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Introduction
Studies of the demand for automobiles where an emphasis is on the class of vehicle
typically use a number of physical and performance attributes to group vehicles, treating
them as if they are homogeneous in respect of a particular application. A most common
application is the prediction of energy consumed and its conversion into greenhouse gas
emissions. Since fuel efficiency, a major component of the calculation of CO2 emissions,
has not been used as a classification criterion, it is unclear as to how suitable the existing
vehicle classes are in studying the environmental impact of policies designed to impact on
the demand for automobiles by class.

In addressing this issue, this paper employs the classification and regression trees
(CART) approach to identify the suitability of the existing vehicle classification scheme
for environmental and energy-based applications. The paper is structured around five
sections. Next section reviews current passenger vehicle classification scheme and the
associated issues. Section three describes the background and motivations for using
CART to build vehicle classification models. The development and evaluation of vehicle
classification models with and without fuel efficiency consideration is reported in Section
four. The paper concludes with a summary of main findings in terms of the performance
of CART models, the importance of fuel efficiency attributes in vehicle classification and
suitability of the existing vehicle classification rules for energy-based applications.

Review of Existing Passenger Vehicles Classification
and Associated Issues
Current passenger vehicle classification is a research result of greenhouse gas emissions
(Hensher et al, 1994). Raw data were from a number of sources. A mapping process was
carried out to pull all of the disparate sources of data together, to give a description of
each passenger vehicle in terms of the number on register, vehicle’s key physical and
performance attributes, energy consumption and price by vintage.

The 1997/1998 vehicle registration database available from New South Wales Roads and
Traffic Authority was used. This database contains basic physical vehicle characteristics
(Make, Year, Engine Capacity, Number of Cylinders). Vehicle prices are joined to this
database (Source: 1997 Glass’s Guide).

Additional vehicle’s attributes were collected and joined to this database. They are
vehicles’ fuel types and fuel efficiency (Source: Department of Primary Industry and
Energy (DPIE)’s 1997/1998 Fuel Consumption Guide).

In terms of fuel efficiency, there are three measures, fuel efficiency based on city cycle
(CE), fuel efficiency based on highway cycle (HE) and the combined on road fuel
efficiency (RE). We use 1997/1998 DPIE’s Fuel Consumption Guide for updating CE
and HE attributes. The RE attribute represents a combination of both city cycle (CE) and
highway cycle (HE) fuel efficiency measure. The discussion on formulating the RE
attribute is detailed in Hensher (1995). Basically, the formula for calculating RE is as
follows:
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RE = 0.988462 + 0.871080 x (0.7xCE + 0.3xHE)     (1)

Finally, we constructed a database containing 823 cases. Each case represents a unique
combination of vehicle attributes including physical attributes, price, fuel type, fuel
efficiency and associated class. Table 1 describes the current classification rule for
assigning vehicle to specific class. There are 9 classes where micro vehicles are grouped
in class 1 and four wheel drive vehicles are classified in class 9.

As indicated in Table 1, the current classification rules are based only on vehicle’s
physical attributes (Engine Capacity CC, Number of Cylinders CYL, Year YR, Make
MAKE and Prices P). The lack of fuel efficiency attributes (such as CE, HE and RE) in
the current vehicle classification raises the issue about its suitability in energy-based
studies.

Figure 1 shows road fuel efficiency (RE) frequency distributions for all nine vehicle
classes. With the exception of class 7 (luxury vehicles) and 9 (four wheel drive), all
distributions have different means and variances. This gives an intuition that road fuel
efficiency might possess an explanatory power in a vehicle classification model. If it is
the case then how important fuel efficiency attributes are in comparing with other
physical attributes such as engine capacity (CC), number of cylinders (CYL), year (YR),
make (MAKE )and prices (P).

CART is selected as a modelling tool to represent vehicle classification rules with and
without fuel efficiency variables. Basics of CART and motivation for using CART to
build vehicle classification models are described in next section.

