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1.  Introduction 
 
Stated choice (SC) methods are used extensively to reveal the willingness to pay (WTP) for 
specific attributes. Within the SC setting, sampled agents typically assess a number of 
alternatives defined by a set of attributes, each of which is offered as a level drawn from a 
pre-specified set of levels and range of levels, and are asked to choose the most preferred 
alternative (including the choice to not choose any of the offered alternatives). This 
assessment is repeated a number of times up to the total number of choice sets that are 
being offered. The data is then subject to discrete choice modelling using tools such as 
multinomial logit and mixed logit to establish the amount that an individual is willing to 
pay (in the current context for travel time savings) for changes in the levels of specific 
attributes associated with one or more alternatives. The mixed logit model gives us the 
capability of parameterising unobserved heterogeneity to derive distributions of WTP for 
travel time savings1.  
 
Stated choice experiments typically are based on a pre-specified design plan in respect of 
the number of attributes (including their levels and range), the number of alternatives in a 
choice set and the number of choice sets to be assessed. While some studies allow for 
variations in some of these design dimensions, it is more common for all sampled agents to 
be given the exact same number of attributes, alternatives and choice sets. Without any 
variation in the dimensionality of the design, it is not possible to assess what influence the 
design per se has on WTP. Does the design impact in some systematic or non-systematic 
way on the parameters associated with each attribute and hence on WTP?  
 
Although attention has been paid to design optimisation in the published literature, 
particularly optimisation of parameter efficiency, it has not adequately been recognised that 
one cannot optimise choice experiments without understanding and incorporating the likely 
effects of the nature and complexity of the experiment itself on model parameters and 
hence behavioural outputs such as WTP (Louviere and Hensher, 2001; Kamakura et. al., 
1996).  
 
The focus on choice task complexity is especially interesting when viewed more broadly 
under what we call the information processing strategy (IPS) of a decision maker. 
Individual’s use a range of IPS’s according to their capability to process, which is linked to 
cognitive capability, commitment to effort etc. It is also related to the risk spectrum they 
wish to operate under ranging from risk aversion to risk proneness. The greater the risk 
aversion, the smaller the variance in IPS. The variability in risk is often defined by 
constructs such as habit formation and variety seeking, both of which suggest mechanisms 
used to satisfy the individual’s commitment of effort and cognitive abilities. If we knew 
what role these constructs played in behavioural response we could design an SC 
experiment tailored to a specific IPS2. Our challenge herein becomes the inverse – to have a 

                                                 
1 MNL models can also provide distributions by including higher-order polynomials (e.g., quadratics) and 
interactions with covariates. 
2 Such an SC experiment has some similarities to an adaptive choice experiment in which alternative 
behavioural choice response segments are identified as a way of recognising decision rules such as ‘hard-core 
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sufficiently wide ranging set of SC experiments that enable us to identify the role that 
design dimensionality (as a contributor to task complexity) has on the choice response and 
hence the role of specific attributes (from which the value of travel time savings is 
revealed). DeShazo and Fermo (2001) for example show that an increase in the quantity of 
information provided increases the variance with which individuals make their choices, but 
that if one increases the number of alternatives in a choice set up to a threshold number, the 
variance decreases and then increases. White et al., (1998) show that the attribute range can 
significantly alter parameter estimates and that it can (and should) be separated from the 
effects due to variability within an attribute (across the sample). However the caveat is that 
manipulating the range on attributes that are not key influences on choice response may 
have little or no effect on the parameter estimates (i.e., they are simply ignored). Additional 
non-design information can assist in revealing the IPS, such as the inclusion/exclusion plan 
for each attribute as well as an aggregation plan (eg the adding up of attributes such as 
components of travel time) (see Hensher 2004 for further details).  
 
A key message is that choice or response variability is a behavioural phenomenon, and is 
an outcome of a choice experiment as much as observed choices and/or model preference 
parameters or specifications. Design dimensionality needs to be allowed for in the 
specification of the utility expressions associated with each alternative. This can be 
incorporated in a number of ways including its treatment in the observed set of influences 
or as a conditioning effect on the unobserved influences. Previous studies, while adding to 
our knowledge of design influences, have concluded that there is a great deal still to learn 
about the behavioural implications of the design of choice experiments.  This is the 
challenge of this paper. 
 
In the current empirical context, we wish to establish whether the mean and the full 
distribution for VTTS can be shown to vary systematically with the dimensionality of the 
SC design and whether there is any evidence of directional implication as the design has 
more individual elements to evaluate (as one indicator of task complexity). This paper is 
organised as follows. We begin with a design plan referred to as the Design of Designs 
(DoD) including details of the full set of designs. The empirical context is briefly 
described, followed by an overview of mixed logit and the results of a multinomial and 
mixed logit choice models. The WTP distributions and the influence of design 
dimensionality (DD) are then presented, followed by conclusions and directions for further 
research.  

                                                                                                                                                     
loyal’, ‘brand-type’, IIA-type and product or service form. This was considered by Kamakura et al., (1996) as 
a finite mixture of nested logits (brand and product), latent class (for hard-core) and multinomial logit (IIA) 
models.  
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2.  The Design Plan 
 
Using the context of a car commuter trip, we proposed five design dimensions that are cited 
in the literature (e.g., Ohler et al., 2000; White et al., 1998; DeShazo and Fermo, 2001; 
Dellaert et al., 1999; Brazell and Louviere, 1998) as the key dimensions of stated choice 
experiments and which are likely to have the greatest contextual influence on choice 
response and WTP. These dimensions are summarised in Table 1 together with the 
combination offered within each of the16 stated choice (SC) experiments3.  
 
