
INSTITUTE OF
TRANSPORT STUDIES
The Australian Key Centre
in Transport Management

The University of Sydney
and Monash University

WORKING PAPER
ITS-WP-98-7

The Use of Object-Oriented
Programming Approach in
Representing Traffic Noise
at the Network Level

by

Tu Ton

March, 1998

ISSN 1440-3501

Established and supported under the Australian Research
Council’s Key Centre Program.

NUMBER: Working Paper ITS-WP-98-7

TITLE: The Use Of Object-Oriented Programming Approach In
Representing Traffic Noise At The Network Level

ABSTRACT: Existing road traffic noise models for a single noise receiver are
developed with reasonably accurate estimating capability. If these
traffic noise models can be incorporated into a network model
then the resulting system would be a useful decision support
system in transport planning. The key issue in developing a road
traffic noise model at the network level is how to structure the
basic traffic noise models in such a way that they can be flexibly
re-used to construct more complex cases with many noise
sources, noise receivers and noise barriers. This paper reports on
the use of an object-oriented programming approach to address
the identified issue.

AUTHORS: Tu T. Ton

CONTACT: Institute of Transport Studies (Sydney & Monash)
The Australian Key Centre in Transport Management
C37, The University of Sydney NSW 2006
Australia

Telephone: +61 2 9351 0071
Facsimile: +61 2 9351 0088
E-mail: itsinfo@its.usyd.edu.au
Internet: http://www.its.usyd.edu.au

DATE: March, 1998

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

1

Introduction

Road traffic noise is an increasingly important environmental impact that has to be
managed by road authorities around the world. Significant research efforts have resulted
in popular road traffic noise models such as the CORTN model in the UK and the
STAMINA model in the USA. However, these road traffic noise models were
developed to provide estimate of traffic noise at a point in time (spot noise level). If
these traffic noise models can be represented in such a way that they can be
incorporated into a network planning model, then the resulting system would be a useful
decision support system in transport planning in terms of providing the estimates of
traffic noise impacts at the network level for any road scheme.

Research in transport engineering has been exploring the use of the object-oriented
programming approach (OOA) (eg McGurrin and Wang 1991, Konig and Langbein
1993 and Ton and Black, 1993) as a framework within which many traffic and transport
systems and sub-systems can be represented and modelled. Notable applications are in
the area of intelligent transport systems (ITS). The use of such tools in representing road
traffic noise opens up an opportunity to consider the extent to which there are
frameworks which can be used to represent flexibly road traffic noise problems at
varying levels of detail.

The paper is structured around five sections. The next section provides an overview of
the road traffic noise problem and current issues. Section three contrasts the OOA and
conventional representation of road traffic noise. The OOA design framework of road
traffic noise is presented in Section four. The evaluation of an object-oriented approach
in terms of software quality measures is presented in Section five. The paper concludes
with comments on the practicality of OOA in structuring road noise traffic noise from a
spot noise level to more complex situation at the road network level.

Overview Of The Road Traffic Noise Problem And Key
Issues

Overview of road traffic noise problem

Any road traffic noise model (eg. the CORTN model in the UK and Australia or the
STAMINA model in the USA) will require that the road system be divided into
segments with each segment treated as a uniform section of the road for which the
values of the variables defining road traffic noise are constant throughout. Figure 1
describes the underlying procedure used in CORTN model (UK Department of
Transport, 1975 and 1988). Appropriate calculation processing is then applied to every
segment in terms of a basic noise level and a number of corrections/adjustments due to
traffic characteristics (eg. flow, speed, percentage of heavy vehicle, road gradient and
road surface) and the surrounding environment (eg. distance and type of surface
between noise source and noise receiver, shielding effect, and reflection factors).

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

2

Figure 1: Underlying Procedure of CORTN Road Traffic Noise Model
(Source: UK Department of Transport, 1988, Chart 1, p.38)

The calculation of traffic noise for a single segment represents the basic unit of a traffic
noise problem which generally involves the assessment of the interaction (spatial and
associated attributes) between three participating objects: noise source, noise receiver

Stage 1 - Divide road scheme into segments

Calculate noise level contribution from segment

Stage 2 - Basic noise level

Select hourly L10 or L10 (18 hour)
Apply all corrections (Flow, Speed, % Heavy Vehicle,

Gradient, Road surface)

Stage 3 - Propagation

Distance correction

Is view completely

Screening correction

Stage 4 - Site Layout

Correction for reflections

Apply angle of view correction

Any more segments?

Stage 5 - Combine contributions from all segments

Predicted noise level

Ground
cover

correction

Yes
s

Yes
s

N

N

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

3

and noise barrier. In incorporating road traffic noise models into a land-use/transport
and environmental model, two specific issues are raised: data integration and model
representation. These issues are discussed in the following section.

Key issues of road traffic noise modelling

Data integration and model representation issues of road traffic noise are identified in
the context of land-use/transport and environment integrated system. These issues are
challenges to road traffic noise modellers:

1. How can data required by road traffic noise models be collected in an automated and
cost effective way?

2. How can road traffic noise models be structured and implemented in such a way that
they can be used in any configuration of road traffic noise problem at the network
level?

The first question about data integration issue can be addressed by using a geographical
information system (GIS). With GIS, many different layers of information can be
stored, related and used as input/output to and from any integrated models. For example,
transport network and zonal layers are used as data for land-use/transport modelling, the
output from the network modelling such as estimated traffic flow, speed, etc. can be
used as input to road traffic noise model. The spatial modelling capability of GIS can be
utilised to store and extract the spatial coordinates (longitude and latitude) for any
object from the three objects defining traffic noise - source, barrier and receiver. In
addition, the land parcel (cadastral) layer can also be added for more detailed
investigation of traffic noise impact to each individual land parcel or household (see
Black et al, 1996). By using spatial coordinates, GIS is capable of integrating data
required for road traffic noise evaluation. However, the lack of efficient support for
handling the third component in the spatial coordinates (ie. the elevation), would deter
any transport planner in considering to use GIS as a base platform for incorporating
traffic noise into a land-use/transport and environment system. Elevation is a crucial
geometrical dimension in assessing the spatial relationship between noise sources, noise
barriers and noise receivers. This problem is related to the second question which is
addressed by this paper.

