attributes by three alternatives) contains 19683 combinations, yet of these only 2475 satisfy the 
PAR constraints. It is in designs such as this that the benefits of the bottom up construction of 
the constrained factorial (as opposed to enumeration of the full factorial) are realised. As with 
all designs, an additional constraint is imposed that the same choice task cannot be repeated.  

The CBA failed to generate an initial design, due to the very high number of WCT constraints. 
Whilst we remain agnostic as to the appropriateness of row and column based algorithms, and 
suggest that the best approach may be case specific, the CBA may not even be feasible if there 
are too many WCT constraints. The analyst generating an experimental design should be aware 
of this possibility.  

The remaining designs were generated with RBAs. For each design and algorithm specification, 
six designs were generated and the average of the outputs are reported. The first specification is 
without WCT constraints. Four more specifications introduced WCT constraints, with varying 
weights LIBα  applied to the level balance criterion LIB in the objective function, and weights of 

1- LIBα  applied to the d-error. In addition to the d-error, we report the LB and ADFLB measures 
introduced in Section 5.2. Level balance is not attempted for the dummy coded attributes, where 
we will investigate what amount of balance results with this approach. 

As can be seen in Table 8, the RBA without constraints or level balance generates the most 
efficient design by some margin. The level balance is fairly poor, and an interrogation of the 
designs reveals a tendency for there to be an overrepresentation of the end point levels, and an 
underrepresentation of the middle level, consistent with Rose et al. (2011). 
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Table 8: Motorway choice results 

Algorithm WCT 
constraints LIBα

 

d-error Level balance  (LB) Average distance per 
attribute from level 
balance (ADFLB) 

Continuous Dummy 
coded 

Continuous Dummy  
coded 

RBA No 0 0.1137 67.13% 75.69% 5.26 3.89 
RBA Yes 0 0.1912 65.51% 70.14% 5.52 4.78 
RBA Yes 0.25 0.1975 81.71% 77.78% 2.93 3.56 
RBA Yes 0.5 0.2037 89.58% 79.17% 1.67 3.33 
RBA Yes 0.75 0.2174 96.06% 80.56% 0.63 3.11 

The imposition of WCT constraints leads to a large deterioration in statistical efficiency, with 
the average d-error increasing from 0.1137 to 0.1912. We argue that this should not be a 
concern, as the validity must be questioned of any conclusions reached from data that contain 
choice tasks that are logically inconsistent or implausible. Behavioural plausibility should be 
prioritised over statistical efficiency. The addition of the WCT constraints leads to a small drop 
in level balance, likely because the constraints disproportionately eliminate some attribute levels 
more than others. 

The final three specifications of design and algorithm optimise jointly on the d-error and LIB, 
with LIBα = 0.25, 0.5 and 0.75. The d-errors increase by a small amount, compared to when no 

weight is placed on level balance in the optimisation function. With 0.75LIBα = , the d-error is 

13.7 percent larger than 0LIBα = . Level balance, however, improves dramatically, increasing 
from 65.51 percent to 96.06 percent. Thus, in this example, near level balance can be achieved 
with only a small decrease in efficiency. 

For the dummy coded attributes, the balance level roughly follows the same pattern as the 
attributes with linear coding across specifications, however the difference in the magnitude of 
the balance is much more muted. The lower degree of balance suggests that an attempt to fully 
balance the levels may be misguided. The advantage of the dummy coding approach is that 
which levels are over or under represented (relative to the balance condition) will be guided by 
the associated information gain, rather than being merely arbitrary. 

6.2 Case study 2: mode choice 
This mode choice example contains three labelled alternatives: train, bus and light rail. The 
alternatives as described by the following attributes and levels, all with linear coding: 

• Percent of seats occupied {50, 60, 70, 80, 90, 100%} 
• Number standing (for train, light rail) {0, 15, 30, 45, 60, 75} 
• Number standing (for bus) {0, 5, 10, 15, 20, 25} 
• Number of transfer {0, 1} 
• Transfer time {0, 5, 10, 15 minutes} 
• Travel time {20, 25, 30, 35 minutes} 
• Fare {$3.50, $4.00, $4.50, $5.00, $5.50, $6.00} 

The design is generated with 24 choice tasks. 