Table 1. Current vehicle classification rules

Class Description
1 Micro (= < 4 cylinders, < 1400 cc)

2 Small (4 cylinders, 1400 - 1900 cc)

3 Medium (4 cylinders, > 1900 cc)

4 Upper Medium 1 (6 cylinders, < 3000 cc)

5 Upper Medium 2 (6 cylinders, > = 3000 cc)

6 Large (= 8 cylinders)

Luxury (specific makes and engine capacities). All of: Mercedes, BMW,

Rolls Royce, Jaguar, Audi, Bentley, Lexus, Daimler and Eunos

7

Plus: Honda Legend / NSX (> 3000 cc), Volvo = 2300 cc, Saab > 2100 cc

8 Light Commercial

9 Four Wheel Drive
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Figure 1. Comparison of road fuel efficiency frequency distributions among vehicle classes

Motivation for Using CART to Represent Vehicle
Classification Problems
CART (Classification and Regression Trees) was developed by Breiman et al. (1984) and
later enhanced and implemented by Steinberg and Colla (1998) to produce software
package of the same name. Since then, CART has begun to interest a larger audience of
researchers and practitioners among many disciplines focusing on classification problems.

For a general classification problem, one has N observations (a learning data set) of a
categorical variable with levels j = 1,2, …, J, and of K independent variables, which may
include both categorical and continuous variables. The objective of any classification
method including CART is to use the information in the sample in some optimal way to
best classify a given observation into one of the J categories or to estimate the probability
that it belongs to each of these categories.

What makes CART different from the other methods is the key that CART possesses.
CART uses a multi-sequential search algorithm to optimise the classification of a
phenomenon and presents the results in the form of a classification (decision) tree – a
significant departure from more traditional statistical procedures.

Basically, CART process is consisted of four major steps: tree growing, tree pruning,
tree selection and tree testing.

Tree growing: Classification tree is generated by a set of binary recursive and iterative
partitioning on data set based on the answers to questions (splitting rules). Questions are
always presented in the form Is CONDITION <= VALUE (eg. Is AGE <= 65) . A
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classification tree is started with a root node. One question forms one split at a root node
and two partitions (child nodes) associating with YES (the cases go left) and NO (the
cases go right) answers. Each child node is in turn split into other two child nodes. This
process is computationally intensive but the number of splits is finite. There are at most
N different splits for a continuous variable in a data set with sample size N. For a
categorical variable with L levels, 2L-1 splits can be found. The key feature of this tree
growing step is to find the best split at every node. CART evaluates goodness of any
candidate split by using an impurity function.

There are a number of impurity functions. Gini index of diversity (Beiman et al, 1984)
represents a popular impurity function. Suppose that target variable has j=1,2,...,J levels,
the proportions of cases falling into the J categories are p(i), i=1,2,...,J, for any node t.
The Gini measure is defined as:

It is obvious that i(t) has its maximum value of (J-1)/J when p(1)=p(2)=...=p(J)=1/J (ie.
a node which contains an equal proportion of every class is least pure) and its minimum
value of 0 when one of the p(j)=1 and all others equal 0 (ie. a node which contains
members of only one class is perfectly pure).

The best split is one that maximizes the decrease in impurity.

where t denotes a node and tL and tR are partitioned child nodes. s is splitting rule. pL and
pR are the probabilities of a case going left and right. i(t), i(tL) and i(tR) are impurities of
node t, tL and tR. ∆(t,s) denotes the improvement in impurity as the resulting of partition
based on splitting rule s.

Once the best split is found, a search is made for the best splits of each of two child
nodes. This process is then continued to grow the classification tree until no further
splitting is possible (stopping criterion). Final tree is called the maximal tree and final
subsets resulting from splitting are terminal nodes of the tree. A class character is
assigned to each terminal node by the plurality rule (Breiman et al, 1984). Specifically, if

then t is designated as class j0 terminal node.

Tree pruning: Having grown a maximal tree by using splitting rules and stopping criteria,
CART’s pruning process is carried out upward to form a tree sequence, based both on
minimising a linear combination of predictive accuracy and on a penalty applied to large
trees (minimal cost complexity pruning). Misclassification cost of the tree is defined as
follows:
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Where α is complexity parameter. T is the number of terminal nodes indicating the tree
complexity. R(T) is the misclassification cost of the tree.

Tree selection: Given a list of candidate trees, an optimal tree will be selected based on
its minimal cost complexity measure in comparing with other trees including maximal
tree.

