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1. Introduction 

Discrete choice models are now widely applied to predict market shares, compute elasticities, or 
to derive willingness-to-pay (WTP) measures. To this end, stated preference or revealed 
preference data is collected and assuming random utility theory, parameters of the utility 
functions are estimated. While the traditional conditional logit model (or often referred to as the 
multinomial logit (MNL) model) proposed by McFadden (1974) is still widely used, in the last 
decade there has been a clear shift towards the more general mixed multinomial logit (MMNL) 
model, also commonly referred to as the random coefficients logit (RCL) model, that can handle 
more complex error component structures, can describe heterogeneous behaviour by means of 
random parameters, and can take panel effects into account (see McFadden and Train, 2000). 
Having random instead of fixed coefficients, the WTP is no longer a fixed value but rather 
represented by a random distribution as well. 

In order to determine the reliability of the parameter estimates and resulting confidence 
intervals, standard errors play an important role. These standard errors are obtained from the 
(asymptotic) variance-covariance matrix, which is related to the second derivatives (curvature) 
of the estimated models log-likelihood function, and commonly reported in most standard 
estimation software. As the parameter estimates maximize the log-likelihood function, the 
higher the curvature of this function at the top, the more reliable these parameter estimates, 
hence the lower the standard errors on average. Since each parameter is not known with 
certainty but rather has some confidence interval, the WTP – which is typically defined as the 
ratio of two parameters – also has an associated confidence interval.  

Several methods exist for computing the standard error of a function of parameter estimates. For 
example, Krinsky and Robb (1986, 1990) proposed a procedure for using the variance-
covariance matrix in simulating a confidence interval for elasticities which has since been 
adapted for calculating the confidence intervals for WTP. This procedure involves the use of 
Monte Carlo simulation in at least two dimensions (see Haab and McConnell, 2003, for more 
detail). An analytical method for determining the standard error for the WTP ratio is the Delta 
method. Using the first derivatives of the ratio function, the standard error can be found without 
relying on simulation methods. The Krinsky and Robb and the Delta method have been applied 
to ratios of parameter estimates of the MNL model. Without referring to the Krinsky and Robb 
method, Ettema et al. (1997) proposed an identical simulation method, which was applied in 
Espino et al. (2006). The other main simulation approach for obtaining confidence intervals that 
has been applied in the literature is the use of bootstrapping (see e.g., Armstrong et al., 2001). 
Armstrong et al. (2001) also provides an alternative but more complex simulation approach.  

Recently, Daly et al. (2012a) argued that under certain assumptions, for such a ratio the Delta 
method provides an exact expression for the standard error of WTP estimates. Simulation 
approaches merely offer an approximation of the confidence intervals. 

Whilst most research effort has focused on obtaining the standard errors for the ratio of 
parameters within the MNL model framework, determining the standard errors for ratios of 
random parameters in the RCL model has become more important given that this model is now 
becoming more mainstream. Determining these standard errors and the resulting confidence 
intervals for the ratio of two distributions however is not trivial. 

To illustrate the complication of determining the standard errors for WTP measures within the 
RCL model framework, consider the case of the ratio of the travel time parameter and the cost 
parameter, yielding a value that is often in the literature referred to as the value of travel time 
savings (VTTS), an important WTP measure in the transportation field. Suppose that the travel 
time parameter is normally distributed, and the cost parameter lognormally distributed such that 
it is always negative. According to Daly et al. (2012b), such a WTP would have a finite mean 
and variance. In estimation, we have to find values of the distributional parameters, namely the 
mean and standard deviation of the normally distributed travel time parameter, and the mean 
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and standard deviation of the lognormally distributed cost parameter. Each of these four 
parameters has associated standard errors describing its uncertainty. Hence, there is uncertainty 
about the mean of the normal distribution, uncertainty about the standard deviation of the 
normal distribution, as well as uncertainty about the mean and standard deviation of the 
lognormal distribution. Furthermore, there are covariances describing the correlations between 
the parameter estimates. When we compute the WTP ratio between the two parameters, these 
uncertainties translate into uncertainty of the standard error of the WTP. Clearly, the entire 
variance-covariance matrix plays a role in determining this uncertainty. Therefore, it may be 
tempting to simply simulate the WTP ratio by drawing different values for each distribution of 
the coefficients, compute the ratio, and compute the interval in which 95 percent of the resulting 
values fall, as done for example in Campbell (2007). However, such a procedure does not take 
the variance-covariance matrix with the uncertainties in the parameter estimates into account, 
and is therefore not a valid procedure.  

The Krinsky and Robb procedure could be applied by taking simulated draws for each of the 
estimated four structural parameters, which then results in a normal distribution and a lognormal 
distribution. From these two distributions, we could again take simulated draws and compute 
the ratios. Therefore, the equivalent Krinsky and Robb procedure for the WTP in an RCL model 
would involve a Monte Carlo simulation in six dimensions. Such a procedure is proposed in 
Hensher and Greene (2003) and applied in Sillano and Ortúzar (2005) and Michaud et al. (in 
press). The procedure in Armstrong et al. (2001) has been applied to random coefficient models 
by Amador et al. (2005). As far as we are aware, the Delta method has never been applied to 
obtain confidence intervals for the WTP in RCL models.  

