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1. Introduction 
Discussions around land rents and land values have been a feature of urban economics for 
more than a century.  From the nineteenth century, economists like David Ricardo were 
concerned with the potential outcome of land being a non-produced input and the impact this 
might have on wages (Ricardo, 1821). More modern economics recognises that land rent, as 
with the ‘return’ on other goods, reflects the marginal productivity of land (Trivelli, 1997).  
Within a transport infrastructure value context, the contemporary interest in land value stems 
from two related issues.  First, can and by how much does land value rise if new transport 
infrastructure is implemented? Second, given the increasingly apparent funding constraints 
faced by governments around the world, can any increase in value of land as a result of 
implementing new transport infrastructure be “captured’’ to pay for the investment?  This 
paper addresses the first of these issues as a pre-requisite to informing the second. 

Whereas most of the value uplift literature has been concerned with either developing 
countries or with the introduction of rail based infrastructure, this paper will consider whether 
and to what extent the value of residential land has increased in the area around a bus rapid 
transit (BRT) network constructed in the low density city of Brisbane, capital of the 
Australian state of Queensland. This paper also adds to the literature by modelling the spatial 
variation of this uplift. An understanding of the spatial variation of value uplift is necessary to 
design better value capture policies.  

The paper is structured as follows, section 2 summarises the literature on value uplift theory; 
section 3 introduces the case study area of Brisbane, Australia; section 4 discusses the 
methodology and section 5 presents the results of the geographically weighted regression 
analysis to determine the extent of value uplift associated with the BRT development before 
section 6 discusses the policy implications of the findings. 

 

2. Literature Review 
Land rent theory provides the theoretical link between accessibility and land values with land 
rent reflecting the underlying accessibility. As a result, those locations which are more 
accessible as a result of new infrastructure will command a higher rent reflecting the 
underlying land value and include the value uplift.  A complication is that the theory is 
developed in the context of unimproved land, referring to land with no structures on it 
whereas in an urban context we observe primarily land with structures.  This means that a 
methodology needs to be developed that controls for the improvements to land so as to expose 
the changes in land values due to accessibility changes arising from new transport 
infrastructure. Issues concerning methodology are discussed in the methodology section 
below. 

There is a strong literature demonstrating that public transport infrastructure projects can 
deliver value uplift or premia to property values.  Although the earliest studies were more 
qualitative (Knight and Trygg, 1977), there have been a plethora of studies since 2000 which 
have been concerned with identifying the value uplift. RICS (2002), Smith and Gihring (2006) 
and Smith et al. (2009) have provided major reviews of the studies examining value uplift. 
Billings (2011) identifies the presence of at least 20 studies across five countries on the impact 
of rail investments with Debrezion et al. (2007) presents meta analyses from the real estate 
literature.  Debrezion et al. (2007) used 73 studies and focused on the impact of railway 
stations on land values and the results suggest that for every 250m closer to a station, house 
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prices increase by 2.4% whereas commercial properties only increase by 0.1%.  This points to 
a major difference between residential and commercial properties with the latter probably 
internalising the uplift from before the operational phase or, alternatively, reflecting the way 
planning rules extract much of the uplift with judicious use of planning gain with new 
commercial build. Zhang (2009) separates houses from apartments and found that single 
family homes appeared to benefit much more from value uplift although with considerable 
variability with for example, the impact for an apartment in 1990 US$ being $0.3 uplift but for 
a single family home this varied between $0 and $38 for every meter further away from the 
BRT.  This stark difference suggests that there is a difference between the different types of 
property’s ability to benefit from uplift and that any analysis should take this into account. A 
more recent update, concerned with specifically Asian cities, is provided by Salon and 
Shewmake (2011), and this highlights the great variability in conclusions of the different 
studies, in part due to the method adopted in investigating value uplift (this issue is expanded 
upon in the methodology section below). 

