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1. Introduction 

This paper is motivated by the often asked question as to whether there exists greater synergy in 
the willingness to pay (WTP) evidence within model form across comparable data sets 
compared to across model forms within data sets. The opportunity to investigate this issue is 
rare because of the lack of a number of data sets that are similar. We have collected, over a 10 
year period, in Australia and New Zealand, seven very similar data sets whose centerpiece is a 
stated choice (SC) experiment described by three unlabelled alternatives and 16 choice sets in 
the context of a sample of commuters choosing between a bundle of trip time and cost attributes 
associated with tolled and non-tolled routes. In all data sets the SC design is a pivot design, in 
which the reference (or status quo) alternative is a representation of a recent commuting trip, 
and the two other alternatives are constructed as variations around the attribute levels associated 
with the experienced trip. All data sets include running cost and toll, as well as free flow; 
however non-free flow time is defined as either a single attribute ‘congested time’ or two 
separate attributes ‘slowed down time’ and ‘stop/start/crawling time’. An overview of each data 
set is presented in Table 1. 

In this paper we estimate five classes of choice models: multinomial logit (MNL), latent class 
(LC), scaled multinomial logit (SMNL), mixed multinomial logit (MMNL), and the most 
general model, generalized mixed multinomial logit (GMMNL) that accounts for preference and 
scale heterogeneity. We also test for constrained and unconstrained distributions associated with 
the random parameters in MMNL and GMMNL. The main output of interest is the valuation of 
travel time savings, which initially is estimated without any adjustment in the time period and 
country, but ex post estimation, is converted to a common currency time period $AU2010. 
Using the conversion for the cost attributes in ex ante estimation is not appropriate since it runs 
the risk of distorting the behavioural trade-offs that are evident at the time of each survey. 

The paper is organized as follows. We begin with an overview of the seven data sets, and then 
present the estimated models. The values of travel time savings are then calculated and 
contrasted within and between data sets with respect to each of the choice models. A 
multivariate model is presented to reveal the underlying structural relationships between the 
evidence that form the basis of answering the question posed on whether there exists greater 
synergy in the WTP evidence within model form across data sets compared to across model 
forms within data sets. Conclusions highlight the main contribution. 

2. Data sources 

Seven SC data sets from five Australian and two New Zealand tollroad studies that were 
conducted between 1999 and 2008 are used in this paper. The choice experiments involved each 
sampled respondent1

 

 answering 16 choice scenario questions. In each choice question, the 
respondent was required to make a choice among three alternatives, one described by a recent 
trip and two alternatives defined by attribute levels pivoted off of the recent (or reference) trip 
profile. Pivoting offers more realism in the stated preference experiment since hypothetical 
alternatives are defined relative to the reference alternative (status quo), giving better specificity 
in the context of the choice task (Train and Wilson 2008). The seven surveys were conducted as 
computer aided personal interviews (CAPI). We briefly describe each data set below, with 
further details given in Appendix A. 

 

                                                           
1In some data sets, both car commuters and non-commuters were sampled. This paper focuses on car commuters. 
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Table 1:  A summary of seven tollroad studies 

Notes: the standard deviation is given in parenthesis. * Only one sampled car commuter paid toll. ** Model estimation has a multiple of 16 times the number of observations. 
               

 

Number of 
sampled 

car 
commuters

** 

Year 
of 

data Country 

Recent toll 
used in 

reference 
trip 

(proportion 
of 

sample) 

Attributes Socioeconomics Variables 

Free 
flow 

minutes 
(mins) 

Slowed 
down 
time 

(mins) 

stop/start/ 
crawling 
(mins) 

Congestion 
time  

(mins) 
Running 
cost ($) 

Toll 
Cost  
($) Age 

Gender 
(proportion 

female) 

Annual 
Personal 
Income 

(thousands) 

Hours 
worked 

per 
week 

Study 1 280 2008 Australia 0.36% 13.29 
(11.43) 

11.52 
(9.82) 

13.59 
(14.59) - 2.95 

(2.30) 5.80* 39.44 
(13.01) 0.43 54.75 

(30.76) 
37.79 

(13.65) 

Study 2 147 2000 Australia 33.30% 23.35 
(15.52) - - 16.78 

(15.95) 
2.72 

(2.15) 
3.05 

(0.82) 
42.48 
(9.84) 0.31 82.82 

(38.27) 
39.94 

(15.60) 

Study 3 152 1999 New 
Zealand 0% 13.76 

(19.82) 
5.99 

(7.89) 
4.18 

(5.21) - 1.98 
(3.93) - 40.74 

(10.22) 
Not 

Collected 
26.51 

(11.15) 
34.29 

(15.65) 

Study 4 304 2005 Australia 7.89% 12.19 
(9.73) 

16.66 
(9.74) 

10.92 
(11.09) - 1.76 

(1.33) 
2.23 

(0.34) 
42.30 

(11.86) 0.34 57.56 
(28.23) 

41.04 
(13.77) 

Study 5 57 2004 Australia 33.30% 38.86 
(20.83) - - 34.93 

(19.95) 
7.03 

(3.75) 
4.28 

(2.02) 
42.73 

(11.70) 0.11 82.55 
(34.32) 

42.56 
(12.81) 

Study 6 243 2004 Australia 75.30% 22.53 
(12.35) - - 31.80 

(19.28) 
2.44 

(1.66) 
2.72 

(1.36) 
41.70 

(11.26) 0.36 87.46 
(33.41) 

41.91 
(11.60) 

Study 7 115 2007 New 
Zealand 0% 27.96 

(16.31) - - 9.89 
(9.73) 

4.38 
(2.43) - 48.02 

(12.26) 0.63 48.10 
(24.57) 

41.92 
(13.83) 
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Study 1 

The first study is the most recent, undertaken in 2008, using a D-efficient experimental design 
structured to increase the statistical performance of models with relatively smaller samples than 
are required for other less-efficient (statistically) designs such as orthogonal designs (see e.g., 
Rose et al. 2008). In total, 280 car commuters (with less than 120 minutes’ trip length) were 
sampled.  

The three alternatives shown in each choice set were described in terms of free flow time, 
slowed down time, stop/start/crawling time, running cost, toll cost, and travel time variability. 
Compared to the other data sets, this data set (Study 1) is unique in terms of how travel time 
variability2 is portrayed, where each alternative has three travel scenarios - ‘arriving x minutes 
earlier than expected’, ‘arriving y minutes later than expected’, and ‘arriving at the time 
expected’. Each time is associated with a corresponding probability3

In contrast to Study 1 (see Figure 1), where three arrival scenarios along with their probabilities 
of occurrence for a trip were presented in the choice experiments, the other six studies defined 
the trip time variability attribute as plus or minus a level of trip time associated with a trip (see 
Figure 2 for an example). Despite the innovation in the trip variability attribute in data set 1, we 
exclude trip time variability in all model estimation given previous evidence using these data 
sets that, with the exception of data set 1, the variability attribute was poorly specified and often 
not statistically significant. 

 of occurrence to indicate 
that travel time is not fixed but varies from time to time. For all attributes except the toll cost, 
minutes arriving early and late, and the probabilities of arriving on-time, early or late, the values 
for the SC alternatives are variations around the values for the current trip.  

Studies 2-7 

Study 2 (Australia, 2000), Study 3 (New Zealand, 1999), Study 4 (Australia, 2005), Study 5 
(Australia, 2004), Study 6 (Australia, 2004) and Study 7 (New Zealand, 2007) have used a 
survey similar to that shown in Figure 2. With the exception of Studies 2 and 3 where an 
orthogonal design was used, a D-efficient design was used. For all studies, the trip cost is 
disaggregated into the running cost and the toll cost. Studies 3 and 4 have three time 
components, i.e., free flow time, slowed down time, and stop/start/crawling time; while the last 
two components are combined into congestion time in Studies 2, 5, 6 and 7. 

The sample size for car commuters ranges from 57 (Study 5) to 280 (Study 1). Given that the 
sampled New Zealand’s car commuters had no tolling experience before they were interviewed, 
toll costs are only available for Australian studies.  
 

                                                           
2 Given this difference, the paper focuses only on the value of travel time savings.  
3 The probabilities are designed and hence exogenously induced to respondents, similar to other travel time reliability studies. 
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Figure 1: Type 2 design used in Study 1 

 

 

Figure 2: An example of Type 1 design used in other studies 

3. Model estimation and evidence 

Table 2 provides a summary of the overall goodness of fit of each of the models that are set out 
in detail in Appendix B Table B1 (seven parts). Table 3 summarises the scaled MNL model in 
which all data sets are combined in a model with 21 (7 by 3) utility expressions, three per data 
set.  

