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1. Introduction 

Travellers do not like wasting time in traffic or waiting at a bus stop. A major element of 
research in transport economics and traffic engineering has focussed on estimating and 
monetising the (average) time savings of infrastructure investments and demand management 
measures targeted at reducing travel times. We are, however, increasingly aware that users are 
not only willing to pay for a shorter travel time, but also for a more reliable trip. Uncertain and 
unreliable travel times cause users to arrive earlier or later than expected at their destination, and 
influences mode choice, route choice and departure time decisions; suggesting that the 
variability of travel time plays an important role in the generalised cost of travel. For example, 
in a survey of Dutch drivers, Verhoef et al. (1997) reported that 97.4 percent of respondents 
disliked driving in congested conditions, and when asked about the reasons for disliking 
congestion, the most important factors were time losses (4.14 points on a five-point scale), 
uncertainty (3.61), and unpleasant driving conditions (3.52). This is one of many pieces of 
evidence that points to the relevance of certainty and reliability of travel times for users.  

Since travel time variability is often related to traffic congestion (e.g., Eliasson, 2007; Tu et al., 
2007; Peer et al., 2012), a transport policy aimed at reducing the level of congestion, such as 
road pricing, has the potential of reducing travel times and increasing trip time reliability. This 
expected result has been empirically corroborated through the implementation of road pricing in 
Stockholm and London, which has resulted in reductions in both the  mean and the standard 
deviation of travel times  (Transport for London, 2007; Eliasson, 2009). Therefore, there is a 
case for incorporating the benefits from reducing travel time variability in the pricing of both 
car and public transport use.  

Most analyses on the optimal pricing of urban transport include mean travel times only, whereas 
the few studies that incorporate travel time variability focus on car tolling only (e.g., Li et al., 
2008; Jiang et al., 2011). In contrast, this paper investigates the optimal pricing structure of both 
cars and public transport (buses), as well as determining the optimal headway and capacity of 
the public transport mode, with an approach that explicitly accounts for travel time variability as 
a source of disutility for users.  

When analysing car traffic, if there is a positive correlation between the mean (µ ) and standard 
deviation (σ ) of travel time, an increase in the number of cars in congested conditions 
increases both µ  and σ . However, the analysis of public transport is not so simple; there are at 
least three basic differences with the case of cars that can worsen the consequences of 
unreliability associated with public transport. First, buses and trains have to stop in order to 
transfer passengers, creating interactions between vehicles and passengers (in the boarding and 
alighting process), and between vehicles with each other (e.g., queuing delays). The dwell time 
may also be variable and such variability depends on several factors, including the scheduled 
headway, the number of passengers getting on and off, and the fare collection system in the case 
of buses (Dorbritz et al., 2009).  

Second, the variability in travel times impacts not only in-vehicle time cost for users, but also 
waiting time, since unstable travel times yield schedule delays and headway variability, which 
in turn increases the waiting time of users (Welding, 1957) and influences activity scheduling 
decisions. Therefore, unlike car traffic, an increase in bus frequency (headway reduction) has 
counteracting effects that make its impact on total travel time variability hard to predict: 
increasing bus frequency may increase travel time variability on the road, but reduce dwell time 
and headway variability.  

Third, the unreliability and uncertainty of travel times on public transport operations also 
represents an extra cost for operators, who need to adjust the scheduling of services with larger 
slack times in the case of less reliable travel times (Furth, 2000). All of these considerations 
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make the inclusion of buses into a multimodal analysis for the optimal pricing of travel time 
variability far from trivial. 

In this paper, a multimodal social welfare maximisation model is formulated, that accounts for 
travel time and bus headway variability by using a mean-variance model (Jackson and Jucker, 
1982; Senna, 1994). Travellers can choose between travelling by car, bus or walking in order to 
complete a trip. Demand is spatially disaggregated along a transport corridor. The decision 
variables are car toll, bus fare, bus headway and bus size. The model is applied to an actual 
transport corridor in Sydney that is subject to congestion. We find that as the sensitivity of users 
to travel time variability increases, the optimal car toll increases approximately linearly, 
whereas the optimal bus fare remains almost constant. Even though both car and bus users 
contribute to increased travel time (and headway) variability, the contribution of car users is 
much higher, and is reflected in the socially optimal bimodal pricing structure. Second, if bus 
headway is variable, the shorter the optimal headway the more sensitive users are to travel time 
variability. This result may not hold when headway is constant but travel time is not, in which 
case both optimal bus size and headway are adjusted according to travel time variability and 
crowding costs. 

The remainder of the paper is organised as follows. Section 2 provides a literature review on the 
determinants of travel time variability and the valuation of travel time variability. Section 3 
presents regression models for the relationship between the mean and standard deviation of 
travel time, estimated with data collected across 423 roads in Sydney. The reliability-sensitive 
social welfare maximisation approach is introduced in Section 4. In Section 5 the main results of 
the numerical application are discussed. Conclusions and directions for further research are 
summarised in Section 6. 

2. Literature review 

2.1 Determinants of travel time variability: Car traffic 
Travel time variability (TTV) is related to random variations in travel time caused by factors 
that cannot be anticipated or foreseen by a traveller (Fosgerau et al., 2008; Tu, 2008). Tu (2008) 
divides the sources of TTV in two groups: demand fluctuations and supply fluctuations. Notable 
sources of variability in traffic demand are temporal effects (e.g., peak/off-peak, 
weekday/weekend), network effects (effect of traffic in one lane or road over travel times on 
other parallel or intersecting lanes/roads), and spatial and temporal differences in driving 
attitude. On the other hand, factors such as volatile or adverse weather conditions, traffic 
incidents and accidents, and traffic composition influence both demand and road capacity (Tu, 
2008).  