Most of the literature cited above, or used in the meta-analyses, are based on the introduction 
of rail based systems:  light rail, heavy rail or metro.  This paper is focused on the contribution 
of bus rapid transit (BRT). The contribution this relatively new mode can make to value uplift 
is an area that is neglected in the literature with few notable exceptions. There have been 
studies on the  BRTs in large cities in developing countries with studies by Rodríguez and 
Targa (2004) finding an uplift of between 6.8% and 9.3% for every five minutes closer to a 
station on the Transmilenio in Bogota, Columbia and Munoz-Raskin (2010) finding very 
variable results both close and further away from Transmilenio. Rodríguez and Mojica (2009) 
investigated the impact of the BRT  extension in Bogota and found that properties in the 
environs of the extension had values 13-14% higher than in control areas but no appreciable 
difference between prices close and not so close to the BRT.  As the appeal of BRT has 
spread, so have the studies investigating value uplift from BRT and now there is evidence 
from Beijing, China (Deng and Nelson (2010) finding 2.3 percent annual growth premia for 
properties close to the BRT), Seoul, Korea (Cervero and Kang (2011) finding up to 10% uplift 
for residential properties and Jun (2012) finding negative premia in suburban areas). The 
results of Jun (2012) suggesting lower uplift in suburbia ties in with one study from Australia 
(Mulley, 2014) which looked at a BRT that was part of a wider network of ‘ordinary’ buses 
set in the suburbs of Sydney, NSW. Other developed country studies have found very variable 
results with reported uplift in Pittsburgh, US, of around 16% (Perk and Catala, 2009) and 
between 2.9% and 6.9% in Quebec, Canada (Dubé et al., 2011). 

This study is concerned with the extensive BRT in the conurbation of Brisbane in Queensland. 
Australia.  Unlike its BRT counterpart in Sydney, and to a lesser extent in cities with BRT in 
the US, the Brisbane BRT is the backbone of the public transport system in Brisbane, 
travelling to the heart of the city with its dedicated infrastructure. Its network design includes 
feeder services traversing the suburban neighbourhoods before entering the dedicated 
infrastructure to travel to the CBD.  In this way the network design is distinctively different 
from the successful systems of developing countries which tend to have services travelling 
simply on the BRT infrastructure with feeder services travelling to the BRT.  This study is 
concerned with residential properties only as the literature review identifies differences 
between commercial and residential properties with a distinction being made in the empirical 
analysis to treat apartments and houses as different ‘goods’. 
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3. Unique characteristics of Brisbane BRT 
This section will introduce Brisbane with the South East Queensland region before comparing 
the extent and service levels of the BRT and rail networks that are focussed on the Brisbane 
city centre. Mention will also be made of the non-BRT bus services that also operate in the 
area and are included in the modelling presented in Section 5. 

 

3.1 Brisbane and South East Queensland 
Brisbane is the capital of the Australian state of Queensland and has an urban population of 
2.2 million (Australian Bureau of Statistics, 2015). Brisbane accounts for 70% of the 
population of the greater South East Queensland (3.1 million) area which includes the Gold 
and Sunshine Coasts. Brisbane itself comprises 5 local government areas (LGAs), the biggest 
of which is Brisbane City Council with a 2014 population of 1.1 million (Australian Bureau of 
Statistics, 2015). 

Public transport in South East Queensland is operated under the TransLink brand with the 
state government responsible for planning and regulating services. Public transport services 
are operated by a mixture of private bus operators (who operate mostly outside the Brisbane 
City Council area), the Queensland government (the Queensland Rail City Network, formerly 
Citytrain) and the Brisbane City Council owned bus operator called Brisbane Transport. A 
number of ferry services are operated by Transdev on behalf of Brisbane City Council and are 
included in the TransLink network. An integrated fare system operates across the bus, train 
and ferry networks. 

Australian public transport networks are highly radial in nature. The South East Queensland 
network follows this pattern with patronage and service levels concentrated on the Brisbane 
city centre or Central Business District (CBD) far in excess of the share of employment, 
population and activities that actually occurs in the CBD. Partly, this is due to geography with 
most crossings of the Brisbane River either being near the CBD or on the Eastern and Western 
periphery of the urban area. However, the concentration of services on the CBD also reflects 
the historic pattern of development of public transport services. As a result, in 2009 Brisbane 
residents made 84% of the public transport journeys in South East Queensland (Queensland 
Government, 2012).  

Outside of the Brisbane City Council area, the rail network remains radially focussed on the 
Brisbane CBD but the bus networks become more focussed on local centres or railway 
stations with radial bus services not extending beyond the boundaries of the Brisbane urban 
area.  

