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1. Introduction

The modern global economy has developed interconnected and complex supply chains. This is in large 

part due to the benefits companies have found in sophisticated trends and strategies such as 

globalization, outsourcing, supply-base rationalization, just-in-time deliveries, and lean practices 

(Hasani and Khosrojerdi, 2016; Rezapour et al., 2014). Whilst these practices have led to lower costs, 

higher quality, and enhanced business agility for many supply chains, they are not without risk (Tang, 

2006b). As supply chains grow more complex, they become more vulnerable to disruptions caused by 

various means such as natural disasters, political unrest, strikes, unexpected regulatory issues, port 

problems, and terrorist activities (Snyder et al., 2016). Firms with global supply chains, for instance, 

face more potential points of failure caused by global customs, foreign regulations and port congestion, 

and political and/or economic instability in a source country (Kouvelis et al., 2011). Likewise, lean 

inventories and just-in-time processes undermine the supply chains’ abilities to withstand supply 

disruptions by leaving little room for error when situations change drastically (Peng et al., 2011).  

Past and recent disasters have demonstrated the dramatic consequences of unexpected disruptions on 

supply chains such as production shutdowns, hampered productivity and capacity utilization (Cardoso 

et al., 2015; Jabbarzadeh et al., 2015). In the longer term, such consequences can negatively impact 

share/stuck prices and the long-term financial health of the company (Hendricks and Singhal, 2005; 

Tang, 2006a). Hurricanes Katrina, Ike, Sandy and Mathew, in United States (2005, 2008 and 2012) and 

Atlantic Coast (2016), tsunamis in the Indian Ocean (2004) and Japan (2011), earthquakes in China 

(2008) and Chile (2011 and 2015), and flood in the Philippines (2013) are recent examples of these 

devastating events (Jabbarzadeh et al., 2016). Realizing the negative impacts of disruptions, companies 

more than ever attempt to create and be part of more resilient supply chains (Baghalian et al., 2013; 

Tomlin, 2006). A resilient supply chain is able to absorb disturbances and retain its basic function and 

structure in the face of disruptions (Bhamra et al., 2011; Christopher and Peck, 2004; Jabbarzadeh et 

al., 2016).  

The resilience of a supply chain is highly dependent on its structure/design. That is, companies with 

carefully designed supply chains are typically more resilient to disruption risks (Dixit et al., 2016; 

Jabbarzadeh et al., 2014; Klibi et al., 2010; Zokaee et al., 2014). As a result, resilient design of a supply 

chain has consistently drawn the attention of practitioners and researchers in recent years. However, the 

research efforts have predominantly focused on minimizing the total supply chain costs in normal and 

disruption situations, disregarding the environmental and social performance of the supply chain. In 

other words, maintaining the economic sustainability has been the primary focus of the existing 

research, whilst the impact of risk mitigation methods on the environmental and social performance of 

the supply chain have been rarely examined, especially at the strategic supply chain design level 
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(Fahimnia and Jabbarzadeh, 2016). Given that sustainable development has been an integral part of 

virtually every business in today’s world, this calls for management approaches that are able to 

concurrently incorporate the three dimensions of sustainability (i.e., economic, environmental and 

social) when designing resilient supply chains (Fahimnia et al., 2015d; Hassini et al., 2012; Seuring, 

2013). The necessity for such approaches would be more pronounced when the three sustainability 

dimensions are conflicting and some trade-offs may be required (Matthew and Hammill, 2009).  

To respond to this call, this paper presents a two-phase approach for designing sustainable supply chain 

networks that are resilient to disruptions. The first phase of this approach identifies, quantifies and 

aggregates the sustainability performance measures using a fuzzy clustering approach named fuzzy c-

means clustering method. Using the obtained scores of sustainability, the second phase adopts a 

stochastic bi-objective optimization model to determine the sourcing decisions (i.e., supplier selection 

and order allocation) and buttressing strategies (e.g., contracting with backup suppliers and adding extra 

production capacities to factories). The primary goal of the proposed model is to ensure that the 

sustainability performance of the supply chain remain unaffected in disruptions as much as practicable. 

