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1. Introduction 
The stochastic user equilibrium (SUE) static traffic assignment problem has been extensively 
studied in the past decades. This problem was defined first by Daganzo and Sheffi (1977), who 
generalized the user equilibrium (UE) principle of Wardrop (1952). The SUE principle states 
that no traveler can reduce his or her own perceived travel cost by unilaterally changing routes. 

In the literature, two stochastic models are of particular interest: The probit model (Daganzo and 
Sheffi 1977; Sheffi and Powell 1982) and the logit model (Dial 1971; Fisk 1980; Chen and Alfa 
1991;Leurent 1997). The probit model, though behaviorally more appealing, is impractical, 
because it requires Monte Carlo simulation techniques or complete path enumeration. The logit 
model, however, has enjoyed much greater attention. The reason is that the logit model can be 
explicitly formed and solved, and therefore it is very useful not only for theoretical 
investigation(Meng and Wang, 2008; Szeto et al. 2010; Szeto et al., 2011), but also for practical 
implementation (Cascetta and Papola, 2008; Castillo et al., 2008; Liu and Luo, 2012). In this 
study, we will concentrate on the solution algorithm of the logit model. 

In general, solution algorithms for the logit-based SUE problem can be divided into two 
categories. In the first category are link-based algorithms, which do not require explicit path 
enumeration. It only assumes an implicit path choice set, such as the use of all efficient paths 
(Dial, 1971; Maher, 1998), or all cyclic and acyclic paths (Bell, 1995; Akamatsu,1996). In the 
other category are path-based algorithms, which require explicit choice of a subset of feasible 
paths prior to or during the assignment. Therefore, it makes the path choice set more realistic 
from a behavioural standpoint. In the literature, a large number of path choice set generation 
methods are proposed by different authors, see for example Ben-Akiva et al. (1984), Azevedo et 
al. (1993), De la Barra et al. (1993), Cascetta et al. (1996). Some path set generation methods 
are constrained deterministic enumeration methods using so-called branch-and-bound decision 
rules to add paths to the choice set (Hoogendoorn-Lanser, 2005; Prato and Bekhor, 2006), while 
others are stochastic methods which repeatedly add shortest paths to the choice set using 
randomized link costs (Fiorenzo-Catalano 2007; Bliemer and Taale, 2006). 

This paper focuses on path-based solution algorithms to the logit SUE problem. To our best 
knowledge, the partial linearization method proposed by Damberg et al. is one of the most 
efficient algorithms currently existing for the path-based SUE problem (Damberg 1996; Bekhor 
and Toledo 2005). Damberg's method proceeds as follows. Given a feasible path flow, a 
subproblem is constructed by partially linearizing the objective function of the logit SUE 
problem, and an auxiliary path flow is obtained by solving this subproblem. A one dimensional 
minimization is then performed on the line segment between the current and the auxiliary path 
flow solutions, resulting in a new feasible solution. The procedure is repeated until the solution 
is optimal.  

As we know, Damberg's partial linearization method generalizes the method of Frank and 
Wolfe applied to the logit SUE problem, in that the auxiliary problem is the result of an 
approximation of the objective function by means of a partial linearization only, and has been 
observed to be more efficient (Boyce 1984; LeBlanc and Farhangian 1981). However, note that 
both methods are based on the same algorithmic principle, in that they use a first order linear 
approximation of the objective function. Hence, both of them may suffer from slow 
convergence. In order to make some improvements of Damberg's method, we propose two 
second order approximation methods to solve [TAP-SUE]. This is the motivation of this paper. 
First, a two level partial linearization method is developed. In this method, we propose a second 
order partial linearization method for the outer level iteration phase, in which a linearly-
constrained entropy maximization subproblem with quadratic cost is created, and a first order 
partial linearization method for the inner level iteration phase, in which the subproblem is 
approximately solved. Second, a dual method is presented. In this method, we formulate a 
Lagrange dual problem for the SUE model and use the scaled steepest ascend method to solve 
it. These methods are compared with Damberg's method on different networks. 
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In order to have a fair comparison of different methods and concentrate on the main ideas, 
throughout this paper, a pre-generated path set was used, obtained from a route choice set 
generation algorithm (Bekhor et al. 2006). Behaviourally, it has the advantage of explicitly 
identifying those paths that are most likely to be used and also allows greater flexibility to 
include path-specific attributes that may not be obtainable directly from the link attributes. 

The rest of this paper is organized as follows: Section 2 reviews the path-based logit SUE 
problem and algorithms developed to solve it. Section 3 presents the two-level iteration method 
with convergence results. Section 4 discusses the basic properties of the Lagrange dual model of 
the logit SUE problem and presents the dual method. In section 5, a proper measure to compare 
different methods is given. Section 6 compares the two proposed methods with Damberg's 
partial linearization method, and discusses the numerical results. Section 7 provides conclusions 
and suggests some important future research directions. 