With the increasing availability of observed travel times, traffic flows and travel speeds on 
urban and inter-urban networks, analysts have been trying to explain the determinants of TTV 
based on empirical measurement of these traffic variables. There is no agreement on the 
dependent variable used as a measure of TTV, and several measures have been proposed to 
account for the degree of variability of travel time (Pu, 2011), including the standard deviation 
of travel time (May et al., 1989; Eliasson, 2007; Hellinga et al., 2012; Mahmassani et al., 2012; 
Peer et al., 2012), the difference between the 90th and 10th percentile of travel time (Eliasson, 
2007; Tu et al., 2007), the coefficient of variation of travel time (May et al., 1989; Eliasson, 
2006), the standard deviation and the variance of the delay1 Mott MacDonald, 2008 ( ) and the 
probability that travel time is below a certain threshold (Asakura, 1998). In some cases, 
variability is analysed for whole sections or links (May et al., 1989; Eliasson, 2006, 2007; Peer 
et al., 2012), whereas other authors model variability per unit of road length (per kilometre), as 

                                                           
1 Delay defined as actual travel time minus free-flow travel time. 
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a way to have a distance-free measure (Tu et al., 2007; Mott MacDonald, 2008; Mahmassani et 
al., 2012). 

The most common variable used to analyse travel time variability is the mean travel time or the 
mean delay. A majority of authors have found a positive correlation between travel time 
variability and mean travel time (May et al., 1989; Eliasson, 2007; Mott MacDonald, 2008; 
Hellinga et al., 2012; Peer et al., 2012), nevertheless the shape of the relationship varies from 
case to case. Using travel time data from a set of Dutch highways, Peer et al. (2012) show that 
TTV, measured as the standard deviation of travel time (σ ), increases with the mean travel 
time ( µ ) and that the relationship is concave, i.e., the rate at which variability grows with the 
mean travel time decreases with travel time. Hellinga et al. (2012) found a similar result, 
explaining the standard deviation as a function of the mean travel time by using a logarithmic 
(concave) relationship. On the other hand, Mott MacDonald (2008) analyse TTV for different 
types of links on English motorways, finding that the shape of the relationship depends on the 
section or type of highway analysed; in particular, the relationship between µ  and σ  can be 
concave or convex, i.e., the coefficient of variation may be an increasing or decreasing function 
of travel time. In links with extreme congestion, Eliasson (2006) shows that the standard 
deviation divided by travel time, might be a decreasing function of the travel delay, using data 
from a number of urban roads in Stockholm containing traffic lights.  Eliasson (2007) finds that 
σ  is higher in the “after AM peak” and “after PM peak” periods, which are interpreted as 
queue dissipation phases, and that a higher speed limit also increases σ .  

Instead of analysing the relationship between variability and mean travel time, Tu (2008) relates 
variability directly to traffic flow. Using highway sections in Beijing, China, and Delft, the 
Netherlands, it is found that the impact of inflow on TTV depends on the flow itself; there is a 
low demand range at which travel times are fairly constant and variability is low. However, 
when flow reaches a ‘critical transition inflow’, an increase in demand is associated with a rapid 
increase in TTV. This increased variability is maintained until flow reaches a ‘critical capacity 
inflow’, after which TTV can decrease with demand.   

2.2  Determinants of travel time variability: The case of public transport 
Research on characterising travel time variability has mainly focused on cars. Nonetheless, 
public transport modes are also subjected to variations in travel time and headway. The social 
cost of unreliability in public transport may be substantial; for example, Van Oort (2011) 
estimates a yearly cost of €12 million in The Hague, The Netherlands, due to unreliable buses 
and trams. Improving public transport reliability yields multiple benefits, including increased 
accessibility, additional ticket revenue and reductions in congestion and environmental 
externalities, if a modal shift from car to public transport is induced (Van Oort, 2011). 

There are a number of studies that have analysed bus travel time variability based on empirical 
data (e.g., Abkowitz and Engelstein, 1983; Strathman and Hopper, 1993; Strathman et al., 1999; 
El-Geneidy et al., 2008; Mazloumi et al., 2010; Moghaddam et al., 2011). Common indicators 
proposed to assess the reliability of a public transport service are the standard deviation of travel 
time, the probability of on-time performance2

Van Oort, 2011
, the travel time ratio (observed travel 

time/scheduled travel time), the average additional travel time per passenger ( ) 
and measures to analyse the variability of headways. These studies usually find that travel time 
variability, however it is measured, increases with factors such as the length of a route, number 
of stops and signalised intersections, with longer headways and higher passenger activity 
(boarding and/or alighting), with part-time or unexperienced drivers, and that a deviation in 
travel time at an early stage on a route (including a late departure from the first stop) propagates 
further downstream as buses proceed. Mazloumi et al. (2010) found an almost linear 
relationship between the standard deviation and mean travel time for buses on an urban route in 
Melbourne.  Moghaddam et al. (2011) also estimated a positive relationship between the 

                                                           
2 Defined as a bus being between 1 min early to 5 min late at the destination point (Strathman and Hopper, 1993) 



Accounting for travel time variability in the optimal pricing of cars and buses. 
Tirachini, Hensher and Bliemer 
 

4 

standard deviation of travel time and the volume/capacity ratio as an indicator for congestion on 
the route. On-board fare collections systems, including cash payment, have been found to 
increase the standard deviation of boarding times (Dorbritz et al., 2009).  

2.3 Estimation of users’ valuation of travel time variability 
In this section we provide a brief summary of the main approaches that have been proposed to 
examine the users’ valuation of travel time variability (for in-depth reviews see Li et al., 2010;  
and Carrion and Levinson, 2012). The scheduling model and the mean-variance model are the 
two most common methods to deal with travel time reliability and departure decisions. The 
scheduling model (Small, 1982; Noland and Small, 1995; Bates et al., 2001) assumes that being 
early or late at a destination is a source of disutility for travellers. The general form for the 
utility function U in this model is:  

 

LU C T SDE SDL Dδ α β γ ϑ= + + + +  (1) 

 

where C is the monetary cost of travel, T is travel time, SDE and SDL are the schedule delay 
early and late, compared to the preferred arrival time, LD  is a dummy variable that is active 
when arriving late at destination; δ , α , β  and γ  are the (negative) marginal utilities of cost, 
travel time, minutes early and minutes late, respectively, and ϑ  is a fixed penalty for a late 
arrival. Parameters for such scheduling models have been estimated by e.g., Small (1982), Bates 
et al. (2001) and Van Amelsfort et al. (2008). 