The 16 SC designs are embedded in one overall design, each with 32 rows. A row is a 
choice set comprising a number of alternatives. Each respondent is given 16 rows (i.e., 
choice sets), with an additional blocking variable4 (with two levels) used to determine sets 
of 16 rows. Each run of the design determines the specification of a choice experiment that 
has two versions. For example, the first run might have 15 choice sets of three alternatives 
each presenting four attributes at three levels.  
 

Table 1 The Sub-Designs of the Overall Design 

Number of 
choice sets  

Number of 
alternatives 

Number of 
attributes 

Number of levels 
of attributes 

Range of            
attribute levels 

15 3 4 3 Base 
12 3 4 4 Wider than base 
15 2 5 2 Wider than base 
9 2 5 4 Base 
6 2 3 3 Wider than base 
15 2 3 4 Narrower than base 
6 3 6 2 Narrower than base 
9 4 3 4 Wider than base 
15 4 6 4 Base 
6 4 6 3 Wider than base 
6 3 5 4 Narrower than base 
9 4 4 2 Narrower than base 
12 3 6 2 Base 
12 2 3 3 Narrower than base 
9 2 4 2 Base 
12 4 5 3 Narrower than base 

 
Six attributes have been selected based on earlier studies (Hensher, 2000, 2001). They are:  
free flow time (FFT), slowed down time (SDT), stop/start time (SST), trip time variability 
(TTV), toll cost (TLC), and running cost (RC) (based on c/litre, litres/100km). Given that 
the ‘number of attributes’ dimension has four levels, we have selected the following 

                                                 
3 Other possible elements might have been included but we selected those that most analysts have raised as 
possible sources of response bias. We excluded the ordering of attributes. 
4 A blocking variable in essentially another ‘attribute’ in a design that is used to allocate sub sets of choice 
sets from the fractional set to each respondent. 
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combinations of the six attributes, noting that the aggregated attributes are combinations of 
existing attributes5:  
 
  designs with three attributes: total time (free flow + slowed down + stop/start time), trip 

time variability, total costs (toll + running cost) 
  designs with four attributes: free flow time, congestion time (slowed down + stop/start), 

trip time variability, total costs 
  designs with five attributes: free flow time, slowed down time, stop/start time, trip time 

variability, total costs 
  designs with six attributes: free flow time, slowed down time, stop/start time, trip time 

variability, toll cost, running cost 
 
The aggregation of the different time and costs components allows one to systematically 
account for the effect of the design dimensions on the willingness-to-pay estimates.  
 
We have selected a generic design (ie unlabelled alternatives) for a number of reasons, 
including the avoidance of any confoundment with labelling. A generic task would ensure 
that the effect of changing the number of alternatives is due to just that (namely, increasing 
that number) rather than to the labelling of the alternatives themselves. The design was also 
made smaller by restricting estimable effects to linear effects only. 
 
The specific design pivots off of the attribute levels associated with a current car-
commuting trip. In selecting the car commuter setting, we assumed that all commuters 
would have to undertake a trip to or from work. Although opportunities do exist for 
telecommuting and other forms of distributive work, we reasonably rejected a scenario in 
which a respondent might not undertake a trip (i.e., the no choice option). This also 
simplifies the task and ensures one less source of confoundment, since the ‘no choice’ 
alternative is not described by any of the design attributes.  
 
The designs are computer-generated. They aim at minimising the correlations between 
attributes and maximising the amount of information captured by each choice task. We 
maximised the determinant of the covariance matrix, which is itself a function of the 
estimated attribute parameters (within the experimental design literature this is known as 
D-optimality – see Hensher et al (2004)). Insights from past studies (Hensher 2001a,b) 
determined their approximate values. 
 
The levels applied to the choice task differ depending on the range of attribute levels as 
well as on the number of levels for each attribute. The levels are variations from the 
attribute value of a recent trip. The variations used in the choice tasks are summarised in 
Table 2. The number of attribute levels and the range of these levels are identical within 
each of the 16 designs defined by the master plan. They only vary across designs. Each 
sampled commuter is given a varying number of choice sets, but the number of attributes 

                                                 
5 This is an important point because we did not want the analysis to be confounded by extra attribute 
dimensions.  
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and alternatives remain fixed. Variation in the number of attributes and alternatives occurs 
across commuters. 
 

