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1. Introduction 
Network modelling plays an important role in modern day transport planning. It all once started 
with empiric observations leading to the fundamental diagram and the identification of 
kinematic wave theory. Over time, the field has flourished and sparked enough interest to yield 
a broad range of models all with their own strengths and weaknesses. At the present day we 
roughly identify three major types of network models; firstly the traditional static models 
originally developed in the 1950s, secondly the dynamic models that emerged in the early 1990s 
and sitting in between the lesser known quasi-dynamic models that combine characteristics of 
both. 
 

In this paper we will solely focus on dynamic models. In the literature this group of models is 
often referred to as Dynamic Traffic Assignment (DTA). In that case it encompasses both the 
propagation model, better known as Dynamic Network Loading (DNL) model and a, possibly 
iterative, route choice model. Over the years the DNL model paradigm branched off into three 
categories. For highly detailed, often smaller scale networks, microscopic models have been 
developed. This type of model simulates vehicles individually and is therefore potentially the 
most realistic. That said, they do come with their own set of challenges; they are known to be 
relatively computationally expensive as well as configuration hungry. Another known pitfall of 
microscopic models is their inherent unstable results, requiring more runs to get some form of 
‘representative’ outcome. On the opposite end of the spectrum macroscopic models reside, 
adopting traffic flow theory in order to model traffic as a stream of vehicles. These models are 
traditionally utilised when modelling larger scale networks. They are faster to run, typically free 
of random components, easier to configure and relatively simple to interpret. However, they can 
lack some of the realism of their microscopic counterparts especially in an urban setting. The 
third category contains mesoscopic models, which adopt characteristics of the two others, 
usually modelling vehicles individually but propagating them according to macroscopic traffic 
flow theory (i.e., using an underlying fundamental diagram). 
 

These DNL models can again be subdivided into first order and second order models. Second 
order models take “indirect behavioural” effects into account such as reacting to congestion 
downstream, or anticipating on merging effects taking place at motorway on- ramps for 
example. Even though this seems natural, from a theoretical perspective there is a lot of debate 
on the mathematical rigour of these models. First order models on the other hand only model 
direct effects such as flow (and thus speed) changes on a link based on a fundamental diagram, 
and are capable of representing most elemental traffic characteristics such as queue formation 
and propagation. They typically lack the additional complexity of the “indirect behavioural” 
component. These first order models have proven to be mathematically rigorous while still 
yielding sufficiently realistic results. In this paper we will concentrate on macroscopic first 
order DNL models for large scale networks. 
 
1.1 Outline and Paper Contributions 
In this paper we will propose a novel first order macroscopic DNL solution algorithm based on 
the general, and arguably, most elegant first order link model available to date: the Generalised 
Link Transmission Model (G-LTM), which extends the original link transmission model (LTM) 
to an arbitrary concave fundamental diagram instead of the simplified triangular fundamental 
diagram. In order to do this we will first discuss the current state of the literature on 
macroscopic DNL models before describing the mathematical framework of G-LTM. As each 
proper DNL model also has a node model we subsequently discuss the adopted first order node 
model. Although the node and link models presented are not a contribution of this paper as such, 
we have to introduce them thoroughly to be able to discuss our newly proposed algorithm and 
do justice to its subtleties. Also, we propose some reformulations in order to accommodate our 
algorithm in the best possible way.  
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In this paper we deviate from the typical time based algorithms that split the time horizon into 
small time steps, and propose an event based algorithm for solving the general first order DNL 
problem. The section on the proposed event based algorithm is broken up in a discussion 
regarding the basic steps and when needed expands on relevant details of sub steps. The next 
two chapters are dedicated to a comparison with the existing time discretised LTM solution 
algorithm and the discussion of two case studies (of a corridor network and a real world network 
(Amsterdam)) demonstrating its correctness, level of efficiency and applicability on large scale 
networks.  
 

Reaching the conclusion we will have proposed to the reader a novel solution algorithm for the 
G-LTM. This novel solution algorithm owes its efficiency to the fact that it is truly event based 
which, to the best of our knowledge, is unique in macroscopic models to date. The proposed 
algorithm is capable of generating exact results (unlike time discretised counterparts). From a 
practical perspective we will have demonstrated that this algorithm can be adapted to support 
the option of weakening the exact result constraint, hereby significantly reducing the 
computational complexity even further. Furthermore, we will identify that the difference of the 
resulting approximation can be kept to a near negligible level compared to the original results. 
Consequently, we believe the proposed solution algorithm is a valuable contribution the current 
existing DNL models for real world large scale applications. 

2. Dynamic network loading models 
In this section we introduce the topic and its current state in the literature as well as notation and 
where needed some examples to clarify the mathematical foundations that are the basis of this 
paper. This section will not present new theory but is nonetheless essential in order to convey 
the principles that are behind the novel solution algorithm. 
 
2.1 Macroscopic DNL in the literature 
Macroscopic DNL models consist of a link model and a node model. We first provide a brief 
literature overview of the link models, and then of the node models.  
 

The foundations for most modern day macroscopic DNL models were laid by kinematic wave 
theory. This theory entails the way (shock) waves of traffic traverse a road and is first described 
by Lighthill and Witham (1955) and Richards (1956). This model is often referred to as the 
LWR model. The conservation of flow defines the basic relationship between how a change in 
density k over time t relates to a change in flow rate q over space x in such a way that no 
vehicles can be lost in the process. 
 

0
dk dq

dt dx
 

  
(1) 

 

In (1) the flow rate  q f k is presented solely as a function of density, which in turn is 

nothing else than the well known fundamental diagram. The speed  is a direct result ( q k   
) and is not defined separately. This all builds on the assumption that a road at position x at time 
t is in a stable state. This type of model is known as a first order model, in which changes in 
speed are assumed to be instantaneous. These initial first order models caught on and sparked 
further research. Payne (1973) for example designed a ramp metering system, where he 
incorporated an adapted version of the LWR model taken from Payne (1971). This extended 
version adopts an additional speed term derived from car following behaviour, and is referred to 
as a second order model. It is based on the argument that the assumption of a stable traffic state 
of the original model seldom presents itself in real life. This additional speed formulation as 
seen in equation (2) accounts for acceleration or deceleration given surrounding traffic states, 
i.e. speed changes are no longer assumed to be instantaneous. Here change in speed depends on 
the speed upstream (convection), the related current stable state speed weighed by relaxation 
constant R (relaxation) and the downstream situation (anticipation) with constant c . A time and 
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space discretised version of this model named METANET was developed by Messmer and 
Papageorgiou (1990) and adapted versions of this model like MaDAM have been applied 
extensively in practice (Raadsen et al. (2010)). 
 

 

 


2

anticipationrelaxationconvection

0
d kdk

dt dx
f k cd d dk

dt dx R k dx



 

 


   



(2) 

 

Second order models sparked of a lot of debate regarding their validity (see Daganzo (1995a), 
Papageorgiou (1998)), also possible solutions have emerged (e.g., Aw and Rascle, 2000). Both 
first and second order models adopt a fundamental diagram of some sort. Newell (1993a) 
proposed a simple triangular shaped fundamental diagram and was also the first (see Newell 
(1993b)) to mention boundary conditions as a way of keeping track of travel state. This proved 
very useful in converting theory to practice. Daganzo’s (1995b) Cell Transmission Model 
(CTM) adopts Newell’s simplified triangular fundamental diagram and proposes a pragmatic 
solution method by discretizing space (i.e., transforming all links into equally sized cells) and 
discretizing time (i.e., assuming a certain fixed time step size). Each cell in CTM has a single 
state defining its flow, speed and density for a given time step, again aimed at improving the 
feasibility of implementing these models in a practical (large scale network) context. The most 
recent development in link models is the emergence of link transmission models. These models 
step away from the cell based approach and instead utilise link boundary conditions to extract 
information on flows, densities and speeds. The Link Transmission Model (LTM) proposed by 
Yperman (2007) also adopts the triangular fundamental diagram in its basic formulation and 
extends the model of Newell (1993a) to a network context using discretized time. The LTM 
model can be solved more efficiently and more accurately than the CTM model as it does not 
require links to be split into smaller cells. The Generalised Link Transmission Model (G-LTM) 
proposed by Gentile (2011) describes a continuous time version of the model of Yperman 
(2007), but makes an important generalisation to supporting any concave fundamental diagram. 
While the triangular fundamental diagram allows very efficient solution algorithms as 
demonstrated in the CTM and LTM models due to the fact that there only exist two kinematic 
wave speeds (one forward and one backward), the extension to a more realistic general concave 
fundamental diagram essentially means there are an infinite number of possible kinematic wave 
speeds. This means that solving the G-LTM model is more challenging than solving the LTM 
model. Gentile (2011) solves the G-LTM model by again discretizing time and solving the 
model for each time interval.  
 