Tree testing: The question raised in determining how accurate tree’s classifiers are to test
classifiers on subsequent cases whose correct classification has been observed. It should
be noted that the classifier is derived from learning sample. Then this learning sample is
used to construct classifiers and to estimate their accuracy.

In the next section, CART will be used in the development and evaluation of vehicle
classification problems.

Developing and Evaluating Vehicle Classification Tree
Models
Developing vehicle classification models

The development of vehicle classification trees has two aims: to produce an accurate
classifier and to uncover the predictive structure of the problem. These two are not
exclusive, even if the emphasis is on producing accurate classifier in constructing model.

Four classification tree models are constructed to represent current vehicle classification
problem with and without fuel efficiency considerations (see Table 2). Basically, model 1
is constructed as a base model to represent the current vehicle classification scheme
without fuel efficiency measures. Models 2, 3 and 4 are modified versions of base model
by adding city road, highway and combined road fuel efficiency measures, respectively.
All predictors are treated as continuous variables and the target variable (CLASS) is
categorical, representing 9 different classes of vehicles ranging from 1 to 9. Tenfold
cross-validation is used in constructing and testing vehicle classification models. The
cases in learning sample are randomly divided into 10 subsets of as nearly equal size as
possible. Entire learning sample is used to build maximal tree. A sequence of 10 auxiliary
trees then is constructed. Each is built using all but one of 10 subsets and tested on the
remaining subset.

As an illustration, Model 4 is selected to describe the CART’s process of tree growing,
tree pruning, tree selection and tree testing.

(5)                                                                                                  ||)()( TTRTR αα +=
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Table 2. Description of four vehicle classification tree models

Model Description
1 Base model, it represents current vehicle class scheme, using CC (engine

capacity, CYL (number of cylinders), P (price) and YR (year) as predictors
and CLASS as target variable.

2 Modifying base model by adding CE (City road fuel efficiency variable) to
predictors.

3 Modifying base model by adding HE (Highway fuel efficiency variable) to
predictors.

4 Modifying base model by adding RE (Road fuel efficiency variable) to
predictors.

Tree growing: The data set input to CART consisted of 823 cases of unique vehicles.
This step begins with an examination of all possible splits of 823 cases into two partitions
based on the values of predictors (CC, CYL, P, YR and RE) and the selection of best
splits. The search for best split consists of evaluating at most 4115 splits (= 5 variables x
sample size of 823 cases). The end result is a maximal tree with 66 terminal nodes. Tree
pruning procedure was then applied to prune this maximal tree.

Tree pruning: A sequence of 37 trees is formed as a result of pruning maximal tree.
Table 3 lists 13 of them. On this table, tree 1 is the maximal tree, tree 13 represents
minimal cost tree and tree 20 is an optimal tree. The relative cost for testing (cross
validation or resubtitution) is the sum of misclassification rates of all terminal nodes for a
tree classifier based on the method of testing. The resubstitution cost R(T) (in Table 3) of
a tree represents the sum of misclassification rates of all terminal nodes if learning data is
reused for testing the model. The cross validation cost RCV(T) is estimated as the average
performance of 10 test samples based on 10 fold cross validation. This method
represents an efficient use of available data since each case is used in constructing the
tree and each case is exactly used once in a test sample.

The complexity parameter α is defined in Equation 5 above. The higher number of nodes
will result in lower value for complexity parameter α. With 66 nodes, maximal tree (tree
1) has α equal to 0. As number of nodes decreases, complexity parameter increases.

Tree selection: The cross-validation cost initially decreases rapidly followed by a long,
flat range, then increases gradually as tree grows. The minimum is unstable and occurs
somewhere in the flat range. Therefore, we introduce 1 SE (Standard Error) to
overcome the instability. The optimal tree is tree 20 (Table 3) corresponding the
estimated minimal cross-validation misclassification cost (in tree 13) plus 1 SE. The
optimal tree has 27 terminal nodes with cross-validated relative cost 0.134 and
resubstitution relative cost 0.105.