Table 2 The Attribute Profiles for the Entire Design 
 
(units = %) Base range  Wider range  Narrower range 
Levels: 2 3 4 2 3 4 2 3 4 
Free flow 
time 

± 20 -20, 0, +20 -20,-10, 
+10,+20 

-20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5,  
+2.5, +5 

Slow down 
time 

± 40 -40, 0, +40 -40,-20, 
+20,+40 

-30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5,  
+2.5, +20 

Stop/start 
time 

± 40 -40, 0, +40 -40,-20, 
+20,+40 

-30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5,  
+2.5, +20 

Slow down-
stop/start 
time 

± 40 -40, 0, +40 -40,-20, 
+20,+40 

-30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5,  
+2.5, +20 

Total travel 
time 

± 40 -40, 0, +40 -40,-20, 
+20,+40 

-30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5,  
+2.5, +20 

Uncertainty 
of travel time 

± 40 -40, 0, +40 -40,-20, 
+20,+40 

-30, +60 -30,+15,+60 -30, 0,+30,+60 ± 20 -20, 0, +20 -20, -2.5,  
+2.5, +20 

Running 
costs 

± 20 -20, 0, +20 -20,-10, 
+10,+20 

-20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5,  
+2.5, +5 

Toll costs ± 20 -20, 0, +20 -20,-10, 
+10,+20 

-20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5,  
+2.5, +5 

Total costs ± 20 -20, 0, +20 -20,-10, 
+10,+20 

-20, +40 -20,+10,+40 -20, 0,+20,+40 ± 5 -5, 0,+5 -5, -2.5,  
+2.5, +5 

 
The design dimensions are translated into SC screens as illustrated in Figure 1.  

 
Figure 1 An example of a stated choice screen 
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3.  Overview of the Sample Data 
 
514 face-to-face computer-aided personal interviews (CAPI) (using nine interviewers, with 
two observed by a supervisor) were undertaken in the Sydney metropolitan area between 19 
October and 23 November 2002.6 419 of the 514 surveys were useable. 12 rejected surveys 
were abandoned during the data collection phase due to errors made by interviewers (who 
entered the data incorrectly onto the CAPI on behalf of the commuter). The balance of the 
83 that were eliminated had problems due to interviewers using the same respondent ID7 
and/or unacceptable data on the current commuter trip that produced questionable SC 
responses.8 138 telephone validations were attempted and 60 were completed with 100% 
assurance of the completed CAPI. A summary of the call analysis is given in Hensher (in 
press).  
 
Sampling was stratified random according to geographical location of the household. 
Screening questions established eligibility in respect of commuting by car. Quotas were 
imposed for three trip lengths: less than 30 minutes (256), 30-60 minutes (190) and 60-90 
minutes (60). The entire Sydney metropolitan area was covered. A summary of the mean 
and standard deviation for each attribute in each design is presented in Table 3. 
 

Table 3 Descriptive Statistics on Design Attributes 
(standard deviation in brackets) 
Attribute 3 Attribute 

Design 
4 Attribute 
Design 

5 Attribute 
Design 

6 Attribute 
Design 

Free flow time  17.8 (2-72) 17.1 (0-63) 18.2 (2-84) 
Slowed time   10.7 (0-64) 8.6 (0-70) 
Stop/start time   8.9 (0-72) 10.5 (0-98) 
Uncertainty time 19.1 (0-96) 17.7 (0-112) 19.3 (0-90) 19.5 (0-147) 
Slowed/stop/start time  17.6 (0-84)   
Total time 37.7 (1-144)    
Running cost    2.2 (.2-8.2) 
Toll cost    1.36 (0-7.8) 
Total cost 3.0 (.1-16) 2.7 (.2-16.4) 2.7 (.2-14.6)  

                                                 
6 This was preceded by a pilot survey of 36 commuters, which was sufficiently large (after expansion of 
choice sets) to enable estimation of multinomial logit models to at least assess the parameter estimates in 
respect of sign and relative magnitude (on marginal effects). 
7 An unexpected problem was encountered after the survey was completed. Interviewers periodically copied 
their completed surveys onto zip diskettes or went back to the survey firm who downloaded the files from the 
laptops. When the interviewers returned to the field, two of them duplicated the same respondent id. As a 
consequence when we merged the choice data (one row per alternative per choice set) with the socio-
economic and contextual data (1 row per respondent) to format automatically for choice modelling the 
duplicated id’s caused a false mapping. This can be avoided in future studies by assigning a unique random 
number to each interview. 
8 In particular, some respondents gave travel times that were clearly not achievable given the origin, 
destination and hence trip distance. In future CAPI surveys we will build in a test for travel time given 
distance travelled such as a maximum speed.  
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4.  Embedding Design Dimensionality in a Mixed Logit 
Framework 

 
A number of model frameworks offer interesting ways of incorporating SC design 
dimensionality. These include latent class multinomial logit (LCML) (Greene and Hensher, 
2003), mixed logit (ML) (McFadden and Train, 2000; Hensher and Greene; 2003; Train, 
2003), and covariance heterogeneity (nested) logit (CHL). All specifications (to varying 
degrees), including multinomial logit (MNL), are capable of revealing preference 
heterogeneity attributable to variations in the dimensions of the SC design. We focus on 
mixed logit as the most general of the choice model specifications. Mixed logit is 
increasingly used to estimate choice models. There are a number of useful summaries of the 
method (such as Train (2003) and Hensher, Rose and Greene (2004)) and so we will limit 
the detail to a summary overview. 
 
We assume that a sampled individual (q=1,…,Q) faces a choice among J alternatives in 
each of T choice situations. Individual q is assumed to consider the full set of offered 
alternatives in choice situation t and to choose the alternative with the highest utility. The 
utility associated with each alternative j as evaluated by each individual q in choice 
situation t, is represented in a discrete choice model by a utility expression of the general 
form in (1).  
 