At the outset it is important to indicate that we chose the same set of attributes and functional 
form for inclusion in all models and data sets for the following reasons4

                                                           
4 A referee made the comment that “…you are likely to obtain similar results across similar studies if a consistent model 
specification is used. However, this consistent specification is by definition a compromise solution, and if the optimal specification 
was used for each dataset, then larger differences may well arise.” While we do not disagree with the general position, which 
would have to be proven, we have opted for the consistent model for the reasons explained in the text. The development of 
‘optimal’ models, 49 in total, would be a worthy separate study. 

. Firstly, we opted for a 
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common functional form so that we could compare the models without confounding the 
interpretation. Secondly, it is common in practice for analysts to estimate simpler models, and 
then to use the same variables in a more complex model where preference and/or scale 
heterogeneity effects are accounted for or latent classes. Thirdly, we excluded an attribute where 
it was only available in a particular form in one data set (e.g., trip time variability in data set 1), 
but not until we checked whether its exclusion would have an impact on the WTP estimates of 
interest5. Finally, we took the decision to exclude socioeconomic effects after we found that the 
value of travel time savings (VTTS) estimates within each data set for the various models did 
not change as a result of the independent addition of income and gender6

Before presenting the main findings, we provide an overview of the more advanced methods 
that are now available to account for scale and taste heterogeneity

. Importantly what we 
found when including income is that it did not significantly change the mean VTTS estimate, 
and hence the relative evidence on VTTS does not change. 

7

 

.The SMNL and GMMNL 
models build on the specifications of the MMNL model developed in Train (2003) and Hensher 
and Greene (2003) amongst others, and the GMNL model first operationalised in Fiebig et al. 
(2009). The MMNL model version of interest is: 

,
,

,1

exp( )
Prob( | , , )

exp( )it

it j
it it j i i J

it jj

V
choice j

V
=

= =
∑

x z v  (1) 

where 

 Vit,j  = βi′xit,j 

 βi = β + Γvi 

 xit,j = the K attributes of choice j in choice situation t faced by individual i, 

 vi = a vector of K random variables with zero means and known (usually 

     unit) variances and zero covariances. 
                                                           

5 For data set 1, we estimated the model with and without travel time variability. Given that the scheduling model (see e.g., Small 
et al. 1999) is the state of practice model for valuing travel time variability and VTTS, a series of scheduling models with travel 
time variability variables (i.e., expected schedule delay early/late) were estimated. For example, the mean VTTS under the 
scheduling model within a MMNL framework with constrained triangular distributions is $21.02 per person hour, which is similar to 
$21.39 per person hour reported in Table 4 from the MMNL model without variability. Using the Wald test, we calculated the 
confidence levels for the two mean VTTS, where the VTTS from the scheduling model with travel time variability is within the 
range of $17.17-24.74 per person hour, and the VTTS from the model without variability is within the range of $17.37-25.30 per 
person hour. Hence we can reject that these two mean VTTS are statistically significantly different at the 95 percent confidence 
interval. The VTTS under the scheduling model within a latent class model (two classes) is $11.93 per person hour in contrast to 
$12.70 per person hour reported in Table 4. Under the 95 percent confidence interval, the mean VTTS from the model with travel 
time variability is within the range $7.09-14.59 per person hour, and the mean VTTS from the model without income within the 
range $9.72-15.49 per person hour. Again, we can reject that the hypothesis that the two means are statistically significantly 
different at the 95 percent confidence interval. This enabled us to use the same set of attributes (recognising the two attributes 
were combined in some data sets), in the comparisons.  

6 To illustrate, we estimated the models which have the income variable in the utility function for the reference alternative, and 
found that income has a marginal effect on the estimated VTTS and model fit.  

Using Dataset 1 as an illustrative example, the mean VTTS under the MMNL model (constrained triangular) with income is $20.83 
per person hour, which is similar to $21.39 per person hour reported in Table 4 from the MMNL model without the income 
variable; and this MMNL model with income has a Bayes Information Criterion (BIC) value of 1.4934 (vs. 1.4843 from the 
corresponding model without income). Using the Wald test, we also calculated the confidence levels (95 percent) for two mean 
VTTS, where the VTTS from the model with income is within the range of $17.09-25.11 per person hour, and the VTTS from the 
model without income is within the range of $17.37-25.30 per person hour. Hence we can reject that these two mean VTTS are 
statistically significantly different at the 95 percent confidence interval. The latent class model (two classes) with income produces 
the VTTS of $13.41 per person hour, which is slightly higher than $12.70 per person hour reported in Table 4, where the BIC 
value for this latent class model with income is 1.2451 (vs. 1.2319 from the corresponding model without income). For the 95 
percent confidence interval, the mean VTTS from the model with income is within the range of $9.32-20.84 per person hour, and 
the mean VTTS from the model without income is within the range of $9.72-15.49 per person hour. Again, we can reject the 
hypothesis that the two means are statistically significantly different at the 95 percent confidence interval. 

7 For an overview of latent class and MMNL models, see Greene and Hensher (2003). 
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The unobserved heterogeneity in the preference parameters of individual i is embodied in Γvi. 
Structural parameters are the constant vector, β, the K×M matrix of the nonzero elements of the 
lower triangular Cholesky matrix, Γ. A number of interesting special cases are straightforward 
modifications of the model. Specific non-random parameters are specified by rows of zeros in 
Γ.  

Scale heterogeneity across choices can be built into the model by random alternative-specific 
constants. The preceding is modified as equation (2) (see Feibig et al. 2009, Keane 2006, 
Greene and Hensher 2010). 

 βi     = σiβ + σi Γvi (2) 

 

The additional terms not yet defined are: 

 σi  = exp[σ + τwi] , the individual specific standard deviation of the idiosyncratic  

     error term 

 wi  = the unobserved heterogeneity, standard normally distributed 

 σ   = a mean parameter in the variance 

 τ   = the coefficient on the unobserved scale heterogeneity 

 

The model in all forms is estimated by maximum simulated likelihood. Fiebig et al. (2009) and 
Greene and Hensher (2010) discuss details of normalisations required for identification. In 
particular: (i) to identify σ  which is not identified separately from τ, we normalize σi so that 
E[σi

2] = 1, by setting σ  = -τ2/2 instead of zero; (ii) to ensure τ > 0, the model is fit in terms of λ, 
where τ = exp(λ) and λ is unrestricted.  

An extension of interest herein is to allow τ to be a function of a series of dummy variables that 
identify the presence of scale heteroscedasticity between different data sets (the model in Table 
3). This is a simple but important extension as follows: τ = τ + ηds where η is a data-set specific 
scale parameter and ds =1 for data set s and zero otherwise, with s=1, 2…, S-1. Combining all 
terms, the simulated log likelihood function for the sample of data is shown in equation (3) (See 
Greene and Hensher 2010). 
 

 
,

1 1 1 1

1log log ( , , )i it it jT JN R d
it iri r t j

L P j
R= = = =

 =  
 

∑ ∑ ∏ ∏ X β
 (3) 

where 

 

 βir = σirsβ  + σirsΓvir, 

 σirs = exp[-(τ + ηds )2/2 + (τ + ηds )wir], 

 vir and wir = the R simulated draws on vi and wi, 

 ditj  = 1 if individual i makes choice j in choice situation t and 0 otherwise, 

and 

 ,

1 ,

exp( )
( , , )

exp( )it

it j ir
it ir J

j it j ir

P j
=

′
=

′Σ

x
X

x
β

β
β

 (4) 

 



Does the choice model method and/or the data matter? 
Hensher, Rose & Li 

 

7 

In models with random parameters we have allowed for preference heterogeneity in all travel 
time attributes, but imposed preference homogeneity on the cost parameter. Although this may 
have some impact on other model results, it is the belief that in simulating VTTS, treating the 
cost parameter as random will have a far worse impact on the evidence as shown by Daly et al. 
(2010) if both the numerator and denominator are drawn from random parameter distributions. 
They state “…we show that some popular distributions used for the cost coefficient in random 
coefficient models, including normal, truncated normal, uniform and triangular, imply infinite 
moments for the distribution of WTP, even if truncated or bounded at zero. [And]…that relying 
on simulation approaches to obtain moments of WTP from the estimated distribution of the cost 
and attribute coefficients can mask the problem by giving finite moments when the true ones are 
infinite.” The authors also show that using finite mixture such as latent class models can assure 
that the distribution of WTP has finite moments.8

The best fit model form on log-likelihood and Bayes information criterion (BIC) varies between 
the data sets, with latent class outperforming other models for four of the seven data sets

 

9

The statistical gains in moving from SMNL to GMNL are extremely variable, with noticeable 
improvement in fit in some data sets (i.e., DS1, DS2, DS6), but little gain otherwise, but with 
SMNL noticeably better on DS3. The evidence to support gains by including both scale and 
preference heterogeneity in GMMNL is not overwhelming in general, even recognising that the 
efforts to find the preferred GMMNL model requires careful selection of starting values and 
evaluation of the number of draws. We have found that using starting values from the equivalent 
MMNL model (in contrast to MNL estimates on a subset of comparable parameters) is far 
superior in estimation time and in picking a ‘winning’ set of parameter estimates. 