Both the CTM and the (G-)LTM models are first order models, are mathematically rigorous and 
are among the most elegant link models found in the literature to date. Their main advantage 
over other models is their simplicity and potential efficiency in determining in and out flow 
rates while still yielding realistic results. All propose solution algorithms that rely on (fixed) 
time interval updates, which can prove to be inefficient as will be demonstrated in this paper. 
The research on macroscopic node models has long remained a by-product; most of the 
aforementioned models for example only discuss merge and diverge nodes on highways like 
Daganzo (1995b). Bliemer (2007) formalised a demand constrained approach for any type of 
node configuration, an approach since long used in practice. This formulation however violates 
the invariance principle formulated by Lebacque and Khoshyaran (2005). In recent years more 
sophisticated first order node models have emerged that satisfy this constraint for merge nodes, 
such as Jin (2012), Jin and Zhang (2002) or Tampere et al. (2011). The latter proposing a more 
generic approach defined as a set of constraints and a solution algorithm that also works on 
nodes with multiple in and out links, i.e. cross nodes. When looking at internal node constraints 
it can be shown that even the node model proposed by Tampere can have trouble finding a 
unique solution as shown by Corthout (2012), this has caused researchers to look into even 
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more detailed, almost microscopic approaches in trying to solve this problem including turning 
movements on a lane level, see Flötteröd and Rohde (2011). 
 
2.2 Theoretical framework 
We will now introduce a mathematical representation of our transport system. We will adopt a 

transport network  ,AG N , where each node in the network is part of set N, with O N
and D N being the subsets containing the origin and destination nodes. Consequently, we 
can define an origin-destination pair (OD) pair as (o,d) with ,o O d D  . Links are represented 
by set A, each link only takes on traffic flows in one direction, making G a directed graph. Each 
link has a length via aL (km) as well as a capacity aQ (veh/h), jam density aK (veh/km), free 

speed max
a and speed at capacity crit

a . Let each path (route) that is constructed based on our 

transport network be defined via path p P .  

In this paper we assume Z finite periods of stationary demand, with 1z Z  and each period 

given by    1T ,Tz z   . The end time of the entire DNL is denoted by T. Each time period has 

travel demand per path associated with it denoted by  pf z .  
 

We will describe our novel DNL solution algorithm in terms of link inflow and outflow rates, 
without the need to calculate (intermediate) densities, travel speeds, and resulting link travel 
times. If the reader is interested in how to extract for example path and link travel times, 
densities and speeds from the simulation flow rates we would like to refer to the extensive 
literature existing on the topic by Newell (1993b), Daganzo (1993), or Szeto and Lo (2005). For 
comparisons between different approaches and their validity see for example Long et al. (2011). 
Each proper DNL model consists out of a link model and a node model. Our node model 
formulation will be completely generic albeit in slightly restricted form because of the chosen 
link model. In this paper we will adopt the G-LTM formulation for the link model, which 
defines the class of first order link models adopting any concave fundamental diagram. The 
mathematical formulation of this model will be presented and discussed in the next section and 
are needed to understand the principles adopted for the novel event based algorithm formulation 
later on. 

3. Link model formulation 
We will start by defining the time dependent inflow and outflow rates for link a, denoted by 

 au t  and  av t  respectively. The cumulative inflow into link a at time instant t and the 

cumulative outflow out of link a at time instant t are respectively defined as 
 

   
0

t

a aU t u w dw  (3) 

   
0

t

a aV t v w dw 
(4) 

 

As stated our algorithm will be based on the G-LTM. The complexity of this model is such that 
we will first discuss the Link Transmission Model (LTM), which is a simplified version of the 
G-LTM adopting a triangular fundamental diagram, as presented in Figure 2(a) (for readability 
the subscript denoting link a is omitted here). We additionally will provide examples to explain 
the main principles that are behind the G-LTM as to date only a strictly mathematical 
formulation exists. 
 

The traffic states at the link boundaries can be distinguished in terms of free-flow or no free-
flow, and spillback or no spillback. Note that when the link boundary is in spillback state or no 
spillback state we could also group them under the no free flow state. Similarly when in free 
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flow state or no free flow state we can aggregate them under the term of no spillback. This 
grouping becomes useful later on when we will only be interested in link boundary traffic state 
changes between free flow and no free flow and spillback or no spillback. The described (valid) 
state transformations are also shown in Figure1. 
 

 
Figure 1 - State transitions as seen from either free flow link boundary state perspective (vertically), or 

spillback link boundary state perspective (horizontally) 
 

Consider a forward kinematic wave arriving at the end of the link at a certain time instant t. This 
kinematic wave has encountered only free flow conditions if the kinematic wave departed at the 
beginning of the link a aL  earlier, where a is the speed of forward kinematic waves, which in 

the triangular diagram is equal to the (maximum) free-flow speed max .a This is for example the 

case up to time 1t  in the example of Figure 2(b). More generally the following always holds in 

free flow state: 
 

  0a
a

a

L
U t V t


 
   

   

(5) 

 
Using (3) and taking the time derivative of (5) we can formulate the outflow rate in terms of an 
inflow rate as shown in (6). 
 

  a
a a

a

L
v t u t


 

  
 

(6) 

 

We can now define the desired sending flow  as t  in terms of  av t , which will become 

relevant for the node model later on. The outflow rate  av t reflects the actual physical 

situation on the road whereas  as t represents the desired situation based on the traffic state on 

the link boundary. Equation (7) reflects the distinction between the free flow traffic state, in 
which the sending flow is equal to the inflow exactly a aL  earlier, and the no free flow traffic 

state, in which the sending flow reverts to capacity. 
 

 

 

, if  0,
(t)

, otherwise.

a
a a

a a

a

L
C U t V t

s

v t


  

       



(7) 

 

The capping to capacity intuitively makes sense because a queue has formed in the no free flow 
state so the offered traffic fills all available outflow capacity in that case. 
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Figure 2 - (a) Triangular fundamental diagram with four example traffic states and transition 
shockwaves (b) Space time projection of (shock) waves and link traffic states on example link. 

We can similarly define the spillback and no spillback traffic states. Consider a backward 
kinematic wave arriving at the start of the link at a certain time instant t. This kinematic wave 
has encountered only spillback conditions if the kinematic wave departed at the end of the link 

a aL  earlier, where a is the speed of backward kinematic waves. Take for example time 1t in 

Figure2(b), the link is no longer in free flow state (due to traffic state 2) and moves to spillback 
state at time 2t .The a  known as backward (spillback) kinematic wave speed and represents a 

negative speed to travel to the opposite border and find that in this time you have passed a aK L
vehicles.  
This is expressed in (8) with the related time derivative expressing the inflow rate in (9)1.  
 

  a
a a a a

a

L
U t V t K L


 

   
   

(8) 

  a
a a

a

L
u t v t


 

  
 

(9) 

 

With the definition of the inflow rate  au t , we now define the possible receiving flow  ar t , 

where it reverts to the maximum intake of flow (i.e., the capacity) unless the link boundary is in 
spillback state. In the latter case the possible receiving flow is obviously capped to the related 
spillback state outflow rate. The receiving flow, like the sending flow is the main link between 
link and node model (discussed in section 4). 
 