1

      

K

jtq qk jtqk jtqk

q jtq jtq

U x
=

= β + ε

′= + ε
∑

xβ
, (1) 

 
where xjtq is the full vector of explanatory variables that are observed by the analyst, 
including attributes of the alternatives, socio-economic characteristics of the individual and 
descriptors of the decision context and choice task itself in choice situation t. The 
components βq and εjtq are not observed by the analyst and are treated as stochastic 
influences.   
 
Within the logit context we impose the familiar condition that εjtq is independent and 
identically distributed (IID) extreme value type 1 across individuals, alternatives and choice 
situations. The IID assumption is most restrictive in that it does not allow for the error 
components of different alternatives to be correlated. One way to take this into account is to 
introduce into the utility function through βq additional stochastic elements that may be 
heteroskedastic and correlated across alternatives.  Thus, 

 
βq  =  β + ∆zq + Γvq  =  β + ∆zq + ηq,  (2) 
 
or βqk = βk + δk′zq + ηqk  where ηqk is a random term whose distribution over individuals 
depends in general on underlying parameters, and zq is observed data. εjtq is the same IID 
random term with zero mean that appeared in the model before.  Note that since βq may 
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contain alternative specific constants, ηqk may also vary across choices and, in addition, may 
thus induce correlation across choices. 
 
The Mixed Logit class of models assumes a general distribution for ηqk and an IID extreme 
value type 1 distribution for εjtq. That is, ηqk can take on different distributional forms such as 
normal, lognormal, uniform or triangular. Denote the joint density of [ηq1, ηq2,..., ηqK] by f(ηq 
|Ω,zq) where the elements of Ω are the underlying parameters of the distribution of βq (β,∆,Γ) 
and zq is observed data specific to the individual, such as sociodemographic characteristics and 
ηq denotes a vector of K random components in the set of utility functions in addition to the J 
random elements in εtq. 
 
For a given value of ηq, the conditional probability for choice j is logit, since the remaining 
error term is IID extreme value:  
 

Ljq(βq|Xq,ηq) = exp(βq′xjq) / ∑jexp(βq′xjq). (3) 
 

Equation (3) is the simple multinomial logit model, but with the proviso that, for each sampled 
individual, we have additional information defined by ηq.  The probability is conditional on ηq, 
that is, on vq (and zq). This additional information influences the choice outcome. The 
unconditional choice probability is the expected value of the logit probability over all the 
possible values of βq, weighted by the density of βq. From (2), we see that this probability 
density is induced by the random component in the model for βq (Hensher and Greene, 2003). 
Thus, the unconditional probability is 
 

Pjq (Xq ,zq ,Ω) =     ( | ) ( | , )
q

jq q q q q q qL f d∫ X z
β

β , η η Ω η , (4) 

 
Where βq = β + ∆zq + ηq.  Thus, the unconditional probability that individual q will choose 
alternative j given the specific characteristics of their choice set and the underlying model 
parameters is equal to the expected value of the conditional probability as it ranges over the 
possible values of βq.  The random variation in βq is induced by the random vector ηq, hence 
that is the variable of integration in (4). 
 
Models of this form are called mixed logit because the choice probability Pjq is a mixture of 
logits with f as the mixing distribution. The probabilities will not exhibit the questionable 
independence from irrelevant alternatives property (IIA), and different substitution patterns 
may be obtained by appropriate specifications of f. This is handled through the random 
parameters, specifying each element of βq associated with an attribute of an alternative as 
having both a mean and a standard deviation (i.e., it is treated as a random parameter 
instead of a fixed parameter).  The standard deviation of an element of the βq parameter 
vector, which we denote σk, accommodates the presence of unobservable preference 
heterogeneity in the sampled population (i.e., allows for individuals within the sampled 
population to have different βq as opposed to a single β representing the entire sample 
population).  
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5.  Mixed Logit Model Results 
 
A series of mixed logit models were estimated to establish evidence on the role of design 
dimensionality (DD), with the final results presented in Table 5.  Each attribute in Table 5 
is associated with a subset of the 16 alternatives as defined in Table 4. In arriving at the 
final models we investigated a large number of ways of representing DD. These included 
interacting every attribute associated with each alternative with each design dimension 
(except the attribute per se), creating an overall choice complexity index (CCI) in which the 
ML utilities were regressed against all design dimensions to establish a parameterised CCI, 
and decomposing the mean parameters associated with random parameters by one or more 
design dimensions.  
 

Table 4 Time-Defined attributes and Design Allocation 
 
Design Identifier Time components (excluding time 

variability which appears in every design) 
Cost components Number of 

attributes in design 
2 Free flow, slowed down, stop-start Total cost 5 
3 Free flow, slowed down, stop-start Total cost 5 
10 Free flow, slowed down, stop-start Total cost 5 
15 Free flow, slowed down, stop-start Total cost 5 
6 Free flow, slowed down, stop-start Run cost, toll cost 6 
8 Free flow, slowed down, stop-start Run cost, toll cost 6 
9 Free flow, slowed down, stop-start Run cost, toll cost 6 
12 Free flow, slowed down, stop-start Run cost, toll cost 6 
0 Free flow, slowed down-stop-start Total cost 4 
1 Free flow, slowed down-stop-start Total cost 4 
11 Free flow, slowed down-stop-start Total cost 4 
14 Free flow, slowed down-stop-start Total cost 4 
4, 5,7,13 Total time Total cost 3 
 
 
All stand-alone travel time attributes were found to be highly statistically significant 
random parameters in all models as were the fixed parameter costs attributes. For the 
random parameters a triangular distribution was selected and constrained to ensure that the 
sign of the WTP for travel time savings was non-negative (see Hensher and Greene, 2003). 
The second mixed logit model (ML2) includes an additional set of variables defining the 
interaction between trip attributes and design dimensions; some of which have fixed 
parameters while others have a random parameter specification. These interactions were 
established from an extensive assessment of all possible linear interactions between a 
design dimension and a trip attribute. A constrained triangular distribution is also selected.  
 