Different locations (noise receivers) on a network might be subjected to different
configurations in their relation to noise sources and noise barriers. The second question
demands a modelling approach with flexible representation capability to cope with
different cases of road traffic noise. Table 1 lists out 12 possible configurations of
traffic noise covering the simplest case of a traffic noise problem which involves a
single noise source and a single noise receiver through to a complex case which
involves multiple noise sources, noise barriers and noise receivers.

Cases 1 and 2 in Table 1 represent a single segment noise problem involving a noise
receiver and at least one noise source and/or noise barrier. The complexity of a noise
problem increases with the complex spatial relationship between noise source(s), noise
barrier(s) and noise receiver. Cases 4 to 12 in Table 1 represent those situations where

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

4

there is more than one noise source or noise barrier or noise receiver. The noise
problems for these cases are called multiple segment problems. Each multiple segment
problem consists of a number of single segment problems.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

5

Table 1: Major Configurations of Traffic Noise Modelling

Case Noise
source

Noise
receiver

Noise
barrier

Description

1 S S N Single segment noise problem without noise barrier
2 S S S Single segment noise problem with noise barrier
3 S S M Multiple segment noise problems due to multiple noise barrier
4 M S N Multiple segment noise problems due to multiple noise

sources without noise barrier
5 M S S Multiple segment noise problems due to multiple noise

sources and single noise barrier
6 M S M Multiple segment noise problems due to multiple noise

sources and multiple noise barriers
7 S M N Multiple segment noise problems due to multiple noise

receivers without noise barrier
8 S M S Multiple segment noise problem due to multiple noise

receivers with single noise barrier
9 S M M Multiple segment noise problems due to multiple noise

receiver and multiple noise barriers
10 M M N Multiple segment noise problems due to multiple noise

receiver and multiple noise sources without noise barrier
11 M M S Multiple segment noise problems due to multiple noise

receivers and multiple noise sources with a single noise
barrier

12 M M M Multiple segment noise problems due to multiple noise
receivers, multiple noise sources and multiple noise barriers

Note: N - none; S - single; and M- multiple

The key issue in designing a traffic noise model is how to represent the traffic noise
problem for single segment in such a way that it can then be re-used to construct a more
complex noise problem consisting of many segments. The most complex case is the
calculation of traffic noise at the network level where there are a number of multiple
segment problems and each segment might have different noise sources, noise receivers
and noise barriers. The next section contrasts the two representation schemes provided
by two programming approaches: the object-oriented and the conventional.

Representing Road Traffic Noise: Object-Oriented
Versus Conventional Approach

Identification of different programming approaches

A programming approach involves a set of mechanisms for performing certain actions
(processes, operations, functions, methods, and procedures) on certain data. When
laying out an architecture to represent a particular system such as the road traffic noise
problem, the modeller is confronted with a fundamental question: what method of
system decomposition (partition) should be used? A number of programming
approaches are in active use and they provide the modeller with a number of approaches
to system decomposition. Although all approaches are represented by some form of
language support, not all have advanced enough to have formal support at each stage in
the development process. Some of those approaches are: procedural, logic, access-

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

6

oriented, process-oriented, object-oriented, functional and declarative (McGregor and
Sykes, 1992, p.7). Each of these programming paradigms has its supporters and users.
Each is particularly suited to a certain type of problem. The procedural programming
approach represents the conventional programming approach. The logic programming
paradigm is the basis for the so-called rule-based systems. The access-oriented
paradigm has proved to be a useful technique in structuring user interfaces. Each is a
different way of thinking about problems, each uses a different approach to decompose
a problem, and each results in different kinds of pieces, procedures, production rules,
and so on. The logic paradigm, for example, decomposes knowledge about the problem
into a set of discrete rules often represented in a language as "if-then" structures. This
paradigm has therefore been used extensively in the development of knowledge-based
expert systems.

Due to its popularity in transport computer modelling, the conventional procedural
programming paradigm is selected to contrast against the object-oriented programming
paradigm. The question of decomposition method is now focused on the fundamental
choice: should the structure be based on functions (procedures or actions) or on the data
or both? The conventional procedural programming is based on functions (actions),
whereas the object-oriented approach is based on objects (data and the associated
functions).

Object-oriented versus conventional programming
representation schemes for road traffic noise

To provide a basis for comparison between conventional programming and object-
oriented programming, the UK CORTN road traffic noise model is chosen (UK
Department of Transport, 1988). Conceptually, at a given reception point, the traffic
noise model estimates the noise level generated from one or many adjacent road links,
taking into account the shielding effect such as the presence of a noise barrier and other
factors such as the gradient of the road link, percentage of heavy vehicles, vehicle
speed, surrounding ground condition, retained cut and reflection effects.

A road link is divided into one or more segments which represent homogeneous noise
environments. The calculation steps are applied for every segment to calculate the noise
level and the associated corrections due to different factors (eg. shielding, traffic
composition, reflection, etc.). The final step combines different segments to estimate the
combined noise effect.

For each programming paradigm, the discussion will be based on the method of
representing the system, the basic architecture and the associated operational
characteristics. The following presents the designs of the conventional and object-
oriented-oriented approaches.

In representing the traffic noise model, the conventional procedural approach involves
the following two steps:

i) Separate data and functions.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

7

ii) Focus on the function abstraction as a unit for decomposing the system. The
function abstractions are developed by considering software as a stream of actions.
In other words, it is a well defined algorithm that consists of a sequence of steps.
Each step is abstracted to a procedure with predefined inputs and specific outputs.
The procedures are chained together to produce a reasonably stable flow of control
through the program. This results in an architecture that has a very simple but static
structure, as typically illustrated in Figure 2.