. As 
expected, MNL is not a good performer, with significant improvement in fit as we move to 
SMNL, MMNL) and GMMNL. Figure 3 presents the difference between the log-likelihood at 
convergence of each model relative to the best fit model for each data set. In addition to the 
MNL models, we see that the SMNL model and the mixed logit model with constrained 
distributions on the parameters have the greatest deviation from the best fitting model, although 
the exception is data set 3 where the SMNL model is the best fit. There is clear evidence that in 
all cases, a MMNL model with unconstrained random parameter distribution is a significant 
improvement in fit over MMNL with a constrained distribution, despite behavioural concerns 
about sign changes in parameter estimates across the full distribution.  

 
  

                                                           
8 We thank a referee for raising this point, although the referee suggested we estimate all relevant models with random 
parameters for cost. 
9 In all data sets a two-class latent class model had the best BIC. 
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Table 2: Summary of overall goodness of fit of all models 

 

  

DS1 DS2 DS3 DS4 DS5 DS6 DS7 
Australia Australia NZ Australia Australia Sydney NZ 

2008 2000 1999 2005 2004 2004 2007 
Log-likelihood 

MNL -3435.78 -1867.75 -1714.52 -2670.61 -855.87 -3037.75 -1639.61 
SMNL stand alone -2826.91 -1512.91 -1378.93 -2371.24 -808.32 -2903.67 -1466.58 
Latent Class -2713.27 -1393.81 -1380.96 -2335.29 -739.06 -2759.91 -1237.06 
MMNL (t,1) -3303.25 -1478.43 -1700.81 -2568.82 -831.86 -2886.65 -1570.45 
MMNL (t) -2961.94 -1364.55 -1637.34 -2412.04 -802.73 -2816.82 -1533.71 
GMNL (t,1 or n,1) -2783.69 -1396.92 -1627.66 -2286.04 -789.82 -2799.32 -1454.39 
GMMNL (t) -2955.97 -1350.83 -1630.61 -2334.16 -792.12 -2794.24 -1535.37 
  Bayes Information Criterion (BIC) 
MNL 1.5432 1.6014 1.4262 1.1068 1.9068 1.5711 1.7985 
SMNL stand alone 1.2733 1.3029 1.1532 0.9855 1.8099 1.5043 1.6145 
Latent Class 1.2319 1.2149 1.1709 0.9794 1.6882 1.4388 1.3814 
MMNL (t,1) 1.4843 1.2704 1.4147 1.0651 1.8542 1.4934 1.7331 
MMNL (t) 1.3372 1.1801 1.3721 1.0058 1.8052 1.4617 1.6916 
GMMNL (t,1 or n,1) 1.2559 1.2077 1.3611 0.9522 1.7769 1.4527 1.6054 
GMMNL (t) 1.3384 1.1751 1.3732 0.9772 1.7969 1.4544 1.7016 

Note: best model associated with each data set is bolded and italicised (t,1) is a constrained triangular distribution, (t) is an 
unconstrained distribution,  and (n,1) is a constrained normal distribution, 500 Halton draws 
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Figure 3: Log-likelihood differences relative to best fit model 
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In Table 3, we present the SMNL results for a single model using all data sets, each with their 
own utility expressions, but recognising heterogeneity in scale overall and heteroscedastic 
differences (in the GMMNL scale factor) between data sets. We have included reference-
specific constants for each data set as well as data-set specific parameter estimates for slowed 
down time, stop start time and congested time; however we have constrained the parameter 
estimate for free flow time to be generic across all data sets. This is a requirement explained in 
Louviere et al. (2000) as data enrichment in which pooling the seven choice data sources 
necessitates an equality restriction on at least one common parameter, while controlling for the 
scale factors.  

Table 3: A summary of modelling results for the pooled SMNL model (seven data sets) 

  DS1 DS2 DS3 DS4 DS5 DS6 DS7 
 Parameters:                     

Reference constant 1.249 
(-13.86) 

0.4397 
(12.55) 

0.4323 
(7.62) 

0.3128 
(7.94) 

-0.6297 
(-6.55) 

0.0901 
(3.60) 

0.3689 
(11.45) 

Free flow time -0.1405 
(-26.99) 

-0.1405 
(-26.99) 

-0.1405 
(-26.99) 

-0.1405 
(-26.99) 

-0.1405 
(-26.99) 

-0.1405 
(-26.99) 

-0.1405 
(-26.99) 

Slowed down time -0.1195 
(-9.71) 

- 
 

-0.1138 
(-6.53) 

-0.3476 
(-20.82) 

- 
 

- 
 

- 
 

Stop start time -0.1383 
(-14.37) 

- 
 

-0.2575 
(-11.62) 

-0.2793 
(-19.99) 

- 
 

- 
 

- 
 

Congested time - 
 

-0.1381 
(-21.74) 

- 
 

- 
 

-0.1393 
(-11.33) 

-0.1462 
(-21.08) 

-0.1651 
(-17.10) 

Cost -0.7744 
(-13.16) 

-0.7267 
(-24.64) 

-1.2088 
(-10.52) 

-1.2103 
(-20.86) 

-0.2814 
(-11.97) 

-0.6699 
(-22.56) 

-0.8988 
(-23.61) 

Heteroscedasticity in 
GMMNL scale factor 

-0.0005 
(-0.01) 

0.2568 
(4.02) 

0.4088 
(3.87) 

0.5039 
(10.63) 

-0.5735 
(-3.62) 

0.1353 
(2.42) 

- 
 

Variance parameter in 
scale 

1.0130 
(74.35) 

Model fit 
Log-likelihood 13237.0 
Bayes Information 
Criterion (BIC) 1.2901 
No. of observations 20768 

 

We have a statistically significant parameter estimate for the overall τ (t-ratio of 74.35). What 
this suggests is that we have identified the presence of unobserved scale heterogeneity when this 
is fed into the calculation of the standard deviation σir, or the individual-specific standard 
deviation of the idiosyncratic error term, equal to exp(-τ2/2 + τwir), assuming an estimate for wir, 
the unobserved heterogeneity is standard normally distributed, the ‘mean of the standard 
deviation’ and the ‘standard deviation of the standard deviation’ are such that the overall 
influence is significantly different from unity. When we allow for heteroscedasticity in the 
GMMNL scale factor between the seven data sets, through the inclusion of a dummy variable 
for D-1 data sets i.e., exp(-(τ + ηds)2/2 + (τ + ηds )wir), we obtain the standard deviation of scale 
for data sets 1 to 7 as respectively 0.982 (1.35), 0.934 (1.66), 1.038 (3.62), 1.014 (2.90), 0.990 
(0.45), 0.996 (1.81), and 0.989 (1.39). The figures in brackets are the standard deviations around 
the mean standard deviation of scale. Hence the mean range is 0.934 to 1.014, a maximum 
difference between pairs of data sets of 16 percent. Given the standard deviations of the scale 
standard deviations, we are not able to discern statistically significant scale differences of a 
heteroscedastic nature between the data sets, and all we can say is that scale heterogeneity is 
present but it is not systematically conditioned by any specific data set. This is an interesting 
finding and an encouraging one for future applications, since it suggests that the presence of 
scale heterogeneity in studies that combine RP and SC data (or SC data sets) is not spread 
across the data sets with systematic effects unique to the RP or SC data set. This finding, in 
many ways, is supportive of previous findings by Hensher et al. (2005) who has often claimed 
that  scale differences are linked to specific alternatives (e.g., common public transport modes 
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across RP and SC data) and not within specific data sets. Intuitively this makes sense, since 
scale is a property of unobserved variance and not of decision structures per se, and thus one 
expects unobserved influences that are common to the same alternative defined in an RP and an 
SC setting (e.g. bus and train vs. car) in contrast to differences in unobserved influences 
associated with SC vs. RP alternatives (i.e., bus, train, car in SC vs. bus, train, car in RP). 