                                                           
 
1 The simplest way to picture this is to imagine a link with no outflow. Only after the whole link is filled 
with a aK L vehicles it is in spillback as the situation at the end of the link (no outflow) has moved its way 

up to the start of the link.  
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 

 

, if  ,
( )

, otherwise.

a
a a a a a

a a

a

L
C U t V t K L

r t

u t


  

       



(10) 

 
Finally, when both link boundaries are neither in free flow state or spillback state the link is said 
to be in congested state2. This means that one or more state changing shockwaves exist 
somewhere on the link. Note that the shockwaves associated with a change in traffic state take 
on the slopes of the lines drawn between the traffic states in the fundamental diagram. For 
instance, the traffic state at time 6t is the result of interaction between three earlier traffic states, 

resulting in intersecting shockwaves ( 4t  moving to free flow traffic state 3 and ending traffic 

state 2, while interacting with traffic state 4 that was introduced at 5t ). For clarity a vehicle 

trajectory in terms of speed is depicted using a dashed line (e.g. 1 2 4, ,   ) to convey how 

vehicle speed relates to the existing (shock) waves. As can be observed the speed is defined by 
the slope between the origin and the current traffic state encountered. 
As a final note on the congested state, the term can be slightly confusing to use from a link 
boundary perspective. Observe that the no free-flow state is not the same as congested (it can 
also be in spillback), while at the same time the no spillback state can also mean free flow 
(besides congested). Therefore we will refrain from using the term congested and use no free 
flow or no spillback instead, depending on the chosen perspective. 
 
3.1 Cumulative vehicles and flow change moments  
The model so far has been formulated in continuous time t (in contrast to the time discretised 
version of the link transmission model in Yperman, 2007). For our algorithm we are however 

only interested in the exact times changes in inflow or outflow rates occur. Let  j
at therefore 

denote the (current) last event j at the downstream boundary of link a, i.e. a change in the 

outflow rate. In the same way, let   i
at  denote the (current) last event i at the upstream boundary 

of link a, i.e. a change in the inflow rate. The cumulative inflows and outflows are piecewise 
linear and can thus be expressed in reference to the changes in flow rates as shown in (11) and 
(12), where each piecewise linear section can be referenced via running variable x or y 
respectively. 
 

      ( ) ( ) ( ) ( ) ( 1),      0i x i x i x i x i x
a a a a aa a aU t U t u t t t t t t x i            

 
(11) 

 

      ( ) ( ) ( ) ( ) ( 1),      0j y j y j y j y j y
a a a a a a a aV t V t v t t t t t t y j            

 
(12) 

 
We will now take a closer look at boundary conditions and how they will help in predicting 
(future) flow changes, utilising the introduced notation from this section. 
 
3.2  Shockwave tracking vs link boundary conditions 
In terms of defining a solution algorithm capable of exact results we could explicitly track 
shockwaves and impose flow changes when they arrive at a border. This however, results in a 
number of complications: 
 

 How to find out where shockwaves will intersect? 

                                                           
 
2 Observe that the only remaining combination of link boundary states; free flow on the one link boundary 
and spillback on the other border is physically impossible and can therefore be ignored as a viable traffic 
state 
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 How to verify if a shockwave is still valid or if it has become obsolete due to 
intersecting with another shockwave? 

 How to keep track of all existing shockwaves? 
 How to connect it (elegantly) to the traffic flow theory? 

 
Instead it makes more sense to use the proposed mathematical framework and apply our 
knowledge on link boundary conditions to identify the exact moment a change in inflow or 
outflow rate will occur without the need for explicit shockwave tracking. To achieve this we 

will first derive the general formulation for a predicted (future) time  1j
at


an outflow change 

occurs under or leading to free flow conditions. Utilising (5) and substituting the cumulative 
outflow with the just introduced piecewise linear formulation of (12) and doing the same for the 
cumulative inflow via (11) we are left with the decision what previous flow rate change relates 

to our input time t. Given that we are looking for  1j
at


downstream it is easy to see that ( )j y

at


can only revert to the event preceding  1j
at


, namely  j

at . Unfortunately this is not as trivial for 

the upstream situation. We only know it must hold that   ( ) ( 1)1i x i xj
a aa a at t L t     and 

due to piecewise linearity we choose 
( )i x
at 

as out upstream reference time (do note that x is 

unknown at this point). We can now rewrite (5) in terms of 1j
at

 with adopted stationary inflow 

rate  ( )i x
aau t 

and stationary outflow rate  ( )j
a av t yielding: 

 

 

 

           

    

( ) ( ) ( )

1

( )

i x i x i xj j je
a a aa a a a a a a

j e
a i xj

aa a a

L
U t V t u t t v t t

t
v t u t


  





 
    

 


(13) 

 

where it must hold that      11i x i xj
a aa a a a at L t t L       . It is important to notice that it 

is possible the correct relating upstream event is not necessarily the latest event 
( )i
at (as is 

demonstrated in Figure3) and also that due to shockwave interaction the up and downstream 

events do no need to be exactly a aL  apart, hence the fact that x in 
( )i x
at 

is an unknown that 

we know exists but requires finding. 
Along the same line of reasoning we can derive the (future) moment a spillback change occurs 
utilising the piecewise linear cumulatives formulations of (11) and (12) on the spillback traffic 
state formulation of (8). 

 
Figure 3- Schematic example of upstream and downstream flow rate change relation. 
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Upstream, due to piecewise linearity we can directly replace the unknown 
( )i x
at 

 from (11) with 

the previous event
( )i
at , because we know we’re looking for

( 1)i
at 

, whereas downstream we have 

to keep the ( )j y
at

 , with y remaining an unknown for now. This then gives us: 

 

 

               

     
1

i i ij y j y j y a
a a aa a a a a a a a a

i a
a i j y

aa a a

L
K L U t V t u t t v t t

t
u t v t


  





 
     

 


 

(14) 

 
We will now extend this to G-LTM. The G-LTM can be formulated in a similar way albeit with 
more interdependencies. 
 
3.3 Generalised link transmission model formulation 
As G-LTM supports any concave fundamental diagram we have to revise our initial framework 
to support this. Let us consider the fundamental diagram as shown in Figure 4(a). Due to the 
fact that the fundamental diagram no longer needs to be linear; the speeds, wave speeds and 
shockwave speeds of a flow change within for example the free flow travel state no longer 

coincide (with  0a ).This means that a vehicle exiting the link at 0t did not by definition enter 

the link at  0 1a at L u  because of the quadratic nature of the chosen fundamental diagram. 

Instead it most likely entered later, as can be seen in Figure 4(b). The absolute difference in 

cumulative vehicles between the vehicle entering the link and  0 1a at L u is defined by

 1
I
a ak u L . Furthermore, wave speed  1a u is now obtained via the tangent at inflow rate 1u . 

 

1
,( )

( )
I a
a a I a

a a

q
k q q

q
 

 
(15) 

1
,( )

( )
II a
a a II a

a a

q
k q q

q
 

 
(16) 

 

The density relating to a flow qa in a free flow state is defined as 1
,I aq in (15), such that ( )I

a ak q

represents the (negative) density of the discrepancy between vehicle speed and wave speed. 
Equation (16) does the same only for the spillback part of the fundamental diagram where

( )II
a a ak q K , the wave speed ( )a aq depends on flow qa and 1

,II aq  is the related spillback 

density. We will utilise this to generalise our earlier formulations. 
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Figure 4 - (a) schematic general concave fundamental diagram depicting traffic state speeds, wave 
speeds (tangent) and shockwave speeds (b): Space time variant of depicted traffic state changes.  

3.3.1 Generalising state and link boundary equations 
Using this generalised form we are forced to redefine our free flow traffic state formulation 
presented in (5). Factoring in the density discrepancy and flow dependent a leads us to (17). 

Note that we can either choose to define I
ak and a in terms of inflow rates or outflow rates at 

time  a at L   or t respectively. For now we choose outflow rates as this is more intuitive in 

terms of notation as it directly depends on t.  
 

       Ia
a a a a

a a

L
U t V t k v t L

v t

 
    

 
(17) 

 
For the spillback traffic state formulation presented in (8) we incorporate the changes in a 
similar fashion leading us to (18). 
 