In this paper we propose to apply the Delta method for determining the standard error of the 
WTP ratio of two randomly distributed parameters, which can be used to compute confidence 
intervals. The main reason for preferring the Delta method over the Krinsky and Robb 
procedure is that the Delta method requires less simulation. To compare, the Krinsky and Robb 
procedure would require simulation of six random variables, while the Delta method would 
require simulation over only two random variables as will become clear later in this paper. 
Although the theorem in Daly et al. (2012a) is very powerful, the claim that the Delta method 
provides exact standard errors for the WTP in the case of fixed coefficients likely does not 
generalise to the ratio of any two random coefficients, as in general some simulation is needed 
(as the case in this paper), which may violate the assumption of an invertible function in the 
theorem. In the special case of a ratio of two lognormal distributions, the resulting distribution is 
again lognormal, such that the analytical results in Daly et al. (2012a) can be used. 

The remainder of the paper is structured as follows. In Section 2 a brief introduction into 
discrete choice models and WTP is given, which mainly serves to introduce the necessary 
mathematical notation. Section 3 reviews how to compute the confidence intervals for WTPs in 
the MNL model using the Delta method. Section 4 presents the main contribution of the paper, 
namely applying the Delta method in case of the RCL model, both for independently and 
dependently randomly distributed parameters. To illustrate the method, four examples are given 
in Section 5. Section 6 concludes with a discussion.  

 

2. Parameter estimation and WTP 

Consider the usual utility function formulation in which the utility of alternative j, ,jU  consists 

of a systematic utility part, ,jV  and an unobserved part, ,j  

,jjj VU   (1)



Confidence intervals of willingness-to-pay for random coefficient logit models. 
Bliemer and Rose 

 

3 

where the systematic part is given by a (linear or nonlinear) function jg of some known 

attribute levels for that alternative, ,jx  and a vector of K unknown parameters, ,  

( | ).j j jV g x   (2)

Often, a linear function is assumed, such that 

.j k jk
k

V x  (3)

We assume that the unobserved components j  are independently and identically extreme value 

type 1 (EV1) distributed, such that the probability of choosing a certain alternative is expressed 
by a logit type model.  

The unknown parameters, also called coefficients (and used interchangeably in this paper), 
describing the preferences of agents under study, are to be estimated by observing (stated or 
revealed) choices of the agents in some choice situations. If the agents are assumed to be 
homogeneous, these parameters are constant over all agents, such that fixed parameters are 
estimated. In contrast, whenever agents are assumed to be heterogeneous (i.e., different 
preferences), then typically random parameters with distributions are estimated for the whole 
population of agents. For example, one could estimate a fixed parameter k  which has a single 

value, or instead estimate a distribution in which the structural parameters are to be estimated 
(e.g., mean k  and standard deviation k  in case k  is assumed to follow a normal 

distribution). In case of homogeneous agents, the MNL model is considered, while with agents 
with heterogeneous preferences, the RCL model results (either cross-sectional or panel). 

Let ̂  denote the vector of (maximum likelihood) estimates for the unknown parameters. 
According to McFadden (1974), these parameters will be asymptotically normally distributed 
with a mean corresponding to the true parameter values, ,  and a variance-covariance matrix, 

,  equal to the negative inverse of the Fisher information matrix, 

).,(ˆ
 N

D

 (4)

The asymptotic variance-covariance matrix, ,  together with the parameter estimates, ,̂  is a 

typical side-product of estimation software such as Alogit, Biogeme, or Nlogit. The roots of the 
diagonal elements of this matrix denote the (asymptotic) standard errors. These standard errors 
denote how reliable the parameter estimates are, yielding t-ratios to test the null hypothesis of 
the parameter estimates. 

Instead of the values of   themselves, one is often more interested in ratios of these 
parameters. WTP is a special case in which the denominator is the cost parameter. In case of a 
utility function that is linear in the parameters and linear in the attributes (as in Eqn. (3)), we 
define the WTP of attribute k as 

,
c

k
kw




  (5)

where k  is the parameter for attribute k and c  is the cost parameter. In the more general case 

of a nonlinear utility function, the WTP of attribute k is defined as 
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/
.

/
j jk

k
j jc

g x
w

g x

 

 

 (6)

The theory in this paper will be valid for the general nonlinear case, however, we will focus on 
the most widely assumed case of linear utility functions. 

Since both k  and c  are both known but with uncertainty, there is also exists uncertainty 

about .kw  An interesting question then is, what is the standard error of kw  or alternatively, what 

is the confidence interval of kw ? The next section first discusses how this has been solved in the 

literature for the case of fixed parameters in the MNL model. Then we show how to determine 
these confidence intervals in the case of random parameters in RCL models, which is the main 
contribution of this paper. 