 

3.2 The Bus Network and BRT System 

Brisbane’s 32km busway network services the inner and middle suburbs of Brisbane, with 
most services focussed on the CBD but with significant cross regional services to the 
University of Queensland. Under Vuchic’s (2007) definitions the Brisbane busways are 
almost entirely Category A, provided with fully segregated and physically protected rights-of-
way. This includes significant grade separation both above the surface street network, 
particularly along the South East Busway, and large underground systems, including the inner 
Northern busway, the King George Square and Queen Street bus stations, and parts of the 
Eastern busway. For only around 400m total and three intersections in South Brisbane and at 
North Quay does the system revert to bus-lanes and interface with other traffic.  
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The 27 busway stations are spaced on average 1.2km apart with more distance between 
stations at the periphery and closer spacing near the city centre. Given its two-lane rights-of-
way supporting 80km/h travel on most of the network, and with passing lanes at all busway 
stations, the ‘Quickway’ model of bus rapid transit is possible (Hoffman, 2008). This provides 
for a wide range of routes (some stopping all stations, others express) that branch off along the 
busway corridor to service surrounding suburban areas some distance away, with many bus 
routes drawing patronage away from Brisbane’s rail network. Single-seat journeys are 
standard as most services are through-routed to the city centre with almost no feeder buses, 
although significant numbers of passengers interchange at busway stations for services to the 
University of Queensland.  

The system is relatively mature, with the first sections opened in the year 2000. Over 300 
buses per hour travel on key links of the South East Busway, carrying over 20,000 passengers 
per hour in the peak, not far from the theoretical limit of BRT operations. The system carries 
more than 70 million passengers per year mostly on Brisbane City Council’s bus fleet. Most 
buses are two-door, rigid buses carrying around 62 passengers maximum, with a small 
number of articulated buses of around 85 persons capacity in operation. Almost all of the fleet 
runs on compressed natural gas. Expansions are planned to the North, South and East in future 
years. To overcome capacity constraints in the city centre a second busway river crossing is 
proposed, though a recent option to complete this as part of a cross-river rail tunnel was 
shelved in early 2015. 
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Figure 1 The BRT system in Brisbane as of 2011. 
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3.3 The South East Queensland Train Network 

By contrast, Brisbane’s CityRail network stretches to the neighbouring cities of the Gold 
Coast and Sunshine Coast, and out to Ipswich, with over 600km of track and over 220km of 
serviced route (Soltani et al., 2015). At the time of writing there are 146 stations though a 
13km and six station extension to Kippa-Ring from Caboolture will open in early 2016. Since 
the closure of the Tennyson line in 2011, the train network is entirely radial with eight lines 
connecting in the central business district. The system is electrified and uses 214 electrical 
multiple units in three car sets, usually configured together as six car trains capable of holding 
480-520 passengers each. They operate at up to 130km/h though alignments and stop spacings 
in the suburban network reduce maximum speeds to much lower levels. Though there has 
been fare-free transfers on the whole public transport network since 2004, very few stations 
are serviced by feeder buses, especially in the Brisbane City Council jurisdiction where its 
buses mostly head towards the busways. 

 

3.4 Levels of Service – bus versus train  

As discussed above, maximum usage of the busway infrastructure is made by combining trunk 
busway services with, what would be in other jurisdictions, feeder bus services to provide 
single seat journeys. Many of the over 100 busway routes operate as peak hour expresses or at 
lower frequencies during the day but many busway routes form part of Translink’s frequent 
network that consists of 9% of bus routes by 44% of the bus patronage. Within Brisbane, the 
frequent network is marketed under the Bus Upgrade Zone (aka ‘BUZ’) introduced by 
Brisbane Transport in 2003 (Neelagama, 2014) or the CityGlider concept introduced in 2010. 
There are 20 BUZ routes that operate throughout Brisbane with maximum 15 minute 
headways between 06.00 and 23.00 all week and a maximum headway of 10 minutes in 
weekday peak periods (07.00 to 09.00 and 16.00 to 18.00). Headways are similar on the rest 
of the frequent bus network in South East Queensland but the span of hours is shorter outside 
the Brisbane City Council area. The CityGlider services are pre-paid services that offer 
boarding from both front and back doors and operate with a similar frequency and span of 
hours to the BUZ routes but also operate overnight services on Friday and Saturday nights 
(i.e. Saturday and Sunday morning). 

Like a train network, the Brisbane busway network has offered passengers faster, more 
frequent and reliable bus services. Consequently, busways have helped to uplift bus service 
quality and make bus more significant influence on trip frequency than other public modes 
(Devney, 2014). In contrast, train services normally operate at 30 minute headways off peak in 
the outer suburbs and 15 minutes (or better) headways have only slowly been implement in 
the inner suburbs. Consequently, the train network has a relatively low level of patronage 
compared to the busway network. In 2013, the mode shares for bus, train, and ferry were 54%, 
44% and 2%, respectively (BITRE, 2013). Figure 1 shows the historical trends in Brisbane 
from 1900 to 2013.  
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Figure 2 Historical trends in public transport patronage (millions of passengers), Brisbane, 1900 to 
2013.  

Source: Cosgrove (2011), BITRE (2012) and BITRE (2014).  
 