2. Path based logitstochastic user equilibrium problem 

2.1. Basic concepts 

Consider a transportation network ( , )G N A , where N  is the set of nodes and A  is the set of 

directed links, respectively. For each link a A  there is a link cost function ( )a at f  that 

depending on link flow af . As a result of congestion, the link cost function is assumed to be 
positive, differentiable and strictly increasing. For certain origin-destination(OD)pairs
( , )p q C N N   ,there is a given positive demand pqd  of flow. We define the set of paths 

from origin p  to destination q  by pqR  and denote the path flow and path travel cost on path

pqr R  by pqrh and pqrc , respectively. We will also use the notations f , t , h , and c , for the 

vectors of link flow, link cost, path flow and path cost, respectively. Further define ( )pqra  as 

the link-path incidence matrix, where 1pqra  , if path pqr R  contains link a , and 0pqra   

otherwise. With this incidence matrix  , we have the relationship between link-flow and path-
flow, as  f h , and the relationship between link-cost and path-cost as T c t . 

In SUE assignment, the path flow is determined by pqr pq pqrh d P . where pqrP is the probability 

that traveler traverses through path pqr R . As shown in Sheffi (1985), when the random term 

of discrete route choice satisfies a Gumbel or Normal distribution, the route choice probability 
can be described as multinomial logit or probit, respectively. For the logit model, the route 
choice probability is defined by: 

 
 
 

exp

exp
pq

pqr

pqr pq

pql
l R

c
h d

c










 pqr R 

, 
( , )p q C 

    
(1) 

where the parameter   reflects an aggregate measure of people's perception of travel costs. 
When   is large, their route choice becomes more deterministic, while a small value makes 
travellers more uncertain about the travel costs such that route choice behavior becomes more 
random. It is well-known that the logit model above cannot handle path overlap, which is why 
several authors have proposed alternative formulations such as the C-logit or path-size logit 
model. For an overview of different network route choice models, see Bliemer and Bovy 
(2008).  

The logit SUE model can be formulated as the following convex optimization problem: 

[TAP-SUE]  
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0,pqrh  ,pqr R 

 
( , )p q C 

      (4) 

  ,

,
pq

pqra pqr a
p q C r R

h f
 

   
a A 

      (5) 

where the (entropy) expression lnpqr pqrh h  is defined as zero at 0pqrh  .This formulation was 

first proposed by Fisk (1980), who showed that its optimal solution satisfies logit choice 
formula (1). In this paper we consider the original SUE formulation by Fisk (1980), but we note 
that it can be extended to include for example the C-logit model by adding the term 

( , ) pqr pqrp q r
h    to objective function (2) (see e.g., see Xu et al., 2012), where pqr  is a path 

commonality factor described in Cascetta et al. (1996).  

Some properties of the [TAP-SUE] are summarized in the following proposition.  

 

Proposition 1. The objective of [TAP-SUE] is a sum of a convex function and a strictly convex 
(entropy) function over the feasible set. Thus the problem [TAP-SUE] is strictly convex. There 
is a unique optimal path flow solution h . 

Proof. See Evans (1973) Theorem 1. ■ 

2.2 Review of previous path-based solution methods 

The Method of Successive Averages (MSA) developed by Sheffi and Powell(1982) was the first 
algorithm applied to solve the SUE problem. In the MSA process, the link costs are calculated 
by the current link flows. A stochastic network loading procedure is then performed to produce 
an auxiliary link flow pattern. The search direction is obtained by the difference between the 
auxiliary link flow and the current link flow. The step size is predetermined by a descent 
sequence with respect to the iterations. Although the MSA algorithm is designed to solve the 
link based SUE problems, it can also be applied to the path based SUE problems if the path 
choice set is predetermined. 

Chen and Alfa (1991) developed an algorithm that uses the same search direction as the MSA 
algorithm, but the step size is computed by minimizing Fisk’s (1980) objective function. 
However, this computation requires an inverse of a link-path incidence matrix, which makes the 
algorithm impractical for large networks.  

Bell et al. (1993) presented a modified Frank-Wolfe algorithm. In this algorithm, the link costs 
are augmented to allow for the contribution of link flows to the entropy component of Fisk's 
objective function, and paths are generated by a shortest path algorithm on the basis of the 
augmented link costs. An iterative balancing procedure is embedded in the path generation 
scheme to find dual variables for the entropy maximizing sub-problem, which are added to the 
link costs. 

Damberg et al. (1996) used a combination of the disaggregate simplicial decomposition method 
and the partial linearization method to solve the SUE problem. The algorithm alternates between 
two phases:(1) given known subsets of all the paths in the network, a restricted master problem 
is solved using the partial linearization descent method, and (2) at the solution to this restricted 
master problem the current path set is augmented by the generation of new paths through a 
column generation procedure. The algorithm terminates when no new paths are obtained from 
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the column generation procedure. Different strategies of generating paths are also discussed in 
Damberg's paper.  

Bekhor and Toledo (2005) proposed the Gradient Projection (GP) algorithm for the SUE 
problem. In this algorithm, the working path set is generated prior to the traffic assignment. The 
search direction is generated by projecting the gradient of the objective function on a linear 
manifold of the active constraints. The scaling matrix is chosen as the diagonal of the Hessian. 
A line search is performed along this direction, yielding the next iteration point. Bekhor and 
Toledo (2005) showed that the method of Damberg et al. (1996) is as efficient or even more 
efficient than the GP algorithm. Therefore, in this paper we will use the method described in 
Damberg et al. as the method for comparison.  