       IIa
a a a a a

a a

L
U t V t k u t L

u t

 
    

 
(18) 

 
This in turn has an impact on the definition of desired sending and receiving flows as is shown 
in the updated versions of (7) and (10) leading to: 
 

       

 

, if  ,
( )

, otherwise.

Ia
a a a a a

a a a

a

L
C U t V t k v t L

s t v t

v t



  
        


(19) 
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 
     

 

, if  ,
( )

, otherwise.

IIa
a a a a a a

a a a

a

L
C U t V t k u t L

r t u t

u t



  
        
  

 

(20) 

 
We now turn back to the just updated (17) and (18) as they require a redefinition of the 
predicted flow change moments originally defined in equations (13) and (14). Starting with the 

prediction of the free flow traffic state we again are looking for  1j
at

 an outflow change occurs 

under free flow conditions.  Due to piecewise linearity it is easy to see that when substituting 

(12) into (17), ( )j y
at

 will revert to  j
at (the event preceding  1j

at


). For the opposite border
( )i x
at 

is the reference time. Because x is unknown at this stage 
( )i x
at 

cannot be simplified. An 

additional problem is the fact that both I
ak and tangent a have been defined in terms of outflow 

rate but this outflow rate depends on  1j
at


 we’re trying to obtain. To solve this we must rework

I
ak and a to make it dependent on the inflow rate instead. Given that we already chose 

( )i x
at 

as 

our (unknown) upstream reference point, we can conveniently utilise to achieve this. This then 
leads us to:  
 

 

             
     

    

 
   

   
   

( ) ( ) ( )

1

( )

1

1

1

with,

i x i x i x i xI j j j

i x

j

i xj

i x i x

i x i x

j

L
k u t L U t V t u t t v t t

u t
t

v t u t

L L
t t t

u t u t



 

   







  

  



     




   

 
 
 
 

(21) 

 
where we dropped the reference to link a for brevity. We can obtain the spillback traffic state 
prediction in a similar fashion yielding (22). Now we are able to predict the future flow rate 
changes in a generalised form assuming stationary flows using equations (21) and (22). Observe 
that this new form is very similar to the simpler LTM model, but more versatile. The only 
aspect left to discuss on the link model part is the situation that occurs at 4t  in Figure4 (b), 

namely the situation seemingly leading to multiple solutions in terms of proposed flow rates for 
the same predicted future time t4. 
 

 

                   
   

     

 
   

   
   

1

1 1

1

with,

i i ij y j y j y j yII

j y

i

i j y

ij y j y

j y j y

L
k v t L U t V t u t t v t t

v t
t

u t v t

L L
t t t

v t v t



 

   







  

  

    




   

 
 
 
 

(22) 
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3.3.2 Unique flow rate identification under multiple solutions 
Consider two forward shockwaves, the first shockwave enters the link at 2t as shown in Figure4 

(b) and is predicted to exit at 4t . At time 3t  another forward shockwave with 3 2u u  occurs. 

This shockwave is also predicted to exit at exactly 4t . Consequently, there are now two valid

 i xt 
when solving (21) for 4t . The problem with this is not so much the time prediction (it is 

uniquely identified by 4t even with two solutions), but which of the two inflow rates is dominant 

and should be chosen as the outflow rate for 4t t providing a unique and physically meaningful 

solution? It can be shown that from all solutions  i xt 
 the only correct solution adopts the 

minimum outflow rate (which is the same as the minimum   i x
tu 

). This is due to the concave 

nature of the fundamental diagram and is known as the Newell-Luke Minimum Principle (for 
the exact description of this principle we refer to Newell 1993b and Gentile 2011). Do observe 

that this is exactly the same as choosing the maximum
 i x

t


from all eligible options. This 
principle also holds for the spillback state in case multiple waves coincide at the upstream link 
boundary. 

4. Node model formulation 
All inflow and outflow rates mentioned in the link model section are usually sanctioned by a 
node model. In this section we will formulate a class of first order node models that is suitable 
for our framework and proposed algorithm.  
 

Besides the node model each DNL adopts a way of directing route flows on the network via 
splitting rates at the node level. We will propose splitting rates that depend on a period of 
stationary flow z and demonstrate that although this is a simplification of the reality it is 

adequate for the purpose of this paper. Let each node n have a number of in links part of set in
nA

as well as a set of out links denoted by out
nA . We can then define the splitting rate  ab t from in 

link a in the direction of out link b at time instant t as:  
 

 
 

 
   1,    t , , , , ,

ap p
p P z z in out

ab n n
ap bp p

p P

f z

t T T a A b A n N
f z




 
 



      


 (23) 

 
with a path incidence indicator ap taking on a value of 1 if path p contains link a, otherwise it 

reverts to 0. Finally,  pf z is the travel demand on path p for the relevant period z. As can be 

seen the splitting rates are fixed per period instead of dynamically determined by the optimal 
route flows towards the destinations at every possible t. This is not ideal from a theoretical 
perspective. The reason to nevertheless adopt this approach is the fact that our focus in the 
remainder of this paper is on both the DNL algorithm and comparing it to the LTM solution 
algorithm and not so much on optimal route choice or ultimate realism in output. We do want to 
stress it would of course be easy to alter the model formulation of (23) to accommodate the path 
based approach, but this would require additional verbosity on our other link and node model 
notation that we chose to avoid. 
 

On a more practical side, note most real world time discretised CTM implementations like 
METANET or MaDAM do not offer path based splitting rates as it does not scale to large 
networks, let alone in combination with en-route route choice (i.e. continuous route choice 
while traversing the route). The LTM does adopt the path based splitting rates in the theoretical 
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description, but as far as the authors of this paper are aware, no implementation of LTM exists 
that adopts this approach in practice (for large scale applications).  
 

Most importantly, we would like to point out that this approach regarding splitting rates is not 
expected to have a significant positive or negative effect on the number of events generated 
compared to the path based approach3. The reason for this is the fact that the number of events 
will mainly determined by fluctuations of demand at the origin dictated by our periods of 
stationary demand. When we assume the average length traversed by the combined path flows 
does not vary too much between periods we can see that it does not matter if periodically 
initiated flow is directed in one direction or the other, in any case either events are generated, or 
not. Furthermore one might argue that the computational complexity and memory demands of 
the path based time dependent splitting rates are much higher in terms of the continuous 
(dis)aggregation of data and storing it separately. This of course is true, but this argument holds 
equally well for time discretised implementations of for example LTM and G-LTM, so 
comparisons as presented in our case studies can still be made as long as we make sure the 
assumptions imposed regarding the splitting rates  are equal for all DNL models compared . 
Continuing with our node model formulation we now define the desired sending flow for a 

specific turn  abs t  as the offered outflow rate from link a to link b or more formally: 

 

      ,    , ,in out
ab ab a n ns t t s t a A b A n N    (24) 

 
Our node model then takes in the desired sending flows per turn as well as the possible 

receiving flows and constructs the accepted turn based flows  abv t that jointly account for

 av t and also lock the  bu t at the same time. This node model can be formulated in a very 

generalised and turn based form as presented in equation (25). 
 

      ' ' ',
, , ' , ' ,    n Nin out

n n

in out
ab n a b b n na A b A

v t s t r t a A b A
 

           (25) 

 
A special case arises when dealing with an origin node. In that case the transfer/generation of 
traffic flow is slightly different because it is directly linked to the path flow of the current period 
z as can be observed in (26)4 
 

 
     

 

1, if ,o , t , ,

, else , .
in
n

z zout
bp p o

p P
b out

ab n
a A

f z b A O T T

u t
v t b A n N

 





     
 

 





(26) 

 
Since we adopted a FIFO based link model in the form of the G-LTM we can only keep the link 
and node model consistent if our node model also satisfies FIFO. This constraint and a number 
of additional constraints were specified by Tampere et al. (2011) to obtain a generic class of 
first order node models. It also proposed a solution algorithm that we is adopted in the case 
studies of this paper as our node model of choice. In practice this means that if the resulting 

 av t is smaller than the original  abs t , all  abv t are scaled back proportionally ensuring 

FIFO is never violated. 