4. Methodology 
The literature review identifies quite divergent results. In part this is due to different 
methodologies in use as well as the different locations of the studies. The earliest literature in 
this domain borrowed methodology from experimental studies to provide simple before and 
after studies, some with control areas and some using difference in difference models. These 
were not particularly well related to the way in which the theory relates to unimproved land 
since most did not take the specific features of the property into account. Moreover, whilst 
these quasi-experimental approaches explored temporal differences they could not include the 
nuances of environmental and socio-economic factors. More sophisticated methodologies 
have been developed using hedonic modelling or Ordinary Least Squares (OLS) regression 
following Lancaster (1966) who argued that a good can be broken into its constituent 
attributes with implicit prices and Rosen (1974) who showed how this could be implemented 
in the housing market.  However, the early hedonic modelling did not take account of the way 
in which the data used to investigate the uplift due to new transport infrastructure is inherently 
spatial in nature and that this could (and did) lead to violations in the OLS assumptions. More 
recent papers have taken advantage of panel data when repeat sales data are available and the 
large suite of spatial models which have become easier to implement through software 
developments. Salon and Shewmake (2011) provide a succinct review of available 
methodologies and comment that many of the studies they examined did not acknowledge the 
possibility of spatial dependence. This paper uses a number of approaches to control for the 
spatial dependence of the data which are explained in the next sub-section. This is followed by 
a description of the data and its descriptive statistics.   
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4.1 Model Specification 

First, a standard hedonic price model is estimated using a semi-log functional form to provide 
better behaved errors. The dependent variable is defined as the natural log of sale price of the 
property in a model formulation as follows: 

ܲ݊ܮ ൌ ܿ ൅ ∑ܽଷࢄ௦ ൅∑ܽଶࢄ௡ ൅∑ܽଵࢄ௟ ൅ ∑ܽ଴ࢄ௣ ൅  (1) 	ߝ

where P is the sale price of the residential property; Xୱ,  X୬ and , X୪ refer to structural 
characteristics of the property, socio-economic conditions, and neighbourhood features due to 
the location of the property respectively; and X୮ refers to proximity to transit stations. In this 

equation,	a଴	aଵ	aଶ and aଷ are the coefficients to be estimated; c is the model constant, and ε is 
the residual error.  

As discussed above, the analysis of the spatial variations of the housing price using standard 
OLS estimation presents certain challenges. As well as the effects included in equation (1), the 
house price is often influenced by the price of nearby properties which typically share the 
similar structural and locational characteristics as described in equation (1) giving rise to OLS 
residuals being spatially dependent. In these cases the OLS model results are biased due to the 
violations of the assumptions. A spatial lag and a spatial error model with spatial weighting 
matrices are employed next to compare and correct for the potential problems with the OLS 
model. The spatial lag model can be expressed as: 

ܲ݊ܮ ൌ ܿ ൅ ܲࢃ࣋ ൅ ∑ܽଷࢄ௦ ൅∑ܽଶࢄ௡ ൅∑ܽଵࢄ௟ ൅ ∑ܽ଴ࢄ௣ ൅  (2) 	ߝ

Where the ܹܲߩ measures the spillover effects which occur when the housing price of a 
property is influenced by the price of other properties. ܹ is a matrix of spatial weights, and 
the ߩ is the parameter measuring the degree of spatial correlation.  

The spatial error model assumes the error term has two parts: one is an independent and 
identically distributed spatially uncorrelated component ߤ, the other is a spatial component 
 :is the spatial error coefficient. The model can be expressed as ߣ .ߝܹߣ

ܲ݊ܮ ൌ ܿ ൅ ∑ܽଷࢄ௦ ൅∑ܽଶࢄ௡ ൅∑ܽଵࢄ௟ ൅ ∑ܽ଴ࢄ௣ ൅ߝࢃࣅ ൅  (3) ߤ

Both the spatial lag and spatial error models can be estimated using Maximum Likelihood. 
Though the spatial lag and spatial error models help to control for spatial dependence, the 
results show that they did not deal with the spatial nonstationarity.  

In the next stage, Geographically Weighted Regression (GWR) was employed to take into 
account both spatial dependence and spatial nonstationarity (Fotheringham et al., 2003). GWR 
outperforms the traditional hedonic price model and other spatial modelling by internalising 
the spatial dependence in the estimation process and mapping the results of local statistics 
(Mulley, 2014). By visualizing the spatial patterns of the relationship between dependent and 
independent variables, in this case, the relationship between property values and accessibility 
to the BRT stations, GWR helps the researchers to better understand the context-based factors 
contributing to the relationship, and offers informative results beyond global models to 
facilitate place-specific planning policy decisions.  