 

3. Confidence intervals for WTP in the MNL model 

The Delta method can be applied to determine the variance of a ratio of parameter estimates. In 
fact, the Delta method can be applied in general for any function of the parameters. This method 

states that, if ̂  is asymptotically distributed as mentioned in Eqn. (4), then a function )ˆ(h  is 

asymptotically normally distributed with a mean of )(h  and a variance of 

),()(   hh T   

 ,)()(,)ˆ(   hhNh T
D

  (7)

where )(h  denotes the Jacobian of ).(h  In case of ,/),( ckckk hw    this yields 

,

1

)var(),cov(

),cov()var(
1

,ˆ

22 


































































c

k

c

cck

ckk

T

c

k

c
D

k Nw










  (8)

which simplifies to 

  .)var(),cov(2)var(
1

,ˆ 2
2 








 ckckkk

c

D

k wwNw 


  (9)

Therefore, the asymptotic standard error of the WTP is 

,)var(),cov(2)var(
1

)ˆ( 2
ckckkk

c
k wwwse 


  (10)

which is the same formula as derived in for example Scarpa and Rose (2008) and Daly et al. 

(2012a). Using the parameter estimates ˆ
k  and ˆ

c  as the true parameters and using the 

corresponding elements in the asymptotic variance-covariance matrix (both provided by the 
estimation software), this standard error can be analytically computed.  
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This derivation holds in the case of fixed coefficients. With random coefficients estimated in a 
RCL model the same Delta method can be applied, realizing that   represents a probability 
distribution in which the distributional parameters are estimated with some uncertainty.  

4. Confidence intervals for WTP in the RCL model 

In case of random parameters, parameters k  follow certain distributions. These distributions 

are described by parameters themselves, which have to be estimated and therefore have some 
degree of uncertainty. Hence, there is uncertainty about the exact shape of the distribution. Let 
us first of all assume that the distributions of these parameters are independent. Later we will 
consider the case in which   describes a vector of dependent normally distributed parameters.  

4.1. Case I: Independently distributed random parameters 

Let each k  follow a probability distribution with (a vector of) parameters .k  Let us also 

assume that the cost parameter c  can follow such a distribution. Estimating these 

distributional parameters in the RCL model will yield parameter estimates .k̂  The trick is to 

map the standard errors (and covariances) of the structural parameter estimates k̂  to a standard 

error of k  as well as to determine the standard error of ./ ck   The answer lies in rewriting 

the parameters k  and c  into functions of k  and c  using parameter-free distributions (such 

as the standard normal or the standard uniform distribution). These functions can then be used 
within the Delta method. 

Let us first write the parameters in terms of the distributional parameters and a parameter-free 
distribution: 

),|( kkkk z    (11)

where kz  is a standard probability distribution (or in some cases, a vector of standard 

probability distributions). For example, in order to describe a normal distribution, ),,( 2
kkN   

we can write ,kkkk z   where kz  follows a standard normal distribution, ).1,0(N  Table 

1 provides a (non-exhaustive) list of other probability distributions which can be derived from a 
standard normal or uniform distribution. The table also contains the first derivatives (Jacobians) 
of   to the distributional parameter(s) and standard distributed random variable(s) z, which we 
will need later in applying the Delta method. 

The WTP can be written as 

.
)|(

)|(
),|,(

ccc

kkk
ckckk z

z
zzw


   (12)

Note that since the parameters are distributions, the WTP will also be a distribution. 
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Table 1: Different parameter distributions 

Distribution )|(  z  
Standard 

distributio
n 

  z  

Normal 
 




zz  ),|(  )1,0(Nz  








z

1
   

Lognormal 
 

e


)exp(),|( zz    )1,0(Nz 

z




 
 
 

   

Uniform 
 

a b

 

zababaz )(),|(   )1,0(Uz  






 
z

z1
 ab   

Exponential 
 



 


 z

z
ln

)|(   )1,0(Uz  


  
z

1
  

Triangular 
 

a b

 

2
)(),|( 21 zz

ababaz




 

)1,0(1 Uz 
 

)1,0(2 Uz 
 

1 2

1 2

1
2

2

z z

z z

  
 

  
 

 

2

2

b a

b a

 
 
 

  
 

 

 

First, let us focus on the WTP for a specific value (draw) of ).,( ck zz  Suppose that k  and c  

have kp  and cp  elements, and that kz  and cz  have ks  and cs  elements, respectively. 

Applying the Delta method, we arrive at 

,
)1,,1(diag

,),(ˆ


















































































kz

kz

k

k

T

kz

kz

k

k

k

D

ckk

w

w

w

w

w

w

w

w

wNzzw

c

k

c

k

kc

c

k

c

k









0

0
 (13)
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in which k

k

p
k Rw   and c

c

p
k Rw   are the Jacobians of the WTP to k  and ,c  

respectively, evaluated in the true values of the parameters, k

k

s
kz Rw   and c

c

s
kz Rw   are 

the Jacobian of the WTP to kz  and ,cz  respectively, 
kc  is the submatrix of the variances and 

covariances of distributional parameters k  and ,c  )()( ckck ssppR 0  is a matrix with zeros, 

and )()()1,,1(diag ckck ssssR   is a diagonal matrix with ones. The zeros and diagonal matrix 
follow from the fact that all standard distributions are independently distributed without any 
correlations with the other parameters. 

The Jacobians can be calculated as 

 

2

2

( | ) 1
,

( | )

( | )
,

( | )

( | ) 1
,

( | )

( | )
.