                                                           
 
3 As long as no continuous en-route route choice is adopted; which in real world applications on a 
macroscopic scale to date is a given. 
4 The underlying assumption here is that the combined path flows do not exceed the capacity of the origin 
out link. 
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5. Event Based Solution algorithm 
As shown in the previous section we are able to predict a future change in flow rate at any time 
in the simulation regardless of the present state of the link. We also observed that the in and 
outflow cumulatives (and flow rates) remain piecewise linear even in G-LTM. This makes an 
event based algorithm a very promising approach because, in contrast to discretised (fixed) time 
step approaches, it can be exact. Furthermore, in case less flow changes occur than the number 
of fixed updates on the link in a time discretised model; the event based model requires less 
computational power and has a smaller memory footprint. 
 

To make sure that we can exploit these advantages to the fullest but allow the user to decide on 
the balance between realism and computational complexity we propose a predefined number of 
fixed periods with stationary demand. We will also demonstrate that it is possible to reduce 
calculation time further when adopting a method of approximation. This extension is optional, 
but useful as is demonstrated in the real world case study.  
 
5.1 Trigger events/release events 
We will make a distinction between two types of events in our algorithm. We differentiate 
between trigger events and release events. A trigger event is defined as an event that triggers a 
flow rate change on a link as a result of the calculation of the node model (or an origin node 
flow, which is a special case). Note that trigger events can entail either a forward or backward 
shockwave depending on where the shockwave originated (at the upstream or downstream link 
boundary).  
 

A release event is an event that marks the end of a shockwave when it arrives at a link 
boundary. Its source was an earlier trigger event. When positively validated it will enforce a 
flow rate change and possibly (but not necessarily) a link state change. 

Each flow rate change at time t caused by the l-th processed event is denoted by    l
a ae t E , 

with Ea being the overall set of processed events on link a.  This set is the combination of its 

upstream and downstream sub-sets: aa aE E E  . A further distinction can be made on the 

event type; when      , withl
aa a a ae t E E E E      it denotes a trigger event (on one of the 

two link boundaries). Similarly, when    l
a ae t E , with aa aE E E    it denotes a release 

event. 
 

Unprocessed but already scheduled triggered events will be made part of set X X X   . 
Similarly, unprocessed (but future scheduled) release events are to be temporarily stored in set

X X X   . 
 
5.2 Basic algorithm 
The algorithm is in essence an infinite update process where each new trigger event can spawn 
possible release events. In turn, whenever a release event is classified as valid, it triggers an 
update on the node model via the boundary of the link it is accepted on. The node model, faced 
with a change in desired sending or receiving flow, computes the (possibly) updated accepted 
flow rates based on the change. The algorithm then generates new trigger events for the changed 
flows. These events are scheduled and processed and the whole system is set in motion again 
from the beginning.  
 

Some of the basic algorithm steps will refer to a specific section discussing their internal 
process flow. Refer to those sections for a detailed description of the inner workings of this step 
in the algorithm.  
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Input:    0 0 0a au v  ,    0 0 0a aU V  for all a A .  

There are no events scheduled yet: X X E    .  
Step 0: Pre-schedule period based origin flow change trigger events: 

      ,   , o ,l z out
b bp p o

p P

e T f z b A O z Z


       analogous to (26)  

All events are added to X 
. 

Step1: Events present? 

In case X X    finish algorithm, otherwise continue to Step2. 
Step2: Get the next earliest release event:5 

In case X   , go to Step6. 

Collect
       ** * *

*, with   l l
a ae t t t l l e t X     

.  
Step3: Classify validity (possibly update) the candidate release event, see section 5.7: 

When    l
ae t is classified as invalid go to Step8, otherwise proceed 

Step4: Update node model, see section 5.6: 
   \ l
aX X e t   

Step5: Get the next earliest trigger event: 

In case X   , go to Step8. 

Collect
       ** * *

*, with   l l
a ae t t t l l e t X     

.  
Step6: Update link model see section 5.4: 

   \ l
aX X e t   

Step 7: Go back to Step1 
  
There are three sub algorithms to discuss. We will start with the link model update in Step6 as it 
is the most straightforward. 
 
5.3 Update link model 
A trigger event is by definition valid as it is a direct result of (usually) the node model. The 
main task of the update lies in the scheduling of a (possible) future release event related to the 
trigger.  
 

Step6.1 Update link: 

if    l
ae t X  proceed to Step6.2a 

else proceed to Step6.2b 
Step6.2a Update link (upstream trigger event) 

Update cumulatives according to (11) and set      l
a au t e t   

Update event set:    l
a a aE E e t    

Proceed to Step6.3a 
Step6.2b Update link (downstream trigger event) 

Update cumulatives according to (12) and set      l
a av t e t   

Update event set:    l
a a aE E e t
 
   

Proceed to Step6.3b 
                                                           
 
5 In practice Step2 and Step3 should be repeated until all release events scheduled at the exact same time t 
have been processed. Only then proceed to Step4. This to make sure the node model is provided with all 
relevant flow changes and only needs to be calculated once. 
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At this point    l
ae t is accepted and becomes the most recent event on the relevant link 

boundary. Given that we now want to see if this trigger event leads to a release event on the 
opposite border we clearly should utilise the most recent event both up and downstream in the 
derived prediction equations (21) and (22), greatly simplifying the prediction process described 
in Step6.3: 
 
Step6.3a Predict, validate future free flow release event for upstream trigger event: 

Solve free flow state equation (21) with
   i x i

a at t t   yielding a
 1j

at


. 

Verify
 1j

at


: it must hold
       1j i i

a aa a a at t L u t


  . 

When valid create:         11 j

a

l l
a ate e t

  , otherwise proceed to Step6.4.

Schedule it:     11 jl
a aX X e t     and exit sub-algorithm. 

Step6.3b Predict, validate future free flow release event for downstream trigger event: 

Solve spillback state equation (22) with    j
a

j y
a tt t   yielding a  1i

at 
. 

Verify  1i
at 

: it must hold
       1 j ji
a a a a a at t L v t   . 

When valid create:         11 i

a

l l
a ate e t  , otherwise proceed to Step6.4.

Schedule it:     11 il
aaX X e t     and exit sub-algorithm.  

Step6.4 Recalculate eligible opposite border events, see section 5.5: 
 

Figure5 shows two examples where there is no valid predicted release time for    l
ae t due to 

shockwave interaction. However, even when the prediction is invalid;    l
ae t itself is accepted 

and must have indirectly impacted another pending release event. Hence this other release event 
is eligible for an update via its original opposite border trigger event. This is what Step6.4 refers 
to and is discussed in the next section. 
 

Figure5 - Examples of invalid direct predictions of expected free flow release events (a) instead 
causing spillback or (b) causing different moment of free flow traffic state arrival. 

 
5.4 Recalculate eligible opposite border events 
Whenever entering this sub-process we’ve established that there is additional information on the 
opposite border that could affect existing shockwaves (see Figure5 for examples). We need to 
re-evaluate all eligible pending release events. Eligibility is established via Step6.4.3(a/b) and is 
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illustrated (for an update on possible spillback release events) in Figure 6(a)6. In this figure all 
opposite border trigger events of a certain time t where it holds that 
     1 1i i

a aa a a at L Q t t    could be impacted. This is due to the fact that a flow rate change 

in that period could cause shockwave interaction with     il

aae t . The maximum of this 

catchment period is set to  a a aL Q because we adopted a concave fundamental diagram. In 

this diagram Qa gives us the least steep tangent (thus the slowest possible wave speed) that can 
cause an interaction between different spillback states. Moreover, observe that the first earlier 

opposite border event with
   1i

aa a a at t L Q   could still cause interaction with     il

aae t in 

case it is a link state changing shockwave (allowing an even less steep shockwave slope) and 
therefore also needs to be considered.  

 
Figure 6 - Schematic representation of opposite border eligibility constraints in case of an inflow rate 

change represented by     il
ae t with (a) looking back one beyond catchment area and (b) due to 

earlier release event only partial consideration of catchment area. 