The mean-variance approach (Jackson and Jucker, 1982; Senna, 1994; Lam and Small, 2001 
among others) suggests that the variability of travel time is a cost by itself, no matter if 
travellers arrive early or late. Under these assumptions, expected utility can be expressed as: 

 

U Cδ α µ ρσ= + +  (2) 

 

where µ  andσ  are the mean and standard deviation of travel time. Analogous to the value of 
travel time savings (equal to δα in equation 1), the value of reliability (VOR) is defined as the 
ratio of the marginal utility of the standard deviation to the marginal utility of cost (i.e., VOR=

δρ  in equation 2). Another popular outcome of the mean-variance model is the reliability 
ratio (RR), defined as the ratio of the value of saving one minute of the standard deviation of 
travel time, to the value of reducing one minute of average travel time (RR= ρ α  in equation 
2). 

Recently, Fosgerau and Karlström (2010) have shown that the scheduling and mean-variance 
models are equivalent under certain conditions3

ρ

. In this case, the optimal expected utility (after 
users have chosen an optimal departure time) from the scheduling model can be expressed as a 
linear function of the mean and standard deviation of travel time, where the factor  depends 
on the scheduling costsβ  and γ , and the travel time distribution.  Empirical evidence suggests 
that, however, the valuation of travel time variability from a scheduling model may be 
significantly smaller than that of a mean-variance model (Börjesson et al., 2012). 
                                                           

3 Namely that the scheduling utility function is linear (such as equation 1), there is no discontinuous penalty for being late (i.e., ϑ
=0 in equation 1) and the travel time distribution is independent of the departure time. Fosgerau and Karlström (2010) also 
analysed the case in which the mean and standard deviation of travel time vary linearly with the departure time, and found that the 
equivalency between the two approaches (scheduling and mean-variance models) does not hold exactly but can be used as an 
approximation. 
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In this paper we use a mean-variance model as the mathematical conceptualisation of travel time 
variability in the utility function associated with the car and bus travel alternatives. A 
relationship between the mean and standard deviation of travel time is the simplest construct 
that can be obtained from empirical data, to be embedded into a microeconomic analysis of 
optimal pricing and design of a public transport service.  The characterisation of travel time 
variability is described in Section 3. 

2.4 Road pricing and travel time reliability 
While most researchers looking at optimal road pricing strategies have focused on the 
minimising travel times in the network (e.g., Yang and Lam, 1996), maximising total toll 
revenues (e.g., Joksimovic et al., 2005) and minimising emissions (e.g., Johansson, 1997) or 
externalities in general, some have suggested looking at pricing strategies from a network 
reliability perspective (e.g., Brownstone and Small, 2005). Chan and Lam (2005) were among 
the first to look at the impact of road pricing on travel time reliability, and formulated a 
reliability-based static user equilibrium problem and optimised toll levels to optimise the 
network travel time reliability based on the probability that the travel time is below a certain 
threshold.  

Setting tolls for the optimisation of network travel time reliability in the context of a dynamic 
user equilibrium was first investigated by Li et al. (2007, 2008) using the standard deviation as a 
measure of travel time unreliability. Jiang et al. (2011) considers a multicriterion dynamic user 
equilibrium problem in which travel time, travel cost, and travel time reliability are included, 
and different vehicle types are considered (i.e. low and high occupancy vehicles). As far as we 
are aware, road pricing in the context of travel time reliability with respect to cars as well as 
public transport has not yet been considered in the literature.  

3. Empirical relationship between mean and standard 

deviation of travel time: The case of Sydney 

In order to estimate a relationship between the mean and standard deviation of travel times, we 
use a database of floating car data provided by the Roads and Maritime Services (RMS) office 
of the New South Wales Government in Australia. The data comprises measurements of travel 
time along several roads in Sydney, in which vehicles are equipped with a GPS device. For each 
road, a particular trip is repeated ten times over two weeks (from Monday to Friday, the first 
week in October 2011, the second week in March 2012) at the same time each day. Then, for 
each trip, a mean and standard deviation of travel time [min/km] is calculated over ten 
observations. In this paper, only major urban roads are considered (highways are not accounted 
for). The total number of roads is 423. The scatter plot of mean vs. standard deviation of travel 
times is shown in Figure 1. 
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Figure 1:  Mean and standard deviation of travel times, Sydney 

 

Linear and power regressions are estimated as follows: 

0 1L La aσ µ= +  (3) 
  

3
2

a
L Laσ µ=  (4) 

 

In (3) and (4), Lµ  and Lσ  are the mean and standard deviation of travel time per unit of 
distance (min/km) and coefficients ia  are regression parameters, estimated in Table 1. We 
observe that the linear model produces a slightly superior model fit relative to the power model, 
when comparing Adj-R2. 4

Table 1:  Estimation of regression models 

 

Model Coefficient Value t-ratio Adj-R2 

Linear 
0a  0.316 30.121 0.682 

1a  -0.229 -10.920 

Power 
2a  0.103 26.557 0.668 

3a  1.685 29.179 

 

                                                           
4 In a more general power model 3

2 4
a

L La aσ µ= +  , constant 4a  is not statistically significant. 
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The linear model in Table 1 can be compared to Mahmassani et al. (2012), who estimate linear 
and non-linear (square root and quadratic) relationships between Lµ  and Lσ  for three locations 
in the U.S. (Irvine, the Baltimore-Washington Corridor and New York City) using the traffic 
simulation model DYNASMART.  They estimate regression models at four aggregation levels: 
network, O-D pair, path and link. For their path level model (the equivalent to the models of 
Table 1), coefficient 0a is between 0.25 and 0.53 for their linear regressions. Our estimate of 0a
=0.316 in Table 1 falls within this range.  This figure means that an increase of one minute in 
the mean travel time per kilometre implies an average increase of 19 seconds in the standard 
deviation of travel time. 

4. Social welfare maximisation approach 

The analytical model used in this paper for the study of  optimal TTV pricing of cars and public 
transport is based on the social welfare maximisation model developed by Tirachini (2012) for 
the analysis of optimal pricing and design of a bus route, including congestion and crowding 
externalities. In this section we summarise the main elements of the model;  further details are 
provided in Tirachini (2012) and Tirachini et al. (2012). 