4. Willingness to pay output 

The mean estimates of value of travel time savings (VTTS) are summarised in Table 4 for the 
study year and location, as well as in the converted common currency and period ($AU2010), 
and displayed graphically in Figure 4 for all estimates in $AU2010. The calculation of these 
estimates involved a weighted average of the VTTS estimates for each travel time component, 
where the weights represent the incidence of each component of travel time, for each respondent 
and alternative.  

Table 4: Mean VTTS in study year and location ($AU2010 in parenthesis) 

Data Set MNL SMNL 
stand 
alone 

(scaled) 

SMNL 
pooled 
(scaled) 

MMNL 
(t,1) 

MMNL 
(t) 

GMNL  
(t,1 or 
n,1) 

GMNL 
(t) 

Latent 
Class 

(2 classes) 

1, 2008 13.88 
(14.42) 

10.48 
(10.88) 

10.15 
(10.54) 

21.39 
(22.21) 

14.31 
(14.86) 

40.82 
(42.309) 

47.70 
(49.53) 

12.70 
(13.19) 

2, 2000 11.06 
(17.42) 

12.67 
(19.96) 

10.76 
(16.95) 

17.56 
(27.67) 

6.81 
(10.73) 

27.45 
(43.24) 

8.12 
(12.79) 

11.42 
(17.99) 

3, 1999 10.79 
(11.20) 

3.55 
(3.69) 

7.94 
(8.24) 

12.84 
(13.33) 

9.61 
(9.97) 

12.99 
(13.48) 

12.44 
(12.91) 

5.60 
(5.81)10

4, 2005 
 

13.00 
(16.49) 

28.00 
(33.0) 

14.51 
(17.10) 

18.83 
(22.20) 

17.80 
(20.99) 

46.70 
(55.05) 

54.27 
(63.97) 

14.68 
(17.30) 

5, 2004 15.46 
(17.76) 

24.02 
(27.58) 

29.55 
(33.93) 

15.67 
(17.99) 

16.18 
(18.58) 

36.94 
(42.41) 

22.49 
(25.83) 

15.27 
(17.54) 

6, 2004 13.95 
(16.02) 

10.52 
(12.07) 

12.82 
(14.72) 

16.78 
(19.27) 

14.98 
(17.20) 

20.81 
(23.89) 

21.45 
(24.63) 

15.11 
(17.35) 

7, 2005 12.44 
(11.02) 

13.61 
(12.06) 

9.70 
(8.60) 

14.66 
(12.99) 

12.65 
(11.21) 

19.13 
(16.96) 

18.67 
(16.55) 

11.54 
(10.23) 

Note: bold estimates are the highest in the each data set, italicised are lowest estimates 
 

There are significant variations in the estimates of mean VTTS, as might be expected. What is 
of particular interest are higher mean estimates from the GMMNL models in all data sets, while 
the lowest values are spread across all other model forms. Is there a story to tell here? It is far 
from clear what the behavioural implications are, although it is noteworthy that the mean 
estimates are more similar within MNL than within any other model form, and diverge most 
significantly under GMMNL, followed by SMNL. Empirical evidence seems to suggest that 
scale heterogeneity appears to exert a greater influence on producing differences in mean 
estimates of VTTS across studies than does preference heterogeneity (as accounted for in 
MMNL while ignoring scale heterogeneity). If as it appears, this is the empirical situation, then 
previous studies that have ignored scale heterogeneity have in effect increased the chance of 
transferability of VTTS when in fact this is misleading as a consequence of failing to recognise 
scale heterogeneity in the sampled population. The call to recognise that scale matters (e.g., 
Louviere and Eagle 2006) is certainly reinforced by the evidence herein. 

                                                           
10 It may initially appear odd that the 2010 estimate is very similar to the 1999 estimate. This is New Zealand data and in $NZ 
2010 we have $7.32, but after conversion to $AU2010, it declines significantly. 
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Figure 4: Summary of mean VTTS by model form and data set 

We ran a series of linear regression models to establish the role of model and data set in the 
resulting weighted average estimates of VTTS, and found that the data set is a significant 
driving force once we controlled for the difference between the VTTS evidence for GMMNL 
compared to other model forms. The findings are summarised in Table 5. We have included 
additional variables to account for ‘outliers’ which improved the initial models, increasing the 
explanation of the variation in VTTS across the full sample from 44 percent to 76.4 percent. 
These interaction variables were associated with the GMMNL model and specific data sets 1 
and 4, the MMNL (t,1) model and data set 4, and the latent class (LC) model and data set 5 (see 
Table 5). The resulting model and unstandardised residuals (Figure 5) suggest that once we 
control for differences between GMMNL and all other model forms, data set differences 
dominate the sources of systematic variation in mean VTTS, despite latent class and MMNL 
with constrained random parameter distributions being marginally significant in influence. 
  



Does the choice model method and/or the data matter? 
Hensher, Rose & Li 
 

12 

Table 5: Sources of Systematic Variation in VTTS 

Dependent variable: VTTS 
All variables are dummy (1,0) specifications 
Explanatory 

variable 
Parameter 
estimate 

(t-ratio) mean 

Constant 10.6408 (5.32)   
MNL -1.7616 (-0.92) 0.125 

SMNL 0.3706 (0.16) 0.125 
Latent Class -3.1769 (-1.71) 0.125 
MMNL (t,1) 3.6807 (1.77) 0.125 
MMNL (t) -1.8736 (-0.98) 0.125 

GMNNL (t,1) 17.2517 (4.42) 0.125 
Data set 1 5.2819 (2.33) 0.143 
Data set 2 8.3921 (3.72) 0.143 
Data set 3 -2.6238 (-1.03) 0.143 
Data set 4 14.6366 (4.33) 0.143 
Data set 5 10.790 (4.56) 0.143 
Data set 6 5.6909 (2.38) 0.143 

GMMNL(t)*DS1&4 36.1544 (12.63) 0.036 
MMNL(t,1)*DS4 -6.7592 (-2.01) 0.018 

LC*DS5 15.6784 (7.13) 0.018 
Adjusted R2 0.764 
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Figure 5: Unstandardised residuals of VTTS model 

The key message is that the data set does make a difference, more than the choice of model 
does, except when using a GMMNL model compared to other choice models. Since GMMNL 
allows for preference and scale heterogeneity, this finding supports a view that allowing for this 
broadening of sources of heterogeneity does indeed make a significant difference in mean 
VTTS. This is a potentially important finding given that we have seven data sets and eight 
model forms.  
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Conclusions 

We began with the question as to whether there exists greater synergy in the WTP evidence 
within choice model form across comparable data sets, compared to across model forms within 
data sets. We believe that the data set drives the differences much more than does the choice 
model used, with the exception of contrasts between GMMNL and all other choice models. This 
suggests that the differences in Table 5 across a row appear to be less noticeable than the 
differences within a column.  

As part of the investigation into sources of systematic variation in VTTS, we included the 
choice model form as a series of explanatory dummy variables, and found that the difference 
between GMMNL and non-GMMNL models was statistically significant, and given the much 
higher mean estimates in Table 5, this is not surprising. What is of greater interest is a 
recognition that when studies using these data sets were undertaken in the past (i.e., in the year 
that the data was collected) the mean estimates recommended (using, in all situations, MMNL 
models with constrained triangular distributions) in the local currency at the time are 
respectively, for data sets 1 to 7, $18.39 ($21.39) (2008), $17.31 ($17.56) (2000), $10.20 
($12.84) (1999), $18.23 ($18.83) (2005), $24.88 ($15.67) (2004), $18.53 ( $16.78)(2004) and 
$14.25 ($14.66) (2007)11

Thus, as one moves to behaviourally more complex or ‘realistic’ choice models, the ability to 
obtain empirical evidence on mean VTTS from one data set to use in the context of another data 
set, given the selected choice model, diminishes. There appear to be two quite startling 
thresholds, one between MNL and latent class or MMNL, and the other between latent class or 
MMNL and SMNL or GMMNL. An important question to ask is whether this finding is good or 
bad? To the extent that the more complex models are more sensitive to the many possible 
influences such as differences in choice sets, different reference points, different ranges in 
attribute levels, etc., one might expect these results, and such results should be applauded, at 
least from a theoretical point of view. Practitioners may not like this finding; however, it is time 
to start contemplating the nature and extent of differences in key outputs of the myriad of choice 
models now available to choose from, and to use the evidence from each model and data set to 
provide some guidance on the implications of choosing one model form and not another form. 