C a lcula te
ref lec t ion
c o r r e c t i o n

C a lcu la te re ta ined
c u t c o r r e c t i o n

C a lcu la te sc reen ing
c o r r e c t i o n

C a lcu la te d i s tance
c o r r e c t i o n

C a lcu la t e road
su r f ace co r r ec t i on

C a lcu la te g rad ien t
c o r r e c t i o n

C a lcula te % o f
heavy veh ic le
c o r r e c t i o n

C a lcu la te speed
c o r r e c t i o n

C a lcu la te to t a l co r rec t ionC a lcula te bas ic noise level

C a lcula te noise level

S e q u e n c e 1

S e q u e n c e 2

Figure 2: Conventional Programming Design of a Road Traffic Noise Model

In the conventional representation scheme, data and functions are separated. Data are
used as function parameters and passed among functions. Functions are the main pieces

Combined noise level
Speed correction
% heavy vehicle correction
Gradient correction
Road surface correction
Distance correction
Screening correction
Retained cut correction
Reflection correction

Traffic volume
Speed
% Heavy Vehicle
Gradient
Road surface
Location of noise source
Screening condition
Retained cut condition

D A T A
Location of noise barrier
Starting height of barrier
End height of barrier
Type of barrier
Location of noise receiver
Surrounding ground type

Data Passing & Updating

F U N C T I O N S

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

8

of the architecture. In this example, they are placed sequentially although there are
possible places for some concurrence. The system is designed by first determining the
overall sequencing, followed by defining data to support the basic operations of the
procedures.

More specifically, the top level sequence (sequence 1) involves the calculation of a
basic noise level and the total correction. In order to calculate the total correction,
another sequence (sequence 2) is required to step down to the calculation of every
specific correction. In the procedural paradigm the priority is on this stream of actions
that constitutes the solution to the target problem. The state of the system is the set of
global variables that maintain their value as control moves from one function to another.
The resulting application would probably work fine. There has been much support for
this approach to system development. However, there have been problems in the
development of larger and more complex systems as well as in the construction of user-
oriented systems (McGregore and Sykes, 1992, p.10).

In the conventional programming structure of the traffic noise model, the data passing
path would become messier (“spaghetti” code) and harder to control as the system
becomes more complex. For example, it is not cost effective to modify this design to
handle a more general noise calculation program to accommodate multiple noise
receivers, multiple noise sources and multiple noise barriers.

The top-down approach employed in conventional programming has two drawbacks.
One, it forces the modeller and software developer to impose very strict orders for
executing functions. Two, it does not promote software reusability. Although it ensures
that the design will meet the initial specifications, it will not promote software
reusability. Elements tend to be narrowly adapted to the sub-problem that led to their
development; they are not naturally general. Top-down design contradicts software
reusability (Meyer, 1988, p.49). Reusable software implies that systems are developed
by combining existing components, which is the definition of a bottom-up design.

Techniques to improve the development of large systems have centred around
developing data abstractions. The increased attention on the use of an abstract data type
has evolved the procedural system development process into a more data-driven
approach. Continuing problems with large system development have led to the need to
combine the approaches of procedural abstractions and data abstractions. This need has
led to the development of the object-oriented paradigm.

The object-oriented paradigm is the result of an evolution in the way problems are
decomposed. Where procedural abstraction is the priority in the procedural paradigm,
entities - problem domain objects - are the priority in the object-oriented paradigm. In
the object-oriented paradigm, the major entities in the problem domain are identified
and modelled as the starting point in system development. The objects themselves are
the focus instead of the sequence of actions that must be performed on the objects. The
objects in an object-oriented system are a unique blend of procedural and data
abstractions. The data abstractions representing these entities are a major product of the
object-oriented design. The state of the system is maintained through the data stores
defined at the core of each data abstraction. These values are maintained for the life of
the abstraction. Flow of control is divided into pieces and is included inside each of the
operators defined on the data abstractions. Instead of data being passed from one

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

9

procedure to another, as in the procedural paradigm, flow of control is passed from one
data abstraction to another. The object-oriented design of traffic noise model is shown
in Figure 3.

1

n e w N o i s e ()

5

n e w N o i s e _ R e c e i v e r ()n e w N o i s e _ B a r r i e r ()

n e w N o i s e _ S o u r c e ()

T h e U p d a t e () f u n c t i o n
c a l c u l a t e s n o i s e l e v e l
a n d a l l c o r r e c t i o n sA Noise Object

A Noise Source A Noise Barrier A Noise Receiver

ii) Step 2: View to the solution

2

3 4

Object Object Object

G e t N o i s e S o u r c e I n f o ()

F u n c t i o n s :

N o i s e R e c e i v e r ()
U p d a t e ()
G e t L o c a t i o n ()
G e t S u r r o u n d T e r r a i n ()
G e t R e f l e c t i o n C o r r e c t i o n ()

D a t a :
L o c a t i o n

 S u r r o u n d i n g T e r r a i n T y p e

F u n c t i o n s :

N o i s e B a r r i e r ()
U p d a t e ()
G e t L o c a t i o n ()
G e t S t a r t H e i g h t ()
G e t E n d H e i g h t ()
G e t T y p e ()

D a t a :

L o c a t i o n
S t a r t H e i g h t
E n d H e i g h t

F u n c t i o n s :

N o i s e S o u r c e ()
U p d a t e ()
G e t T r a f f i c V o l u m e ()
G e t S p e e d ()
G e t H e a v y V e h i c l e ()
G e t G r a d i e n t ()

D a t a :

T r a f f i c V o l u m e
S p e e d
% H e a v y V e h i c l e
G r a d i e n t
R o a d S u r f a c e
L o c a t i o n
S c r e e n i n g C o n d i t i o n
R e t a i n e d C u t C o n d i t i o n

F u n c t i o n s :

C o m b i n e d N o i s e ()
U p d a t e ()
G e t C o m b i n e d N o i s e L e v e l ()
G e t S p e e d C o r r e c t i o n ()
G e t H e a v y V e h C o r r e c t i o n ()
G e t G r a d i e n t C o r r e c t i o n ()

Noise

i) Step 1: Problem Description

D a t a :

C o m b i n e d N o i s e L e v e l
S p e e d c o r r e c t i o n
% H e a v y V e h i c l e C o r r e c t i o n
G r a d i e n t C o r r e c t i o n
R o a d S u r f a c e C o r r e c t i o n
D i s t a n c e C o r r e c t i o n
S c r e e n i n g C o r r e c t i o n
R e t a i n e d C u t C o r r e c t i o n
R e f e c t i o n C o r r e c t i o n