An augmented  -constraint method is used to convert the bi-objective model into a single objective 

formulation. The application of the proposed approach is examined using real data from an actual supply 

chain in plastic pipe industry.  

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature focusing 

on resilience and sustainability in supply chain design. Problem statement and the mathematical models 

are presented in Section 3. The case problem is examined in Section 4 followed by analyzing the 

numerical results and related discussions. Section 5 presents the concluding remarks as well as 

directions for future research in this space.   

2. Review of the Relevant Literature

This section first reviews the modelling efforts in two areas of ‘resilient supply chain design’ and 

‘sustainable supply chain design’. This is then followed by discussing the nexus between the two topics 

and the associated research gaps.   

2.1 Resilient supply chain design 

The growing frequency of natural and man-made disasters (e.g., earthquakes, floods, terrorist attacks, 

strikes, etc.) and their devastating impacts on companies and their supply chains indicate the need to 

plan for resilience at the supply chain design level. The recent review of Snyder et al. (2016) shows that 

resilient supply chain design is an emerging research trend. The existing modeling efforts can be 
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classified based on the buttressing (protecting) strategies that are used to enhance resilience against 

random disruptions. Common buttressing strategies include: 

• multiple sourcing and assignment instead of single souring and assignment (e.g., (Allaoui et al.,

2016); Kamalahmadi and Mellat-Parast (2016); Meena and Sarmah (2013); Nooraie and Parast

(2016); Peng et al. (2011); Sadghiani et al. (2015); Sawik (2011a, 2013a, 2014a, b, 2016a, b,

c); Torabi et al. (2016); Zhang et al. (2015));

• contracting with backup suppliers/facilities to serve when the primary suppliers/facilities are

not available in disruptions (e.g., Aryanezhad et al. (2010); Fang et al. (2013); Hou et al. (2010);

Jabbarzadeh et al. (2012); Shishebori et al. (2013); Snyder and Daskin (2005));

• fortification of suppliers/facilities to minimize their vulnerability to disruptions (e.g., Azad et

al. (2013); Hasani and Khosrojerdi (2016); Jabbarzadeh et al. (2016); Li and Savachkin (2013);

Li et al. (2013); Lim et al. (2010); Torabi et al. (2015));

• holding additional inventory to use in disruption situations (e.g., Garcia-Herreros et al. (2014);

Sawik (2013b, c)); and

• adding extra supply/production capacities to cope with lost capacities of suppliers/factories in

consequence of disruptions (e.g., Ivanov and Morozova (2016); Khalili et al. (2016)).

Amongst the aforementioned works, there are studies that focus on supplier selection and order 

allocation under supply disruption risks. Meena and Sarmah (2013) formulate a mixed integer non-

linear programming model for determining order allocation considering different capacities, failure 

probabilities, and quantity discounts for each supplier. Kamalahmadi and Mellat-Parast (2016) examine 

an optimal allocation of demand across a set of suppliers in a supply chain that is exposed to supply risk 

and environmental risk. Their model integrates supplier selection and demand allocation with 

transportation channel selection and provides contingency plans to mitigate the negative impacts of 

disruptions and minimize total network costs. A scenario-based bi-objective possibilistic mixed integer 

linear model is presented by Torabi et al. (2015) to build resilient supply bases for global supply chains 

in response to disruption risks. The model applies several proactive strategies such as suppliers’ 

business continuity plans and fortification of suppliers to enhance the resilience of the selected supply 

base.  