. The equivalent MMNL mean estimates reported in this paper are 
given in brackets in italics. This range is nowhere inclusive of the GMMNL evidence for data 
sets 1, 2, 4, and 5. If we are willing to accept the evidence from the GMMNL models, not all of 
which are much higher (there being up to five exceptions in Table 4), the GMMNL model 
findings suggest that when we account for scale and preference heterogeneity, we obtain either 
significantly higher mean estimates or estimates at the higher end of a closer range between 
choice model forms within a data set. One might speculate that as models become more 
‘complex’ in form, that there is greater variability in the mean estimates of VTTS between data 
sets. Indeed the evidence supports this. If we order the models by their ‘complexity’ we would 
have MNL, then Latent Class, then MMNL, followed by SMNL and then GMNL. We find that 
the standard deviation of mean VTTS across the seven data sets increases from MNL to 
GMMNL as per the following sequence (recognizing the small differences in LC and MLuc): 
2.80 (MNL), 4.69 (LC), 4.30 (MMNLuc), 5.23 (MMNLc), 10.33 (SMNL), 15.72 (GMMNLuc) 
and 19.79 (GMMNLc), (noting that uc = unconstrained and c = constrained distributions), 
closely supporting the view we have adopted.  

There is clearly much research required to establish some unambiguous case for selection of a 
choice model form that is in a sense the ‘best’ from the available set. As models increase in 
complexity in the search for increased behavioural realism, we find that the evidence on 
willingness to pay becomes increasingly challenging in terms of selection of an appropriate set 
of values to use in practical applications. There is a sense in the worlds of research and 
consultancy that MMNL models should always be used on the argument that preference 
                                                           
11 The difference between the recommended VTTS at the time and estimates herein is due to the inclusion of a few other 
variables as well as different numbesr of Halton draws where applicable. 
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heterogeneity matters. Now we have the matter of scale heterogeneity to contend with, which is 
a less obvious candidate for intuitive support, yet it appears to matter, despite the evidence in 
the presence of preference heterogeneity (under GMMNL) being controversial.  

Allowing for scale heterogeneity in the absence of preference heterogeneity certainly brings the 
evidence into a range more akin to evidence from choice models such as MNL, latent class and 
MMNL, but this appears also to be problematic because, with the exception of one data set, it 
results in lower mean estimates than are obtained from MMNL.  

If we were to adopt what might be described as a practitioner’s view, the appeal of the latent 
class model as the best fitting model for four data sets, and close to best fit on the remaining 
three data sets, suggests that we might draw our VTTS estimates from this model. The mean 
across all data sets is $14.20 per person hour in $AU201012

While the analysis described in this paper by itself does not definitively answer the question of 
transferability of evidence, it provides a useful data point, a framework for future empirical 
studies and some conclusions that suggest the existence of strong differences across regions 
after accounting for model structure differences. The similarities among the datasets that were 
used provide a somewhat unique opportunity for the type of analysis conducted here. The need 
for ongoing research on this issue is fundamental, and it appears that this study, where we have 
seven comparable data sets, has muddied the water.  

, with a range from $5.81 to $17.99. 
The Australian data sets deliver $16.67 per person hour and New Zealand evidence is $8.02 per 
person hour in $AU2010. The New Zealand 2010 figure in the local currency is $10.43. These 
estimates appear in line with current practice (see Li et al. 2010). 

                                                           
12 An unweighted mean for all data sets and all model forms in $AU2010 is $19.93 per person hour. This is coincidentally very 
similar to the recommended value used from a number of Sydney studies reported by Hensher (2010) of $19.62, but in $AU2004. 
It should be noted that VTTS for Sydney are typically the highest across all data sets, which are as an unweighted average, 
$21.67 in $AU2010 in Table 5.  
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Appendix A: Background to the seven data sets 

Study 1 
The data is drawn from a study undertaken in Australia in the context of toll vs. free roads, 
which utilised a stated choice (SC) experiment involving two SC alternatives (i.e., route A and 
route B), which are pivoted around the knowledge base of travellers (i.e., the current trip). The 
trip attributes associated with each route are summarised in Table A1. 

Table A1: Trip Attributes in Stated Choice Design 

Routes A and B 
Free flow travel time 

Slowed down travel time 
Stop/start/crawling travel time 

Minutes arriving earlier than expected  
Minutes arriving later than expected 

Probability of arriving earlier than expected 
Probability of arriving at the time expected 
Probability of arriving later than expected 

Running cost 
Toll Cost 

 

Each alternative has three travel scenarios - ‘arriving x minutes earlier than expected’, ‘arriving 
y minutes later than expected’, and ‘arriving at the time expected’. Each is associated with a 
corresponding probability13

In the choice experiment, the first alternative is described by attribute levels associated with a 
recent trip; with the levels of each attribute for Routes A and B pivoted around the 
corresponding level of actual trip alternative with the probabilities of arriving early, on time and 
late provided. Commuters in a Metropolitan area in Australia were sampled. A telephone call 
was used to establish eligible participants from households. During the telephone call, a time 
and location were agreed for a face-to-face Computer Aided Personal Interview (CAPI). In 
total, 280 commuters (with less than 120 minutes’ trip length) were sampled for this study, each 
responding to 16 choice sets (games), resulting in 4,480 observations for model estimation. The 
experimental design method of D-efficiency used herein is specifically structured to increase the 
statistical performance of the models with smaller samples than are required for other less-
efficient (statistically) designs such as orthogonal designs (see Rose et al. 2008; Rose and 
Bliemer 2007).  

 of occurrence to indicate that travel time is not fixed but varies from 
time to time. For all attributes except the toll cost, minutes arriving early and late, and the 
probabilities of arriving on-time, early or late, the values for the SC alternatives are variations 
around the values for the current trip. Given the lack of exposure to tolls for many travellers in 
the study catchment area, the toll levels are fixed over a range, varying from no toll to $4.20, 
with the upper limit determined by the trip length of the sampled trip. 

 

Study 2 
The data collected in this study is from a study in Australia in 2000 in the context of route 
choices of car commuters. All data is entered by the interviewer directly into a decision support 
system on a laptop. A SC experiment in which the respondent compares the levels of times and 
costs of a current/recent trip against two alternative opportunities to complete the same trip that 
are described by other levels of times and costs. The respondent has to choose one of these 
alternatives. The sample of 147 effective interviews, each responding to 16 choice sets, resulted 
                                                           
13 The probabilities are designed and hence exogenously induced to respondents, similar to other travel time variability studies. 
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in 2,352 observations for model estimation. Three trip length segments were investigated: no 
more than 30 minutes, 31 to 60 minutes, and more than 61 minutes. 

The attributes included in the choice experiments are free flow time, congestion time, trip time 
variability, running cost, toll cost and toll payment options (cash, Electronic/Tag, and 
Electronic/Licence plate recognition (no tag required)). Attributes except for toll payment of the 
stated choice alternatives are based on the values for the current trip in terms of travel times and 
cost (including tolls if paid). In the design of the choice experiment, important considerations 
are: toll should range from $0 to $16; a longer trip should involve higher toll alternatives; for a 
current trip without a toll, SC alternatives involving a toll should mostly be faster than the 
current trip; and it is assumed that the faster the road, the higher the toll; the lower the running 
costs, the lower the free-flow time; and the lower the slowed down time, the lower the 
uncertainty. 

 

Study 3 
The survey was undertaken in late June and early July 1999, sampling residents of seven 
cities/regional centres in New Zealand. The main survey was executed as a laptop-based face to 
face interview in which each respondent was asked to complete the survey in the presence of an 
interviewer. Each sampled respondent evaluated 16 choice sets, choosing amongst two SC 
alternatives and the current RP alternative. Given a sample size of 152 car commuters, 2,432 
choice observations are yielded.  