( | )

k k k

c c c c

k c k

c c c c

k k k
k k

c c c c

k k k k k
k c c

c c c c c

k k k
z k z k

c c c c

k k k k k
z k z c z c

c c c c c

z
w

z

z w
w

z

z
w

z

z w
w

z

  

   





  
  

    
   

  
  

    
   

 
     

 
 

         
 
 

     
 
 

         
 

 (14)

 

In other words, we can rewrite formula (13) as 

 

.
)1,,1(diag

1
,),(ˆ

2




















































































czk

kz

ck

k

T

czk

kz

ck

k

c
k

D

ckk

c

k

c

k

kc

c

k

c

k

w

w

w

w
wNzzw






















0

0
 (15)

 

In the special case of having both fixed (non-random) coefficients, 1
k ck c       and 

0,
k cz k z c      such that the variance simplifies to the Eqn. (8). The asymptotic 

distribution in (15) is for the conditional parameter estimate ).,(ˆ ckk zzw  The (unconditional) 

expected WTP estimate, denoted by kŵ  (without being conditional to specific draws ),( ck zz ), 

is defined as 

,)()(),(ˆˆ  
k cz z

cckkckkk zdFzdFzzww  (16)

where )( kk zF  and )( cc zF  are the (possibly multivariate) cumulative distribution functions of 

the standard distributed kz  and .kz  Since the integrals are linear operators, the resulting 

asymptotic distribution of kŵ  is also normally distributed, where the expectation and the 

variance are integrals over ),(ˆ ckk zzw  defined in Eqn. (15). Theoretically, this leads to a 

problem, as for unbounded distributions (like the normal distribution that is defined on the 
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complete domain of ),(  ) these integrals will not be defined at .0c  That the moments 

of the distribution are undefined, does not mean that the distribution does not exist. Daly et al. 
(2012b) show that the probability of observing 0c   should be zero in order for the moments 

to be finite. Hence, they suggest that the cost parameter should not follow a normal distribution 
or a distribution truncated at zero, but rather a lognormal distribution or another distribution 
with no probability mass at 0.c   Alternatively, one could use the median to replace the 

mean. In the remainder of this paper we will assume that the probability distribution of the cost 
parameter has no mass at 0c   or that the median replaces the mean in case there is a positive 

mass around zero.  

The unconditional mean WTP estimate kŵ  can be approximated by Monte Carlo simulation,  

,),(ˆ
1

ˆ
1

)()(



R

r

r
c

r
kkk zzw

R
w  (17)

where ),,( )()( r
c

r
k zz  ,,,1 Rr   are pseudo-random or quasi-random draws from the 

distributions defined by )( kk zF  and ).( cc zF  The larger R is, the more accurate the 

approximation will be. Since ),(ˆ )()( r
c

r
kk zzw  is asymptotically normally distributed, kŵ  will also 

be normally distributed in the limit, with the following simulated variance: 

 

( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( )( )
1

( ) ( ) ( ) ( )

1 1
ˆvar( ) ,

diag(1, ,1)

k k

c ckc

k k

c c

Tr r
k k

r r r rR
k c k c

k r rr
r z k z kc

r r r r
k z c k z c

w w
w

R

w w

 

 

 

 

 
 



         
        
            
            


0

0 
 (18)

where ),,( )()()( r
c

r
kk

r
k zz   ),,( )()()( r

c
r

kc
r

c zz   and ./ )()()( r
c

r
k

r
kw   The draws ),( )()( r

c
r

k zz  

can be obtained using for example Halton draws (e.g., Bhat, 2001) or other quasi-random draws 

(e.g., Sándor and Train, 2004; Bliemer et al., 2008) ( ) ( )( , )r r
k c   such that the ( ) 1 ( )( )r r

k k kz F   

and ( ) 1 ( )( ).r r
c c cz F   

Once the asymptotic variance in Equation (18) has been calculated, the )1(  confidence 
interval of the expected WTP estimate can be determined as 

 1 / 2 1 / 2ˆ ˆ ˆ ˆvar( ), var( ) ,k k k kw t w w t w     (19)

where t  is the t-value corresponding to a level of significance of .  For example, for a 95 

percent confidence interval, 0.975 1.96.t   

It is important to realize that the variance of the unconditional WTP computed directly from the 

conditional WTP’s, considering only simulated values of ),,( )()( r
c

r
kk zzw  is incorrect as it ignores 

the uncertainty (expressed in the variance-covariance matrix) of the distributional parameter 

estimates, ,̂  while we explicitly take this into account in Eqn. (18). 

 

4.2. Case II: Dependently distributed random parameters 
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Estimation of dependent random parameters is typically limited to the multivariate normal 
distribution, as for other distributions or mixtures of distributions the multivariate distribution 
are not easy to estimate or can only be approximated. In this section, we restrict ourselves to the 
ratio of two dependent normally or lognormally distributed parameters. 

Consider a vector of parameters, ,  which are assumed normally distributed with a vector of 

means, ,  and a matrix of (co)variances, ,  

 .,  N  (20)

Non-zero covariances mean that the parameters are correlated (dependent). In order to estimate 
these variances and covariances, a Cholesky decomposition can be used in which the vector of 
dependent normally distributed parameters, ,  is written a linear combination of a vector of 
independent standard normally distributed parameters, z,  

,Az    (21)

where A is a lower triangular (Cholesky) matrix such that TAA    (see e.g., Greene, 2008). 
The values in the A matrix are then estimated, and using these values the matrix with estimated 
(co)variances can be obtained. Writing Eqn. (21) in extensive form, this becomes 

 

1 1 11 1 1 11 1

2 2 21 22 2 2 21 1 22 2

1 2 1 1

0 0

0
.