The preferred model involved the inclusion of each trip attribute as a stand alone effect plus 
an interaction of each trip attribute with design dimensions. This is more informative than a 
composite choice complexity index (which has another useful role - see below) and offers 
the best intuitive interpretation. However the number of statistically significant interactions 
between attributes of alternatives and design dimensions (i.e., heterogeneity around the trip 
attribute parameter distribution decomposed by design dimensionality) was very small, 
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limited to six interactions out of the 54 investigated9. One interaction was statistically 
significant for free flow time (number of levels of the attribute), one for slowed down time 
(number of choice sets), one for stop/start time (narrow range of an attribute compared to 
base plus wide range), one for slowed/stop/start time (number of levels) and two for total 
travel time (number of alternatives and number of choice sets). Two of the interactions 
were best represented through random parameters (free flow time by number of levels and 
slowed down time by number of choice sets) giving a random parameter specification for 
both the stand-alone trip attribute and its interaction with design dimensionality.  
 
The signs of the interaction parameters varied, with four positive signs and two negative 
signs; suggesting that the directional influence on the WTP of a specific trip attribute 
varies. In particular, the positive sign for free flow interacted with number of levels suggest 
that the WTP for savings in free flow time decreases as the number of levels of the free 
flow time increases in a design. Similarly, as the number of choice sets increase, the WTP 
for savings in slowed down time decreases, as does the WTP for slowed down plus 
stop/start time savings as the number of levels increases. In contrast, the WTP for stop/start 
time increases as the range of an attribute narrows, and the WTP for total time savings 
increases as the number of choice sets increases. Finally the WTP to save stop/start time 
increases as the number of levels increases. Although statistically significant design 
dependencies have been identified, the key issue is whether the influence on WTP is 
sufficiently large to merit close attention. 
 
Table 5 Mixed Logit Choice Models with Design Dimension Contrasts (4,593 observations). Time 

is in minutes, cost is in dollars. (100 Halton draws) (t-statistics in parenthesis) 
 

 Base Models DD Models  
Attribute Design identifier  

(see Table 5) 
MNL ML1 MNL2 ML2 

Constant  5-20 -.5780 (-14.9) -.7182 (16.3)   

Constant 1-5   .6341 (17.1) .8099 (18.6) 
Travel time attributes as 
random parameters * : 

     

Free flow time 2-4, 6-8, 10-12, 14-
16, 18-20 

-.1452 (-19.2) -.1927 (-17.9) -.2151 (-7.9) -.5113 (-13.8) 

Slowed time 3,4, 7,8, 
11,12,15,16,19,20 

-.1004 (-11.2) -.1239 (-10.9) -.1229 (-13.1) -.1642 (-12.2) 

Stop/start time 3,4, 7,8, 
11,12,15,16,19,20 

-.1314 (-14.1) -.1654 (-13.3) -.1229 (-13.1) -.1642 (-12.2) 

Uncertainty time All -.0166 (-4.9) -.0313 (-6.4) -.0182 (-5.4) -.02522 (-6.1) 
Slowed/stop/start time 2, 6,10,14,18 -.1444 (-18.6) -.1839 (-16.5) -.2777 (-8.0) -.2818 (-7.7) 
Total time 1,5,9,13,17 -.1734 (-22.9) -.2349 (-18.5) -.0326 (-.84) -.1777 (-4.3) 
Cost attributes as fixed 
parameters: 

     

Running cost 4,8,12,16,20 -.8023 (-7.7) -.9518 (-7.8) -.7002 (-6.6) -.9352 (-7.2) 
Toll cost 4,8,12,16,20 -1.617 (-24.0) -1.9146 (-23.9) -1.095 (-15.2) -1.2569 (-15.3) 
Total cost 1-3,5-7,9-11,13-

15,17-19 
-.9069 (-16.3) -1.1307 (-16.1) -.7817 (-14.1) -1.0268 (-14.1) 

                                                 
9 The evaluation of the full set of interactions involved an extensive amount of analysis. There were nine 
interactions between a design dimension and each trip attribute, with range being assessed as two design 
dimensions- narrow and wide. 
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Interactions as random 
parameters *: 

     

Free flow*  # nlvls 6-8, 10-12, 14-16, 
18-20 

  .02287 (2.7) .09213 (9.2) 

Slowed time * #choice sets 6-8, 10-12, 14-16, 
18-20 

  .00206 (2.2) .00286 (2.5) 

Interactions as fixed 
parameters: 

     

Stop/start * # narrow range 6-8, 10-12, 14-16, 
18-20 

  -.09815 (-2.7) -.09426 (-2.4) 

Slowed/stop/start time*nlvs 2, 6,10,14,18   .04461 (4.1) .02893 (2.86) 
Total time *  # alts 5,9,13,17   .01796 (2.6) .03212 (5.0) 
Total time * # choice sets 5,9,13,17   -.02211 (-7.9_ -.01672 (-6.0) 
      
Pseudo-R2  .6564 .6612 .6624 .6669 
Log-Likelihood  -4723.4 -4658.5 -4640.5 -4577.8 
 
Notes: * indicates that ML1 and two random parameters have a triangular distribution in which the mean = 
standard deviation except for the last two variables in ML2 (see Hensher and Greene, 2003 for a justification).  
 