We consider a linear bi-directional road of length L  and a single period of operation with 
directions denoted as 1 and 2. The road is divided into P  zones denoted as { }1,...,i P∈ , and 

the total demand ijY per origin-destination pair ( ),i j is fixed. The distance between zone i  and 

zone 1i +  is denoted as iL  such that 
1

1

P

i
i

L L
−

=

=∑ , as shown in Figure 2. Users can choose to 

travel by car (a), bus (b) or to walk (e). Let 1
i

af  be the traffic flow between zone i  and zone 

1i + (direction 1) and 2
i

af  be the traffic flow between zone 1i +  and zone i  (direction 2). 
There is only one bus stop per zone and the travel distance between zones is the same for the 
three modes. The decision variables of the problem are denoted as follows: 

bf  : bus frequency [bus/h] (the inverse of bus headway) 

bs  : bus length [m] 

aτ  : car toll [$/trip] 

bτ  : bus fare [$/trip] 

 

 

 

 

 

Figure 2:  Transport corridor diagram 
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Bus frequency is assumed to be continuous whereas options on bus lengths are constrained by 
the size of commercial vehicles (e.g., 8 m, 12 m, 15 m. and 18 m. long buses). We assume that 
cars and buses share the right-of-way, and that bus stops do not directly affect cars. 

Multinomial logit models for modal choice are estimated, including the proportion of available 
seats and the density of standees as attributes for the bus alternative. Data collected from a 
stated choice survey conducted in Sydney in 2009 is used to this end5 ij

mU. Let  be the utility 

associated with travel by mode m in origin-destination (OD) pair ( ),i j  (direction 1 is used for 
illustration): 

Bus: 

( )

( )

1
, 1

1
, 1

j
ij i ij k k k k
b b a ab h b c b vb vb den den seat seat vb

k i

j
ij k k k k

b h h b vb tb den den seat seat tb
k i

U t h t n p t

n p

α β β β τ β β β

θ β σ θ β σ β β σ

−
+

=

−
+

=

= + + + + + + +

 
+ + + + 

 

∑

∑
 

(5) 

Car: ( )ij ij ij ij
a va va c r a r a va taU t c oβ β τ θ β σ= + + +

 (6) 

Walk: ij ij
e e ve veU tα β= +

 
(7) 

In (5), the first line is the utility when travel time and headway are not variable, whilst the 
second line is the utility associated with the standard deviation of headway and travel time. On 
the first line, i

abt  is the access time at zone i, bh  is the mean headway between two consecutive 

buses, ij
vbt  is the in-vehicle time between zones i and j, bτ  is the bus fare, k

denn  is the density of 

standees per square metre between zones (stations) k and k+1, k
seatp  is the proportion of seats 

occupied between zones k and k+1, bα  is a modal constant (which will be calibrated to predict 

an observed modal split) and lβ are the parameters associated with the different attributes. On 
the second line, bθ  is the bus reliability ratio RR (defined as the ratio of the value of reliability 
to the value of in-vehicle time, see equation 2)6

hσ,   is the standard deviation of headway, and 
ij
tbσ  is the standard deviation of bus in-vehicle time. In the application of the model (Section 5), 

we use the linear specification (3) to characterise travel time variability7 ij
tbσ, therefore  is given 

by expression (3) times trip length.  

For cars (expression 6), ij
rc  is the car running cost to travel between zones i and j, aτ  is the road 

charge (decision variable), ro  is the average car occupancy rate, aθ  is the car reliability ratio 

and ij
taσ   is the standard deviation of car travel time. Bus fare and car toll do not vary with trip 

length. Finally, in (7) walking is assumed neither subject to congestion nor travel time 
variability (i.e., we ignore the potential influence of factors such as traffic lights on the travel 
time variability of pedestrians).  

                                                           

5 The experimental design, study area, sample size and socioeconomic characteristics of respondents are described at length in 
Hensher et al. (2011). 

6 For buses, we assume the same reliability ratio for the variability of both in-vehicle time and headway. 

7 The power model (expression 4) does not produce any major difference regarding outcomes on pricing structure and bus 
design, on the range of car and bus speed obtained in the application of Section 5. 
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Assuming a multinomial logit model for the estimation of demand, the number of trips by mode 
m in OD pair ( ),i j is given by:  

 
ij
m

ij
n

U
ij ij
m U

n

ey Y
e

=
∑

 

, ,i j m∀  (8) 

 

where ijY  is the total demand between zones i and j and ij
my  is the demand between zones i and 

j on mode n. The parameter estimates for utility functions (5) to (7) are given in Appendix A1.  

Consumer surplus B is given by the logsum formula: 

 

0ln
I

ij
m

ij
Um

ij mu

yB e B= +∑ ∑
 

(9) 

 

where Iu  is the marginal utility of income (equal to minus the cost parameter cβ  in linear 

utility functions) and 0B  is a constant that has no effect on the solution of the problem, and 
therefore can be set to zero.  

We assume that buses and cars share the right-of-way, which is subject to congestion. Taking 
direction 1 for illustration, we model the travel time between zone i and zone i+1 by car ( 1

i
vat ) 

and bus ( 1
i
vbt ) as a function of traffic flow (cars/h) and bus frequency (buses/h), by using the 

well-known Bureau of Public Roads (BPR) formulae: 

 

( ) ( ) 1

1
1 1 0 0, 1

i
a b bi i i

va a b a
r

f s f
t f f t

K

γ
ϕ

γ
  +
 = +  
   

    (10) 

( ) ( ) 1

1
1 1 0 0 1, 1

i
a b bi i i i

vb a b b s
r

f s f
t f f t t

K

γ
ϕ

γ
  +
 = + + 
   

   (11) 

 
where 0

i
at , 0

i
bt , 0γ  and 1γ  are parameters ( 0

i
at  and 0

i
bt  are the free-flow travel times by car and 

bus, respectively), 1ϕ ≥  is the passenger car equivalency factor of a bus, which depends on the 
bus length bs , and rK  is the hourly capacity of the road.  