K K K K KK K K K KK K

a z a z

a a z a z a z

a a a z a z a z

  
  

  

        
                   
        
        

          




       
 

 (22)

This means that each single parameter can be written as 

1

.
k

k k ki i
i

a z 


   (23)

An important difference with the case of independent normally distributed parameters is, that 

k  no longer just depends on only ,kz  but on .,,1 kzz   The Kth random parameter, ,K  

depends on 1K   distributional parameters, 1( , , , ).K K K KKa a    Hence, the vector of all 

parameters that need to be estimated can be denoted by   1, ,
.k k K

 


   Estimation of this 

vector produces not only the parameter estimates, ,̂  but also yields an asymptotic variance-

covariance matrix, .  As indicated before, the square roots of the diagonal elements of this 

matrix denote the standard errors describing the uncertainty of each element in the vector of 
parameter estimates. 

Computing the variance of the unconditional WTP requires again simulation. It is clear that the 
ranking order in which the parameters are represented in the Cholesky matrix determines the 
number of distributions that needs to be drawn from when computing the WTP. If /k k cw    

is of main interest, then it is best to use k  and c  as the first two parameters, requiring only 

two standard normal distributions to be drawn from. If such an ordering is not made in advance, 
then in theory one may need to draw from all K standard normal distributions. Larger numbers 
of draws, R, are then required to obtain a good approximation of the expected WTP and its 
asymptotic variance. 
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In order to determine the asymptotic distribution of the estimated conditional WTP, 
),,(ˆ ckk zzw  again Eqn. (13) can be used. Assuming that k  and c  as the first two 

parameters, the Jacobians for the WTP are given by  

11
,

k k
kc

w
z 

 
   

 

1

,
c

k
c k

c
c

w
w z

z
 

 
     
 
 

11 21

1
( ),

kz k k
c

w a a w


    and 

22 .
c

k
z c

c

a w
w


    

(24)

Now assume that all coefficients are lognormally distributed in which the underlying normal 
distribution has a vector of means, ,  and a matrix of (co)variances, .  Eqn. (23) then 
becomes 

1

exp ,
k

k k ki i
i

a z 


   
 

  (25)

such that the Jacobians are 

1
,

k k k
k

w w
z

 
   

 

1

,
c c k k

c

w w z

z


 
     
 
 

11 21( ) ,
kz k kw a a w    and 22 .

cz c kw a w    (26)

It is possible to mix normal and lognormal distributions, hence k  can be normally distributed 

and c  lognormally with a joint matrix of (co)variances of the underlying normal distribution, 

.  

5. Examples 

In this section we will provide a few numerical examples, illustrating the computation of the 
confidence intervals of the willingness-to-pay under different distributional assumptions of the 
parameter estimates. We use an empirical data set collected in a simple route choice experiment, 
where respondents had to choose between their current route, and two hypothetical route 
alternatives that included a tolled route. The routes were identified by four travel times 
described as the time spent in free flow and congested travel conditions travelling on non-tolled 
road during the trip, and free flow and congested travel conditions travelling on a toll road 
during the trip, as well as the toll and petrol costs, and the number of traffic lights (see Figure 
1). For the current study, we combine the free flow and time spent in congested traffic 
conditions for both road types to form combined travel times non-tolled, and tolled roads, and 
use only the toll cost and the number of traffic lights.  
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Figure 1: Screen capture of stated choice task 

Data were collected in October 2011 from 148 respondents, each of whom completed 12 choice 
tasks each. As such, the data consists of 1776 choice observations. Respondents were recruited 
from an internet panel (http://www.pureprofile.com/) and were required to have recently 
taken a commuting trip in Sydney Australia.  

For illustration purposes, we will focus on the willingness-to-pay for a reduction in the travel 
time of the non-tolled route (TUR), i.e., / .TUR TUR TCw    In four different examples, we will 

assume the following combinations of distributions for the two parameters: (i) normally 
distributed travel time parameter, fixed cost parameter, (ii) both parameters independently 
normally distributed, (iii) both parameters dependently normally distributed, and (iv) fixed 
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travel time parameter, lognormally distributed cost parameter. Table 2 summarizes the different 
parameter estimates that are used to illustrate these willingness-to-pay computations for RCL 
models. The parameter estimates used in the four examples are shaded in grey. Note that the 
standard deviations of the random parameters are fairly large, such that we would expect 
relatively wide confidence intervals for the WTP estimates.  