3. A two level partial linearization method for the logit SUE 
problem 

In this section, we propose a two-level partial linearization method for solving [TAP-SUE]. This 
method consists of two phases: The outer level iteration phase applies a second order partial 
linearization method to [TAP-SUE], and creates a linearly-constrained entropy maximization 
subproblem with quadratic cost. The inner level iteration phase uses a first order partial 
linearization method to solve the subproblem approximately. We also discuss convergence 
properties of this method. 

3.1 The outer level iteration phase 

We first describe the outer level iteration of the two level partial linearization method. Rewrite 
the objective function of [TAP-SUE] as follows 

 1 2( ) ( ) ( ),Z h Z h Z h          (6) 

where 1 0
( ) ( )

af

aa
Z h t s ds   and 1

2 ( , )
( ) ln .pqr pqrp q r

Z h h h    . 

At iteration k , let ( )kh  be a given feasible path flow vector. Partially linearizing the objective 
function ( )Z h  by using a second order approximate of the first term 1( )Z h , we can obtain 

 
( ) ( ) ( ) ( ) ( ) ( )

1 2

1
( ) ( ) ( )( ) ( ) ( )( ) ( ),

2
k k k k T k kZ h Z h C h h h h h B h h h Z h     

  
(7)

 

where ( ) ( )
1( ) ( )k kC h Z h   is the gradient of 1( )Z h  at ( )kh , and ( )( )kB h  is a positive definite 

matrix. 

The gradient of ( )
1( )kZ h  is given by 

 
( )

1( ) ,k TZ h   t         (8)

 
where   is the link-path incidence matrix, and ( )[ ( )]k T

a a a At f t  is the link travel time vector.  

To discuss what matrix for ( )( )kB h  is most suitable for the two level partial linearization 

method, we first calculate the Hessian matrix of the objective function ( )Z h  at ( )kh  

 

2 ( ) 2 ( ) 2 ( ) 1
1 2

1
( ) ( ) ( ) ( ) ( ),k k k T

pqrZ h Z h Z h diag h


        t
   

(9)

 
where t  is the gradient of the vector valued function ( )[ ( )] ,k T

a a a At f t  and 1( )pqrdiag h  is a 

diagonal matrix whose diagonal elements are 1
pqrh . Since the cost of a link only depends on the 

flow of that link, it follows that t  is a diagonal matrix with elements ( )( ).k
a at f  
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In practice, choosing ( )( )kB h  as a general non-diagonal positive definite matrix (e.g., the 

Hessian of the objective function ( )Z h ) is usually not computationally efficient, since the 

Hessian vector product 2 ( ) ( )( )( )k kZ h h h   is expensive to calculate. A more popular choice is to 

let ( )( )kB h  be a diagonal (strongly) positive definite matrix. For the two-level partial 

linearization method, three forms of ( )( )kB h can be potentially used.  

Form 1: ( )( )kB h  is the diagonal of the Hessian of ( )
1( )kZ h , i.e., 

 

( ) 2 ( )
1( ) [ ( )] [ ( ) ]k k TB h diagExtract Z h diagExtract     t

   
(10)

 
Form 2: ( )( )kB h  is the diagonal of the Hessian of ( )

2 ( )kZ h , i.e., 

 ( ) 2 ( ) 1
2

1
( ) [ ( )] ( )k k

pqrB h diagExtract Z h diag h


        (11) 

Form 3: ( )( )kB h  is the diagonal of the Hessian of ( )( )kZ h , i.e., 

 ( ) 2 ( ) 11
( ) [ ( )] [ ( ) ] ( )k k T

pqrB h diagExtract Z h diagExtract diag h


      t ,   (12) 

where the function [ ]diagExtract  extracts the diagonal of a matrix. 

The subproblem solved in iteration k  then is: 

[PL-SUB(k)] 

      

( ) ( ) ( ) ( ) 2

, , ,

1 1
( ) ( ) ln ,

2
pq pq pq

k k k k
pqr pqr pqr pqr pqr pqr pqr

p q C r R p q C r R p q C r R

Z h c h b h h h h
     

          
(13) 

s.t. (3) (4) (5) 

where ( ) ( )( )k k
pqr pqra a aa

c t f  and ( )k
pqrb  equals ( )( )k

pqra a aa
t f   (Form 1), or 1( )pqrh   (Form 2), or 

( ) 1( ) ( )k
pqra a a pqra

t f h     (Form 3). 

Similar to the conclusion of Proposition 1, problem [PL-SUB(k)] is a strictly convex problem, so 
there is a unique optimal solution to [PL-SUB(k)].  

From a practical point of view, [PL-SUB(k)] cannot be solved exactly. Proposition 2 below 
shows that if an approximate solution ( )kh of [PL-SUB(k)] makes the objective value of [PL-
SUB(k)] smaller, then the vector ( ) ( )k kh h defines a feasible descent direction with respect to the 
objective function ( )Z h . 

 

Proposition 2. (Descent property of the outer level iteration method) Let ( )kh  be a feasible point 
of [TAP-SUE], and ( )kh  be an inexact solution of [PL-SUB(k)] such that 

 ( ) ( ) ( ) ( )( ) ( ),k k k kZ h Z h         (14) 

then ( ) ( ) ( )( ) ( ) 0k T k kZ h h h   . 