The GWR local model expands the OLS model of equation (1) by allowing parameter values 
to vary with geographical location ࢛௜ሺൌ ሺݑ௫௜,ݑ௬௜ሻሻ which is a vector of two dimensional co-

ordinates describing the location of	݅. The GWR model can then be written as: 
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݊ܮ ௜ܲ ൌ ܿሺ࢛݅ሻ ൅ ∑ܽଷሺ࢛݅ሻࢄ௦௜ ൅∑ܽଶሺ࢛݅ሻࢄ௡௜ ൅∑ܽଵሺ࢛݅ሻࢄ௟௜ ൅ ∑ܽ଴ሺ࢛݅ሻࢄ௣௜ ൅  ௜ (4)ߝ

The GWR model is estimated using the geographically weighted maximum likelihood 
principle (Nakaya, 2001). Following this method, the local model is estimated using the 
observations within a bandwidth and by solving a maximization problem of geographically 
weighted likelihood. The geographical weight, ݓ௜௝, is a function of the distance away from the 
regression point i. The observations that are close to regression point are given higher 
weighting than those further away. The classical choice of weighting scheme is the Gaussian 
kernel defined by  

௜௝ݓ ൌ exp	ሺെ݀௜௝
ଶ  ଶሻߠ/

where ݀௜௝ is the Euclidean distance between i and j. θ is a fixed bandwidth size defined by a 
distance metric measure. In this scheme, the geographical extent for estimating local models is 
constant over space. As an alternative, an adaptive weighting approach allows the spatial 
extent to vary at different regression points, in order to include the same number of sample 
points for each local regression model. The popular adaptive kernel, the bi-square kernel, is 
defined by 

௜௝ݓ ൌ ቊ
൫1 െ ݀௜௝

ଶ ௜ሺ௞ሻ൯ߠ/
ଶ
							݀௜௝ ൏ ௜ሺ௞ሻߠ

0																																݀௜௝ ൐ ௜ሺ௞ሻߠ
ቋ 

where ߠ௜ሺ௞ሻ is an adaptive bandwidth size defined as the k th nearest neighbour distance. 
Considering the relatively large variation in the geographical density of the observed data, an 
adaptive weighting approach for this study. To select the ideal bandwidth size, different 
models with different bandwidth sizes are compared using the model selection indicator, AICc 
(sample size bias corrected Akaike information criterion).  

GWR has the great strength of allowing the spatial variations of the proximity effects to be 
visualised on maps. However, it presents certain challenges in estimating the local 
coefficients. Local collinearity is identified as a major constraint in the use of GWR that can 
have a serious impact on the local coefficients estimations (Wheeler and Tiefelsdorf, 2005; 
Wheeler, 2007). The local collinearity problem is usually introduced when a restricted sample 
is used for GWR local model estimation and where the observations within this restricted 
sample share similar characteristics, such as property type, structure, and neighbourhood 
amenities (Bárcena et al., 2014). The outcome is that standard errors can be inflated and/or 
more seriously parameter estimates can change signs. 

Whenever this local collinearity presents as a problem, the GWR with a ridge regression 
parameter is proposed and validated as an effective way to reduce the effect of local 
collinearity on the model (Wheeler, 2007). Ridge regression in general is a method to reduce 
the adverse effect of collinearity in a model (Hoerl and Kennard, 1970). By penalizing the size 
of coefficients, the implementation of a ridge regression reduces the influence of the variables 
with relatively small variance (Gollini et al., 2013; Wheeler, 2007; Wheeler and Waller, 
2009). 
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4.2 Data and Variables 

The property transaction data used in this study was provided by RPdata, a commercial firm 
which combines data from different sources to provide details of the transaction information 
of the properties, including transaction price, property type (house or unit), area size, number 
of bedrooms, bathrooms and parking places, and latitude/longitude of the property. 
Considering the unique feature of the Brisbane BRT system, which includes extensive feeder 
bus services to the trunk bus route, a relatively big buffer (5-kilometer) is used to define our 
study area. All properties sold in 2011 that are in this 5-kilometer buffer of the BRT trunk line 
were selected for analysis. 