Based on the two popular measures of value-at-risk (VaR) and conditional value-at-risk (CVaR), Sawik 

(2011a), Sawik (2011b), Sawik (2013c) and Sawik (2016c) present portfolio methodologies for 

managing supply disruption risks. Using the same approach, Sawik (2013a) and Sawik (2014a) propose 

stochastic mixed integer programming models to combine supplier selection, order quantity allocation 

and customer order scheduling in the presence of disruption risks. Sawik (2014b) and Sawik (2016b) 

enhance the earlier formulations by incorporating service level measures including the expected worst-
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case demand fulfillment rate and the expected worst-case order fulfillment rate. A non-linear robust 

optimization model is developed by Hasani and Khosrojerdi (2016) for designing robust global supply 

chains under the risk of correlated disruptions. The proposed model is solved for an electro-medical 

device manufacturer using a parallel Taguchi-based memetic algorithm. None of the above-cited works 

account for environmental and social aspects of sustainability. 

2.2 Sustainable supply chain design 

Supply chain sustainability has gained increased attention with a considerable growth in the number of 

academic publications over the past few years. For a comprehensive review of the literature in the area 

of sustainable and green supply chain management one can refer to Seuring and Müller (2008), Seuring 

(2013), Brandenburg et al. (2014), Srivastava (2007), and Fahimnia et al. (2015c). Also, Eskandarpour 

et al. (2015) and Igarashi et al. (2013) have completed literature reviews on sustainable supply chain 

network design and green supplier selection, respectively.  

Supply chain sustainability seeks to incorporate environmental and social measures into the traditional 

cost-oriented supply chain management practices. The modelling approaches in the literature of green 

or environmentally sustainable supply chain design can be grouped into the following broad categories 

(Fahimnia and Jabbarzadeh, 2016; Seuring, 2013). 

• Equilibrium models for balancing environmental and economic factors (Brandenburg, 2015;

Cruz, 2008; Elhedhli and Merrick, 2012; Fahimnia et al., 2015d; Pishvaee and Razmi, 2012;

Wang et al., 2011).

• Life-cycle assessment models focusing on the environmental concerns along supply chains and

minimizing their impact (Bojarski et al., 2009; Ferretti et al., 2007; Hugo and Pistikopoulos,

2005). 

• Optimization models for investigating environmental policy instruments such as carbon tax and

trading mechanisms (Diabat et al., 2013; Fahimnia et al., 2015b; Zakeri et al., 2015).

• Closed-loop supply chain network design models addressing cost/emission performance of the

forward and reverse networks (Chaabane et al., 2011, 2012; Fahimnia et al., 2013).

Compared with environmental dimension, the social side of sustainability has been less explored in the 

literature of supply chain design (Seuring and Müller, 2008). Whilst social sustainability can include 

various aspects of human rights (e.g., child and forced labor, freedom of association and discrimination) 

and business practice (e.g., fight against corruption, fair-trading, and promotion of corporate social 

responsibility in the sphere of influence), the modelling efforts have only tended to focus on  some of 
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the more tangible and quantifiable social dimensions such as (Chardine-Baumann and Botta-Genoulaz, 

2014; Eskandarpour et al., 2015):  

• work conditions (Boukherroub et al., 2015; Devika et al., 2014; Mota et al., 2015; Pérez-Fortes

et al., 2012; Pishvaee et al., 2012; Santibañez-Aguilar et al., 2014);

• social commitment (Bouzembrak et al., 2013; Pishvaee et al., 2014; You et al., 2012); and

• costumer issue (Dehghanian and Mansour, 2009; Malczewski and Ogryczak, 1990; Zhang et

al., 2014).

Apart from these studies, there is a handful of papers attempting to integrate economic, environmental 

and social dimensions of sustainability.  Arampantzi and Minis (2017) propose a multi-objective mixed 

Integer linear programming model for designing a sustainable supply chain network. The environmental 

objective includes emission quantities and waste generation at each node/link of the supply chain, while 

the social objective reflects employment opportunities, societal community development and improved 

labor conditions. A two-stage solution methodology for supply chain design is presented by Allaoui et 

al. (2016) to simultaneously capture the three dimensions of sustainability including carbon footprint, 

water footprint, number of jobs created and the total cost of the supply chain. For a biodiesel supply 

chain design, Zhang and Jiang (2017) develop a multi-objective robust optimization model in which 

total carbon emissions and uncollected wastes are considered as environmental and social metrics, 

respectively.   