Finally, note that in Figure6 (b) the release event     ' 1l j
ae t  cuts off two of the three triggers 

preventing interaction, leaving only the most recent one eligible, demonstrating an example of 
the second constraint placed on verifying eligibility in Step6.4.2(a/b). 
 
Step6.4.1 Determine type of opposite border update given the current event :

if    l
a aae t E E   proceed to Step6.4.2a 

else go to Step6.4.2b 
Step6.4.2a Get most recent opposite border event for current upstream event : 

Collect           ** * *, with , m j y j y m
a a a a a ae t t t m m e t E E        

Proceed to Step6.4.3a 
Step6.4.2b Get most recent opposite border event for current downstream event : 

Collect 

          ** * *, with , i x i xm m
a aa aa ae t t t m m e t E E        

 
Proceed to Step6.4.3b 

Step6.4.3a Is opposite border (downstream) event eligible for an update? 
    m j y
a ae t 

is eligible when    1j y
a a a at t L Q     and

    m j y
a a ae t E 

, 

If eligible go to Step6.4.4a otherwise exit sub-algorithm. 
Step6.4.3b Is opposite border (upstream) event eligible for an update? 

                                                           
 
6 Depending on the chosen fundamental diagram  a a aL Q might vary or even be infinite (as is the 
case in our example fundamental diagram in Figure4). 
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    i xm
aae t 

is eligible when    1i x
a a a at t L Q     and     i xm

aaae t E 

If eligible go to Step6.4.4b otherwise exit sub-algorithm. 
Step6.4.4a Predict and schedule future spillback release event time(if valid): 

Solve spillback equation (20) with 
   ,and i x j y

a at t t  yielding  1it 
. 

      1 11 , ifi il
aX X e t t t    

. 
Update to next earlier opposite border event 1y y  , 
Return to Step6.4.3a 

Step6.4.4b Predict and schedule future free flow release event time(if valid): 

Solve free flow equation (19) with 
   , and i x j y

a at t t   yielding  1jt 
. 

      1 1 1, ifl j j
aX X e t t t

     
. 

Update to next earlier opposite border event 1x x  , 
Return to Step6.4.3b 

  
5.5 Update node model 
This section describes Step4 of the basic algorithm in more detail. It utilises the (updated) in 
and/or outflow rate(s) in the node model computation resulting in new accepted inflow and 
outflow rates. In case multiple release events arrive at the same time t at a node n, the node 
model should be able to process them simultaneously. For brevity the sub algorithm presented 

in Step4 will focus on the single event situation only    l
ae t , but note that in case of multiple 

events it just means that Step4.1 and Step4.2(a/b) should be repeated; once for each event. 
 
Step4.1 Update link: 

If     , ,l out
a ne t X a A n N   proceed to Step4.2a 

else proceed to Step4.2b 
Step4.2a Update link (Upstream release event) 

Update cumulatives according to (11) and set      l
a au t e t  

Update event set:    l
a a aE E e t      

Proceed to Step4.3 
Step4.2b Update link (Downstream release event) 

Update cumulatives according to (12) and set      l
a av t e t   

Update event set:    l
a a aE E e t    

Step4.3 Run the node model: 
Determine the new turn flows via

      ' ' ',
, , ' , ' ,in out

n n

in out
ab a b b n na A b A

v t s t r t a A b A n N
 

           

Step4.4 Create new trigger events:
Whenever the inflow rate changed:
           1         , ,

in in
n n

l out
b ab ab ab b n

a A a A

e t t s t v t u t b A n N

 

       

and schedule it:    1l
bX X e t    . 

Whenever the outflow rate changed: 
           1

'
b b

        , ,
out out
n n

l in
a ab ab ab a n

A A

e t t s t v t v t a A n N

 

     
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and schedule it:    1l
aX X e t

    . 

exit sub-algorithm 
 
5.6 Release event validation (and possible update) 

In the previous section each    l
ae t X  considered is validated in Step3 of the algorithm. This 

section discusses Step3 in detail. Let Figure5 serve as a reminder why this validation process is 
important as it shows how a release event might become invalid over time. Note that this step is 
similar to Step6.4, but there are a few important differences. For example, we shall now utilise 
equations (21) and (22) for validation instead of prediction purposes. Also, during validation we 

will continuously keep track of the nearest valid future flow rate change    1
min

l
ae t   computed. 

When done and    1
min

l
ae t  matches    l

ae t in time and flow rate, we can consider it valid. If it 

is not considered valid but mint t  we can immediately reschedule the event to a future moment 

in time. 
 
 Step3.1 Determine type of release event: 

Initialise 
   1

min min
l

ae t t    
. 

If    l
ae t X  proceed to Step3.2a, 

Otherwise go to Step3.2b 
Step3.2a Collect most recent downstream event: 

Collect           ** * *, with , m j y j y m
a a a a a ae t t t m m e t E E          

Proceed to Step3.3a 
Step3.2b Collect most recent upstream event: 

Collect 

          ** * *, with , i x i xm m
a aa aa ae t t t m m e t E E        

 
Proceed to Step3.3b 

Step3.3a Is current downstream event possibly compatible with our upstream event? 

If              m j y l l
a a a a a ae t e t L e t   it is too recent, go to Step3.5a, 

else if    1j y
a a a at t L Q    and     m j y

a a ae t E  , it is eligible go to Step3.4a, 

otherwise go to Step3.6. 
Step3.3b Is current upstream event possibly compatible with our downstream event? 

If              i xm l l
aa a a a ae t e t L e t   it is too recent, go to Step3.5b, 

else if    1i x
a a a at t L Q     and     i xm

aaae t E  , it is eligible go to Step3.4b, 

otherwise go to Step3.6. 
Step3.4a Update minimum release event time: 

Solve spillback equation (22) with 
   ,and i x j y

a at t t  yielding  1it 
. 

If  1it t  : update    1
min

l
ae t  with   1

min minmin ,it t t   

Proceed to Step3.5a 
Step3.4b Update minimum release event time: 

Solve free flow equation (21) with 
   , and j y i x

a at t t  yielding  1jt 
. 

If  1jt t  : update    1
min

l
ae t  with   1

min minmin ,jt t t   

Proceed to Step3.5b 
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Step3.5a Get the next earlier downstream event: 
1y y   , go back to Step3.3a 

Step3.5b Get the next earlier upstream event: 
1x x   , go back to Step3.3b 

 
At this stage all eligible events within the temporal boundaries of the opposite border catchment 

area of    l
ae t have been processed. So we now can validate, update or discard current event

   l
ae t . 

 
Step3.6 Validate current release event:

When        1
min min

l l
a at t e t e t    event    l

ae t is valid, go to Step3.8,  

else if mint    ,    l
ae t is discarded go to Step3.9, 

otherwise    l
ae t is not valid, but we found an updated future release time, go to 

Step3.7. 
Step3.7 Schedule updated release event: 

       
   

1
min

1
min

, ,

, otherwise.

l l
a a

l
a

X X e t e t X

X X e t

  

  





 






 

Go to Step3.9 
Step3.8 Recalculate eligible opposite border events, see section 5.5. 
Step3.9 exit sub algorithm 
 
In case the release event is marked valid in Step3.6, additional information has become 
available on the link (analogous to when a new trigger event is accepted when updating the link 
model, but no opposite border release event could be found (described earlier in Step6). In that 
case we allow for an update on pending release events as referred to in Step3.8. Figure7 (a) 

shows a situation where due to too little information at t=t0 a predicted release at  2it 
proves 

invalid. It is only in Figure7 (b) after  it   is validated that we can correctly predict the next 

release event to  1it 
due to the additional information now present on the link border. 