As the experiment is labelled, no repeated alternative constraints or dominance checks are 
imposed, although the dominance check might be plausible if modal preferences are not 
considered. The following PAR constraints are applied for each alternative: 

• If (seats<90%) then (standing=0) 
• If (transferNumber=0) then (transferTime=0) 
• If (transferNumber>0) then (transferTime>0) 

Unlike in case study 1, none of the clusters resulting from the PAR constraints span alternatives. 
The design is considerably less constrained within the choice tasks. Each alternative contains 
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two clusters. The first links seats and standing, and has a full factorial of 36 combinations, of 
which 16 are valid. The second links the number of transfers and transfer time, has a full 
factorial of eight combinations, of which four are valid. 

The results are presented in Table 9. Consider first the RBA findings. Once again, WCT 
constraints lead to a large deterioration in efficiency, with the d-error dropping from 0.00222 to 
0.00280, and a drop in level balance, from 73.89 to 62.3 percent. Two new values of LIBα  were 

tested, 0.05 and 0.1, due to the small magnitude of the d-error. With 0.05LIBα = , level balance 
increases notably from 62.3 to 77.55 percent, although with a further large deterioration in d-
error to 0.00335. Increasing LIBα  further does improve level balance by a small amount, but 
with a very high cost in terms of efficiency. This suggests that 100 percent balance cannot be 
achieved and the measure is asymptotic at some lesser value. The practical implication of this is 
that for any given case the analyst should test various LIBα values and determine the best trade-
off of efficiency and level balance. 

Table 9: Mode choice results 

Algorithm WCT 
constraints LIBα  d-error Level balance 

(LB) 
Average distance per attribute 
from level balance (ADFLB) 

RBA No 0 0.00222 73.89 9.65 
RBA Yes 0 0.00280 62.30 13.52 
RBA Yes 0.05 0.00335 77.55 7.81 
RBA Yes 0.1 0.00357 79.66 7.06 
RBA Yes 0.25 0.00419 80.92 6.61 
RBA Yes 0.5 0.00474 81.16 6.52 
RBA Yes 0.75 0.00490 81.07 6.57 
CBA No Full balance 0.00223 100.00 0.00 
CBA Yes Full balance 0.00310 80.00 6.67 

Unlike in the previous case study, the RBA algorithm does work here, due to there being fewer 
WCT constraints. When the WCT constraints are ignored, 100 percent level balance can be 
achieved for negligible loss of efficiency, compared to the RBA. With the WCT constraints 
imposed on the CBA, a level balance of 80 percent is achieved with a d-error of 0.0031, which 
compares favourably to the RBA with 0.1LIBα =  with a level balance of 79.66 percent and d-
error of 0.00357. This suggests that the RBA may be more appropriate in some circumstances, 
likely when the WCT constraints are not heavy. 

7. Discussion and conclusions 
In this paper, we have detailed various constraints that often need to be imposed on stated 
choice experimental designs. These include level balance, the prevention of duplicated 
alternatives and choice tasks, dominance, and plausibility and realism constraints that need to be 
imposed within a choice task. For the latter, three rule structures are suggested, which allow 
these PAR constraints to be easily specified by the analyst. Row and column based algorithms 
are developed that respect all constraints, except for level balance, which is treated as a soft 
constraint. To that end, a level (im)balance measure is introduced, that can additionally be used 
both to interrogate the level balance properties of a design. Both of these algorithms are tested 
on two case studies. 

We find that our CBA may perform well, or even better than our RBA, if a limited number of 
WCT constraints must be satisfied. As the number and complexity of these constraints 
increases, however, the CBA performs less well, and may even fail. In these circumstances, the 
RBA is superior. If level balance is sought, and dummy or effects coding is not desired or 
practical, then applying soft constraints on level balance is effective, within the confines that 
may be imposed by the WCT constraints. However, this will come at a cost of efficiency. The 
analyst can test different weights and make a decision, where this may also reveal the 
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asymptotic properties of the level balance in the design. Our key recommendation is to always 
enforce all constraints, with the exception of level balance. 

This paper focuses on the generation of experimental designs that respect constraints. Also of 
interest, but not covered here, is how to handle existing choice data that contain choice tasks 
which violate PAR or other constraints. The analyst may wish to remove the choice tasks 
entirely, or perhaps allow the scale of the model to vary as a function of the plausibility and 
realism of each choice task, as suggested by Bliemer et al. (2014) for the case of dominance. 
This will remain an area for future research, as will further refinement of the algorithms, and the 
development of rules that allow the algorithms to be run with minimum user input.  

Glossary 
ACT  across choice task 
ADFLB average distance from level balance 
CBA  column-based algorithm 
LB  level balance 
LIB  level imbalance 
PAR  plausibility and realism 
RBA  row-based algorithm 
WCT  within choice task 
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