6.  Relationship Between WTP for Time Savings and 
Design Dimensionality 

 
To investigate the potential influence of design dimensionality on the WTP for travel time 
savings, we derived the full distribution of values of travel time savings (VTTS) for each of 
the components of travel time associated with each design (for ML1 and ML2), and 
investigated the contribution of design dimensions. Given that each attribute does not 
appear in every design (see Table 4), we derived the distributions for subsets of designs. 
The defining segmentation criterion is the number of attributes and hence this does not 
appear in the regression models. We have derived the VTTS based on the running cost 
parameter where cost is decomposed into running and toll cost, and total cost where it is a 
single parameter10.  
 
The formulae used to produce the set of WTP for travel time distributions are of the general 
form:  
 
VTTS (in dollars per hour) = 60×(<mean parameter of time> + <standard deviation of 
parameter of time>×<triangular distribution> + <mean parameter of 
interaction>×<interaction variable> + <standard deviation of parameter for an 
interaction>×<interaction variable> × <triangular distribution>)/<mean parameter of cost>. 
For example,  
 
ML2_ff = 60×(-0.51132 + 0.51132×T + 0.09213×nlvls + 0.09213×nlvls×T)/-0.935   
where T is a random draw from a triangular distribution.  

                                                 
10 The specific relativities in the empirical between trip time components are strictly not comparable, which is 
of no import for the current study. 
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The results are summarised in Table 6 (except for MNL2). The MNL results are of passing 
interest, supporting the accumulating evidence from many studies that MNL models tend to 
overestimate the mean WTP, explained in large measure by the inability of MNL to 
separate out the dimensionality of influences to the same extent as more general models, 
with the mean confounding itself with variance. The contrast between ML1 and ML2 is 
particularly interesting, with no particular directional trend in the mean in the presence of 
accounting for design dimensionality.  A test of the difference between the two WTP 
results (for large samples – see Hensher et. al. 2004) suggests that every WTP is 
statistically significant at the 95% confidence level on the Z-test (last column of Table 6). 
Thus we have strong evidence that design specification does matter. What is the extent of 
the influence given the common practice of selecting a mean WTP in most applications? 
We need to identify what differences in mean WTP occur as we vary design dimensionality 
in ML2, and how the analyst might take such evidence into account when comparing WTP 
estimates between designs. This is not a procedure for establishing the ‘correct’ mean WTP 
since this is unlikely to be known. The best we can do is to establish the increments of 
WTP when using different designs. 
 
Table 6 WTP for travel time savings ($ per person hour). $AUD2002.Standard deviations are in 

brackets. We use running cost as cost denominator where appropriate and total cost for attributes 
denoted with an asterisk. 

 
Base Models DD Models  

Attribute MNL ML1 ML2 Z 
Free flow time 10.85 6.10 (3.5) 5.21 (12.2) 4.752 
Slowed time 7.51 3.94 (2.25) 4.62 (2.5) -138.429 
Stop/start time 9.83 5.26 (3.01) 6.81 (4.7 ) -18.821 
Uncertainty time 1.25 0.99 (0.57) 1.07 (0.6) -6.551 
Slowed/stop/start time* 9.56 4.87 (2.81) 2.38 (4.1) 33.950 
Total time* 11.45 6.22 (3.60) 7.42 (3.8) -15.536 

 
There are a number of possible ways of presenting the incremental influence on WTP of 
design dimensions. These include varying each DD, holding other DD’s constant or 
selecting DD packages that ‘represent’ what might best be described as ‘popular’ design 
configurations. We have opted for the latter and selected 6 design DD packages, presented 
in Table 7, based on statistically significant design dimensions. 
 

Table 7 Evaluative Design Dimension Packages 
 

 # alternatives # choice sets # levels Range (N,B,W) 
DD-P1 2 6 2 Base 
DD-P2 2 9 2 Base 
DD-P3 3 12 3 Base 
DD-P4 3 12 4 Base 
DD-P5 4 15 4 Wider 
DD-P6 4 15 4 Narrower 

 
The results are summarised in Table 8. For each trip attribute we establish the numerical 
change in the mean WTP as the level of the relevant design dimensions is varied. There is 
clear evidence that the design dimensionality does have a non-marginal influence on the 
mean VTTS, however the influence is differential, being greatest (in absolute terms) for 
free flow time as a consequence of varying the number of levels from two to three to four, 
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and least for slowed down time (or stop-start time). The mean VTTS approximately 
doubles (or halves) from DD-P1 through to DD-P6 for the other two attributes. These 
differences in mean VTTS will have a significant influence on the time benefits in transport 
projects. Before a reader rushes to a conclusion that this might throw stated choice methods 
into disarray, we must point out that such variations are not unique to SC data and are 
indeed common in revealed preference data. What we have in SC data however is a clearer 
statement on why these variations occur11. 
 