The selected properties were geocoded in GIS using the coordinate information. The street 
network distances to the BRT stations (DBRT) and train stations (DTrain) were calculated 
using network analysis. The euclidean distance from the property to the CBD (DCBD) and 
river (DRiver) were measured to indicate the regional location characteristic and accessibility 
to waterfront area of the property which is hypothesised to increase the value of a property. 
The number of common destinations (Amenities), such as restaurants, cafés, hospitals, 
libraries, pharmacies, fast food shops, cinemas, banks, child care, etc., within 400 meters was 
calculated as an indicator of local amenities within walking distance of the property with the 
hypothesis that a higher number of amenities would add to property price. Further, the census 
data collected at SA1 level (the smallest geography available) were spatially joined by the 
properties to acquire the neighbourhood characteristics including population density 
(PopDen), percentage of older people (Older), and median weekly household income 
(HHincome). Table 1 provides the descriptive statistics for these variables. 

 

Table 1 Descriptive statistics for the dependent and independent variables (n=7693) 

Variable Description Mean Std. Dev. 

SalePrice Sale price of the property 576,450 328,812

PropertyType Type of property (1=house, 0=unit) 72% 0.4

Bedrooms Number of bedrooms 3 1

Baths Number of bathrooms 2 1

Parking Number of parking spaces 2 1

Amenities 
Number of common destinations within walking distance 
(400 meters) of the property 2 5

DBRT 
Street network distance to the nearest BRT stations (100's 
meters) 37.3 18.5

DTrain Street network distance to the nearest Train (100's meters) 24.7 19.1

PopDensity Population density (1,000's persons) 3.7 3.6

Older 
Percentage of older people (aged older than 55 years) of 
the statistical area where the property located 10% 5%

HHincome 
Median weekly household income of the statistical area 
where the property located 1,661 493

Hwy100m 
Property located within 100 meters of a major road 
(1=yes) 2% 13%

DCBD 
Euclidean distance from the property to the CBD (1,000's 
meters) 4.8 4.9

DRiver 
Euclidean distance from the property to the river (1,000's 
meters) 2.6 2.5
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5. Model Results and Discussion 
A standard hedonic price model was first estimated using OLS. After the OLS estimation, the 
Breusch-Pagan test and Moran's I test were used to detect the presence of heteroskedasticity 
and spatial dependence. Both tests are highly significant (p<.001), indicating the existence of 
heteroskedasticity and strong spatial autocorrelation of the residuals. A spatial lag and a 
spatial error model were, therefore, employed to account for the spatial dependence. The 
model results of the three models are reported in Table 2. In the spatial lag model, the highly 
significant value of the rho coefficient, measuring the average influence of observations to 
their nearby observations, reflects the spatial dependence inherent in the data. In the spatial 
error model, the lambda coefficient is positive and highly significant, suggesting spatially 
correlated errors. Although some problems clearly remain, the two spatial models improved 
model fit, as indicated in higher R-squared and smaller AIC.  

The coefficients of the independent variables among the three models appear relatively stable. 
For accessibility to BRT, a negative coefficient is expected since it is anticipated that being 
closer to the BRT would be associated with higher valuations of accessibility.  This is indeed 
the case and, all else being equal, for every hundred meters closer to the BRT station, the 
housing price increases by 0.14 percent, which is equivalent to $807 at the mean of the data. 
However, access to the train station is negatively associated with housing price, with an about 
0.15 percent decrease in housing price for every hundred meter closer to the train station. This 
may be accounted for by the poor level of service of trains in Brisbane as discussed in Section 
3.1 above. As expected, houses have a positive premium over a unit or apartment giving an 
outcome in line with Zhang (2010). More bedrooms, bathrooms, and parking are associated 
with a higher housing price in common with other studies using hedonic modelling. As 
described above, the socio-economics of the area and the neighbourhood environment also 
matter in determining the housing price. Higher population density, higher percentages of 
older people and higher median household income of the neighbourhood are associated with 
higher housing prices. In contrast, being located within 100 meters of a major highway 
reduces the housing price, probably because of the environmental nuisance (e.g., noise and 
fuel emissions) of being close to roadways. Finally, all else being equal, a 1-km distance from 
the both the CBD and the river is associated with 1.7% and 4.6% decreases in housing price, 
respectively.  
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Table 2 Results of the global models 