 

 

Figure7 - Example of the necessity of updating opposite border eligible trigger events after release 

event validation (a) original release 
 2it 

 is generated, but (b) shows it is actually invalid and can only 

be correctly predicted after the validation of 
 it . 
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6. Compared to LTM Solution algorithm  
Here we will compare our novel algorithm to the time-step based LTM Solution Algorithm 
(LTM-SA) as proposed by Yperman (2007). Given that we do not have access to an 
implementation of this algorithm we will only compare based on known properties regarding 
computational complexity. 
LTM-SA can almost be considered a special (limited) case of G-LTM-SA. Both the node model 
and fundamental diagram(s) supported by LTM-SA can be adopted by G-LTM-SA. The 
fundamental difference between the two algorithms is found in the approach; G-LTM-SA is 
truly event driven whereas the LTM-SA is based on the more conventional time discretised 
approach. 
  
6.1 Discrete time steps versus event based 
As stated before, the LTM-SA is based on discretised time steps of a predefined interval t , 
resulting in a different link model updating procedure compared to our G-LTM-SA. The desired 
sending and receiving flows ultimately feeding the node model do not relate to flow rate 
changes directly, but instead focus on difference in cumulative vehicles within a fixed time 
window in combination with applying the Newell-Luke principle: 
 

   

   

min ,

min , V

a
a a a a

a

a
a a a a a a

a

L
s t Q t U t t V t

L
r t Q t t t K L U t





  
          

  
           

(27) 

 
In effect this approach yields an average of the related opposite border flow(s) for a period t as 
it does not keep track of the exact flow rate changes. 
 

 
Figure 8 - Drawbacks of LTM-SA discretised time step algorithm, updates happen without additional 

information available and averaging out the effects flow changes (at t3). 
 
As illustrated in Figure8, there are two main drawbacks to this approach. Firstly when the link is 
in a stable state, extrapolation of cumulatives would suffice due to piecewise linearity, instead 
unnecessary calculations take place every t . Secondly the (average) flow rate adopted for each 
next t might originally have consisted out of multiple different flow rates. For example at t2 the 
new average flow rate over 2 2[ , ]t L t L t      will be adopted. This sending flow rate is 

based on two different inflow rates. In reality the new flow rate will be adopted after t3 .Thus, 
LTM-SA applies a flow rate change too early and with a different flow (average) than actually 
is taking place7. Finally, observe that all changes in flow that in reality happen within a t will 

                                                           
 
7 Also note that with LTM-SA at t4 another flow rate change is in order as now the link has stabilised and 
the flow of t1 is adopted for the whole period.  
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snap to either end of a period so the change in flow at t1 probably occurred at a different time on 
the upstream link, but this information indeed has already been lost. 
LTM-SA does propose an “event-based” alternative, but this does not relate to the actual 
definition of events as known in the field of the computer sciences and agent based systems. 
Instead, it only aims to optimise the t period per node by making it as large as possible given 
the in link lengths of the node. This reduces the amount of calculations needed, but at the same 
time increases the error in the resulting approximation. It is therefore an optimisation that still 
exhibits the aforementioned drawbacks. Obviously, the G-LTM-SA in this example only 
requires two events in total (at t1 and t3) yielding both an exact as well as a correct result. Note 
that when mentioning G-LTM-SA we refer to the proposed novel event based approach and not 
the solution algorithm proposed by Gentile (2011), that solution algorithm exhibits the exact 
same problems as LTM-SA. 
 
6.2 Fundamental diagram support 
The LTM-SA also proposes an extension beyond the Newell triangular fundamental diagram 
boasting a more sophisticated piecewise linear version. In that case (27) is reformulated into the 
slightly more complicated (28). As can be seen LTM-SA now checks each possible piece wise 
linear option h or h’ (available via set H for the free flow part and H’ for the congested part 

respectively), using the corresponding wave speed ( ,h a , ,h a ) and tangent density (
,h a

Ik , ,
II
h ak ) to 

obtain the correct result. Observe that when the fundamental diagram is chosen in the 
continuous form of Figure4 (a) the number of elements in both sets becomes infinite and the 
LTM-SA approach is no longer feasible. 
 

   

   

,

,

,
' '

,

min , min

min , min V

h a

Ia
a a a a a

h H
h a

IIa
a a a h a a a

h H
h a

L
s t Q t U t t k L V t

L
r t Q t t t k L U t









   
               
   
               

(28) 

7. Solution Algorithm Practicalities 
In ascertaining the efficiency of G-LTM-SA we discuss two degrees of freedom: the number of 
periods with stationary flow within the simulation and the level of accuracy of the result. Both 
have an impact on the runtimes of the algorithm on large scale networks which is investigated in 
our case studies. 
 
7.1 Periodic stationary flows in DNL  
The more periods Z of stationary flow are defined the more accurate travel demand patterns can 
be simulated. On the other hand a large number of Z causes more fluctuations in flow rates, in 
turn leading to more events. Consequently, the event based approach gets less efficient 
compared to fixed time step algorithms such as LTM-SA the more periods are defined. To what 
extent this observation has a practical implication will be discussed in the case study of a large 
scale network.  
 

G-LTM-SA offers the choice to run and guarantee exact results, resulting in no approximations 
at all. For large scale networks however this can potentially get inefficient. To make G-LTM-
SA of practical relevance the user should be able to define the trade-off between exactness and 
computational efficiency. We will therefore include an event flow acceptance threshold. During 
algorithm execution this threshold is verified against every flow rate change proposed by the 
node model. Whenever the proposed flow rate change exceeds the threshold it will be 
processed, otherwise it is discarded. The bigger the threshold the fewer events occur and the 
smaller the computational effort required; this comes at the cost of the accuracy of the results. In 
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our large scale network we will experiment with different settings of this threshold to 
demonstrate the impact of this threshold in practice. 

8. Case Studies 
This chapter discusses two case studies: a synthetic corridor network and a real world network 
(city of Amsterdam). The first will serve as a demonstration of the principle working of the 
algorithm, whereas the second shows its applicability on larger scale networks. For G-LTM-SA 
we will adopt the Quadratic-Linear fundamental diagram as proposed by Bliemer et al. (2013) 
and shown in (29). This fundamental diagram has a quadratic free flow part and a linear 
congested part; providing a fair trade off between realism and computational efficiency. 
 

   

 
   

crit
max

max

1
1 1 , if  0 ,

( )

1 , if  ,

a
a a a a a a

a a a
a

a a a
a a a a a

a a a

k k k k Q
k Q

q k
k k Q

C k Q k K
K k Q






   
                    

(29) 

 
8.1 Corridor Case Study 
Let us consider the simple corridor network with a single one hour period of stationary flow 

depicted in Figure9 (a); links have a length of 2 km, a free speed max
a of 60 km/h and speed at 

capacity crit
a of 45 km/h. The results of running G-LTM-SA, with a path flow demand of

2200pF  , are presented in Figure9 (b). Note that the presented results are exact and all flow 

rate changes relate to an event on a one-on-one basis. 
 

 
Figure 9 - (a) Corridor network with (b) single period G-LTM-SA simulation results. 

 
Note that only 27 events8 are needed. If we would compare this to LTM-SA with a rather 
generous fixed time step of let’s say a 100 seconds, the difference is already 

  2 5 3600 100 24 336     calculations. With a more realistic time step of 10 seconds, 

                                                           
 
8 Observe that the first outflow events on link 1 and 3 are redundant and are shown only for clarity: 
whenever a release event is accepted with a different flow than originally proposed we should only create 
the resulting trigger event with the accepted flow. Also there are three more release events that have been 
generated but became invalid during the simulation due to intersecting shockwaves and eventually were 
not accepted (all on link 1 and not shown in table) 
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causing less carry over accuracy problems, the difference becomes even more pronounced 
(3574 calculations). 
 
8.2 Amsterdam Case Study 
In this case study we will use the Amsterdam network kindly provided by the Amsterdam City 
Council (via Goudappel Coffeng B.V.). Although the network has signalised intersections they 
are ignored as this requires a more complex node model and this is beyond the scope of this 
paper. The G-LTM-SA is implemented as a separate DNL model in the StreamLine DTA 
framework (see Raadsen et al. (2010)) and the results are presented in OmniTRANS. We adopt 
all non-DNL components from this framework for our case study. Furthermore, this case study 
is not conducted to analyse the situation in Amsterdam. Instead, the aim is to provide insights in 
the complexity and practical feasibility of the algorithm on a representatively scaled real world 
network. We will conduct separate simulations for a number of different periods of stationary 
demand to assess the impact on performance. Clearly, the more periods we consider the more 
precise the DUE algorithm can direct traffic and the more realistic the results get. On the other 
hand each period with different flow rates will cause a wave of new events increasing the cost 
of running the simulation. Besides varying the number of periods we will also conduct runs 
experimenting with different flow rate epsilon thresholds. We do this to find out how this 
impacts both the performance and/or accuracy of the results. Based on this we will then draw 
some conclusions on the applicability of the G-LTM-SA. 
 