Table 8 Implications of DD packages on mean WTP ($/person hour). Standard deviations in 
brackets are of the assumed distribution of β and not of the estimate of mean β. Note: the 

number of items is the no. of alternatives * no. of attributes per alternative, the latter varying 
according to designs given in Table 4 

 
 No. of items to 

process per 
choice set 

Free flow time Slowed down  
time* 

Stop start 
time* 

Slowed down plus 
stop start time 

Total time 

DD-P1 6 - 12 1.71 (11.1) 4.1 (3.1) 4.1 (3.1) 3.95 (3.8) 5.95 (2.5) 
DD-P2 6 - 12 4. 28 (12.2) 3.5 (3.1) 3.5 (3.1) 3.95 (3.8) 8.35 (2.5) 
DD-P3 9 - 18 4.28 (12.2) 3.02 (3.1) 3.02 (3.1) 2.57 (3.9) 9.22 (2.5) 
DD-P4 9 - 18 10.11 (11.2) 3.02 (3.1) 3.02 (3.1) 1.19 (3.9) 9.22 (2.5) 
DD-P5 12 - 24 10.11 (11.2) 2.47 (3.1) 2.47 (3.1) 1.19 (3.9) 10.07 (2.5) 
DD-P6 12 - 24 10.11 (11.2) 8.52 (3.1) 8.52 (3.1) 1.19 (3.9) 10.07 (2.5) 
DD impacts  nlvls chest, ntb chest, ntb nlvls Nalts1, chset 

* The parameters for these two attributes are generic. 
 

The suggestion that specific design dimensions have a differential influence on the WTP 
across the trip attributes is an important finding, complicating the search for a design 
strategy that is the most appealing. If we had found that the mean WTP did not vary across 
the DD packages (1-6) on all attributes, then we would have concluded that the selection of 
a design within the considered set is of no behavioural consequence. We cannot suggest 
this, but neither can we suggest a preferred design strategy on strictly statistical criteria. All 
we can say is that some design features do have a statistically significant influence on mean 
VTTS. The ones we have identified are: 
 

• A narrower attribute range for slowed down and stop-start travel time increases the 
mean VTTS. This is consistent with earlier evidence in Hensher (in press).   

• More attribute levels reduce the mean VTTS of slowed down plus stop-start time 
but increases the mean VTTS for free flow time. 

• The number of choice sets appears to have a relatively small influence on mean 
VTTS for slowed down time and stop start time compared to the attribute range. 

• Increasing both the number of alternatives per choices set and the number of choice 
sets increases the mean VTTS for total time; with the greatest increase associated 
with the number of choice sets.  

 

                                                 
11 Hensher (2003a) has investigated, within an MNL setting, whether the mean, standard deviation, minimum 
and maximum levels of an attribute impact on the mean VTTS and indeed there is evidence that one or more 
of these data descriptors do systematically influence mean VTTS for slowed-down time, combined slowed 
down and stop-start time, and total time. Such relationship might also be expected from revealed preference 
data where different samples expose variations in such descriptors. 
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We can view designs P1 to P6 as increasing in ‘complexity’ in the strictly additive sense of 
the numbers of pieces of information to cognitively process (noting that P5 and P6 only 
differ on the range of attribute levels)12. What we observe at the mean is that VTTS for 
overall travel time increases when a design contains more individual items to process. 
However while this also applies to free flow time the opposite direction for mean VTTS is 
observed for the non-free flow components of travel time. This evidence still presents a 
challenge in deciding on how to choose an appropriate design in future studies. If we can 
show that attributes are aggregated (or even possibly ignored) then we might have an 
argument for assessing the variation in VTTS in terms of weighted and unweighted mean 
total travel time, ignoring the directional impact of specific components of travel time. 
 
A series of supplementary questions were asked to establish the additivity of attributes in 
the processing of the choice sets. These questions sought out which set of attributes were 
added up as part of the assessment process The evidence summarised in Table 9 suggests 
that there is a substantial amount of aggregation of the travel time components in evaluation 
of the alternatives, with over 75% of the respondent’s aggregating all travel time 
dimensions as part of the way they process the attribute information. What we appear to be 
seeing is a simplifying information processing strategy (IPS) where many respondents 
contrast aggregate time with aggregate cost. The information summarised in Table 9 
provides the basis for exploring alternative IPS’s. 
 

Table 9 Summary of Attribute Role and Treatment of Additivity in Respondent’s Processing of 
SC Screens (proportion of relevant observations). Blank cells mean not applicable. 

 
Proportion of sample who added up components of:  

Design Time Cost 
0 .781  
1 .794  
2 .829  
3 .853  
4   
5   
6 .758 .636 
7   
8 .839 .613 
9 .871 .677 
10 .793  
11 .900  
12 .800 .760 
13   
14 .893  
15 .750  

 
Given the strong cognitive evidence for treating travel time as a single attribute, when we 
convert the components of VTTS into a weighted average VTTS (based on the mix of time 
components) we find that the mean VTTS increases from a low of $2.94 per person hour 
for DD-P1 through to $9.30 per person hour for DD-P6 (with intermediary values of $3.88, 
                                                 
12 In ongoing research we are investigating ways in which task complexity might vary (in some cognitive 
processing sense) as a result of the correlation structure of the data and the mean and standard deviation of 
each attribute both within and between alternatives and choice sets.  