  OLS   Spatial Lag   Spatial Error   

  Coef. t   Coef. t   Coef. t   

DBRT -0.0014 -9.05 *** -0.0014 -9.57 *** -0.0013 -4.60 *** 

DTrain 0.0015 8.24 *** 0.0011 6.06 *** 0.0018 5.70 *** 

PropertyType 0.1752 22.38 *** 0.1568 20.89 *** 0.2117 26.99 *** 

Bedrooms 0.1439 34.35 *** 0.1339 33.71 *** 0.1399 35.94 *** 

Baths 0.1456 30.71 *** 0.1379 30.84 *** 0.1294 29.11 *** 

Parking 0.0628 16.25 *** 0.0613 16.83 *** 0.0609 17.24 *** 

Amenities 0.0022 3.53 *** 0.0029 4.86 *** 0.0021 2.11 ** 

PopDen 0.0034 4.10 *** 0.0042 5.42 *** 0.0019 1.81 * 

Older 0.7150 13.29 *** 0.4994 9.77 *** 0.5967 9.16 *** 

HHincome 0.0002 36.28 *** 0.0001 19.00 *** 0.0002 22.85 *** 

Hwy100m -0.0639 -3.08 *** -0.0416 -2.13 ** -0.0359 -1.59   

DCBD -0.0173 -25.18 *** -0.0115 -16.83 *** -0.0189 -15.74 *** 

DRiver -0.0459 -29.35 *** -0.0387 -25.73 *** -0.0487 -18.11 *** 

Constant 11.9937 774.89 *** 7.8926 55.01 *** 12.0945 552.24 *** 
Lambda/Rho 
Coefficient       0.3275 28.73 *** 0.4912 32.92 *** 

Number of obs. 7693     7693     7693     
R-squared 0.70     0.73     0.75     
Akaike info 
criterion -458.74     -1223.39     -1373.61     

Note: *p<0.1, **p<0.05, ***p<0.01. 

The Breusch-Pagan test and Moran's I test confirmed that the two spatial models helped to 
eliminate the spatial autocorrelation, as indicated by the Moran’s I values (0.058 for spatial 
lag, -0.019 for spatial error, versus. 0.219 for OLS). But, as the Breusch-Pagan test was 
significant for both spatial models this suggests the existence of spatial heteroskedasticity (i.e. 
spatial non-stationarity).  

A GWR model was then used to directly model spatial variability. The model results indicated 
the GWR model was an improvement over the two spatial models, as indicated by the smaller 
AIC (-1590.83 as compared to -1223.39 and -1373.61). But this improvement in model fit 
needs to be set against a poorer performance in controlling for spatial autocorrelation with the 
GWR model being inferior to the two spatial models, as demonstrated by the greater Moran’s 
I statistics (0.142).  

Using the diagnostic approach described in Wheeler (2007), condition indexes and variance 
proportions to detect the potential collinearity problem for local models were calculated. The 
results indicated the condition number being greater than 30 at nearly half of the estimation 
points and a variance proportion being greater than 0.5 for several variables, indicating the 
presence of local collinearity according to Belsley (1991). This suggests that a GWR ridge 
regression might be more successful in reducing the estimation bias caused by local 
collinearity. A summary of the GWR Ridge model estimation results is presented in Table 3. 
The mean of the coefficients for all the variables have the same sign as the coefficients 
estimated from the global models although the magnitudes of the coefficients changed in 
some places. 
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Table 3 Summary of GWR local model estimations 

Variable Mean 
Std. 

Dev. Min Max

DBRT -0.0007 0.0013 -0.0031 0.0020
DTrain 0.0022 0.0022 -0.0024 0.0055
PropertyType 0.1775 0.0383 0.1149 0.2623
Bedrooms 0.1493 0.0231 0.1135 0.1890
Baths 0.1341 0.0134 0.1073 0.1590
Parking 0.0804 0.0297 0.0372 0.1520
Amenities 0.0031 0.0023 -0.0014 0.0094
PopDen 0.0003 0.0093 -0.0237 0.0276
Older 0.7490 0.2095 0.2137 1.1702
HHincome 0.0002 0.0000 0.0001 0.0003
Hwy100m -0.0799 0.0385 -0.1572 -0.0182
DCBD -0.0103 0.0296 -0.0512 0.0763
DRiver -0.0001 0.0001 -0.0002 0.0000
Constant 12.0037 0.1113 11.8149 12.2142

 

As discussed in the Methodology, the other advantage of GWR is the visualisation of the local 
coefficients in a map. Figure 3 illustrates the spatial variability of accessibility to BRT station 
on housing prices. This map shows values for accessibility which are significant with areas 
where the local parameters are insignificant being coloured light grey. In general, most parts 
of the study show the expected negative relationship between access to the BRT station and 
housing price. It is also evident that this effect is relatively stronger at stations further away 
from the CBD with non-significant effects for some BRT stations closer to the CBD. These 
results align well with the findings of Bowes and Ihlanfeldt (2001) and Ma et al. (2014). But 
these outcomes could be expected because more travel time can be saved through use of the 
BRT by residents living farther away from the CBD. In addition, the accessibility of the BRT 
stations have both positive effects (e.g. accessibility, attracting retail activities) and negative 
effects (e.g. noise, crime near a station). In areas closer to the CBD, the benefits of access to 
BRT stations may be offset by the nuisances generated by proximity to the busway corridor or 
the neighbouring freeway. In the northern suburbs, the association between access to the BRT 
station and housing price is also negative, suggesting that nuisance there more than offsets the 
benefits. It is also possible that this result follows from the way in which train is preferred by 
residents living in these northern suburbs and this is somewhat confirmed by investigating the 
local estimates of distance to the train station in Figure 4. 