The design is based on two unlabelled alternatives each defined by six attributes each of four 
levels (i.e., 412): free flow travel time, slowed down travel time, stop/start travel time, 
uncertainty of travel time, running cost and toll charges. Except for toll charges, the levels are 
proportions relative to those associated with a current trip identified prior to the application of 
the SC experiment. Including the current (i.e., RP) alternative, described by the exact same six 
attributes as the two SC alternatives, the design starts with six columns of zeros for the last trip 
attributes followed by six attributes for alternative A and then six attributes for alternative B. . 
The six attributes for alternative A are orthogonal to the six columns for alternative B, allowing 
for the estimation of models with complex structures for the random components of the utility 
expression associated with each of the alternatives (Louviere and Hensher 2001). The levels of 
the attributes for both SC alternatives were rotated to ensure that neither A nor B would 
dominate the RP trip, and to ensure that A and B would not dominate each other. The fractional 
factorial design has 64 rows. Four blocks of 16 were "randomly" allocated to each respondent. 

 

Study 4 
This survey, conducted in 2005, sampled 304 car commuters resident in an Australian 
Metropolitan Area. All data is entered by trained interviewers directly into a CAPI system on 
laptops, in which a sample of recent/current trips is the setting for establishing individual’s 
preferences for different combinations of levels of the components of travel time and vehicle 
trip costs. Each sampled respondent evaluated 16 choice sets (resulting in 4,864 observations 
over the entire sample), choosing amongst two SC alternatives and the current RP alternative. 
The two SC alternatives are unlabelled routes. The trip attributes associated with each route are: 
free flow time, slowed down time, and stop/start/crawling time, travel time variability, toll cost 
and running cost. For all attributes except the toll cost, the values for the SC alternatives are 
variations around the values for the current trip. Given the lack of exposure to tolls for many 
travellers in the study catchment area, the toll levels are fixed over a range, varying from no toll 
to $8, with the upper limit determined by the trip length of the sampled trip. In addition, the 
experimental design method of D-efficiency used herein is specifically structured to increase the 
statistical performance of the models with smaller samples than are required for other less-
efficient (statistically) designs such as orthogonal designs. 
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Study 5 
The data collected in this study is from a study undertaken in Australia in 2004, which is entered 
by trained interviewers directly into a CAPI system on laptops. In the experiment, each car 
commuter was required to compare the levels of times and costs of a current/recent trip against 
two SC alternative routes to complete the same trip that is described by other levels of times and 
costs. Each alternative is described in terms of free flow time, congestion time, trip time 
variability, running cost and toll cost. The SC alternative values for this attribute are variations 
around the total trip time. For all other attributes, the values for the SC alternatives are 
variations around the values for the current trip. A D-efficiency experimental design method 
was used. During each choice question, the respondent has to choose one of these three 
alternatives. The process of choosing amongst the three alternatives is repeated 16 times (each 
time the levels of times and costs associated with the non-current/recent trip alternative are 
varied). This survey has 57 effective interviews for car commuters, resulting in 921 
observations.  

 

Study 6 
The data is drawn from a study in Australia in 2004, in the context of car driving commuters 
making choices from a range of level of service packages defined in terms of travel times and 
costs, including a toll where applicable. The choice experiment presented respondents with 16 
choice sets, each giving a choice between their current (reference) route and two alternative 
routes with varying trip attributes. The sample of 243 effective interviews, each responding to 
16 choice sets, resulted in 3,888 observations for model estimation. To ensure that we captured 
a large number of travel circumstances, we sampled individuals who had recently undertaken 
trips of various travel times, in locations where tollroads currently exist. To ensure some variety 
in trip length, three segments were investigated: no more than 30 minutes, 31 to 60 minutes, and 
more than 61 minutes (capped at two hours). A telephone call was used to establish eligible 
participants from households stratified geographically, and a time and location agreed for a 
face-to-face CAPI. A statistically efficient design that is pivoted around the knowledge base of 
travellers is used to establish the attribute packages in each choice scenario. The two stated 
choice alternatives are unlabelled routes. The trip attributes associated with each route are free 
flow time, congestion time, trip time variability, running cost and toll cost. The attributes of the 
choice experiment alternatives are based on the values of the current trip. The SC alternative 
values for this attribute are variations around the total trip time. For all other attributes, the 
values for the SC alternatives are variations around the values for the current trip. The 
experimental design has one version of 16 choice sets.  

 

Study 7 
The main field survey was undertaken in New Zealand in 2007. The surveys utilised a SC 
experiment involving one current (RP) trip and two SC alternatives which were shown as 
unlabelled routes (i.e., route A and route B). The trip attributes associated with each route are 
free flow time, congestion time, trip time variability, running cost and toll cost. For all attributes 
except the toll cost, the values for the SC alternatives were variations around the values for the 
current trip. The SC alternative values for trip time variability, given it applies across repeated 
trips, were variations around a total trip time. Given the lack of exposure to tolls for many NZ 
travellers in the study catchment area, the toll levels were fixed over a range, varying from no 
toll to $4, with the upper limit determined by the trip length of the sampled trip. 115 car 
commuters were sampled, using a CAPI system. In the experiment, 16 choice sets were 
presented to each respondent, resulting in 1,864 choice observations for this survey, and the D-
efficiency design was used to structure the SC experiment.  
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Appendix B 

Note: all models using simulated likelihood methods used 500 halton draws. 
 

Table B1(1):  A summary of modelling results for Study 1 

 MNL 

LC (2 classes) 

SMNL 

MMNL 
(constrained 
triangular) 

MMNL 
(unconstrained 

triangular) 
GMMNL(constrained 

normal) 

GMMNL 
(unconstrained 

triangular) 
Class 1 

(p=0.64) 
Class 2 

(p=0.36) 
Non-random parameters: 

Reference constant 0.8892 
(17.92) 

1.5739 
(29.35) 

-0.5187 
(-15.33) 

1.3917 
(19.97) 

0.8999 
(16.90) 

1.1237 
(17.18) 

1.0672 
(32.03) 

0.8855 
(32.13) 

Free flow time -0.0513 
(-7.34) 

-0.0411 
(-2.87) 

-0.0714 
(-10.23) 

-0.0339 
(-2.95) - - - - 

Slowed down time -0.0716 
(-9.78) 

-0.1125 
(-9.30) 

-0.0740 
(-11.15) 

-0.0920 
(-7.96) - - - - 

Stop start time -0.0808 
(-14.34) 

-0.0736 
(-9.06) 

-0.0919 
(-19.72) 

-0.0989 
(-18.63) - - - - 

Congested time - - - - - - - - 

Cost -0.2938 
(-15.10) 

-0.8519 
(-21.43) 

-0.1832 
(-15.59) 

-0.5050 
(-20.30) 

-0.3378 
(-16.14) 

-0.4045 
(-17.09) 

-0.5359 
(-38.87) 

-0.3875 
(-29.13) 

Means for random parameters: 

Free flow time - - - - -0.0905 
(-10.11) 

-0.0780 
(-4.63) 

-0.2552 
(-54.67) 

-0.2633 
(-40.44) 

Slowed down time - - - - -0.1165 
(-11.32) 

-0.1184 
(-7.08) 

-0.3429 
(-44.39) 

-0.2540 
(-45.50) 

Stop start time - - - - -0.1562 
(-16.13) 

-0.1043 
(-5.62) 

-0.5164 
(-109.69) 

-0.4064 
(-54.80) 

Congested time - - - - - - - - 
Standard deviations for random parameters: 

Free flow time - - - - 0.0905 
(10.11) 

0.490 
(11.23) 

0.2552 
(54.67) 

0.0021 
(0.10) 

Slowed down time - - - - 0.1165 
(11.32) 

0.4905 
(10.60) 

0.3429 
(44.39) 

0.1731 
(3.86) 

Stop start time - - - - 0.1562 
(16.13) 

0.7811 
(16.55) 

0.5164 
(109.69) 

0.0126 
(0.78) 

Congested time - - - - - - - - 
Variance parameter 
in scale  - - - 1.1817 

(34.71) - - 1.1099 
(44.38) 

2.0622 
(33.08) 

Weighting parameter 
Gamma - - - - - - 0.4965 

(22.25) 
0.10 

(0.36) 
Model fit 

Log-likelihood -3435.78 -2713.27 -2826.91 -3303.25 -2961.94 -2783.69 -2955.97 
Bayes Information 
Criterion (BIC) 1.5432 1.2319 1.2733 1.4843 1.3373 1.2559 1.3384 