Figure 2 shows the optimal tree for representing Model 4 of vehicle classification
problem. On this figure, there are two types of nodes: splitting nodes (represented by
hexagons) and terminal nodes (represented by quadrilaterals). Splitting nodes are nodes
that can be further split to two child nodes. The root node is also a splitting
node.
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Table 3. Tree sequence for vehicle classification model

Terminal Cross-Validated Resubstitution Complexity

Tree Nodes Relative Cost RCV(T) Relative Cost R(T) Parameter

1 66 0.135 ± 0.014 0.059 0.000

13* 38 0.126 ± 0.014 0.083 0.001

20** 27 0.134 ± 0.014 0.105 0.002

28 11 0.195 ± 0.015 0.180 0.006

29 10 0.206 ± 0.015 0.196 0.014

30 9 0.232 ± 0.014 0.216 0.018

31 8 0.261 ± 0.014 0.246 0.027

32 7 0.327 ± 0.009 0.300 0.048

33 6 0.382 ± 0.003 0.380 0.071

34 5 0.468 ± 0.005 0.503 0.109

35 4 0.642 ± 0.008 0.627 0.110

36 2 0.813 ± 0.010 0.875 0.110

37 1 1.000 ± 0.000 1.000 0.111

Note: (*) minimum cost tree (**) optimal tree

Terminal nodes are nodes that cannot be further split into child nodes. At splitting nodes,
splitting criterion was given as well as node index, assigned class and number of cases.

Starting from the root node at the top of the tree in Figure 2, we can see that the splitting
rule based on number of cylinders (CYL) where 462 cases go left (node 2) when the
number of cylinders is less than 5. It should be noted that CART uses mid-point splitting
between CYL = 4 and CYL = 5. Therefore the splitting rule is displayed as CYL <=4.5.
Those 462 cases at node 2 are further split based on road fuel efficiency (RE <= 8.127).
There are 183 cases satisfying RE <=8.127. These cases are sent to the left node (node
3). Based on vehicle prices, these 183 cases are then split into two child nodes: terminal
node –1 and node 4.   At terminal node –1, there are 47 cases classified as class 1. The
tree keeps growing from node 4 to other nodes. Other part of the tree follows similar
mechanism: binary partitioning until no further split is found. In total, there are 26 split
nodes forming 27 terminal nodes.

Tree testing: The performance of classification tree is best reviewed in prediction
success. It is possible that a classification tree predicts the learning sample well, while not
necessarily performing well on new data. It is not easy to draw new independent data
from same distribution as learning sample and use it for testing purpose. We use ten-fold
cross-validation testing sample to assess the predictive power of generated tree. The
cross-validation testing represents an estimate of the results that would occur if the tree
was applied to new data drawn from the same distribution as the learning data.
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Figure 2. A typical vehicle classification tree
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The notation of prediction success was first introduced by McFadden (1979) and is
developed in Hensher and Johnson (1981). Table 4 gives the prediction success of 10-
fold cross validation testing. Cases appearing on the diagonals of the matrix correspond
to correct classification, while off-diagonal entries represent misclassification. The sum
of off-diagonal entries is overall misclassifications. While the contrast of predicted total
to actual total for each class gives a rough idea how well does the tree perform,
‘Correct’ (Table 4) precisely indicates proportion successfully predicted for each class.
We also give the Success Index (Hensher and Johnson 1981:54) for each case, which
denotes the fraction by which the percent correct exceeds what would be expected on
the basis of chance alone. As a whole, classification tree for cross-validation testing
samples has unweighted overall correct of 0.885 and misclassified cases of 95, compared
to overall correct of 0.917 and misclassified cases of 68 for learning sample.

Evaluating vehicle classification tree models

In this section, we compare the existing vehicle classification scheme (Model 1) with
other the three classification models (Models 2, 3, and 4) that include fuel efficiency
measures. The model comparison task has two aims. First, we investigate the suitability
of fuel efficiency measures as criteria in vehicle classification problems represented by
Models 2, 3 and 4. Second, we identify the relative importance of fuel efficiency
attributes in comparing with other physical attributes such as engine capacity CC,
number of cylinders CYL, year YR, make MAKE and prices P.