Proof. Follows from Patriksson (1999) Proposition 2.14(b). (a similar proof can be found in 

Patriksson (1998) Lemma 3.2(b)). ■ 

For the outer level iteration, we propose to use the Armijo rule to compute the step size. The 
Armijo rule needs to evaluate the objective function, so the computational cost is larger than the 
predetermined step size rule (see below) at each iteration. However, since the Armijo rule can 
ensure a sufficient decrease in the objective function at each iteration, its convergence rate is 
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faster than the predetermined step size rule, especially in later iterations. As a result, by using 
the Armijo rule, we can obtain any level of accuracy we desire in reasonable iteration counts. 

The Armijo step size is defined by: 

 
  ,kk m           (15) 

where km is the first integer, 0m  , which satisfies: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( ( )) ( ) ( ) ( ),k m k k k m k T k kZ h h h Z h Z h h h          (16) 

where 0 1   and 0 1   are parameters. 

The new iteration point of the outer loop is: 

 ( 1) ( ) ( ) ( ) ( )( ),k k k k kh h h h           (17) 

We next give the convergence result for the outer level iteration method as applied to [TAP-
SUE]. 

 

Proposition 3. (Convergence of the outer level iteration method) Assume that the inexact 
solution ( )kh  of [PL-SUB(k)] is obtained by performing a descent algorithm with a closed 
algorithm map with ( )kl ( ( ) 1kl  ) iterations. Let h  be the unique optimal solution of [TAP-

SUE], and  ( )kh  be the sequence of points generated by the outer level iteration method, using 

the Armijo step size rule. Then  ( )kh h . 

Proof. Follows from Patriksson (1999) Theorem 5.19. (a similar proof can be found in 

Patriksson (1998) Theorem 4.2). ■ 

3.2 The inner level iteration phase 

Now we study how to solve [PL-SUB(k)] approximately. This is the inner level iteration phase of 
the two level partial linearization method. Sub-problem [PL-SUB(k)] is in essence a linearly-
constrained entropy maximization problem with quadratic cost. A typical method for this 
problem can be found in Fang and Tsao (1995), in which an unconstrained dual approach with a 
curved search method is proposed.  

As is discussed above, to find an inexact solution ( )kh  to [PL-SUB(k)], we only need to perform 
a descent algorithm with a closed algorithm map with ( )kl ( ( ) 1kl  ) iterations, such that equation 
(14) is satisfied. In this case, we propose still use the partial linearization method to solve [PL-
SUB(k)]. The reason is that if we do so, the solution of [PL-SUB(k)]'s subproblem (i.e., [PL-
SUB(k)-SUB(l)]) can be given in a closed form. 

At iteration l of [PL-SUB(k)], Let ( )lh  be a given feasible path flow. By using a first order 
approximation to the first two terms in [PL-SUB(k)], we obtain: 

[PL-SUB(k)-SUB(l)] 

    

( )( ) ( )

, ,

1
min ( ) ln ,

pq pq

k l l
pqr pqr pqr pqr

p q c r R p q c r R

Z h g h h h
   

        
(18)

 

s.t. (3) (4) (5) 

where 

 ( ) ( ) ( ) ( ) ( )( ).l k k l k
pqr pqr pqr pqr pqrg c b h h          (19) 
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Similar to the conclusion of Proposition 1, problem [PL-SUB(k)-SUB(l)] is strictly convex. There 
is a unique optimal solution to [PL-SUB(k)-SUB(l)]. 

Different from the outer level iteration phase, the solution to [PL-SUB(k)-SUB(l)] can be given in 
closed (exact) form, 

 

( )

( )

( ) .

l
pqr

l
pqr

pq

g
l

pqr pq g

r R

e
h d

e












         

(20)
 

The following proposition shows that if the vector ( ) ( )l lh h  is non-zero, it defines a descent 

direction with respect to the objective function ( ) ( )kZ h . 

 

Proposition 4. (Descent properties of the inner level iteration method) Let ( )lh  be a feasible 
point  of [PL-SUB(k)], and ( )lh  be the unique exact solution of [PL-SUB(k)-SUB(l)]. If ( ) ( )l lh h is 

non-zero, then ( ) ( ) ( ) ( )( ) ( ) 0k l T l lZ h h h   . 

Proof. Follows from Patriksson (1999) Proposition 2.14 (a). (a similar proof can be found in 

Patriksson (1998) Lemma 3.2(a)). ■ 

 

For the inner level iteration, we propose to use the predetermined step size rule, as in the MSA 
method. Using a predetermined step size typically implies a slow asymptotic convergence rate 
in the late iterations, not only because it cannot guarantee descent at each iteration, but also 

because the step size is diminishing for convergence (i.e.,   0l  ). However, in the early 
iterations, a predetermined step size often achieves a relatively fast convergence rate. Another 
advantage of using a predetermined step size is that there is no need to evaluate the objective 
function, making it computationally efficient. Therefore, a predetermined step size is often 
favored for large problems where great solution accuracy is not of paramount importance. As a 
result, it is suitable for the inner iteration of the two level partial linearization method.  