Table 2: Parameter estimates of four examples 

  Example 1 Example 2 Example 3 Example 4 

Attribute    (t-ratio)   (t-ratio)   (t-ratio)   (t-ratio) 

Con1  -0.86424 (-9.87) -2.07409 (-13.33) -2.16449 (-12.83) -0.73291 (-11.30) 

Con2  0.30547 (4.48) 0.25094 (3.28) 0.23754 (3.12) 0.23771 (4.07) 

Travel time UR Mu -0.04694 (-4.76) -0.02895 (-3.27) -0.02586 (-2.54) -0.03470 (-10.77) 

 Sigma 0.06611 (5.52) 0.05111 (4.33) -- (4.37) -- -- 

Travel time TR Mu -0.25723 (-7.47) -0.01952 (-1.58) -0.05938 (-2.79) -0.01284 (-2.49) 

 Sigma 0.86313 (48.02) 0.07005 (2.62) -- (2.38) -- -- 

Traffic Lights Mu -0.20925 (-7.87) -0.07167 (-2.38) 0.02272 (0.49) -0.12124 (-5.18) 

 Sigma 0.05230 (0.85) 0.14364 (2.89) -- (3.44) -- -- 

Toll Costs Mu -0.50606 (-24.38) -0.95054 (-9.51) -0.81403 (-9.94) -0.99440 (-7.06) 

 Sigma -- -- 0.91316 (10.46) -- (7.76) 1.22291 (26.35) 

Cholesky Sigma TUR:TUR -- -- -- -- 0.05780 (4.37) -- -- 

 TTR:TTR -- -- -- -- 0.06466 (1.71) -- -- 

 TL:TL -- -- -- -- 0.09822 (1.52) -- -- 

 TC:TC -- -- -- -- 0.74988 (7.66) -- -- 

 TTR:TUR -- -- -- -- 0.01751 (0.36) -- -- 

 TL:TUR -- -- -- -- -0.11592 (-1.92) -- -- 

 TL:TTR -- -- -- -- -0.01686 (-0.23) -- -- 

 TC:TUR -- -- -- -- 0.01824 (0.14) -- -- 

 TC:TTR -- -- -- -- 0.06003 (2.26) -- -- 

 TC:TL -- -- -- -- -0.15613 (-2.59) -- -- 

Log-likelihood  -1377 -1295 -1285 -1319 

Adj. 2   0.29 0.33 0.34 0.32 

 

5.1. Normal divided by fixed 

Assume that k  is a random parameter following a normal distribution, hence k k k kz     

with (0,1),kz N  and that c  is a fixed parameter. The Jacobians are ( , ) (1, ) ,
k k

T
k kz     

1,
c c    and ,

kz k k    respectively, such that the conditional WTP is asymptotically 

distributed as 

 

( , , )

2

1 1

1
ˆ ( ) ( ), ,

( ) ( )1
k k c

T

D
k k

k k k k
k k k kc

k k

z z
w z N w z

w z w z
  


 

    
                          

0

0
 (27)

 

with the subset of the covariance matrix taken directly from the estimation software, 
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( , , )

var( ) cov( , ) cov( , ) 0.00010 0.00000 0.00005

cov( , ) var( ) cov( , ) 0.00000 0.00014 0.0001

cov( , ) cov( , ) var( ) 0.00005 0.00011 0.00043
k k c

k k k k c

k k k k c

k c k c c

  

    
    
    

  
       
     

 

Using 25,000 Halton draws for simulating the standard normally distributed variable ,kz  the 

average WTP can be computed as 0.0928, and the average variance is 0.0179, such that the 
average standard error is 0.1138. Hence, the 95 percent confidence interval is (-0.1694, 0.3550).  

To graphically illustrate, with each Halton draw we obtain a WTP value and a variance of the 
WTP. Hence, each draw represents a normal distribution of the WTP. In Figure 2 we have 
plotted (in blue) 50 normal distributions obtained from the first 50 Halton draws. The sampling 
distribution is then determined by taking the mean WTP and the mean variance, represented by 
the thick solid line (in red) in Figure 1.  

 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5
)Pr( kw

kw

 

Figure 2: Simulated normal distributions and the sampling distribution (Normal / Fixed) 

 

We also compare the results using the (Krinsky and Robb) simulation procedure for random 
coefficients logit models, as outlined by Hensher and Greene (2003). Obtaining the lower 
triangular Cholesky matrix from the covariance matrix, which is then used to simulate ,k  ,k  

and c  using 25,000 Halton draws, and obtaining k  by simulating kz  (hence, a simulation 

over four dimensions in total), we find a mean WTP of 0.0943 and a variance of 0.0175. Taking 
the 0.025 and 0.975 percentiles results in a confidence interval of (-0.1674, 0.3587). Hence, the 
Delta method reproduces the confidence intervals found by applying the Krinsky and Robb 
method, but instead requiring integration over only a single random variables instead of over 
four dimensions. 
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5.2. Normal divided by normal 

Now assume that both k  and c  are random parameters following a normal distribution, 

hence k k k kz     with (0,1),kz N  and ,c c c cz     with (0,1).cz N  Then the 

Jacobians are ( , ) (1, ) ,
k k

T
k kz     ( , ) (1, ) ,

c c

T
c cz    ,

kz k k    and ,
cz c c    

respectively, such that the conditional WTP is asymptotically distributed as 

( , , , )

2

1 1

( , ) ( ,1
ˆ ( , ) ( , ), 1 0

( , ) ( ,( )
0 1

( , ) ( ,

k k c c

T

k k

D
k k c k k

k k c k k c
k k c c k kc c

k k

k k c c k k c

z z

w z z w z z
w z z N w z z

w z z z w z zz

w z z w z z

   


 



   
   
                      
         

0 0

0

0

 

(28
)

with 

( , , , )

0.00008 0.00002 0.00007 0.00001

0.00002 0.00014 0.00001 0.00007
.