Table 4. Prediction success of vehicle classification tree

Predicted Class Actual
Actual Class

1 2 3 4 5 6 7 8 9 Total

1 35 0 0 0 0 0 0 0 0 35

2 3 154 0 0 0 0 9 0 0 166

3 2 0 145 0 0 0 4 4 3 158

4 0 0 0 76 0 0 2 3 1 82

5 0 0 0 1 94 0 0 1 2 98

6 0 0 0 0 0 48 0 0 0 48

7 1 6 5 6 5 1 110 10 0 144

8 0 0 0 2 4 2 2 38 5 53

9 0 0 4 2 2 0 0 3 28 39

Predicted Total 41 160 154 87 105 51 127 59 39 823

Correct 1.000 0.928 0.918 0.927 0.959 1.000 0.764 0.717 0.718

Success Index 0.957 0.726 0.726 0.827 0.840 0.942 0.589 0.653 0.671

Cross-Validation: Number of Misclassification:95,  Total Correct: 0.885
Learning Sample: Number of Misclassification: 68, Total Correct: 0.917
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Investigate the suitability of fuel efficiency measures in vehicle classification problems:
Table 5 summarises the basic particulars in comparing the performance of these four
models. In term of tree structure, the three fuel efficiency based models (Models 2, 3
and 4) yield less complex structure than the base model (Model 1). Model 2
(incorporating city cycle fuel efficiency CE) and Model 4 (incorporating road fuel
efficiency) perform better than the base model (without any fuel efficiency measure) on
the ground of training, testing error, misclassification and total correct. Model 3 which
include highway cycle fuel efficiency measure HE comes quite close to the base model on
every particulars. The implication of this finding is that fuel efficiency measures might be
considered as predictors in vehicle classification problems.

The suitability of fuel efficiency measure is further demonstrated by contrasting
predictive performance of Model 1 (base case) and Model 4 (base plus RE attribute) (see
Figure 3). In Figure 3 the predicted classes by Model 1 and Model 4 are plotted next to
actual classes from the sample. Model 4 outperforms Model 1 nearly for every vehicle
class except cases in class 1 and class 7.

Class 1: Micro (< = 4 cylinders, < 1400 cc)

Both Models 1 and 4 predict slightly more members of this class. The inclusion of road
fuel efficiency in Model 4 allows some class 2 vehicles with superior fuel efficiency
moving into class 1.

Class 2: Small (4 cylinders, 1400 - 1900 cc)

Model 1 significantly overpredicts number of vehicles in this class. Misclassification of 5
cylinder vehicles is one possibility, but minor. Misclassification of small 4WDs (four
wheel drive) would explain some variations, especially where 4WD is not a major factor
in the vehicles design eg Honda CRV and Volvo AWD. Number of vehicles assigned to
this class by Model 4 is slightly less than actual. One possible reason might be the fact
that the inclusion of road fuel efficiency in Model 4 enables frontal area, body type and
streamlining effects to be incorporated. The extent of variation from Model 1 suggests a
wide range in vehicle outcomes for common attribute specifications - possibly extra costs
for higher quality produce significant differences in on-road performance. Treatment of
rotary engined vehicles with swept volumes of 1200 to 1310 cc but nominal capacities of
1680-1834 cc (1.4) is another minor source of variation, which Model 4 would better
predict. It seems that recent market innovation has been concentrated here – eg. new
Korean entrants.

Class 3: Medium (4 cylinders, > 1900 cc)

Both Model 1 and Model 4 are quite close to actual classification. It may reflect large
size and technical maturity of this segment, where the market has evolved to stable
relationships between vehicle volume and engine size, gearing, variations of different
body shapes etc.  This stability reflected in minor differences in fuel consumption
between specification based classification, and fuel consumption based classification.



Vehicle Classification Analysis
Ton & Wang

11

Table 5. Comparison of model performance

Particulars Model 1 Model 2 Model 3 Model 4
Tree structure 30 nodes 18 nodes 21 nodes 27 nodes

Training cost/error 0.240 0.192 0.264 0.134

Testing cost/error 0.283 0.202 0.275 0.105

Number of misclassified cases 173 133 174 95

Total correct 0.790 0.838 0.789 0.885

Class 4: Upper medium 1 (6 cylinders, < 3000 cc)

Both Model 1 and Model 4 produce very close classification levels, slightly above actual
classification. Many Class 4 vehicles are developed from Class 3 types to which a six
cylinder version has evolved, eg. Mitsubishi Magna/Verada.  Small six cylinder engines
are generally just under 3 litres in size, so there is a low level of variation in vehicle or
engine sizes (eg. Volvo and Volkswagen 5 cylinder engines are approx 2.4 litres,
equivalent to a large 4 cylinder).