Another point to be noted is that, if we use the predetermined step size rule for the partial 
linearization method, the algorithmic map is not assured to be a descent map (it is only 
asymptotically descent, as is the MSA method). So the conditions for convergence in 
Proposition 3 may not be satisfied. However, we can overcome this by introducing a composite 
map. Let A be the algorithmic map for the partial linearization method with predetermined step 
size. We perform n  iterations of this method, and define a new map G to represent the n  
composite map A○A○... ○A. As long as G makes the objective value of [PL-SUB(k)] smaller, we 
can conclude that G is a descent map. Therefore, after introducing the new map G, conditions in 
Proposition 3 can be satisfied. Then we can conclude that the outer level iteration phrase is 
convergent. 

The predetermined step size  l satisfies: 

 
 0 1,l    

1

,l

l






   and
 

  2

1

( ) .l

l






       (21) 

The new iteration point of the inner loop is: 

 
 ( 1) ( ) ( ) ( )( ).ll l l lh h h h           (22) 

We can get the following convergence result for the inner level iteration method as applied to 
[PL-SUB(k)]. 
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Proposition 5. (Convergence of the inner level iteration method) Let h  be the unique optimal 

solution of [PL-SUB(k)], and  ( )lh be the sequence of points generated by the inner level 

iteration method, using the predetermined step size. Then  ( )lh h . 

Proof. The inner level iteration phase is in essence the same as the MSA method proposed by 
Powell and Sheffi. The convergence theorem of the MSA method can be found in Powell and 

Sheffi (1982). ■ 

4. A dual method for the logit SUE problem 
In this section, we establish some properties of the Lagrange dual problem of [TAP-SUE], and 
present a scaled steep ascend method to solve this dual problem. 

4.1 A Lagrange dual problem for [TAP-SUE] 

Adding explicit non-negativity constraints (27) for link flows to [TAP-SUE], we can 
reformulate [TAP-SUE] as follows: 

[TAP-SUE]* 

  0
,

1
min ( , ) ( ) ln

a

pq

f

a pqr pqr
a A p q C r R

Z h f t s ds h h
  

        
(23)

 

 
,

pq

pqr pq
r R

h d


  
( , )p q C 

       (24) 

 
0,pqrh 

 
,pqr R 

 
( , )p q C 

      (25) 

  ,

,
pq

pqra pqr a
p q C r R

h f
 

   
a A 

      (26) 

 
0af  ,

 
a A          (27)

 

We note that constraints (27) are redundant in this primal formulation, but are not redundant in 
the Lagrangean dualized problem (Patriksson, 1994). 

Duralizing constraints (26) and letting ( )a a A    be the dual variables for constraint (26), we 
obtain the following dual stochastic user equilibrium problem 

[DTAP-SUE] 

 max ( )           (28) 

If we define  

 
   0

, ,

1
, , ( ) ln

a

pq pq

f

a pqr pqr a pqr pqra a
a A p q C r R a A p q C r R

L h f t s ds h h h f  
     

 
     

 
     

  

(29)

 
then the dual objective function can be expressed as  

  ( ) min , ,L h f          (30) 

s.t. (24) (25) (27)  

If we view h  (the path flow variable) and f (the link flow variable) as two independent 

variables, ( )   can be separated into two independent problems  
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[P1] 

 1 0
( ) min ( )

af

a a a
a A a A

t x dx f  
 

        (31) 

 s.t. 0,af   a A          (32) 

[P2]  

 
 

1
,

1
( ) min ln

pq pq

pqr pqr pqr pqra a
p q C r R r R a A

h h h   
   

 
 

  
       (33) 

 s.t. ,
pq

pqr pq
r R

h d


  ( , )p q C         (34) 

 0,pqrh   ,pqr R   ( , )p q C        (35)

 The solution of [P1] is (see Larsson et al., 1997) 

 
1( ), if  (0),

( )
0, otherwise,
a a a a

a a

t t
f

 


 
 


  a A       (36) 

The solution of [P2] is (see Damberg et al., 1996) 

 

  ,
pqra aa A

pqra aa A

pq

pqr pq

r R

e
h d

e

  

  
















 

,pqr R 
 

( , )p q C 

    

(37) 

Therefore, the dual objective function ( )   can be given in closed form. Properties of the 
[DTAP-SUE] are given in the following proposition. 

 

Proposition 6. (Properties of [DTAP-SUE]) The Lagrange dual program [DTAP-SUE] is an 
unconstrained differentiable concave maximization problem. There is a unique optimal solution 
  to this problem. 

Proof. For a given  ,  , ,L h f   is strictly convex with respect to  ,h f . So there is a unique 

point  ( ), ( )h f  that minimize  , ,L h f  . According to Theorem 6.3.3 in Bazaraa et al. 

(1993), ( )   is differentiable. The concavity of ( )   follows from Theorem 6.3.1 in Bazaraa 

et al. (1993). The uniqueness of   is proved as follows. Since the path choice set is determined 
in advance, as is the case in this paper, we can delete links that are not contained by any path, 
and only consider each used link. One key property of the SUE problem is that at equilibrium, 
each used link has strictly positive link flows. Hence the actual link travel time for each used 
link is strictly larger than its free flow travel time at the SUE equilibrium point. As is well 
known, the dual optimum   can be interpreted as the actual link travel times (Larsson et al. 

1997). Hence at equilibrium, (0)a at   holds for all used links. For the SUE problem, the 

equilibrium link flow f   is unique. By (36), 1( )a a af t   is strictly increasing on (0)a at  . 