Noise_Source Noise_Barrier Noise_Receiver

G e t R o a d S u r f a c e ()
G e t L o c a t i o n ()
G e t S c r e e n i n g ()
G e t R e t a i n e d C u t ()

T y p e

1
1 1 1

Figure 3: Object-Oriented Design of the Road Traffic Noise Model

As shown on Figure 3, there are two basic steps in the object-oriented design. The first
step is to describe the problem (see Figure 3i) and second is to provide the view to the

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

10

solution (see Figure 3ii). In Figure 3i, a Noise object has a Noise_Source object, a
Noise_Barrier object and a Noise_Receiver object. Each of these objects encapsulate all
the basic information (ie. object's data) and the associated functions. A Noise_Source
object represents the physical and traffic characteristics of a particular roadway segment
adjacent to the noise reception point. A Noise_Barrier object represents a physical noise
barrier which is located between the noise source and the noise reception point. A
Noise_Receiver object represents a noise reception point (eg. its location and type of
surface that surrounds the noise reception point).

A basic difference between the object-oriented and the conventional architecture is the
emphasis on "things", physical entities such as the noise source, the noise barrier and
the noise receiver. No algorithm is given here because it is really distributed into the
various objects. The data passing mechanism used as a means to communicate between
functions or procedures in conventional programming is replaced by the message
passing mechanism for object communication. As an example, one might want to query
about the traffic characteristics of the noise problem; then a relevant message is then
sent to the Noise_Source object (eg. NoiseSource1.GetTrafficVolume(),
NoiseSource1.GetSpeed(), etc.). From this flexible structure, the next step is to set up a
sequence of messages to provide the solution to the problem. The arrows and circled
numbers in the diagram indicate messages and message number from one object to
another. In order to simplify Figure 3ii, not all of the messages available from each
object are shown. The noise problem can be started by creating a noise object (message
number 1). In creating a noise object, there is a need to create its components, therefore,
three messages (messages 2 to 4) are required to create and obtain information about
noise source, noise barrier and noise receiver. The final message is message 5 which is
the Update() function which then performs all the calculations for a traffic noise
problem.

In summary, in the procedural programming approach, a program comprises a
collection of functions that act upon data; this data may be organised into data
structures. A problem is "solved" by repeatedly applying these functions. By contrast,
the object-oriented approach has a more holistic modelling approach: it models a
domain as a collection of computational entities, referred to as objects, that stand for the
entities that populate the domain. These objects define operations that are invoked as a
result of the interaction of these objects with each other. In this approach, a problem is
"solved" through the interaction of the objects that make up the problem domain. The
object-oriented paradigm gives priority to data abstraction and looks secondarily at
procedural abstraction. It is a new technique that has evolved from the increasing
interest in abstract data types (ADTs). The entities of the target problem domain are the
starting point for system design; implementing them drives the details of system
development.

Table 2 summarises the main differences between the two approaches based on their
key features. The object-oriented analysis and design appears to be much larger and
more complex than the procedural design. This is partly because the object-oriented
design provides a view of the solution as well as the problem in one entity- relationship
diagram. The result is a description of the problem domain that includes pieces that are
much more general and reusable than the pieces that are developed as part of the
solution to a specific problem as viewed in the procedural paradigm. While both

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

11

techniques result in a workable solution, the object-oriented technique will build for the
future enhancement and satisfy the situation at hand.

Table 2: Object-Oriented Versus Conventional Programming Approach

Main Features Conventional Object-oriented
Decomposition Method Function Object =Data & function
Data Abstraction No Yes
Encapsulation of data and functions No Yes
Physical Building Block Sub-program Object
Physical Structure Tree of functions Graph of objects
Existence of Global Data Yes Little or No
Logical Building Block Algorithm Class Hierarchy
Reusability Support Limited Strong

The use of the conventional programming approach in representing road traffic noise
models is not flexible enough to cope with frequent changes in system specification
and in providing a facility for customising the model to suit specific requirements.
Source code reusability represents the most popular form in the conventional software
development process. A typical example in transport modelling is the release of the
source code for the UTPS package (developed by US Department of Transportation). In
UTPS, FORTRAN was used to implement the four-step transport model. The
availability of UTPS source code has enabled users (from universities and consultants)
to study, imitate and extend the system. However, this type of reusability is not cost
effective if one takes a closer look at the nature of repetition in software development.
Such an analysis reveals that although programmers do tend to do the same kinds of
things time and time again, these are not exactly the same things. If they were, the
solution would be easy, at least on paper, but in practice so many details may change as
to render moot any simple-minded attempt at capturing the commonality. Such is the
software engineer's plight: time and time again composing a new variation that
elaborates on the same basic themes.

In terms of software quality, the object-oriented decomposition greatly reduces the risk
of building complex software systems because they are designed to evolve
incrementally from smaller proven systems to which confidence has already been
attached. Object-oriented decomposition directly addresses the inherent complexity of
software by helping make intelligent decisions regarding the separation of concerns in a
large state space. Software quality is improved through the software reuse and software
flexibility. In the next section, the object-oriented approach will be used in constructing
a framework for road traffic noise modelling.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

12

Object-Oriented Representation of Network Noise
Problem

Object-oriented design of road traffic noise

The main feature in the development of an object-oriented framework for road traffic
noise is the use of a bottom-up approach. In other words, the framework is built up from
a simple case at the spot level (ie. single noise receiver) to complex cases at the network
level (ie many noise receivers). A typical spot noise level problem is shown in Figure 4.
In this case, the basic requirement is the estimate of noise level at point R (noise
receiver) given the contribution of noise impact from the adjacent road (noise source)
indicated by source line S1S2 and the shielding effect from a noise barrier B1B2 (see
Figure 4ii for a cross section through S1R). Inspecting the spatial relationship between
noise source, noise barrier and noise receiver reveals that this problem can be structured
as a 2-segment problem. One segment is shielded by the noise barrier and the other is
not.

i) Layout of the noise

Source line

S1(40.0, 120.0, 0.5) S2(140.0, 120.0, 0.5)
• -

Edge of nearside
 carrigeway

Reception Point
R(40.0, 36.5, 4.0)

R

106
25

19

80m

B

20m

Noise Barrier
RO bisects the angle of

view of the barrier

Effective position of
equivalent noise barrier

B1

B2

O
Z1

Z2

(80.9, 100.7, 3.0)

(125.4, 90.9, 3.0)

R

B

S1

4m

3m
0.5m

3.5m 20m 60m

Extended equivalent barrier

ii) Cross section

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

13

Figure 4: A Typical Road Traffic Noise Problem at the Spot Level
(Source: UK Department of Transport, 1988, Annex 10, p.76)

The three participating objects in this noise problem are represented by three classes
(class Noise_Receiver, class Noise_Barrier and class Noise_Source (see Figure 5)).