The travel time by bus includes the delay due to bus stops, 1
i
st , which consists of the 

acceleration and deceleration delay 1
i
act  and the dwell time 1

i
dt . The delay in the process of 

accelerating and decelerating at bus stops is modelled by assuming uniform acceleration and 
deceleration. We assume that boarding and alighting are allowed at all bus doors, therefore 
dwell time is estimated as:  
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i i i
d oc b b a at c p pλ λ+ −= + Β + Β       (12) 

where occ  is the time to open and close doors, aΒ  and bΒ  are the average alighting and 

boarding times per passenger, iλ +  and iλ −  are the number of passengers boarding and alighting 
a bus at the bus stop, respectively, and factors ap  and bp  are the proportion of passengers 
boarding and alighting at the busiest door8

Next, we formulate bus operator costs. Let operator cost be divided into three components: 

.  

( )1 bc s : Station infrastructure cost [$/station-h] 

( )2 bc s : Personnel costs (crew) and vehicle capital costs [$/bus-h], and 

( )3 bc s : Running costs (fuel consumption, lubricants, tyres, maintenance, etc.) [$/bus-km] 

All cost components depend on bus length bs . The cost per bus-hour ( )2 bc s  has two elements: 
the personnel cost (wages) and the capital cost of a vehicle. The third component of operator 
cost is the running cost per vehicle-kilometre ( )3 bc s , which includes fuel consumption, 
lubricants, tyres, maintenance, etc. With this, the total operator cost Co can be defined as:  

 

( ) ( ) ( ) ( )1 2 3,o b b b bC s F c s S c s F c s VF= + +     (13) 

where S  is the number of bus stops, F  is the fleet size and V  is the operating speed 
(including running time and stops). The fleet size requirement is given by b cF f T= , in which 

cT  is the cycle or round-trip time (given by the summation of bus travel time (11) at all sections 

and both directions, plus a scheduled slack time at termini if required). Rewriting cT  as 2L V , 
we see that the third term in (13) does not depend on the operating speed and passenger demand. 
Therefore, the final expression for bus operator cost is given by (14). 
 

( ) ( ) ( ) ( ) ( )1 2 3, , 2o b b b b b c b b b bC f s c s S c s f T f s c s L f= + +     (14) 

Finally, the social welfare maximisation problem is formulated as follows: 

, , ,a b b bf s
Max

τ τ
      ln

I
ij
m

ij
U ij ij

a a b b o
ij m ij iju

ySW e y y Cτ τ= + + −∑ ∑ ∑ ∑
   

(15) 

Subject to  

{ } ( )1 2max ,i i
b b b bi

y y f S sκ≤
     (16a)

 

min max
b b bf f f≤ ≤       (16b) 

{ }1 4,...,b b bs s s∈       (16c) 

                                                           
8 We assume pa=pb=100 percent for buses with one door, 60 percent for buses with two doors, 43 percent for buses with three 
doors and 30 percent for buses with four doors. See Tirachini (2012). 
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=
∑

, ,i j m∀      (16d) 

Inequality (16a) is a capacity constraint that ensures that the bus transport capacity, ( )b bf S sκ , 
is large enough to accommodate the maximum bus load; κ is a design factor introduced to have 
spare capacity to absorb random variations in demand (for example, 0.9κ = ) and ( )bS s  is the 

bus capacity [pax/h]. Frequencies are constrained by a minimum policy frequency min
bf  (set to 

have a minimum level of service, if desired) and the maximum feasible frequency max
bf as given 

in expression (16b). Expression (16c) establishes that bus size bs  is taken from available 
(discrete) choices. Finally, in this setting modal choice depends on travel times, which in turn 
depend on modal choice; this fixed-point problem is solved by iterating between modal choice 
and travel times until convergence is reached, using the set of equilibrium constraints (16d). 

The constrained optimisation (15)-(16) is solved using the optimisation toolbox of Matlab. The 
solution procedure implemented considers bus frequency as a continuous variable while the bus 
length, car toll and bus fare are discrete (fare and toll are constrained to be a multiple of 5 
cents).  

5. Numerical application  

5.1  Physical setting, input parameters and assumptions 
The social welfare maximisation model is applied with demand and supply data from Military 
Road in North Sydney, shown in Figure 3. The section modelled comprises 3.44 km of road 
which is divided into 12 zones (therefore the average zone length is 286 metres). The origin-
destination matrix of trips by all modes (car, bus and walking) for the morning peak (7.30 to 
8.30am) is shown in Figure 4. 

 

Figure 3:  Test corridor, Military Road 

Zone 12 

Zone 1 
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O/D 1 2 3 4 5 6 7 8 9 10 11 12 
1 0 856 1324 54 23 8 74 99 419 71 16 1405 
2 165 0 192 15 4 1 20 19 68 14 3 326 
3 829 93 0 0 0 0 0 0 0 0 0 0 
4 50 12 0 0 0 0 1 3 13 1 0 91 
5 146 0 0 0 0 0 0 0 1 0 0 11 
6 235 9 3 0 0 0 0 3 9 0 0 17 
7 87 13 4 0 0 0 0 12 48 12 0 187 
8 18 1 0 0 0 0 0 0 3 9 0 8 
9 396 22 5 1 1 3 24 9 0 27 3 763 

10 7 0 0 0 0 0 0 0 0 0 12 1511 
11 119 11 1 0 0 0 12 0 3 123 0 1027 
12 1780 277 54 21 16 27 151 65 207 3763 1685 0 

Figure 4:  Origin-destination matrix 

 

The road has two lanes per direction, BPR functions (10) and (11) are assumed to represent 
travel times with commonly used parameter values 0 0.15α =  and 1 4α = , and a capacity 

2000 /rK veh h=  obtained by assuming a 60 percent for effective green time ratio at signalised 
intersections. Speed at free flow is 50 km/h. With these assumptions plus the calibration 
parameters of Appendix A1, the average car speed is 26.3 km/h in direction 1 (outbound) and 
21.5 km/h in the direction 2 (inbound), similar to the measured average speed of 22 km/h on this 
road (RTA, 2011, which only reports average speed in the inbound direction in the morning 
peak).  