0.00007 0.00001 0.00999 0.00463

0.00001 0.00007 0.00463 0.00762

k k c c   

 
    
 
 

 

  

 

First of all, we note that having the cost parameter normally distributed is problematic, as stated 
in Daly et al. (2012b), as a normal distribution has a positive probability mass at zero and 
therefore draws close to zero lead to very large WTP values. Hence, theoretically the mean and 
variance of the WTP are undefined. Again using 25,000 Halton draws, we therefore take the 
median of the WTPs and the median of the variances of the WTP. The median WTP is 0.0190 
and the median variance is 0.0029, such that the median standard error is 0.0542. Hence, the 95 
percent confidence interval based on the median values is (-0.0873, 0.1253). For completeness, 
we also computed the average WTP and average variance, yielding -0.0312 and 
1656835850.8956, respectively, leading to a not very meaningful 95 percent confidence interval 
of (-79778.8924, 79778.8500). 

5.3. Normal divided by normal (dependent) 

Similar to the previous example, we assume that both k  and c  are random parameters 

following a normal distribution, however, this time we assume they are dependent such that the 
covariances are also estimated. We describe the parameters as a function of the first three 
elements in the Cholesky matrix, namely 11 21 22( , , ),a a a  which yields 11k k ka z    and 

21 22 ,c c k ca z a z    with (0,1)kz N  and (0,1).cz N  Hence, the conditional WTP is 

asymptotically distributed as 
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11 21 22
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( , , , , )

1
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( , )
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( , )

1 0 ( , )
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  
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 
 
 
 
 
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 

  
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k k c c

k k c

k k c

w z z z

a a w z z

a w z z  

(29)

with 

11 21 22( , , , , )

0.00010 0.00000 0.00011 0.00058 0.00026

0.00000 0.00018 0.00011 0.00013 0.00011

0.00011 0.00011 0.00671 0.00008 0.00381

0.00058 0.00013 0.00008 0.01626 0.00459

0.00026 0.00011 0.00381 0.00459 0

k ca a a 




   
  

  

.

.00957

 
 
 
 
 
 
 
 

  

As in the previous example, a normally distributed parameter in the denominator is problematic 
and the WTP moments are undefined. Hence, the only meaningful results we can state are based 
on the median values. The median WTP is 0.0211, and the median variance is 0.0081, such that 
the median standard error is 0.0898 and the 95 percent confidence interval is (-0.1549, 0.1972).  

5.4. Fixed divided by lognormal 

In the fourth and final example, we consider a fixed parameter for k  and a randomly 

distributed cost parameter following a lognormal distribution, hence exp( )c c c cz     with 

(0,1).cz N  The Jacobians are ( ) 1,
k k    ( , ) ( , ) ,

c c

T
c c c cz       and ,

cz c c c     

respectively, such that the conditional WTP is asymptotically distributed as 

( , , )

2

1 1

( , ) ( ) ( , ) ( )1
ˆ ( ) ( , ), .

( , ) ( ) ( , ) ( )( ) 1

( ) ( )

k c c

T

D
k k c c c k k c c c

k c k k c
k k c c c c k k c c c cc c

c k k c k k

w z z z w z z z
w z N w z z

w z z z z w z z z zz

z z

   
 

   

    
                            

0

0
(30)

with 
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( , , )

0.00001 0.00002 0.00001

0.00002 0.01985 0.00652 .

0.00001 0.00652 0.00215
k c c  

 
     
  

  

The lognormal produces always negative values for the cost parameter, hence the mean and 
variance of the WTP are computable and meaningful. The mean WTP is 0.1959 with a mean 
variance of 0.2213, such that the mean standard error is 0.4704, yielding a 95 percent 
confidence interval of (-0.7261, 1.1179). If we would again take the median instead of the mean, 
we would obtain a median WTP of 0.0941 with a median standard error of 0.1161, resulting in a 
confidence interval of (-0.1335, 0.3216), which is more in line with the findings from the first 
example with a normally distributed random coefficient divided by a fixed coefficient. The 
difference between the confidence intervals obtained through the mean and the median are quite 
different, which is also illustrated in Figure 3. The red line indicates the sampling distribution 
using the mean, while the green line represents the sampling distribution using the median. 
Since dividing by the lognormal distribution results in some cases to rather large values for the 
WTP (since values close to zero are likely to occur, although values equal to zero cannot occur), 
the mean variance is large. Using the median, extreme values do not have a large impact. 
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Figure 3: Simulated normal distributions and the sampling distribution (Fixed / Lognormal) 

6. Discussion 

In this paper we have presented a method to determine the confidence intervals of WTP 
measures taken from a RCL model in which one or more of the parameters following a random 
distribution. The method works by first reformulating the WTP as a function of the 
distributional parameters and some parameter-free standard distributions and then applying the 
Delta method. Hence, the method can be applied for any combination of normal distributions, 
lognormal distributions, uniform distributions, exponential distributions, triangular distributions, 
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and more. We have also shown that correlations between (log)normally distributed parameters 
can be taken into account. The method takes the variance-covariance matrix of the respective 
model parameter estimates into consideration, translating the uncertainties in the estimation of 
the distributional parameters into uncertainty in the WTP measure as presented in confidence 
intervals. 