Therefore,   is unique. ■ 

 

The following proposition relates the optimal solutions to [TAP-SUE] and [DTAP-SUE]. 
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Proposition 7. (Relationships between [TAP-SUE] and [DTAP-SUE]) Strong duality holds, 
that is ( , ) ( ).Z h f      Furthermore, ( )f f    and ( ).h h    

Proof. The constraints of [TAP-SUE] are linear. By Lemma 5.1.4 in Bazaraa et al. (1993), the 
Abadie constraint qualification is satisfied. Hence, by Theorem 6.2.4 in Bazaraa et al. (1993), 
the strong duality holds from the convexity of [TAP-SUE] and the fact that Abadie constraint 
qualification holds. Applying Theorem 6.5.2 in Bazaraa et al. (1993), the optimal solution of the 
primal problem can be characterized by the optimal solution of the dual problem. Hence, 

( )f f    and ( )h h    hold. ■ 

4.2 Solving the dual problem 

We propose to use the scaled steepest ascend method (Bertsekas, 1999) to solve the dual 
problem. The iteration for the scaled steepest ascend method is  

 

( 1) ( ) ( ) ( ) 1 ( )( ) ( ),k k k k kB        

      

(38) 

where ( )k  is the step size and ( )( )kB   is a symmetric positive definite matrix. The gradient of 
( )( )k   is (see Bertsekas,1999, Chapter 6) 

 

( )( ) ,k    h f         (39) 

where
 

( )

, ,
( )

pq

Tk
pqr p q c r R

h 
 

   h is the path flow vector, and ( )( )
Tk

a a A
f 


   f  is the link flow 

vector. 

The Hessian of ( )( )k  is (details of the derivation of the Hessian are in the appendix) 

 

2 ( ) 1( ) ( ) ( ( ) )k T
pqr a adiag h diag t f          

    

(40) 

                         
( ) ( )

1 2( ) ( )k kH H      

where ( )pqrdiag h  is a diagonal matrix whose diagonal elements are pqrh , and 1( ( ) )a adiag t f   is 

a diagonal matrix whose diagonal elements are 1( )a at f  . 

Similar to the discussion above, ( )( )kB   is usually chosen as a diagonal matrix. For the dual 

method, three forms of ( )( )kB   can be potentially used: 

Form 1: ( )( )kB   is the diagonal of the hessian of ( )
1( )kH  , i.e., 

 

( ) ( )
1( ) [ ( )] [ ( ) ]k k T

pqrB h diagExtract H diagExtract diag h    
   

(41)
 

Form 2: ( )( )kB   is the diagonal of the hessian of ( )
2 ( )kH  , i.e., 

 ( ) ( ) 1
2( ) [ ( )] ( ( ) )k k

a aB h diagExtract H diag t f        (42) 

Form 3: ( )( )kB   is the diagonal of the hessian of 2 ( )( )k  , i.e., 

 ( ) 2 ( ) 1( ) [ ( )] [ ( ) ( ( ) )]k k T
pqr a aB h diagExtract diagExtract diag h diag t f         ,  (43) 

Utilizing the closed form solution of [P1] and [P2], the dual objective function can be easily 
evaluated. Therefore, for the dual method, we still use the Armijo rule to compute the step size.  

Although not explicitly required, it may be useful for the implementation of the algorithm to 
calculate an upper bound on the step size. 

Define 
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( ) 1 ( )( ) ( ),k kp B            (44) 

as the search direction of the dual method. A maximum step size to ensure strict feasible link 
travel times is given by: 

 ( )
max

, if  0,

(0)
min | 0 , otherwise.

k
a a

a A a
a

p

t
p

p

 


 
      

 

    (45) 

From the above, all the ingredients of the dual method are obtained. We can iteratively 
implement equation (38), and finally obtain the equilibrium link travel times (i.e., the optimal 
dual solution). 

For the dual method, the following convergence result is valid. 

 

Proportion 8. (Convergence of the dual method) Let   be the unique optimal solution 

of[DTAP-SUE], and  ( )k be the sequence of points generated by the dual method, using the 

scaled steepest ascend direction with Armijo step size rule. Then  ( )l  . 

Proof. Follows from Bertsekas (1999) Proposition 1.2.1 and Ortega and Rheinboldt (1970) 

Theorem 14.1.4. ■ 

5. A measure to compare the performance of different 
algorithms 

Define Z   as the optimal objective value of [TAP-SUE]. As we know, Damberg's partial 
linearization method and the two level partial linearization method are primal feasible methods 
(i.e., each iteration point ( )kh  is primal feasible). The objective function value ( )( )kZ h  defines 

an upper bound of Z  , and ( )( )kZ h will converge to Z   from above. However, the dual method 

is a primal infeasible method. Given a dual iteration point ( )k , we cannot obtain a primal 

feasible solution from the dual subproblem [P1] and [P2] unless ( )k  reaches its limit  .  If we 
want to yield a primal feasible solution of [TAP-SUE], some heuristic algorithm (Larsson 
etal.,1997) should be used. The dual objective function value ( )( )k   defines a lower bound of

Z  (weak duality theorem). Since there is no duality gap, ( )( )k   will convergence to Z   from 
below. In order to evaluate the performance of the three different methods, the following 
convergence measure can be used (Leurent, 1997): 

 ln 1
kM

Z            (46) 

wherein Damberg's partial linearization method or the two level partial linearization method
( )( )k kM Z h ; and in the dual method, ( )( )k kM   . Z  is the optimal value of [TAP-SUE]. 