Network: 
279 origins, 279 destinations: 
2037 connect nodes 
865 cross nodes 
66 merge nodes 
71 diverge nodes 
3868 links 
Routes: 
174.279 routes from predefined 
route set 
Simulation: 
3 hours (10800 seconds) 
OD Matrix: 
Synthetic evening peak period 
demand 
Route Choice: 
MNL (spread=0.2 iteration 1, else 
spread=0.14) 
MSA smoothing over iterations 
Route Cost: 
Trajectory travel time at t=6480s 
(60%) 

Figure 10: Result of G-LTM-SA simulation run with 9 periods, and an event flow threshold epsilon of 
5 veh/h. Shown are the average densities during period [100-110] minutes. 

Figure11 shows the various runtimes (in seconds) of G-LTM-SA on the Amsterdam network9. 
Figure12 shows the same results but now plotted against the number of generated events10; it is 
clear that the computation time relates in a linear way to the number of events generated. 

                                                           
 
9 32 bit C++ MS Visual Studio 2008 SP1 running on desktop: 16GB RAM, Intel Xeon 3.1GHz, 
Windows7 SP1 
10 This includes all events (even if they eventually proved to be invalid), as this takes up computation 
time. Therefore it would be unfair to only compare against valid/accepted events. 
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Figure 11 - Impact of various flow rate thresholds on different stationary flow periods expressed in 
simulation time for a single iteration (average taken over ten iterations) 

It can also be concluded that with a linear increase of the flow rate epsilon the computational 
complexity decreases exponentially (logarithmic scale used on the vertical axis in Figures 11 
and 12). Finally we observe that increasing the number of periods leads to an increase of 
simulation time as well. However, this effect is much less pronounced than the influence of the 
flow rate threshold epsilon. 
 

 

Figure12 - Impact of various flow rate thresholds on different stationary flow periods expressed in 
generated (taken from reference iteration ten). 

Assuming a minimum flow rate threshold of just a 1 (veh/h) results in almost exact results, we 
will demonstrate how well the results hold up when decreasing the accuracy (thus increasing the 
flow rate epsilon). The most detailed (nine period) simulation run was taken as a reference and 
“lost vehicle hours” were used as a measure of accuracy. This seems a natural choice to be able 
to compare performance on a network level. The results are depicted in Figure13 (a). As 
expected the “lost vehicle hours” decrease over iterations as we’re moving towards equilibrium.  
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a 
b 

Figure 13 - (a) Comparing result validity under different flow rate epsilons and iterations via lost 
vehicle hours. (b) Percentual difference (of different flow rate epsilons) compared to 1veh/h flow rate 

epsilon. 

Furthermore, result accuracy deteriorates rapidly beyond a flow rate epsilon of 10 (veh/h). 
Observe, that adopting a flow rate epsilon of 5 (veh/h) seems a very good trade off between 
computation speed and accuracy (only 0.5-2.2% difference in lost vehicle hours as depicted in 
Figure13 (b)). 
 

The most important observation however is the fact that significant computational benefits can 
be achieved with near negligible effects on the result validity. Unfortunately, we cannot 
compare this G-LTM-SA to the LTM-SA directly as we do not have an implementation 
available in the current StreamLine framework. Instead, we will take our most detailed but 
complex simulation run of nine periods of stationary flow with a flow rate epsilon of 5 (veh/h) 
and compare the number of generated events to the number of calculations needed in the LTM-
SA. It is hard to say if this is truly fair as updating events in G-LTM-SA also takes some time 
while on the other hand for LTM-SA we have little idea of the approximation error it generates, 
the impact of having to do many more node update computations, the appropriate time step and 
the fact that it adopts a simpler fundamental diagram. Nevertheless, we think it is an interesting 
thought experiment to at least give a rough idea on how the two relate in terms of computational 
complexity. 
 

Given that no link on our network exceeds 0.3km and quite a few are less than 0.1km, we 
probably have to assume a time step of no longer than 2 seconds for LTM-SA. In that case the 

LTM-SA would then require   2 3868 10800 2 41,774, 400   updates versus the G-LTM-

SA’s 1,316,908 generated events. We therefore can conclude that G-LTM-SA only requires 
about 3.1% of the number of updates compared to LTM-SA. Moreover, G-LTM-SA has the 
advantage of the more realistic QL fundamental diagram over a triangular Newell diagram 
which adds value in terms of result realism. 

9. Conclusion and future research 
In this paper we proposed a novel solution algorithm for the Generalised Link Transmission 
Model (G-LTM) that is unique in a number of ways. Due to the (truly) event based nature it is 
capable of generating exact results for any concave fundamental diagram adopted on the link 
model, as far as we know it is the only algorithm in the literature that can do this. All existing 
(efficient) solution algorithms always yield approximate results at best. Like G-LTM it sports a 
generic node model making it flexible and (hopefully) future proof as one can adopt any node 
model that is deemed suitable. 
 

Besides being precise the G-LTM-SA, due to its events based nature, can be made very efficient 
in terms of run times allowing it to simulate an iteration of a medium to large networks such as 



An efficient event‐based algorithm for solving first order dynamic network loading problems 
Raadsen, Bliemer and Bell 

27 

the Amsterdam model within a matter of seconds. A comparison based on computational 
complexity properties indicate that the G-LTM-SA should be orders of magnitude faster than 
for example the existing LTM-SA which adopts an even simpler fundamental diagram. That 
said; further research is needed to obtain conclusive empirical evidence on how much faster it 
actually is compared to existing first order algorithms as we unfortunately had no 
implementation of the LTM-SA at our disposal at the time of writing. 
 

By supporting an option to let go of exact results via a proposed flow rate change threshold 
property, the efficiency of the algorithm can be increased even further. In our case study we 
conclusively showed that when this threshold is chosen sensibly the price one pays in terms of 
result accuracy can be kept to a minimum while boosting the performance by a factor 5 to 10.  
Realism of simulations is increased when embedded with precise departure time flow patterns. 
This is supported by introducing periods of stationary flow. The effects of such periods on run 
times have been assessed. The Amsterdam case study shows that while adding more periods 
does have a negative impact on run times, this effect is far less pronounced than we initially 
expected. Especially in combination with the aforementioned threshold it can become very 
subtle indeed, this of course is good news in terms of practicality.  
 

In order to make a completely sound comparison between G-LTM-SA and LTM-SA and 
possibly other (second order) models we should have them at our disposal within the same 
framework. This would be the fairest way to objectively compare the run times, efficiency and 
memory usage. Furthermore when comparing such models the same fundamental diagram 
should be used. So G-LTM-SA should adopt a triangular or piece-wise linear diagram to 
correctly compare results to LTM-SA. 
 

Another observation we can make is the fact that with the increase of the flow rate change 
threshold the lost vehicle hours drop (Figure12 (a)), this can be explained by the fact that when 
traffic builds up, it builds up less with a bigger threshold, consequently it gets less congested 
and we have less lost vehicle hours. This is an unwanted effect in terms of realism, so it might 
prove interesting to find a different way of defining this threshold or keep track of the error once 
en event is ignored and compensate for this. 
 

We also found that one of the reasons of the exponentially increasing simulation time is the 
scheduling of eventually invalid release events and the cost of evaluating all of them in due 
time. It would be very interesting to do some research on finding a way to identify invalid future 
scheduled events in a simpler way than running them through the full validation process. This 
could potentially reduce computation times drastically especially on large networks when 
running them in concert with small flow rate thresholds. 
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