No. of observations 4480 
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Table B1 (2):  A summary of modelling results for Study 2 

 MNL 

LC (2 classes) 

SMNL 

MMNL 
(constrained 
triangular) 

MMNL 
(unconstrained 

triangular) 

GMMNL 
(constrained 
triangular) 

GMMNL 
(unconstrained 

triangular) 
Class 1 

(p=0.76) 
Class 2 

(p=0.24) 
Non-random parameters: 

Reference constant 0.5205 
(8.77) 

0.6249 
(7.29) 

-0.7432 
(-5.13) 

0.4962 
(9.68) 

0.6877 
(16.05) 

-0.2017 
(2.34) 

0.5284 
(10.49) 

0.2152 
(4.47) 

Free flow time -0.0962 
(-13.02) 

-0.1445 
(-8.49) 

-0.0505 
(-3.98) 

-0.1589 
(-17.47) - - - - 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time -0.1031 
(-12.91) 

-0.1614 
(-9.17) 

-0.0927 
(-5.61) 

-0.2052 
(-17.43) - - - - 

Cost -0.5377 
(-21.38) 

1.1515 
(-17.88) 

-0.1837 
(-4.56) 

-1.0840 
(-20.78) 

-1.1529 
(-40.09) 

-0.9798 
(-17.95) 

-2.0980 
(-55.67) 

-1.0171 
(-28.62) 

Means for random parameters: 

Free flow time - - - - -0.3248 
(-22.64) 

-0.0830 
(-2.07) 

-0.9595 
(-187.47) 

-0.1138 
(-3.66) 

Slowed down time - - - - - - -  
Stop start time - - - - - - -  

Congested time - - - - -0.3536 
(-23.55) 

-0.1664 
(-2.92) 

-0.9632 
(-147.95) 

-0.1749 
(-6.35) 

Standard deviations for random parameters: 

Free flow time - - - - 0.3248 
(22.64) 

1.1378 
(7.88) 

0.9595 
(187.47) 

1.0 
(12.51) 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time - - - - 0.3536 
(23.55) 

0.6181 
(5.93) 

0.9632 
(147.95) 

0.6480 
(10.13) 

Variance parameter 
in scale - - - 1.2833 - - 1.2932 

(123.39) 
1.0234 
(7.54) 

Weighting parameter 
Gamma - - - - - - 0.5009 

(9.72) 
0.4966 
(4.63) 

Model fit 
Log-likelihood -1867.75 -1391.81 -1512.91 -1478.43 -1364.55 -1396.92 -1350.83 
Bayes Information 
Criterion (BIC) 1.6014 1.2149 1.3029 1.2704 1.1801 1.2077 1.1751 

No. of observations 2352 
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Table B1(3):  A summary of modelling results for Study 3 

 MNL 

LC (2 classes) 

SMNL 

MMNL 
(constrained 
triangular) 

MMNL 
(unconstrained 

triangular) 

GMMNL 
(constrained 
triangular) 

GMMNL 
(unconstrained 

triangular) 
Class 1 

(p=0.73) 
Class 2 

(p=0.27) 
Non-random parameters: 

Reference constant 1.2058 
(21.87) 

1.0286 
(13.59) 

0.1650 
(1.68) 

0.7352 
(14.65) 

1.2149 
(21.60) 

1.1318 
(19.12) 

1.0410 
(17.44) 

0.9715 
(30.01) 

Free flow time -0.0840 
(-5.29) 

-0.0867 
(-3.52) 

-0.0803 
(-3.67) 

-0.1533 
(-9.27) - - - - 

Slowed down time -0.0702 
(-5.79) 

-0.0871 
(-3.79) 

-0.0624 
(-3.89) 

-0.1546 
(-9.37) - - - - 

Stop start time -0.1631 
(-9.55) 

-0.2726 
(-7.68) 

-0.1042 
(-4.84) 

-0.4060 
(-19.11) - - - - 

Congested time - - - - - - - - 

Cost -0.5246 
(-12.75) 

-3.2051 
(-54.17) 

-0.3243 
(-8.05) 

-2.9119 
(-67.71) 

-0.5393 
(-12.85) 

-0.7870 
(-22.28) 

-0.9553 
(-27.38) 

-0.9256 
(-41.05) 

Means for random parameters: 

Free flow time - - - - -0.0985 
(-5.74) 

-0.1038 
(-5.21) 

-0.1481 
(-8.95) 

-0.1357 
(-7.27) 

Slowed down time - - - - -0.0951 
(-5.50) 

-0.1215 
(-6.20) 

-0.2077 
(-8.42) 

-0.2049 
(-7.90) 

Stop start time - - - - -0.1985 
(7.79) 

-0.210 
(-4.36) 

-0.3917 
(-8.94) 

-0.3612 
(-6.98) 

Congested time - - - - - - -  
Standard deviations for random parameters: 

Free flow time - - - - 0.0985 
(5.74) 

0.2487 
(4.92) 

0.1481 
(8.95) 

0.0218 
(0.04) 

Slowed down time - - - - 0.0951 
(5.50) 

0.2048 
(3.55) 

0.2077 
(8.42) 

0.0311 
(0.03) 

Stop start time - - - - 0.1985 
(7.79) 

1.1155 
(6.30) 

0.3917 
(8.94) 

0.0184 
(0.02) 

Congested time - - - - - - - - 
Variance parameter 
in scale - - - 0.8720 

(43.59) - - 1.0770 
(6.83) 

1.1940 
(7.69) 

Weighting parameter 
Gamma - - - - - - 0.5001 

(1.05) 
0.10 

(0.01) 
Model fit 

Log-likelihood -1714.52 -1380.96 -1378.93 -1700.81 -1637.34 -1627.66 1630.61 
Bayes Information 
Criterion (BIC) 1.4262 1.1709 1.1532 1.4147 1.3721 1.3611 1.3732 

No. of observations 2432 
 



Does the choice model method and/or the data matter? 
Hensher, Rose & Li 

 

21 

Table B1(4):  A summary of modelling results for Study 4 

 MNL 

LC (2 classes) 

SMNL 

MMNL 
(constrained 
triangular) 

MMNL 
(unconstrained 

triangular) 

GMMNL 
(constrained 
triangular) 

GMMNL 
(unconstrained 

triangular) 
Class 1 

(p=0.74) 
Class 2 

(p=0.26) 
Non-random parameters: 

Reference constant 0.3417 
(6.64) 

0.6735 
(8.84) 

-0.8777 
(-7.24) 

0.2321 
(3.25) 

0.1426 
(2.54) 

0.3937 
(6.11) 

0.4378 
(9.62) 

0.4247 
(11.21) 

Free flow time -0.0762 
(-7.95) 

-0.1276 
(-5.85) 

-0.0939 
(-5.52) 

-0.2167 
(-12.66) - - - - 

Slowed down time -0.1163 
(-13.61) 

-0.2019 
(-11.77) 

-0.1282 
(-9.03) 

-0.2428 
(-20.29) - - - - 

Stop start time -0.1695 
(-20.58) 

-0.1677 
(-12.18) 

-0.1813 
(-12.66) 

-0.2732 
(-19.44) - - - - 

Congested time - - - - - - - - 

Cost -0.5134 
(-25.81) 

-1.0461 
(-16.96) 

-0.2721 
(-16.96) 

-1.1298 
(-30.44) 

-0.5548 
(-25.77) 

-0.5948 
(-24.88) 

-0.9467 
(-55.73) 

-1.0949 
(-67.20) 

Means for random parameters: 

Free flow time - - - - -0.1552 
(-10.80) 

-0.1320 
(6.14) 

-0.7762 
(-161.76) 

-0.7684 
(-177.47) 

Slowed down time - - - - -0.1427 
(-12.59) 

-0.1685 
(-10.81) 

-0.7352 
(-139.39) 

-0.9270 
(-176.20) 

Stop start time - - - - -0.2331 
(-18.15) 

-0.2491 
(-12.29) 

-0.6911 
(-101.68) 

-1.3262 
(-246.14) 

Congested time - - - - - - - - 
Standard deviations for random parameters: 

Free flow time - - - - 0.1552 
(10.80) 

0.7068 
(12.63) 

0.7762 
(161.76) 

0.0369 
(0.55) 

Slowed down time - - - - 0.1427 
(12.59) 

0.3114 
(7.84) 

0.7352 
(139.39) 

0.0165 
(0.20) 

Stop start time - - - - 0.2331 
(18.15) 

0.5982 
(11.84) 