Four bus sizes are considered in the application of the model, according to the size of 
commercial vehicles available in the market. These are mini (8 m. long, 2 doors), standard (12 
m. long, 3 doors), rigid long (15 m. long, 4 doors) and articulated (18 m. long, 4 doors).The bus 
equivalency factors ( )bsϕ  are 1.65 for small buses (8 m), 2.19 for standard buses (12 m), 2.60 
for rigid long buses (15 m) and 3.00 for articulated buses (18 m), following the linear 
relationship of Basso and Silva (2010). Fare collection is performed off-board, and hence the 
average boarding and alighting times are aΒ = bΒ =1.46 s/pax-door (Tirachini, 2012). Operator 
cost parameters are given in Table 2 (Tirachini, 2012). 

Table 2:  Cost items related to bus size 

Bus size 

[m] 

Bus capital cost 

[$/bus-h] 

Driver cost 

[$/bus-h] 

Station cost 

[$/station-h] 

Operating cost 

[$/bus-km] 

8 5.1 37.6 4.4 0.9 

12 11.9 37.6 6.5 1.3 

15 16.9 37.6 8.7 1.4 

18 22.0 37.6 10.9 1.6 

 

  



Accounting for travel time variability in the optimal pricing of cars and buses. 
Tirachini, Hensher and Bliemer 

 

13 

Users can choose between travelling by car, bus or to walk; other alternatives like switching 
time period or changing origin and/or destination are not considered. The car operating cost is 
14 cents/km (fuel consumption) and the average car occupancy 1.45 pax/car (TDC, 2010), 
which we assume remains unchanged after pricing reforms (the sensitivity of car occupancy to 
raising tolls is ignored). Walking speed is 4 km/h. 

The parameter estimates for the utility functions (5) to (7) are obtained in the Appendix A1, 
except for the parameters associated with travel time and headway variability, which cannot be 
estimated from our Sydney mode choice dataset (see Hensher et al. 2011). We make the 
following assumptions: 

• Because the reliability ratio is not known for Sydney, the problem is solved assuming four 
reliability ratios for the car mode, namely, aθ = 0.5, 1.0, 1.5 and 2.0, in the range of the 
values estimated in the literature (two recent reviews are Li et al., 2010;  and Carrion and 
Levinson, 2012). 

• The reliability ratio of buses is usually expected to be larger than that of cars because of the 
discrete nature of bus departures. For example, Bates et al. (2001) suggest reliability ratios 
of around 1.3 for cars and “somewhat higher” for public transport, whereas de Jong et al. 
(2009) suggest reliability ratios of 0.8 for cars and 1.4 for public transport. We assume that 
the reliability ratio of buses bθ  is 50% larger than that of cars in each case, i.e., bθ = 0.75, 
1.5, 2.25 and 3.0. 

• Bus dwell time is unreliable. Dorbritz et al. (2009) analysed the mean and standard 
deviation of bus boarding times for different fare payment scenarios in Zurich, and found 
that the standard deviation is between 36 and 58 percent of the mean boarding time. We 
assume that the standard deviation of dwell time (considering boarding and alighting) is 50 
percent of the mean dwell time. The standard deviation for dwell time is then added to the 
standard deviation of travel time for buses, i.e., we assume that travel time and dwell time 
are not correlated. 

• If bus headway is subject to variability, it is assumed that the standard deviation of the 
headway is equal to its mean. This result stems from assuming that the arrival of buses at 
bus stops follows a Poisson distribution, as done in several models that consider random bus 
arrival times at bus stops (e.g., Delle Site and Filippi, 1998; Cominetti and Correa, 2001; 
Cepeda et al., 2006; Cortés et al., 2011). Implicit in (4) is that we ignore any correlation 
between headway and travel time in the specification of the bus utility function. 

5.2  Results and discussion 

5.2.1  Base results 

Results with the current OD matrix (Figure 4) are shown in Table 3, for reliability ratios 
{ }0.0,0.5,1.0,1.5,2.0aθ ∈  and bθ  such that 1.5b aθ θ= . First, we study the sensitivity of the 

solution on optimal pricing and bus service design to the increasing values of variability, given 
by the reliability ratio.  

As the sensitivity of users to travel time variability increases, the optimal car toll increases 
approximately linearly, from $1.35 when aθ =0 (i.e., users are assumed insensitive to travel time 
variability) to $2.05 when aθ =2 (the value of reliability doubles the value of travel time 
savings). On the other hand, the optimal bus fare remains almost constant, on either $0.35 or 
$0.40. That is, even though both car and bus users contribute to increase travel time (and 
headway) variability, the contribution of car users is much higher and that is reflected in the 
socially optimal bimodal pricing structure. The MNL demand model was calibrated to predict 
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the current Sydney modal split of trips shorter than 5 kilometres: 62.5 percent car, 31.6 percent 
walk, and 5.9 percent bus (see Appendix A1); the low bus demand in Sydney explains that the 
optimal bus size remains constant at a minimum of 8 metres (scenarios with bigger optimal bus 
sizes are discussed in Section 5.2.2). Comparing to the current situation, Table 3 shows that 
optimising car toll, bus fare, bus size and bus frequency produces a reduction on the number of 
car trips and an increase in bus and walking trips. Optimal bus headway reduces from 2.3 to 1.5 
minutes (which is attached to an increase in fleet size from 13 to 19 buses), because as the bus 
reliability ratio bθ  grows, it is optimal to have a greater frequency to reduce not only the mean 
headway but also its standard deviation. Total social welfare and consumer surplus are lower if 
users are more sensitive to travel time variability. The optimal public transport subsidy (first 
best) amounts to between 47 and 56 percent of the total operator cost, but the total loss is more 
than compensated by the toll revenue (without accounting for toll collection costs). Average car 
speed is around 22 km/h in the peak direction (D2, towards Zone 1 in Figure 3) whereas bus 
speed including stops for boarding and alighting is between 17.5 and 18.5 km/h in the same 
direction. 