Obviously, equation (46) only measures the proximity of the kth objective function value to the 
optimal value of [TAP-SUE], regardless of how kM  approaches to Z 

 (i.e., regardless of kM
converges to Z 

 from above or below). Therefore, it is a suitable measure to compare the three 
algorithms. 
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6. Numerical results 
In this section, we will make comparisons between Damberg's partial linearization (Damberg's 
PL) method, the two level partial linearization (Two Level PL) method and the Dual method on 
the Sioux Falls network and Winnipeg network. Both of the two networks are taken from Bar-
Gera (2013). The Sioux Falls network consists of 76 links, 24 nodes and 528 OD pairs. It is a 
small size network. The Winnipeg network consists of 2836 links, 1052 nodes and 4344 OD 
pairs. It is a real size network. 

The paths for these two networks are generated prior to the traffic assignment. We use a 
combination of the link elimination method (Azevedo et al., 1993) and link penalty method (De 
La Barra et al., 1993) to generate the working path set. For the Sioux Falls network, the average 
number of generated paths is 7.3 per OD pair, and the maximum number of generated paths is 
11 for any OD pair. For the Winnipeg network, the average number of generated paths is 20.3 
per OD pair, and the maximum number of generated paths is 29 for any OD pair. 

As is discussed above, depending on different choice of the scaling matrix, three forms of Two 
Level PL method can be obtained. For abbreviation, we denote them by Two Level PL-1, Two 
Level PL-2, and Two Level PL-3-method. Similarly, we denote the three forms of the Dual 
method by Dual-1, Dual-2, and Dual-3 method. For the Two Level PL method, the step size of 
the inner level iteration phase is set to 1 1n  , and the inner iteration number is set to 12. Our 

computer programs are coded in MATLAB and executed on a notebook computer. 

6.1 Algorithms performance 

We first compare the three methods for most common case. In this case, the demands of the two 
networks are assumed to be the same as their original source. The dispersion parameter  is 
assumed to be 0.5, which means that given a 5-minute difference between two paths, about 8% 
of the drivers will choose the route with the higher cost. Note that this case is most likely to 
occur in practice, so we give a detailed comparison of the three algorithms.  

 

  

Figure 1 Convergence performance in terms of iteration numbers-Sioux Falls network 
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Figure 2 Convergence performance in terms of CPU times-Sioux Falls network 

Fig 1 illustrates the convergence performance of the three methods in terms of iteration numbers 
in the Sioux Falls case. This figure in essence indicates the convergence rate of the three 
algorithms. From Fig1(a), we see that in case of the Sioux Falls network, all three forms of the 
Two Level PL method are faster than Damberg's PL method, with the Two Level PL-3 method 
performs best. From Fig1(b), we observe that Damberg's PL method is slightly slower than the 
Dual-2 method, faster than the Dual-3 method, and much faster than the Dual-1 method.  

Fig 2 shows the convergence performance of the three methods in terms of CPU times for the 
Sioux Falls network. This figure in essence indicates the computational efficiency of the three 
algorithms. From Fig 2(a), we can see that the computational efficiency of the Two Level PL 
method is higher than that of Damberg's PL method, no matter what form is used. The reason 
for more efficiency of the Two Level PL method is two-fold. Firstly, the number of iterations 
required by the Two Level PL method is smaller than Damberg's PL method. Secondly, in each 
iteration, evaluating the objective function in the Armijo rule accounts for most of the CPU 
times (the Armijo rule requires to successively evaluate the objective function until Armijo’s 
inequality is satisfied). The Two Level PL method requires less function evaluations than 
Damberg's PL method, which means it spends less CPU times in each iteration. We can also 
observe that the Two Level PL-3 method is most efficient. It improves Damberg’s PL method 
by roughly 30%-50%, which is a significant decrease in CPU time. From Fig 2(b), we can 
observe that the computation efficiency of Damberg's PL method is slightly lower than Dual-2 
method, higher than Dual-3 method, and much higher than Dual-1 method. The reason why 
Dual-1 and Dual-3 method are less efficiency is mainly because the number of iterations 
required by these two methods is much larger than Damberg's PL method.  

Fig 3 illustrates the convergence performance of the three methods in terms of iteration numbers 
for the Winnipeg network. From Fig 3(a), we see that the convergence rate of Damberg's PL 
method is slightly slower than the Two-Level PL-1 method, and is slower than both of the Two-
Level PL-2 and Two-Level PL-3 method. From Fig 3(b), we observe that Damberg's PL method 
and Dual-1 method have similar convergence rate, and both are slower than Dual-2 method, but 
much faster than the Dual-3 method.  
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Figure 3 Convergence performance in terms of iteration numbers-Winnipeg network 

 

 

Figure 4 Convergence performance in terms of CPU times-Winnipeg network 

 

Fig 4 shows the convergence performance of the three methods in terms of CPU times for the 
Winnipeg network. From Fig 4(a), we find that Damberg's PL method and the Two Level PL-1 
method have similar computational efficiency, and both are less efficient than the Two Level 
PL-2 and Two Level PL-3 method. From Fig 4(b), we know that the computational efficiency of 
Damberg's PL method is lower than the Dual-2 and Dual-3 method, but much higher than Dual-
1 method. Note that the convergence rate of the Dual-2 method is similar to Damberg's PL 
method, but the efficiency of Dual-2 method is much higher. The reason is that in each iteration, 
the Dual-2 method requires the less function evaluations than Damberg's PL method, so its 
computational efficiency is higher per iteration. Compared to Damberg’s PL method, the Dual-2 
method reduces the CPU time by almost 50%.  