Figure 3. Predictive performance of model 1 and 4 against actual vehicle classes
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Class 5: Upper medium 2 (6 cylinders, > = 3000 cc)

Distinct differences in Model 1 and Model 4 performance here.  Model 1 underpredicts
by about a third, while Model 4 slightly overpredicts. Possible reasons for this are greater
variation in engine size, from just over 3 litres to 4.1 litres engine capacity.  In addition,
standard family sizes have stopped growing with 3.8 litres for Holden and 4.0 litre for
Ford current standards. Earlier 3.3 and 4.1 litre engines remain in the vehicle fleet.

Class 6: Large (= 8 cylinders)

Both Model 1 and Model 4 produce good results, although Model 1 overstates to a
greater degree. 4.2 to 5.8 litre capacity engines are extant in the vehicle fleet, but this
market segment has been declining so existing engines continue to be used.  The better
prediction by Model 4 probably reflects that development effort has generally been
directed towards emissions compliance.

Class 7: Luxury (specific makes and engine capacities).

Model 1 underpredicts this class by about one sixth, with Model 4 fractionally provides
smaller estimate. These vehicles allocated to the luxury classes display a much greater
variation in engine capacity ostensible purpose and engine technologies.  Because
vehicles are uniquely classified by make into this class lower model performance is likely
allocated in this class.  The slightly lower performance of the fuel -efficiency model
probably reflects the great dispersion between 1800 cc to 6750 cc engines and other
vehicles with 74 kW to 410 kW power ratings.  While vehicle price (P) puts many sport
vehicles in this class they would expect to have high power to weight ratios than highly
specified luxury orientated vehicles.  There are also significant variations in technology
levels, with 4 to 12 cylinder engines and other advanced engineering applications.

Class 8: Light commercial

Model 1 predicts only about a fifth of vehicles in this class, while Model 4 predicts
slightly more. Because this class involves light commercial vehicles power-to weight
ratios are likely to be lower.  Relativities will also vary between passenger cars derived
vehicles and separately developed vans etc.  Significant variation in this class, with one
model likely to have height and length options, while slightly heavier but more fuel -
efficient diesel engines are widely available and used.  This class is also likely to have
greatest variation between fully laden and unladen fuel consumption.   Model 4' s on-
road fuel consumption element offers integration of most such differences.

Class 9: Four wheel drive

Model 1 predicts about double the number in this class.  Because the additional weight
and volume of the transfer case, differential(s) drive shafts, large wheels etc higher fuel
consumption is to be expected for these 4WDs. There is also the possibility of a bi-modal
distribution, with full size models like Land Cruiser, Patrol and Jeep having distinct
performance from lighter, lifestyle orientated 4WDs like Rav, Sierra, Freelander etc.
Model 4' s on-road fuel consumption element offers integration of most such differences.
Model 1 is likely to be sensitive to whether a vehicle is considered a proper 4WD eg, the
Mercedes Benz M class or Volkswagen Synchro Kombi variants.
Identify the relative importance of fuel efficiency attributes in comparing with other
vehicle attributes: Each variable in vehicle classification tree has an importance score
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based on how often and with what significance it served as primary or surrogate splitter
throughout the tree.

The notations of primary and surrogate split were developed in Breiman et al (1984). At
every node, the best split is searched by first finding the best split for a specific variable.
Then this search is repeated over all other variables. The primary split is the best split of
a node of all measurement variables measured in reducing impurity in two child nodes. A
surrogate is a split that splits in a fashion similar to the primary. It is a variable with
possibly equivalent information which is useful in revealing the structure of information
in variables. The capability that a surrogate split mimics the primary split is expressed as
predictive association between primary and surrogate split which is the reduction in
mismatch between primary and surrogate splits relative to primary mismatch. If match is
perfect then surrogate mismatch is 0 and association is 1. Association could be negative
and will be for most variables. A split qualifies as a surrogate only if association is
greater than 0. Surrogates are ranked in order of association. If a primary split is missing,
the first surrogate is used in splitting. If the first is also missing, then second is used and
so on.