By contrast, Figure 3 shows the unexpected negative association between access to the train 
station and housing price throughout most of the study area. This is consistent with the 
findings from the global models discussed above. Further, the strongest impact was at the train 
stations located close to the CBD: this is possibly because the benefits of access to a train 
station is small in terms of accessibility and total time savings while the negative effects (e.g. 
noise, crime, pollution) might be higher. Figure 3 also shows the negative effects declining as 
the distance from the CBD to the southern suburbs increased (i.e. the coefficients becoming 
less positive) This suggests the increased accessibility benefits of being close to a train station 
as houses become more suburban may offset some of the negative effects observed closer to 
the CBD but these not being strong enough to overturn the overall negative effect. The way in 
which this study has identified unexpected negative associations between access to train 
stations and housing prices is not unique. For example, Cervero and Duncan (2002) found that 
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commuter rail had a negative effects on the sales price of multi-family properties in their San 
Diego County study with only one area – the northern suburbs – showing a positive 
association between access to the train station and housing price was found. Whilst the 
accessibility benefits not being able to offset the negative aspects of being close to a train 
station is one explanation it is also possible that other local factors, not controlled in the 
modelling, are affecting the capitalization effects of being close to a train station. In this 
context, in the northern part of the study area there are several train routes (see Figure 1) 
which combined will provide a  more frequent services and larger coverage both factors are 
key determinants of capitalization effects (Landis et al., 1994).  
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Figure 3 Local estimates of distance to the BRT station 
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Figure 4 Local estimates of distance to the train station 
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6. Conclusion and Policy Implications 
This study quantitatively evaluates the BRT proximity effects on residential property values in 
Brisbane, Australia. Results from global models, OLS and spatial models, consistently suggest 
that, everything else held constant, being close to BRT adds a premium to the housing price of 
0.14%, for every hundred meters closer to the BRT station or 0.36% for every 250m closer to 
the BRT station which is somewhat lower than the 2.4% uplift found by the meta-analysis of 
Debrezion et al. (2007) for a similar proximity to a railway station. Results from the GWR 
local model further indicated that proximity effects vary over space. In general, the proximity 
effects are relatively stronger at stations further away from the CBD, indicating people living 
in suburbs are more likely to pay extra for being close to a BRT station. However, this is not 
consistent throughout the study area suggesting that some unique local characteristics have not 
been controlled in models and appear to moderate the relationship between proximity to BRT 
station and housing price. For example, in the northern suburbs of the study area, there was a 
negative premium for proximity to the BRT station but the opposite for proximity to train 
station. The GWR local model showed this variability in the maps and suggests that further 
investigations of the local factors contributing to the variations of the proximity effects could 
be beneficial. This result is important not only for better understanding the implications of 
BRT proximity effects on property price, as well as for policy implications in being able to 
capture the uplift in land value. 

It is also worth noting that the areas with high premia on house prices are served by the BUZ 
routes which provide extensive feeder buses and very high frequency.  These services, unlike 
their counterparts in developing countries, traverse the suburbs and then operate directly onto 
the Busway providing single seat journeys without interchange at the busway for journeys into 
the CBD. Relying on the feeder bus network, the BRT system in Brisbane significantly 
expands its service area as well as increases its level of service, which should be one of the 
key factors contributing to the significant capitalization effects. It is recommended that the 
feeder bus network is well integrated in the BRT system planning.  

By comparing the results of different models, the spatial models fit the data better than OLS 
model by taking account of spatial effects. The spatial error model was the best in handling 
the spatial autocorrelation problem. The OLS estimation results are, however, still unbiased 
even in the presence of spatial dependence effects, as shown by the similar results from OLS 
and spatial models. The GWR local model improves the spatial models by further accounting 
for the spatial non-nonstationarity, but introduces the challenge of local collinearity. The 
empirical research using the GWR model to investigate the spatial effects on property values 
is limited, further studies are needed to better understand the factors contributing to the spatial 
effects.  
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