2.3 Research gaps: resilient and sustainable supply chain design 

Despite the rigorous modelling efforts in the two areas of resilient supply chain design and sustainable 

supply chain design, the joint consideration of sustainability and resilience has been a rare occurrence 

in the literature of supply chain design. Perhaps the works of Cabral et al. (2012), Azevedo et al. (2013) 

and Fahimnia and Jabbarzadeh (2016) are the most relevant to what we refer to as resilient and 

sustainable supply chain modelling. Cabral et al. (2012) propose a structured framework based on the 

analytic network process to integrate lean, agile, resilient and green paradigms in supply chains. 

Likewise, an integrated composite index, called the Ecosilient Index, is developed by  Azevedo et al. 

(2013) to assess the greenness and resilience of companies and their supply chains. The application of 

the proposed index is illustrated using a case study from the automotive industry. The conceptual 

approaches proposed by Cabral et al. (2012) and Azevedo et al. (2013) overlook social sustainability 

aspects in supply chains. 

Fahimnia and Jabbarzadeh (2016) investigate the sustainability-resilience relationship at the supply 

chain design level. A multi-objective optimization model is introduced that uses a sustainability 
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performance scoring approach to quantify the environmental and social performance of the supply 

chain. To seek tradeoff solutions for developing a resilient and sustainable supply chain, a stochastic 

fuzzy goal programming approach is presented. While this study has set a solid stage for further work 

in this area, it comes with some modelling and implementation limitations that we wish to address in 

this current study. First, the model proposed by Fahimnia and Jabbarzadeh (2016) places no emphasis 

on production operations and purely concentrates on upstream supply chain activities (i.e. 

sourcing/procurement operations). Additionally, the developed model does not take into consideration 

the proactive buttressing strategies (such as adding extra supply/production capacities or contracting 

with backup suppliers) to protect the supply chain against disruptions.  

Addressing these gaps, our study presents a simple but effective hybrid methodology that can be utilized 

to design a resilient and sustainable supply chain. Using the c-means fuzzy clustering technique, the 

proposed approach first assesses the suppliers’ sustainability performance. In the next step, a bi-

objective stochastic optimization model is utilized that aims to concurrently minimize expected total 

supply chain costs and maximize overall sustainability performance of the supply chain. The proposed 

model is capable of accounting for random disruptions by using various buttressing strategies to hedge 

against them. The application of the proposed methodology is examined in an empirical case study. Our 

analysis and discussions focus on exploring tradeoffs between total cost and sustainability performance 

as well as investigating the effectiveness of different buttressing strategies.  

3. A Hybrid Approach for Resilient and Sustainable Supply

Chain Design 

The supply chain under investigation consists of suppliers, factories, and market zones, as depicted in 

Figure 1. Factories are served by a number of raw material suppliers whose economic, environmental 

and social performances may vary from one to another. Suppliers and factories are vulnerable to random 

disruptions. In other words, the capacities of suppliers and factories can be partially or completely 

impacted when a disruption occurs. A set of scenarios are defined to indicate situations in which one or 

more suppliers and facilities are influenced by disruptions. To hedge against disruption risks, three 

buttressing strategies are adopted: (1) utilizing multiple sourcing instead of single sourcing, (2) 

contracting with backup suppliers to serve factories when the primary suppliers are not available, and 

(3) adding extra production capacities to factories.  
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Figure 1. Structure of the supply chain under investigation 

The problem lies in determining the following decisions: 

• The selection of primary and backup suppliers,

• The amount of extra production capacity added to each factory,

• The quantity of raw material purchased from each supplier,

• The quantity of products manufactured in each factory,

• The quantity of products shipped from factories to market zones, and

• The quantity of lost sales at market zones.