When compared to the case in which travel time variability is not priced ( aθ = bθ =0), total toll 
revenue increases by 28 percent if the value of reliability for cars is equal to the value of travel 
time savings ( aθ =1) and by 48 percent if the value of reliability doubles the value of travel time 
savings ( aθ =2). This is an indication of the substantial effects that including travel time 
variability into an optimal (first best) transport pricing scheme may have on toll revenue. Note 
that the increase in revenue happens in spite of the reduction in the total number of cars trips 
induced by a higher reliability-sensitive toll. Table 3 shows that as the reliability ratio increases, 
there is a decrease in the modal split of both modes subject to travel time variability (bus and 
car) and more people walk because walking is assumed uncongestible and reliable.  

Table 3:  Base results 

Reliability ratio car ( aθ ) 0.0 0.5 1.0 1.5 2.0 

Optimal bus fare [$] 0.35 0.35 0.40 0.40 0.40 

Optimal car toll [$] 1.35 1.55 1.75 1.90 2.05 

Optimal bus size [m] 8 8 8 8 8 

Optimal bus headway [min] 2.3 1.9 1.8 1.6 1.5 

Bus fleet size 13 15 17 18 19 

Social welfare [$] 67653 66162 64731 63345 61996 

Consumer surplus [$] 57420 54547 51664 49277 46934 

Bus operator profit [$] -437 -542 -557 -629 -692 

Subsidy/bus operator cost 0.47 0.53 0.50 0.53 0.56 

Toll revenue [$] 10669 12157 13624 14697 15754 

Car speed D1 [km/h] 26.3 26.4 26.4 26.5 26.5 

Car speed D2 [km/h] 21.6 21.7 21.9 22.0 22.1 

Bus speed D1 [km/h] 20.6 20.9 21.2 21.3 21.4 

Bus speed D2 [km/h] 17.5 17.8 18.1 18.3 18.5 

Modal split bus 7.3% 7.2% 7.2% 7.2% 7.1% 

Modal split car 59.6% 59.1% 58.7% 58.3% 57.9% 

Modal split walk 33.1% 33.6% 34.1% 34.5% 34.9% 
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5.2.2  Alternative scenarios on bus reliability and crowding 

The previous analysis was carried out assuming that crowding is a source of disutility for users, 
and that both travel time and bus headways are subject to variability. Next, we compare 
solutions on optimal pricing for cars and buses, as well as differences in bus service design in 
the following scenarios, which differ on the assumptions on sources of externalities (results on 
Table 3 were obtained on scenario S4):  

(S1) There are congestion and travel time variability. 

(S2) There are congestion, travel time variability and headway variability. 

(S3) There are congestion, crowding externalities and travel time variability. 

(S4) There are congestion, crowding externalities, travel time variability and headway 
variability. 

The main results on the comparison of scenarios S1 to S4 are summarized next. Figure 5 shows 
that the optimal bus headway is quite sensitive to the assumptions on the sources of disutility for 
users. If only congestion and travel time variability (for both cars and buses) are taken into 
account (S1), the optimal bus headway remains almost constant regardless the bus reliability 
ratio bθ  assumed. In this case, the optimal bus size is 8 metres for all reliability ratios. 
Nonetheless, when passenger crowding is also a source of disutility for bus users (S3), the 
optimal bus headway lies between 2.5 and 3.0 minutes, however the optimal bus size increases 
to 12 metres ( bθ =0.75 and 1.5 in Figure 5) and 15 metres ( bθ =2.25 and 3.0). This is because, 
as the reliability ratio increases, the weight of the standard deviation of travel time in the utility 
function increases, then bigger buses are chosen in order to reduce crowding levels (note the 
correlation between crowding levels and the valuation of travel time variability introduced in 
the last term of the bus utility function, equation 5), and therefore reduce the burden of the mean 
and standard deviation of bus in-vehicle times.  

In the two cases with headway variability (S2 and S4), the optimal headway is steadily reduced 
as bθ  increases, a result previously observed in Table 3. In these cases, increasing frequency 
(reducing mean headway) has the extra benefit of reducing the cost associated with headway 
variability; it turns out to be more beneficial to do so rather than increasing bus size. Finally, 
note that the headway when accounting for crowding externalities (S4) is shorter than when 
crowding externalities are not considered (S2), an outcome also obtained in models that assume 
no variability in travel time (Jara-Díaz and Gschwender, 2003; Tirachini et al., 2012). The 
implications of different optimal headways on fleet size (number of buses required to provide 
the service) are depicted in Figure 6. 
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Figure 5:  Optimal bus headway 

 

Figure 6:  Optimal bus fleet size 

The evolution of the optimal pricing structure is depicted in Figure 7. Alternative assumptions 
regarding sources of disutility influencing bus travel (S1 to S4) have negligible implications on 
the optimal car toll, so only one case is shown in Figure 7. On the other hand, including 
headway variability has no noticeable impact on the optimal fare, but including crowding does 
increase the bus fare for all reliability ratios. Regardless of the scenario considered, the same 
conclusion as for Table 3 holds, that is, the optimal bus fare remains almost flat as the reliability 
ratio of buses and cars increases, in contrast to the optimal car toll which steadily increases. 
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Figure 7:  Optimal fare and toll 

5.2.3  Increased transport demand 

In this section we analyse how the bus service and pricing levels (fare and toll) should be 
determined when faced with an increase in transport demand (e.g., through a future urban 
densification around the corridor), assuming that it is not possible to increase road capacity (

2000 /rK veh h= ). The idea is to analyse the evolution of the design variables when the 
system is stressed and severe congestion arises. The trips by origin and destination of Figure 4 
are uniformly scaled in five steps, up to a total demand of 28,850 trips/h (50 percent higher than 
the current number of trips). Results of the optimal pricing structure and bus headway are shown 
in Figures 8 and 9. Two cases regarding variability are compared: (i) no variability cost ( aθ = bθ
=0), and (ii) scenario S4, with fixed reliability ratios at aθ =1.0 for cars and bθ =1.5 for buses. 
Once again, it is observed that the optimal car toll steadily increases as total demand grows, 
whereas the optimal bus fare remains almost constant (Figure 8). The optimal bus headway 
when the variability of travel time and headway is accounted for is always shorter than when no 
variability is considered (Figure 9). 
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Figure 8:  Optimal fare and toll, increased transport demand 

 