Noise_Receiver

Noise_Barrier

Noise_Source

int

char

double

double

double

i) Structure of Class Noise_Receiver

ii) Structure of Class Noise_Barrier

iii) Structure of Class Noise_Source

i

description

1

1

1
1

1

1

double

double

double

Point

1

1

1

1

angle
le

h_dis

v_level

location
on

ground_cover

prop_hei

reflection
on

int char double double Line

1 1 1
1

1 1

i description
on

h_dist v_level location
n

int

char

i

description
n

1

1

1

double

double

double

Line

1

1

1

1

gradie

h_di

v_lev

location

double

double

double

Int

q1

v

h

speed_esti

1

1

1

1

int

int

int

double

1

1

1

1

g_surfa

road

road

texture
depth

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

14

Figure 5: Object-Oriented Design of Three Basic Components of Traffic Noise
Model

As shown on Figure 5, these three classes are structured from basic character and
numerical types (double for double floating point number, int for integer, char for
character string) supported by any commercially available software compiler such as
Visual C++. In addition, there are two geometry classes, namely class Point and class
Line. These classes are designed as generic classes to provide any spatial modelling
support to calculate the distance between noise source and noise receiver or the angle of
shielded segment, etc. These geometry classes form part of TRANSOOP which was
developed by the author for use as a reusable object-oriented software library in
supporting transport modelling. TRANSOOP contains 33,000 lines of C++
programming code implementing 130 basic models identified from the eight supporting
domains: land-use, transport, traffic, spatial geometry, environmental impact
assessment, mathematics, statistics and computing utility (Ton, 1995).

Once the three key component objects are represented, class Noise_Segment can then
be composed to represent a single segment traffic noise problem (see Figure 6). Class
Noise_Segment is structured by the three participating objects of classes Noise_Source,
Noise_Receiver and Noise_Barrier and all the intermediate input and output data.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

15

Figure 6: Object-Oriented Design of Traffic Noise Models

NtApp

int

Noise

double

double

double

number
of

cases

1
1

1

1

1
int

double

double

1

1

1

is_shadow

ddas

delta_path

correction_roadsurface

correction_distance

combined level

int

Noise_Segment

1
1

1

number
of

segments

int

int

id

error flag

1

1

double

double

double

double

1

1

1

1

basic level

correction_speed

correction_gradient

correction_surface

double

double

double

int

disNs2Nb

disNr2Ns

disNr2Nb

is_barrier

1

1

1

double

double

double

double

1

1

1

1

correction_barrier

correction_view

correction_facade

correction_reflection

1

N

N
Noise_Receiver

Noise_Source

Noise_Barrier

a noise receiver

a noise source

a noise barrier

1

1
1

char

description

1

1

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

16

The intermediate input data processed by class Noise_Segment describe the spatial
relationship between the three object of classes Noise_Source, Noise_Receiver and
Noise_Barrier. The output data consists of resulting noise level and the associated noise
corrections (adjustment factors). Class Noise_Segment can provide a comprehensive
calculation of the basic traffic noise level and the associated traffic noise corrections.
Moving further up the hierarchy shown in Figure 6, every case is represented by class
Noise. This class is used to represent a complex situation such as multiple segment
problems where the noise calculation has to be segmented into various segmented
problems which represent the homogeneity of the problem in terms of the relationship
between noise source, noise barrier and noise receiver. The top class on the hierarchy
shown in Figure 6 is class NtApp. This class represents a general application of any
traffic noise calculation. NtApp handles a number of cases which requires the traffic
noise impact investigation. This hierarchy can represent all 12 possible cases of traffic
noise modelling described above.

Table 3 provides a summary description of this object-oriented representation scheme
for road traffic noise problems.

Table 3: List of Object-Oriented Road Traffic Noise Classes

Class Name Representation Functional Support
Noise_Source A physical noise source Functions for editing and querying noise source data

• General information such as id number and description.
• Traffic information such as the 18 hour traffic volume q18, the mean

speed v, percentage of heavy vehicle hv, the status for estimating
the speed, the road surface condition g_surface, road_surface,
texture depth.

• Spatial information such as location, gradient of the road, vertical
and horizontal distances.

Noise_Barrier A physical noise barrier Functions for editing and querying noise barrier data
• General information such as id number and description.
• spatial information such as location of the barrier, vertical and

horizontal distances
Noise_Receiver A physical noise receiver Functions for editing and querying noise receiver data

• General information such as id number and description.
• Surrounding terrain information such as the condition of

surrounding surface ground_cover, reflection characteristics, the
estimation of propagation height prop_height.

• Spatial information such as location, vertical and horizontal
distances

Noise_Segment A noise case setup for a
single segment calculation
(Cases 1 and 2 in Table 1)

Functions for editing and retrieving the three participating objects in
a single segmented noise problem (ie. Noise_Source, Noise_Barrier
and Noise_Receiver).
Functions for calculating basic noise level and the associated
corrections (ie. speed, % heavy vehicles, gradient, surrounding
terrain, shielding, etc.).
Functions for detecting any corrections which contributes maximum
or minimum to the noise impact at the segment under investigation
Functions for communicating with the three components: noise
source, noise receiver and noise barrier

Noise A case setup for multiple
segment calculations
(Cases 3,4,5,6,7,8, and 9
in Table 1)

Functions for editing and retrieving Noise_Segment object.
Functions for calculating combined noise level for multiple
segmented noise problem.
Functions for detecting any segment that contributes maximum or
minimum to the noise impact.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

17

NtApp A network noise
calculation - a multiple
cases setup for multiple
segment calculations
(Cases 10, 11 and 12 in
Table 1)

Functions for editing and retrieving Noise object.
Functions for detecting any case which contributes maximum or
minimum to the noise impact .