As Daly et al. (2012b) points out, one has to be careful that the random parameter in the 
denominator (typically the cost parameter) does not go through zero. Hence, the probability 
mass of this distribution should be nil at zero, such as in the lognormal distribution. Otherwise, 
the mean and variance of the WTP are theoretically not defined. The parameter estimates in 
Table 2 illustrate that in this example using a fixed coefficient or a lognormally distributed 
coefficient for the cost parameter results in a worse model fit, although these are the only two 
models presented in the table that are able to produce theoretically defined WTPs. If one would 
like to select the model with the best model fit, the pragmatic way out would be to take the 
median instead of the mean. The analyst is therefore confronted with a dilemma, which deserves 
a closer look at the matter. 

As mentioned, it is not necessary to assume linear utility functions, the methodology proposed 
in this paper can also handle nonlinearities in the parameters and/or in the attributes. In that 
case, the derivatives in Eqn. (6) will not be a simple ratio of k  and ,c  but rather a more 

general function of these parameters and possibly the attribute levels, x. Furthermore, the 
Jacobians kk

  need to be replaced by a more general Jacobian ),( kkh
k

  where 

./)( jkjkk xgh   The algebra may become a bit more tedious, but the equations and the 

main principle remain the same. 

References 

Amador, F.J., R.M. González, and J. de D. Ortúzar (2005). Preference heterogeneity and 
willingness to pay for travel time savings. Transportation, 32, 627-647. 

Armstrong, P., R.A. Garrido, J. de D. Ortúzar (2001). Confidence interval to bound the value of 
time. Transportation Research Part E, 37(1), 143-161. 

Bhat, C. (2001) Quasi-random maximum simulated likelihood estimation of the mixed 
multinomial logit model. Transportation Research Part B, 35, 677-693. 

Bliemer, M.C.J., J.M. Rose, and S. Hess (2008) Approximation of Bayesian efficiency in 
experimental choice designs. Journal of Choice Modelling, 1, pp. 98-127.  

Campbell, D. (2007). Willingness to pay for rural landscape improvements: combining mixed 
logit and random-effects models. Journal of Agricultural Economics, 58(3), 467-483. 

Daly, A., S. Hess, and G. de Jong (2012a). Calculating errors for measures derived from choice 
modelling estimates. Transportation Research Part B, 46, 333-341. 

Daly, A., S. Hess, and K. Train (2012b). Assuring finite moments for willingness to pay 
in random coefficient models. Transportation, 39(1), 19-31. 

Espino, R., J. de D. Ortúzar, and C. Román (2006). Confidence intervals for willingness 
to pay measures in mode choice models. Networks and Spatial Economics, 6, 81-96. 



Confidence intervals of willingness-to-pay for random coefficient logit models. 
Bliemer and Rose 

 

18 

Ettema, D., H. Gunn, G. de Jong, and K. Lindveld (1997). A simulation method for 
determining the confidence interval of a weighted group average value of time. 
Proceedings of the European Transport Conference, 101-112. 

Greene, W.H. (2008) Econometric analysis. Prentice Hall, 7th ediction. 

Haab, T.C. and K.E. McConnell (2003) Valuing environmental and natural resources: 
The econometrics of non-market valuation, Edward Elger Publishing. 

Hensher, D.A., and W.H. Greene (2003). The mixed logit model: the state of the 
practice. Transportation, 30, 133-176. 

Krinsky, I. and Robb, A.L. (1986). On approximating the statistical properties of 
elasticities. Review of Economics and Statistics, 68(4), 715–719. 

Krinsky, I. and Robb, A.L. (1990). On approximating the statistical properties of 
elasticities: a correction. Review of Economics and Statistics, 72(1), 189–190. 

McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In Zarembka, 
P. (ed.). Frontiers in Econometrics, Academic Press, New York, 105-142. 

McFadden, D. and Train, K. (2000). Mixed MNL Models for discrete response. Journal of 
Applied Econometrics, 15(5), 447-470. 

Michaud, C., D. Llerena, and I. Joly (in press). Willingness to pay for environmental attributes 
of non-food products: a real choice experiment. European Review of Agricultural Economics. 

Sándor, Z., and K. Train (2004) Quasi-random simulation of discrete choice models. 
Transportation Research Part B, 38, pp. 313-327. 

Scarpa, R. and J.M. Rose (2008). Design efficiency for non-market valuation with 
choice modelling: how to measure it, what to report and why. Australian Journal of 
Agricultural and Resource Economics, 52(3), 253-282. 

Sillano, M., and J. de D. Ortúzar (2005). Willingness-to-pay estimation with mixed logit 
models: some new evidence. Environment and Planning A, 37, 525-550. 


	ITLS-WP-13-01-cover-2
	ITLS-WP-13-01-abstract
	ITLS-WP-13-01-paper