Figure 9:  Optimal bus headway, increased transport demand 

6. Conclusions 

In this paper, we study the optimal pricing structure of both cars and buses when travel times 
and bus headway are subject to variability, and travellers value reductions in both the mean (µ ) 
and the standard deviation (σ ) of travel time. If there is a positive correlation between µ  and 
σ , an additional car on a congested road increases both µ  and σ  for all drivers. However, 
when buses are included in the analysis the outcome is not straightforward, because an increase 
in bus frequency (headway reduction) has counteracting effects on total travel time variability, 
namely increasing bus frequency may increase travel time variability on the road (for both cars 
and buses) at the same time that reducing variability of both bus dwell time and headway. Then, 
the inclusion of buses in a multimodal analysis for the optimal pricing of travel time variability 
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is far from trivial. A multimodal social welfare maximisation model is formulated, that 
explicitly includes travel time and bus headway variability as sources of disutility for users, 
through a mean-variance model. Users can choose between travelling by car, bus or walking to 
complete a trip. Decision variables are car toll, bus fare, bus frequency (inverse of bus headway) 
and bus size. The relationship between the mean and standard deviation of travel time is 
empirically obtained using traffic data from Sydney, where the social welfare maximisation 
model is applied. 

We find that as the sensitivity of users to travel time variability increases, the optimal car toll 
increases approximately linearly, whereas the optimal bus fare remains almost constant. Even 
though both car and bus users contribute to increase travel time (and headway) variability, the 
contribution of car users is much higher, and that is reflected in the socially optimal bimodal 
pricing structure. This result was obtained in a number of different scenarios, including 
alternative assumptions regarding crowding externalities and travel time and headway 
variability associated with the bus mode, and for different levels of total transport demand. 
Second, if bus headway is variable, the more sensitive users are to travel time variability, the 
shorter is the optimal headway. This result may not hold when the headway is constant and 
travel time is not, in which case both the optimal bus size and headway are adjusted by the role 
of travel time variability and crowding costs, which interact with each other. 

Future research should investigate further the complex interrelationships that are present in 
public transport service provision, in particular the possible correlations between headway 
(which influences waiting time and scheduling delay), dwell time and in-vehicle time, and the 
correlations between crowding and reliability. The analysis of a full-scale city-wide scenario in 
which more modal alternatives are in place (e.g., rail, bicycle) is a natural extension of the one-
corridor one-period analysis undertaken in this paper, in order uncover the implications on 
optimal toll system design (location of toll points/gates) and pricing levels of all private and 
public transport alternatives, when accounting or ignoring travel time variability as a source of 
disutility for users. The results of this paper suggest that the impact on total toll revenue of 
including travel time variability is substantial. 
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Appendix A1: Estimation of demand models 

Multinomial logit models for modal choice are estimated, including the proportion of available 
seats and the density of standees as attributes for the bus alternative. Data collected from a 
stated choice survey conducted in Sydney in 2009 is used (Hensher et al., 2011). In order to 
analyse differences in optimal bus service design and multimodal pricing structure, models with 
and without crowding variables are estimated (see Tirachini, 2012; Tirachini et al., 2012). The 
estimation of parameters and specification tests are presented in Table A.1 (n=4155 
observations, commuting and non-commuting travel purposes pooled together): 

Table A.1:  Estimation of parameters, MNL models 

Attribute 

Model 1 (M1): 

No crowding variables 

Model 2 (M2): 

Crowding variables 

 Parameter t-ratio Parameter t-ratio 

Access time aβ  -0.021 -2.88 -0.019 -2.59 

Headway hβ  -0.009 -4.22 -0.010 -4.68 

In-veh time vbβ  -0.019 -8.29 -0.009 -2.69 

Egress time eβ  -0.017 -2.45 -0.019 -2.80 

Travel time car vaβ  -0.019 -5.79 -0.021 -6.30 

Cost cβ  -0.110 -4.76 -0.111 -4.79 

MSC train tα  -3.847 -8.38 -4.023 -8.69 

MSC bus bα  -4.751 -9.35 -4.975 -9.68 

MSC metro mα  -3.344 -7.88 -3.362 -7.86 

vmt × den stand denβ    -0.003 -4.42 

vmt × prop seat seatβ    -0.012 -2.59 

Model Fit 

Log-likelihood -2946.7 -2917.1 

Adjusted ρ2 

(relative to ASCs) 

0.089 

 

0.098 

 

Specification test 

Likelihood ratio test with 

respect to Model 1  

59.2 

( > 2,0.001χ =13.82) 

Note: Time in minutes, cost in $ (AUD). 
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Focusing on the goodness-of-fit measures, the log-likelihood and adjusted ρ2 statistics relative 
to a model with alternative specific constants (ASCs) only, demonstrate that the crowding 
models (M2) outperform the model with no crowding (M1). A likelihood ratio test indicates that 
M2 is significantly superior to M1 at the 99.9 percent confidence level.  

Parameters for the utility functions (5), (6) and (7) are taken from Table A.1, with the 
exceptions of the time parameter for walking and the mode specific constants, which are 
estimated as follows. First, walking as a travel alternative was not considered in the survey of 
the main stated choice experiment from 2009 in Sydney; therefore a reasonable value for the 
disutility of travel time while walking has to be supplemented. To this end, a secondary intra-
CBD model described in an internal 2009 report by ITLS is used, in which walking was a travel 
alternative. It  was found that the time parameter of walking ( veβ ) is 1.86 times greater than the 
in-vehicle time parameter for bus ( vbβ ). Thus, we assume a constant value of veβ  across 
models, equal to 1.86 times vbβ  on M1 (because the latter is an average value of vbβ for all 
crowding conditions); therefore, 1.86 0.019 0.035veβ = ⋅− = − . 

Second, mode specific constants for demand models M1 to M3 are calibrated to represent the 
current Sydney modal split of trips shorter than 5 kilometres: 62.5 percent car, 31.6 percent 
walk, and 5.9 percent bus (TDC, 2010). The current bus frequency of 16 bus/h in the morning 
peak is used, with a fare of $2.10 and no car toll. With these assumptions, the calibrated 
alternative specific constants for bus are -2.027 (M1) and -2.071 (M2), and for walking are -
0.101 (M1) and -0.109 (M2). The car specific constant is fixed at zero.  
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