Several alternative methods of computing importance are available in CART software
(Steinberg and Colla, 1998), including ignoring the contributions of surrogate splitters,
discounting them by their association or a geometric factor, and only considering the top
N surrogates for each node (rather than all available surrogates for each node).  The
scores reflect the contribution each variable makes in classifying or predicting the target
variable, with the contribution stemming from both the variable’s role in primary splits
and its role as a surrogate splitter.

With these notations in mind, we then investigate the functions of on road fuel efficiency
(CE) in the tree structure. As shown in Table 6, it is used as the primary split in 9 of 26
splitting nodes of the optimal tree. In all these nodes, engine capacity is always qualified
as the first surrogate split, except in the node 19 and 22, where there is no available
surrogate. This finding indicates that on road fuel efficiency (CE) is the best criterion in
vehicle classification in these nodes. Engine capacity could be important but its
importance is masked by fuel efficiency in some of these nodes. This is indicated in
splitting improvement. If surrogate is used in splitting instead, improvement is very poor
in the node 6, 9, 11 and 12.

Road fuel efficiency is qualified as a surrogate split in 13 of 26 splitting nodes (Table 7).
The importance of fuel efficiency could be masked by primary split in these nodes. The
relative high improvement can be reached in nodes of 1, 2, 5, 13, 15, and 25 if fuel
efficiency is used as splitting variable.

Table 6. Road fuel efficiency (CE) as a primary split
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First Surrogate Split
Node Split Value Improvement Variable:

Value
Association Improvement

6 9.952 0.151 CC:2413.5 0.387 0.101

9 9.242 0.027 CC:2423.0 0.327 1.12E-05

10 8.397 0.004 CC:2506.0 0.113 3.04E-07

11 8.371 0.016 CC:2174.5 0.753 0.000

12 9.268 0.035 CC:2404.0 0.547 2.85E-05

17 10.109 0.018 CC:2857.5 0.703 0.014

19 13.488 0.108 *

22 13.205 0.028 *

26 14.403 0.018 CC:5751.5 0.547 0.017

* indicates there is no available surrogate

Table 7. Road fuel efficiency as a surrogate split

Primary Split Road Fuel Efficiency as a Surrogate Split
Node

Variable:Value Improvement Split Value Association Improvement

1 CYL:4.5 0.602 9.346 0.675 0.502

2 CC:1867.5 0.371 8.127* 0.746 0.346

3 CC:1429.5 0.229 6.921* 0.626 0.097

5 CC:1539 0.006 7.487* 0.800 0.004

8 P:21650 0.052 7.278 0.030 2.31E-04

13 CC:3279 0.289 10.470* 0.614 0.194

14 P:67000 0.064 7.996 0.026 0.002

15 P:41250 0.014 11.703 0.045 0.008

16 CYL:5.5 0.026 10.109 0.490 0.005

18 CYL:7.0 0.295 11.324 0.060 0.106

20 P:19750 0.068 12.683* 0.282 0.013

21 P:13250 0.029 10.252 1.000 0.001

25 P:75500 0.063 14.011 0.200 0.032

* indicates that road fuel efficiency is the first surrogate split

Table 8 summarises the variable importance among the four models. Engine capacity
(CC) is the most important classifier in the base model (Model 1), Model 2 and Model 3.
Among the three fuel efficiency measures (city cycle CE, highway cycle HE and road
RE), the road efficiency RE ranked first in Model 4 even higher than engine capacity
(CC). The city cycle fuel efficiency (CE) used in Model 2 ranked second after engine
capacity (CC). The highway cycle fuel efficiency (HE) used in Model 3 ranked fourth
after engine capacity (CC), price (P) and number of cylinders (CYL).

We reveal the relationship between the vehicle fuel efficiency and engine capacity by
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developing a new classification model tree by excluding engine capacity (CC) as a
predictor just to test its impact to the model performance.

It is possible that road fuel efficiency (CE) and engine capacity (CC) are highly
correlated. Consequently, the relative importance of one variable is masked or covered
by another variable. To explore this possibility, we construct another tree by excluding
the engine capacity as a predictor. The optimal tree has 25 terminal nodes. To make
two trees comparable, complexity parameter of second tree is set to equal of previous
tree, i.e. 0.002. The accuracy of second tree decreases significantly (Table 9). A
number of 210 cases are misclassified in 10-fold cross-validation testing with relative
cost of 0.256. The resubstitution relative cost is 0.220, more than twice of the original
tree of Model 4 (including CC). The total correct rate is correspondingly reduced to
0.745.