6.2 Sensitivity Analysis 

Now we compare the three methods under different cases, i.e., we perform sensitivity analysis 
for the three methods. By varying the value of   or multiplying the model demand with 
different factors, we can examine the impact of the dispersion parameter or demand factor on 
the performance of different methods. Due to space limitation, we only choose the most 
efficient forms of the two proposed methods that was found in Section 6.1 to conduce the 
sensitivity analysis, i.e. we choose the Two-Level PL-3 method and the Dual-2 method for the 
sensitivity analysis. We only report the performance of the three algorithms achieve a solution 
within 0.01% of the equilibrium objective function value. 
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Figure 5 Sensitivity of the algorithm performance to the dispersion parameter-Sioux Falls network 

 

  

Figure 6 Sensitivity of the algorithm performance to the level of demand-Sioux Falls network 

 

Figures 5–6 show the number of iterations and CPU times required by the three methods using 
the Sioux Falls and Winnipeg networks as a function of the dispersion parameter. As is 
presented in these two figures, both the Two Level PL-3 method and the Dual-2 method 
outperform Damberg's PL method, with the Two Level PL-3 method performs best for the 
Sioux Falls network, and the Dual-2 method performs best on the Winnipeg network.  

 

  

Figure 7 Sensitivity of the algorithm performance to the dispersion parameter-Winnipeg network 
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Figure 8 Sensitivity of the algorithm performance to the level of demand-Winnipeg network 

 

Figures 7–8 show the number of iterations and CPU times required by the three methods using 
the Sioux Falls and Winnipeg networks as a function of the demand factor. As is illustrated in 
Fig 7(a) and Fig 8(a), the number of iterations for the Two Level PL-3 method and the Dual-2 
method are smaller than or equal to Damberg's PL method. This indicates that the convergence 
rate of these two methods is at least as fast as Damberg's PL method. As is illustrated in Fig 7(b) 
and Fig 8(b), when the demand factor is small, the CPU times for Damberg's PL method and the 
Dual-2 method are similar, and both are less than the Two Level PL-3 method; when the 
demand factor is large, the CPU times for the Two Level PL-3 method and the Dual-2 method 
are less than Damberg's PL method, with the Two Level PL-3 method consumes the least CPU 
times for the Sioux Falls network, and the Dual-2 method consumes the least CPU times for the 
Winnipeg network. This means that only for the case when the demand is very small, the Two 
Level PL-3 method is less efficient than Damberg's PL method. Note that cases with very small 
total demand are rare, so we conclude that the Two Level PL-3 method and the Dual-2 method 
perform better than Damberg's PL method for most practical cases. 

7. Conclusions 
This study investigated solution methods for the path-based stochastic user equilibrium 
problem. Two new methods‒a two level partial linearization method and a dual method were 
proposed. We compared these two methods with Damberg's partial linearization method on the 
Sioux Falls network and Winnipeg network. Numerical results showed that both of them can be 
implemented on real-size networks in practice. If properly scaled, they are more faster and 
efficient than Damberg's partial linearization method for most test cases.  

In this research we limited the application to the logit SUE model. Several possible extensions 
of this research are suggested here. First, we can adapt the two methods to the more general 
combined distribution and assignment model. Second, we can apply the two methods to the 
more general route choice models, such as the Cross-Nested Logit model (Bekhor et al., 2009) 
or other route choice models that can take path overlap into account (Bliemer and Bovy, 2008). 
Third, the two methods can also work with a column generation scheme, which generates the 
path set during the assignment. 
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Appendix: Derivation of the hessian of ( )   

The Hessian of ( )   can be computed in the following form (Bertsekas, 1999, Chapter 6) 

 

       12 2, , , , ,
T

g h f L h f g h f       

     

(A1) 

where  , ,L h f   is given by equation (31), and  ,g h f  is the vector function of constraints 

(26), defined as 

  
 ,

, , .
pq

pqra pqr a
p q C r R

g h f h f a A
 

          (A2)
 

Therefore, we can derive that 

   12

1
, , ,

( )

pqr

a a

diag h
L h f

diag t f


 



     
    

    (A3) 

and 

  , ,
T

g h f
I

 
    

        (A4) 

where I  is an | | | |A A  identity matrix. (i.e., the dimension of I  equals to the number of links 
of the network)  

Therefore,  

 

   2

1( )

T
pqr

a a

diag h
I

Idiag t f


 



                      

    1( )
T

pqr a adiag h Idiag t f
I

                 
  

 
1( ) .T

pqr a adiag h diag t f                  (A5) 
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