The flexibility of the object-oriented design helps to build a flexible traffic noise model
even at the network level. The network noise modelling will be presented in the
following section.

Using object-oriented framework to represent the network noise
model

The challenge now is how to reuse software developed for the spot level in developing a
software system for the network level. As shown on Figure 7, only four additional
classes are required to represent the network noise model. They are class NtNoise, class
NtSource, class NtBarrier and class NtReceiver. The advantage of the object-oriented
approach can be seen at this stage as the software reuse of all other objects of classes.
These classes have been constructed and described in previous section.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

18

Figure 7: Object-Oriented Design of Network Noise Model
Data processing and calculation are the two major tools required to perform the basic
network noise evaluation. The data processing tool is represented by an object of class
NtNoise. This object requires the input from three databases: noise source, noise barrier
and noise receiver databases. As mentioned earlier, these databases can be available
from different layers from GIS. The interfaces to these three databases are represented
by the three objects of classes NtSource, NtBarrier and NtReceiver. Not every noise
source or noise barrier will contribute to the noise level at a certain noise receiver.
Therefore, the main function of the data processing tool is to configurate noise problems
and the associated data for the calculation tool. The noise problem configuration

Noise
Source

Link
Locati

Traffic
% of Heavy

a
NtSourc

Noise
Receiver

Receiver
Locati

Surrounding

a
NtReceive

Noise
Barrier

Barrier
Locati

Heig

a
NtBarrie

NOISE DATA
PROCESSING

TOOL

a NtBarrier

Multiple
Segment

Noise
Problem

Noise object

Multiple
Segment

Noise
Problem

Noise_Segm
ent

Single
Segment

Noise
Problem

Noise_Segm
ent

Single
Segment

Noise
Problem

Noise_Segm
ent

Single
Segment

Noise
Problem

Noise_Segm
ent

Single
Segment

Noise
Problem

Noise_Segm
ent

a NtApp
object

NOISE CALCULATION

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

19

involves a scanning process which looks at each individual noise receiver and checks
through the databases of noise sources and noise barriers to select certain noise
source(s) and/or noise barrier(s) that might effect the noise level at the noise receiver’s
location. The selection criterion of noise source(s) and or noise barrier(s) is based on the
relative spatial relationship between the three participating objects involved in a noise
evaluation problem (ie. noise source, noise barrier and noise receiver).

The calculation tool represented by object of class NtApp consists of a number of
multiple segment noise problems as represented by objects of class Noise. Again, each
Noise object consists of a number of single segment noise problems as represented by
objects of class Noise_Segment. Table 4 summarises the basic representation and
associated functional supports of the four object-oriented classes designed for network
noise model. These four classes together with the six basic traffic noise classes listed in
Table 3 represent a complete framework for handling any configuration of road traffic
noise problems.

Table 4: List of Object-Oriented Network Noise Classes

Class Name Representation Functional Support
NtSource A noise source

database
Functions for editing and retrieving Noise_Source objects.

NtBarrier A noise barrier
database

Functions for editing and retrieving Noise_Barrier objects.

NtReceiver A noise receiver
database

Functions for editing and retrieving Noise_Receiver objects.

NtNoise A network noise
data processor

Storing and retrieving the 3 databases of noise source, noise barrier and noise
receiver.
Configure specific noise problems and the associated data by checking the
spatial relationship between every noise receiver, noise source and noise
barrier on the network.

The application of the object-oriented design of network noise model is demonstrated in
a worked example (see Figure 8). This is a hypothetical residential block surrounded by
four road links with different traffic characteristics and a noise barrier. The spatial data
is in the format of x, y and z representing the 3-dimensional noise problem. The four
road links are defined by the four points (S1, S2, S3 and S4). The noise barrier is defined
by two points (B1 and B2). The task is to estimate the noise level for a grid of four
points (points R1, R2, R3 and R4) with and without the existence of a noise barrier.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

20

Table 5 shows the output in terms of L10(18hour) noise level estimated for the four
reception points on a hypothetical block surrounded by four road links with and without
the existence of a noise barrier. A manual noise configuration and calculation for the
four points confirm the 100 per cent accuracy of the network noise model (implemented
in C++ programming language) for both scenarios (with and without a noise barrier).
Inspection of the output data for both scenarios found that with the installation of a 2
metre high noise barrier, the noise levels for points R1 and R4 have been cut by 4 dBA
and 1.2 dBA, respectively.

Table 5: A Summary of Network Noise Evaluation for Worked Example

Scenarios Estimated Noise Level L10(18hour), dBA
at Point R1 at Point R2 at Point R3 At Point R4

Without noise barrier 74.91 74.60 76.95 77.11
With noise barrier 70.97 74.60 76.95 75.94

R2(30,990,5.5) R3(990,990,7.5)

R1(30,30,5.5) R4(990,30,7.5)

Noise Source # 3:
Third Street
q = 16000 veh/18hr;
v = 60 kph,
% heavy veh = 14

Noise Source # 2:
Second Street
q = 20000 veh/18hr;
v = 70 kph,
% heavy veh = 18

Noise Barrier

S4(10,1010,4) S3(1010,1010,6)

B1(30,20,6) B2(990,20,6)

Note: Figure is not to scale, spatial coordinate units are in metres

Noise Source # 4:
Fourth Street
q = 13000 veh/18hr;
v = 50 kph,
% heavy veh = 10

Figure 8: Sketch of a Hypothetical Residential Block for Network Noise Evaluation

S1 (10,10,4) S2(1010,10,5)Noise Source # 1:
First Street
q = 26000 veh/18hr;
v = 80 kph,
% heavy veh = 22

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

21

The integration of this network noise model with GIS and other land-use/transport
system is also possible. The functional arrangement of the integration between network
noise (TNETNOISE) and GIS is shown in Figure 9.