To make the aforementioned decisions, a hybrid approach is used that aims to concurrently minimize 

the total expected cost and maximize the overall sustainability performance under random disruption 

scenarios. The proposed methodology involves two phases. The first phase assesses the sustainability 

performance of the potential suppliers based on a variety of economic, environmental, and social 

metrics. Applying fuzzy c-means clustering method, different sustainability measures are combined and 

the potential suppliers are split into different clusters with corresponding sustainability scores. The 

higher the score of each cluster, the more sustainable the suppliers’ performance of that cluster. Based 

Backup Suppliers

Markets 
Factories

Primary Suppliers
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on the obtained scores, the set of suppliers with unsatisfactory scores are excluded from the potential 

suppliers.  

In the second phase, a stochastic bi-objective model is developed in which the supplier’s sustainability 

scores obtained from the first phase are incorporated as input parameters. The first objective is to 

minimize the expected total supply chain cost in different disruption scenarios, whilst the second 

objective aims at maximizing the expected aggregate weighted sustainability scores of all suppliers. 

The bi-objective model is converted into a single-objective model applying the augmented  -constraint 

method. Figure 2 illustrates the steps of the two-phase algorithm. We elaborate each phase in the 

following sections.  
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Figure 2. The steps of the proposed hybrid approach to design a resilient and sustainable supply chain 

Apply the fuzzy c-mean clustering method 

Obtain clusters of suppliers with 

corresponding sustainability scores 

Exclude suppliers with unsatisfactory scores

Assess suppliers’ performance based on different 

economic, environmental, and social measures  

Develop a stochastic bi-objective optimization model using 

sustainability scores as input parameters 

Apply the augmented -constraint to convert the 

model into a single-objective formulation 

Solve the resulting single-objective model to obtain optimal 

values of the decision variables 

First Phase 
Sustainability 
assessment using a 
fuzzy c-mean 

clustering method 

Second Phase 
Resilience 
enhancement using 
a stochastic bi-
objective 
optimization model 
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3.1 Sustainability assessment using a fuzzy c-means clustering method 

As mentioned in the previous section, the first phase of our hybrid approach starts with assessing the 

economic, environmental and social performance of suppliers. For this purpose, the metrics defined by 

environmental impact assessment methods (e.g., IMPACT 2002+(Jolliet et al., 2003), Eco-indicator 99 

(Goedkoop et al., 2009) and CML2001 (Guinée et al., 2001)) and social performance standards (e.g., 

SA8000 (SA, 2008), GRI (GRI, 2011), GSLCAP (Benoît, 2010)) can be adopted. Having assessed the 

performance of suppliers against each metric, the obtained results are aggregated using the fuzzy c-

means clustering method, first introduced by Dunn (1973) and later enhanced by Bezdek et al. (1984). 

Using this approach, the suppliers are categorized into different clusters and a sustainability score is 

assigned to each supplier. The scores reflect the overall sustainability performance of suppliers in the 

way that a higher score indicates a more sustainable performance. Obtaining these scores, we can 

identify and exclude the suppliers with unsatisfactory sustainability performance.  

Here, we describe the framework of the fuzzy c-means clustering method for clustering suppliers based 

on their sustainability performances. Let us assume we aim to partition n suppliers into o clusters (we 

will discuss at the end of this section how the value of o  is selected). Additionally, let xi be the vector

reflecting the performance of supplier i  based on the sustainability metrics. Now, the following steps 

are completed: 

Step 1. Set identifier r equal to 1. Also, for each supplier and each cluster, generate a random 

value for membership degree of the supplier to the cluster. Let wij
be the generated value

for supplier i  and cluster j indicating the degree to which supplier i  belongs to cluster j . 