Identifying the Influence of Stated Choice Design Dimensionality on Willingness to Pay for Travel Time 
Savings 
Hensher 

 

15 

$3.95, $6.46 and $6.1813). This is the same directional impact as that for the total travel 
time. The weighted average values have an overall partial correlation with the total time 
VTTS of 0.73. This delivers clear evidence that the mean VTTS systematically increases as 
we increase the number of elements to process in the design. The simple linear OLS models 
for the two sets of evidence (t-values in brackets) are: 
 
Mean VTTS (weighted average) = -1.1663 + 0.3710×no. of items; r2 =0.671 
                (-0.490)    (2.86) 
 
Mean VTTS (total time) = 1.5880 + 0.10966×no. of items; r2=0.881. 
   (4.27)        (5.41) 
 
The evidence on systematic and directional variation of mean VTTS associated with overall 
design dimensionality is encouraging to the extent that it signals some potential 
relationships that can be used (if reinforced by other studies) to adjust overall VTTS when 
making an appropriate comparison between different designs, but it is too early to claim 
generalisable findings. In future studies, what might be the criteria to identify the design 
space within which application values can be determined? Is it the revealed preference 
space? 
 
To further investigate the directional influence of design complexity on VTTS we can make 
use of the more general test based on a global choice complexity index (CCI) introduced in 
Hensher (in press). CCI is based on the systematic relationship between design 
dimensionality and the (relative) utility associated with a specific alternative and 
individual14: 
 
CCI = -4.789 -0.2099×nalts - 0.6411×natts +0.0243×chest - 0.3629×nlvls -1.083×wtb – 1.234×ntb 
         (-12.6)   (-3.7)              (-13.4)              (1.7)                  (-6.6)               (-9.5)            (-11.1) 
(Adjusted r2 = 0.0198, t-values in parenthesis) See Table 1 for definitions of explanatory variables. 
 
After establishing the role of specific design dimensions on CCI, we specify a simplified 
model that aggregates travel time components (in line with what most respondents indicate 
they do in processing the choice alternatives) and add in an interaction between travel time 
and CCI. This allows the positive and negative effects of complexity to be averaged in a 
plausible way, with the resulting influence on VTTS providing a more general statistical 
test without taint of data mining in order to give confidence in the findings based on the 
limited set of significant interactions effects in Table 5. We expect a statistically significant 
negative parameter estimate for the interaction to enable the general test to support our 
finding of VTTS increasing as the SC design increases in complexity (as measured by the 
number of ‘levels’ associated with each dimension of the design). The parameter estimate 

                                                 
13 The strictly increasing VTTS with task complexity as defined by the number of items to process is qualified 
by fluctuation associated with the range of attributes (with the wider range lowering the mean VTTS 
compared to the base and narrower range). The upward trend however remains statistically significant.  
14 Although we have used a CCI in Hensher (2003), a referee saw merit in using CCI within the simplified 
model in which all time attributes are aggregated, as a more general test of increasing VTTS as more items 
are included in the design dimensionality.  
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for CCI interacted with total travel time is -0.000047 (t-value of -3.2) which supports the 
earlier finding that aggregated VTTS increases as the complexity of a design increases. 
 
The cognitive processes used to evaluate attribute trade-offs are complex, both in a revealed 
preference (RP) and a stated choice context. The difference between RP and SC is that the 
latter is a constructed setting whereas the former is a reported (perceived) setting 
influenced heavily by the elements of the choice context that the analyst seeks from the 
respondent (e.g. the specific attribute levels of the chosen and non-chosen alternatives). 
While we should not assume that RP VTTS is ‘correct’ (because if it is then one questions 
the basis for SC studies), if we can establish how much information is actually processed 
by individuals in making decisions in real choice markets (not necessarily captured in RP 
studies), especially the range of attribute levels and the rules for inclusion/exclusion and 
aggregation, then we have some contextual guidelines to assist in putting boundaries on the 
dimensionality of SC experiments. This representation of the space in which the 
behavioural VTTS most likely resides is an appealing role for real market data (in contrast 
to RP data per se), with SC data serving the important role of providing suitable (bounded) 
variability for establishing robust parameters for the inputs into WTP.  
 
In the current study we have set out the framework within which future studies might 
proceed to establish the boundaries for real world applications. The SC design can then be 
constrained to satisfy the boundary conditions and designed to ensure that the bounded 
variability offered in the choice experiment is sufficient to deliver robust and efficient 
parameter estimates to derive behaviourally suitable VTTS. 
 

7. Conclusions 
 
This paper has taken a close look at the evidence on the influence of design dimensionality 
on the willingness to pay for travel time savings. What we are observing from a systematic 
assessment of the impact of stated choice experiment designs on key behavioural outputs, 
within a domain that stretches the main design dimensions over the limits of popular 
practice, is that design differences do have behavioural, and statistically significant, 
influences on the distribution of WTP for travel time savings (in its various states of 
disaggregation).   
 
The evidence cannot be used to conclude that a specific design specification is preferred 
(especially that we should keep our designs to simple dimensionality such as DD-P1). 
Rather we have to recognise that WTP evidence will be influenced by the design 
implemented, with the current evidence suggesting higher mean WTP for total travel time 
savings for designs with more items to process. Researchers will have to use supplementary 
criteria to decide on what is an appropriate design dimensionality. These will include 
evidence from real markets on what information individuals process (such as the specific 
number of alternatives and the range of levels of attributes). There remains much to 
investigate. 
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