A R C - I N F O
D a t a b a s e s

U S E R

N o i s e S o u r c e
D a t a

N o i s e B a r r ie r
D a t a

N o i s e
R e c e i v e r D a t a

P r o p e r t y
B o u n d a r y

D a t a

E s t im a t e d N o i s e L e v e l f o r
N o i s e R e c e p t i o n P o i n t s

A R C

I N F O

A R C E D I T

A R C V I E W

T N E T N O I S E E v a l u a t i o n T o o l

Figure 9: Integrating A Network Noise Model with GIS

Four sets of data provide the input to the application program: noise source data; noise
barrier data; noise receiver data; and property boundary data. The noise source data
contains the link-based information in terms of location and traffic characteristics, such
as traffic volume, and the percentage of heavy vehicles. The noise barrier data contains
the information of noise barriers in terms of location and physical dimension, such as
the barrier’s height. The noise receiver data contains the information of noise reception
points in terms of location and any surrounding terrain conditions such as paved or
unpaved surfaces. These three noise-related data are the main input to the TNETNOISE.

The role of TNETNOISE is to provide data processing and noise calculation. The output
from TNETNOISE is the estimated noise level for each noise reception point. This
output is fed into the GIS ARC-INFO (developed by ESRI, 1992) together with the
associated noise receiver data and the property boundary data to provide a basic
graphical database system for network noise evaluation. Five major tools of ARC-INFO
are employed: ARC, INFO, ARCEDIT, ARCVIEW and ARCTOOL. The ARC tool
handles the spatial modelling task. The main task in this case study is the generation of
noise contours given the spatial data from noise receiver data and the noise level from
the TNETNOISE evaluation tool. As a database management system, INFO tool
complements the ARC tool in handling aspatial data attributes of the network noise
problem such as the aspatial data of noise source, noise barrier and noise receiver.
ARCEDIT tools help to edit the property boundary information. ARCVIEW is the
front-end of the TNETNOISE system where it helps the user query the network noise
database as well as viewing noise contours over the study area.

Detail of this integration applied in a real world case study is given in Black et al.
(1996). The development of the network noise model demonstrates the feasibility and
flexibilty of using an object-oriented approach in developing analytical tools for

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

22

environmental impact assessment such as the traffic noise as well as the integration with
GIS technology. Formal software quality evaluation of object-oriented designs for road
traffic noise models are presented in the next section.

Evaluation Of Object-Oriented Representation For Road
Traffic Noise

The evaluation of the object-oriented representation of road traffic noise is based on
currently recommended quality measures of general software systems (McGregor and
Sykes 1992, Booch 1991, and Meyer 1988). They are abstraction, focus,
comprehensiveness, correctness, increment, standardisation and compatibility. As
shown in Figure 10, these recommended quality measures contribute to the three
programming requirements of software quality, software reusability and software
portability. Each of these measures are now critically discussed and used in the
evaluation of object-oriented design for road traffic noise.

 -siveness -isation -bility

Figure 10: Evaluation Measures of Object-Oriented Design for Road Traffic Noise

In terms of the abstraction feature, each traffic noise class of objects is the realisation of
an abstraction (ie. it is a complete model of the concept). For example, class Noise is a
complete representation of a traffic noise model. Viewed from the perspective of
software reusability, the abstraction feature in an object-oriented design makes it easier
to identify the participating objects in specific problem such as road traffic noise. For
example, the use of abstractions such as class Noise, class Noise_Segment, Noise
Source, etc. to represent traffic noise problem helps to identify the hierarchical structure
of a noise problem, a noise segment, a noise source, a noise barrier and a noise receiver.

The second feature is that each traffic noise class is narrowly focused. Each class
represents only one concept. It is often expedient to consider expanding a class into a

Software Quality Software
Reusability

Software
Portability

Abstraction Focus Comprehens Correctness Increment Standard Compati

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

23

bigger class to handle new, similar situations. The end result, though, is a component
that is too large and too fragmented to be easily understood and the consequence is the
software quality will be affected. By concentrating on one concept per class, each class
as a resulting component is an easily understood unit that is more likely to be reused by
another designer. More efficient applications can be built if the components used
represent single concepts and code that supports the needed functionality in the
component. As an example, instead of having a single class to handle every different
type of traffic noise model and associated attributes, a total of ten classes have been
developed to represent road traffic noise models.

The third feature is that each road traffic noise class is a comprehensive model of the
concept represented by the module even if some of the facets are not relevant to a
particular application. There are two reasons for comprehensiveness in the object-
oriented design. First, a complete component is more likely to be reused. If services are
missing from a component, a paraphrase would imply that these are precisely the
services that will be needed by the next user. Second, a complete component is more
economical to develop. It is widely accepted that the maintenance costs more per line
than does original system development (McGregor and Sykes, 1992, p. 6). The cost of
adding additional services to a module later is more than developing a complete
implementation originally, particularly since changes to a module frequently affect
components that already use it in its incomplete implementation.

The adopted strategy in developing object-oriented models is to place the emphasis of
this feature on more generic abstractions and mechanisms such as point, line, matrix,
vector and their associated linear algebra operations because these generic classes tends
to be highly reused by others. For example, whenever there is a need to use spatial
modelling tools, class Point and class Line should be considered as the first candidates.

Each road traffic noise class is aimed at correctly representing a model of the target
concept. This correctness feature in object-oriented design of traffic noise is more easily
attainable with object-oriented modules. The size and encapsulation of object-oriented
modules makes testing and validation a more manageable task. In terms of software
reusability, the correctness is an important factor in contributing to the confidence in
using reusable software components.

The fifth feature in the object-oriented design is the support of incremental
development. This is an important feature that takes advantage of the inheritance
relationship. It is reuse in the sense that it requires the results of previous work in order
to develop new products. This incremental reuse does not use existing components in an
"as is" state; rather, it supports an evolutionary reuse. The incremental testing and
documentation techniques reuse products from previous processes to reduce the effort
needed to create some new product.