Table 8. Comparison of the variable importance among the four models

Ranking Model 1 Model 2 Model 3 Model 4

1 CC * (100) CC    (100) CC   (100) RE   (100)

2 P       (89.39) CE    (94.61) P      (83.20) CC   (94.71)

3 CYL (67.31) CYL (78.06) CYL (71.10) CYL (74.63)

4 YR    (8.78) P       (75.00) HE    (66.89) P       (73.63)

5 YR    (12.20) YR    (8.63) YR    (9.51)

Note: (*) Name of variable used in model and relative important score in brackets.

Table 9. Tree comparison of two versions of Model 4 (with and without
engine capacity CC)

Item Include CC as a Predictor Exclude CC as a Predictor

Nodes of Best Tree 27 25

Cross-Validation Relative Cost 0.134 0.256

Resubstitution Relative Cost 0.105 0.220

Number of Misclassification 95 210

Total Correct 0.885 0.745
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Conclusions
Two features of CART have proven to be useful in classifying vehicles taking into
account physical and or fuel efficiency attributes. First CART could automatically
analyse data and CART could separate relevant from irrelevant predictors. Second
CART could yield relatively simple and easy to comprehend models. These features are
desirable for multi-dimensional classification problem such as vehicle classification
problem. Normally, the way a number of variables in classification problem may not be
well understood by data analyst. By examining all possible variables for the best
classifiers and optimal tree, complex interactions among the variables are easily
identified.

Engine capacity represents the most important attribute without the presence of fuel
efficiency variable. On road fuel efficiency measure was ranked higher than engine
capacity in its importance in structuring vehicle classification model. However, engine
capacity should still be considered relevant predictor in vehicle classification model. In
other words, the performance of vehicle classification model would deteriorate if engine
capacity variable is not included in classification model’s structure.

We encountered the problem of accuracy of cross-validation due to the sample size of
testing data. Numbers of cases in class 1, 6, 8 and 9 are 35, 48, 53 and 39 respectively. If
these cases are randomly divided into sub-sample of about 10 percent and randomly
combined, these under-represented cases might be highly unevenly distributed among
sub-samples. To overcome this problem, stratification on categorical target variable
CLASS was used. Further research will be carried out in using different methods for
specifying splitting rules and computing variable’s importance. Currently, the condition
in splitting rule (Is CONDITION <= VALUE) is a measured variable. More complex
conditions can be used such as Boolean or linear combinations.

Acknowledgment
The research and development reported in this paper is supported under the Australian
Research Council Research Centres program. Valuable comments and supports from
Prof. David Hensher, Messrs Cam Ngo and Kirk Bendall at Institute of Transport
Studies, the University of Sydney and the referee are acknowledged.



Vehicle Classification Analysis
Ton & Wang

17

References
Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984) Classification and
Regression Trees California: Wadsworth International Group

Department of Primary Industries and Energy (1997) Fuel Consumption Guide For
Buyer of New Cars, Four-Wheel Drives and Light Commercials, Canberra: Australian
Government Publishing Service.

Glass’s Dealers Guide Pty Ltd (1997) Glass’s Dealers Guide to Passenger and Light
Commercial Vehicle Values, Melbourne: Glass’s Dealers Guide Pty Ltd.

Hensher, D.A. & Johnson, L.W. (1981) Applied Discrete Choice Modelling London:
Croom Helm

Hensher, D.A, Battellino, H., Milthorpe, F. & Rainmond, T. (1994) Greenhouse Gas
Emissions and the Demand for Urban Passenger Transport: Data Requirement,
Documentation and Preparation, Institute of Transport Studies, The University of
Sydney (Unpublished Report)

McFadden, D. (1979) Quantitative methods for analysing travel behaviour of individuals,
in Hensher, D.A. & Stopher, P.R. (eds) Behavioural Travel Modelling, Croom Helm,
London.

Steinberg, D. and Colla, P. (1998) CART – Classification and regression tress, San
Diego, CA: Salford Systems.



INSTITUTE OF
TRANSPORT STUDIES
The Australian Key Centre
in Transport Management

The University of Sydney
and Monash University