0.6911 
(101.68) 

0.0109 
(0.14) 

Congested time     -  -  
Variance parameter 
in scale - - - 0.9834 

(28.64) - - 1.3079 
(79.96) 

1.4992 
(119.30) 

Weighting parameter 
Gamma - - - - - - 0.4974 

(11.27) 
0.10 

(0.02) 
Model fit 

Log-likelihood -2670.61 -2335.29 -2371.24 -2568.82 -2421.04 -2286.04 -2334.16 
Bayes Information 
Criterion (BIC) 1.1068 0.9794 0.9855 1.0651 1.0058 0.9522 0.9772 

No. of observations 4864 
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Table B1(5):  A summary of modelling results for Study 5 

 MNL 

LC (2 classes) 

SMNL 

MMNL 
(constrained 
triangular) 

MMNL 
(unconstrained 

triangular) 

GMMNL 
(constrained 
triangular) 

GMMNL 
(unconstrained 

triangular) 
Class 1 

(p=0.74) 
Class 2 

(p=0.26) 
Non-random parameters : 

Reference constant -0.5894 
(-6.82) 

-2.0357 
(-11.70) 

1.0550 
(5.69) 

-1.9357 
(-5.07) 

-0.5615 
(-6.34) 

-0.6529 
(-7.05) 

-0.6603 
(-7.10) 

-0.6595 
(-15.09) 

Free flow time -0.0346 
(-8.02) 

-0.0333 
(-6.78) 

0.0148 
(0.51) 

-0.0710 
(-4.64) - - - - 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time -0.0356 
(7.49) 

-0.0495 
(-7.72) 

-0.0235 
(-2.19) 

-0.0781 
(-4.33) - - - - 

Cost -0.1360 
(-10.59) 

-0.1203 
(-8.16) 

-0.2578 
(-6.46) 

-0.2439 
(-4.69) 

-0.1503 
(-8.24) 

-0.170 
(-11.38) 

-0.1667 
(-11.14) 

-0.1855 
(-22.25) 

Means for random parameters: 

Free flow time - - - - -0.0466 
(-8.24) 

-0.0361 
(-3.78) 

-0.0956 
(-5.31) 

-0.0593 
(-2.94) 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time - - - - -0.0546 
(-7.18) 

-0.0550 
(-5.23) 

-0.1114 
(-7.78) 

-0.0823 
(-3.03) 

Standard deviations for random parameters: 

Free flow time - - - - 0.0466 
(8.24) 

0.1333 
(6.74) 

0.0956 
(5.31) 

0.1168 
(2.47) 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time - - - - 0.0546 
(7.18) 

0.1368 
(5.71) 

0.1114 
(-7.78) 

0.0791 
(0.86) 

Variance parameter 
in scale - - - 1.3131 

(9.28) - - 1.6670 
(7.63) 

1.3549 
(3.87) 

Weighting parameter 
Gamma - - - - - - 0.5120 

(1.31) 
0.10 

(0.23) 
Model fit 

Log-likelihood -855.87 -739.06 -808.32 -831.86 -802.73 -789.82 -792.12 
Bayes Information 
Criterion (BIC) 1.9068 1.6880 1.8099 1.8542 1.8052 1.7769 1.7969 

No. of observations 912 
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Table B1(6):  A summary of modelling results for Study 6 

 MNL 

LC (2 classes) 

SMNL 

MMNL 
(constrained 
triangular) 

MMNL 
(unconstrained 

triangular) 

GMMNL 
(constrained 
triangular) 

GMMNL 
(unconstrained 

triangular) 
Class 1 

(p=0.57) 
Class 2 

(p=0.43) 
Non-random parameters: 

Reference constant 0.1184 
(2.89) 

-0.6953 
(-5.74) 

0.9125 
(8.30) 

0.1385 
(2.48) 

0.1582 
(3.66) 

0.1077 
(2.42) 

0.1172 
(5.42) 

0.1770 
(7.79) 

Free flow time -0.0687 
(-17.77) 

-0.1067 
(-16.55) 

-0.0215 
(-2.68) 

-0.1064 
(-12.61) - - - - 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time -0.0912 
(-28.70) 

-0.1125 
(-21.56) 

-0.0568 
(-7.82) 

-0.1306 
(-14.18) - - - - 

Cost -0.3519 
(-30.76) 

-0.2858 
(-12.04) 

-0.5532 
(-9.58) 

-0.5103 
(-14.82) 

-0.3975 
(-30.61) 

-0.4269 
(-30.46) 

-0.4237 
(-62.65) 

-0.4226 
(-60.74) 

Means for random parameters: 

Free flow time - - - - -0.1016 
(-16.62) 

-0.0940 
(-10.60) 

-0.1433 
(-14.41) 

-0.1438 
(-10.52) 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time - - - - -11.72 
(-21.22) 

-0.1146 
(-16.26) 

-0.1501 
(-14.59) 

-0.1558 
(-10.76) 

Standard deviations for random parameters: 

Free flow time - - - - -0.1016 
(-16.62) 

0.2407 
(12.24) 

0.1433 
(14.41) 

0.2257 
(8.66) 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time - - - - -11.72 
(-21.22) 

0.1936 
(12.0) 

0.1501 
(14.59) 

0.0984 
(2.31) 

Variance parameter 
in scale - - - 0.7422 

(12.44) - - 0.9958 
(11.63) 

1.1827 
(12.42) 

Weighting parameter 
Gamma - - - - - - 0.4998 

(3.66) 
0.0999 
(0.73) 

Model fit 
Log-likelihood -3037.75 -2756.91 -2903.67 -2886.65 -2816.82 -2799.32 -2794.24 
Bayes Information 
Criterion (BIC) 1.5711 1.4388 1.5043 1.4617 1.4617 1.4527 1.4544 

No. of observations 3888 
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Table B1(7):  A summary of modelling results for Study 7 

 MNL 

LC (2 classes) 

SMNL 

MMNL 
(constrained 
triangular) 

MMNL 
(unconstrained 

triangular) 

GMMNL 
(constrained 
triangular) 

GMMNL 
(unconstrained 

triangular) 
Class 1 

(p=0.64) 
Class 2 

(p=0.36) 
Non-random parameters: 

Reference constant 0.1031 
(1.68) 

0.9015 
(9.90) 

-2.1916 
(-12.75) 

0.4624 
(13.98) 

0.0771 
(1.19) 

0.0596 
(0.85) 

0.0122 
(0.39) 

0.1217 
(3.42) 

Free flow time -0.0994 
(-14.63) 

-0.1673 
(-13.15) 

-0.0768 
(-7.79) 

-0.1307 
(-21.89) - - - - 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time -0.1261 
(-9.94) 

-0.1423 
(-6.27) 

-0.1125 
(-6.35) 

-0.2265 
(-17.14) - - - - 

Cost -0.5132 
(-17.56) 

-0.9575 
(-15.88) 

-0.3663 
(-9.01) 

-0.6333 
(-17.33) 

-0.5970 
(-18.31) 

-0.6282 
(-18.19) 

-0.8036 
(-33.67) 

-0.5975 
(-26.29) 

Means for random parameters: 

Free flow time - - - - -0.1369 
(-13.07) 

-0.1327 
(-9.18) 

-0.4569 
(-104.70) 

-0.1754 
(-12.85) 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time - - - - -0.1686 
(-13.07) 

-0.1391 
(-3.97) 

-0.4088 
(-34.88) 

-0.2169 
(-13.83) 

Standard deviations for random parameters: 

Free flow time - - - - 0.1369 
(13.07) 

0.2468 
(8.47) 

0.4569 
(104.70) 

0.0224 
(0.13) 

Slowed down time - - - - - - - - 
Stop start time - - - - - - - - 

Congested time - - - - 0.1686 
(13.07) 

0.7062 
(6.70) 

0.4088 
(34.88) 

0.0083 
(0.03) 

Variance parameter 
in scale - - - 0.9224 

(16.85) - - 1.5946 
(104.70) 

1.0228 
(15.23) 

Weighting parameter 
Gamma - - - - - - 0.0378 

(0.55) 
0.10 

(0.01) 
Model fit 

Log-likelihood -1639.61 -1237.06 -1466.58 -1579.45 -1533.71 -1454.39 -1535.37 
Bayes Information 
Criterion (BIC) 1.7985 1.3814 1.6145 1.7331 1.6916 1.6054 1.7016 

No. of observations 1840 
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