An important characteristic of the object-oriented approach which helps to maintain the
incremental open structure of an object-oriented system is the polymorphism. With the
polymorphism, the behaviour of any new specialised class which inherits from existing
class can be flexibly handled through a flexible substitution policy. By using an
appropriately abstract class as the formal parameter specification, the modeller can
create a broad range of classes whose instances serve as the actual parameter to that
method. The method to which these classes are parameters can be reused over a wider

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

24

range of possible parametric values. This increases the reuse of the method and of the
class to which it belongs. This is the case for adding new methodology for traffic noise
modelling such as the STAMINA model from the USA. Instead of rewriting the code
for representing the STAMINA model, a new class can be added to the framework. A
new class can inherit existing class and override the specific method to suit the
STAMINA methodology. All other classes in the traffic noise framework are unchanged
in providing support.

The sixth feature of object-oriented design is standardisation. It is aimed at capturing all
the basic standard knowledge in the road traffic noise modelling process at different
levels of interests in transport planning (spot level and network level). The basic input,
output and modelling functions offered by road traffic noise models are to some extent
becoming standard.

The final feature of the object-oriented design is the support of software compatibility.
Graphical user interface (GUI) is the major concern in the compatibility of a software
system. Different software systems implement different graphical user interfaces and
they cannot communicate with each other. GUI is normally built on a certain window
system. Microsoft Windows developed by Microsoft Corporation is becoming a
standard for micro computers whereas X windows developed at MIT by many computer
vendors and MIT is also getting very popular on UNIX-based work-stations. To deal
with different windows systems, the adopted strategy is to externalise the GUI
functionality. However, it does not mean that the GUI functionality is not considered in
the development of object-oriented models. In fact object-oriented design provides
maximum support to GUI development through the flexibility in design of the system
(with a set of objects and messages sent among them) and class interface. This design
will make object-oriented models applicable to a wide range of computers with different
user interface designs.

Conclusion

The research reported in this paper identified two key issues in the demand for
incorporating road traffic noise models in land-use/transport and environmental models.
The data integration issue was discussed to support the use of GIS as a data integration
platform. The model representation issue was raised from the need for a flexible
representation of road traffic noise models covering from spot level to network level. In
searching for a suitable representation/programming approach for road traffic noise
modelling, different programming approaches were reviewed. With particular reference
to the road traffic noise problem, the representation schemes from two approaches were
compared: object-oriented and conventional approaches. The object-oriented approach
was selected as a candidate for road traffic noise investigation due to its support to
software flexibility and reusability. A complete object-oriented design was established
to serve as a framework for representing all 12 possible configurations of road traffic
noise problems. A worked example was used to demonstrate the implementation of an
object-oriented design. The object-oriented design of road traffic noise has followed
quite closely to the currently recommended quality measures for general software
system.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

25

One important finding from this research is the representation power of OOA in
structuring road traffic noise. Software flexibility and software reusability are the two
key features that add to the practicality of applying OOA in traffic noise modelling.

In concluding this paper, another important issue is raised. Most land-use/transport
planning software packages developed have been considered as "one-off" applications.
In other words, these packages are designed with a fixed analytical structure, fixed
number and types of functions used, and leave only limited room for future modification
or extension (eg. to include a new technique or enhance an existing technique).
Consequently, these packages do not cope with the demand for improvement or
modification in a cost effective way; in most cases new programs have to be written.
Amongst those packages that exist many basic modelling functions are commonly used.
For example, matrix manipulation functions represent the most commonly used tool in
any transport software package. If software reusability is utilised, the duplication in
building common software components can be minimised or avoided. There have not
been any reports on a published library of models or functions being shared or re-used
in the transport modelling area. This type of library is useful in terms of the software
reuse of common software components to save the cost involved in the development of
software for transport system analysis. This observation leads us to rethink the
interaction between transport software developers and transport software users. The
question is which side (developer or user) should commit more effort to this problem.
Should the developer make transport software more flexible or the transport
planner/engineer be more competent in transport computer programming? The
challenge is how to develop a modelling/programming environment so that it can be
used to help the transport modeller in representing a transport model to cope with an
ever-changing real world problem. The object-oriented approach should be considered
as a strong candidate.

Acknowledgement

The research and development reported in this paper is supported under the Australian
Research Council Research Centres program.

The Use of Object-Oriented Programming Approach in Representing Traffic Noise
Ton

26

References

Black, J, Trinder, J., Masters, E., Vandebona, U., Ton, T., Morrison, B. and Tudge, R.
(1996) Spatial Decision Support System for Transport Planning, in D. Hensher, J. King
and T.H.Oum (Eds.), Proceeding of the 7th World Conference on Transport Research,
Sydney, Australia (Elsevier: Oxford), Volume 3, pp.71-83.

Booch, G. (1991) Object Oriented Design with Applications The Benjamin/Cummings
Publishing Company: Sydney.

ESRI (1992) ARC-INFO Version 6 User’s Guide, Environmental Systems Research
Institute, Inc.: Redlands.

König, R. and Langbein, R. (1993) Simulation of Traffic Management Strategies, paper
prepared for the 26th International Symposium on Automobile Technology and
Automation, Aachen, Germany, September 13-17.

McGregor J.D. and Sykes, D.A. (1992) Object-Oriented Software Development, Van
Nostrand Reinhold: New York.

McGurrin M.F. and Wang, T.R. (1991) An Object-Oriented Traffic Simulation with
IVHS Application, Proceedings of Route Guidance and Vehicle Navigation Systems,
pp.551-561.

Meyer, B. (1988) Object-oriented Software Construction, Prentice Hall: Sydney.

Ton, T.T. and Black, J.A (1993) An Object-Oriented Approach for Implementing an
Integrated Four-Step Transport Planning Model, in R.E.Klosterman, and S.P. French
(Eds.), Proceedings of the Third International Conference on Computers in Urban
Planning and Urban Management, Atlanta, Georgia, USA, July 23-25, Vol. 2, pp.471-
492.

Ton, T.T. (1995) An Investigation of the Analytical Capability of Object-Oriented
Programming in Transport Modelling, unpublished PhD thesis, The University of New
South Wales, School of Civil Engineering, Kensington.

UK Department of the Environment (1975) Calculation of Road Traffic Noise, HMSO:
London.

UK Department of Transport (1988) Calculation of Road Traffic Noise, HMSO:
London.

INSTITUTE OF
TRANSPORT STUDIES
The Australian Key Centre
in Transport Management

The University of Sydney
and Monash University