Step 2. Calculate the center vector ( c j
) for each cluster using the following equation: 

 1

1

n
m

w
x

ij i
ic nj m

w
ij

i








(1) 

where the input parameter m  takes a value larger than 1 and adjusts the fuzziness level 

of clusters. A larger value for m leads to smaller membership values, wij
, and therefore,

fuzzier clusters (Bezdek et al., 1984; Hathaway et al., 2000). 

Step 3. Obtain the objective value of the fuzzy c-means clustering method (
r

E ) as follows: 
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2

1 1

r
n o

m
E w x cij i j

i j
 
 
 (2) 

Step 4. Update the membership degrees as follows: 

1
2/ 1

1

m

x cc i j
w

ij
x ck i k


  

  
   
   
   

 (3) 

Step 5. If 
1r r

E E


    , then set 1r r   and go to step 2 ( is the error level set by the 

decision maker). Otherwise, go to step 6. 

Step 6. Exclude the suppliers that belong to clusters with unsatisfactory sustainability 

performance. 

Step 7. Return the sustainability score of remaining suppliers using the following equation: 

1

o
w ci ij j

j
 


 (4) 

Applying the method proposed by Rezaee et al. (1998), the number of clusters ( o ) is chosen in a way 

to minimize the following function , where c  indicates the average measure for the center of clusters: 

2 2

1 1

n c
m

Min w x c c c
ij i j j

i j


 

  
  

  (5) 

3.2 Resilience enhancement using a stochastic bi-objective optimization model 

The second phase of the hybrid algorithm develops a stochastic bi-objective optimization model in 

which the obtained suppliers’ sustainability scores from the fuzzy c-means clustering method are 

incorporated as input parameters. The proposed model aims to determine decisions in a way that the 

designed supply chain remains resilient to disruptions at the lowest possible cost. Here, by supply chain 

resilience, we do not just mean viable cost performance but we also address desired environmental and 

social performance in disruption situations. Thus, accounting for different disruption scenarios, the 

developed model has two objective functions: 1) minimizing the expected total cost, and 2) maximizing 

the expected sustainability performance. 

Applying the two-stage programming approach of Birge and Louveaux (2011), our model determines 

two types of decisions: first-stage and second-stage decisions. The first-stage decisions are made before 
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realizing disruption scenarios and include determining the primary and backup suppliers selected to 

serve factories as well as the amounts of production capacities added to factories. The second-stage 

decisions are related to specific disruption scenarios and consist of determining the quantity of raw 

material purchased from each supplier, the quantity of products manufactured in each factory, the 

quantity of products shipped from factories to market zones, and the quantity of lost sales at market 

zones.  

The following sets, parameters and decision variables are introduced for mathematical modeling of the 

problem. 

Sets and indices: 

Set of raw material types, indexed by r  R

Set of primary suppliers, indexed by n  N

Set of backup suppliers, indexed by l  L

Set of factories, indexed by m  M

Set of market zones, indexed by j  J

Set of disruption scenarios, indexed by sS

Input parameters: 

Forecasted demand in market zone jd j

Amount of raw material type r  required for production of a unit final product hr

Initial supply capacity of primary supplier n  cn

Initial supply capacity of backup supplier l  fl

Sustainability score of primary supplier n  obtained from the fuzzy c-means clustering 

method 
n

Sustainability score of backup supplier l  obtained from the fuzzy c-means clustering 

method 
l

Defective rate of primary supplier n for raw material type r   rn

Defective rate of backup supplier l for raw material type r  rl

Percentage supply capacity of primary supplier n  disrupted under scenario s  gns

Fixed cost of evaluating and selecting primary supplier n   xn

Fixed cost of contracting with backup supplier lz
l
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Unit cost of purchasing raw material type r  from primary supplier n  and shipping it to 

factory m  
qrnm

Unit cost of purchasing raw material type r  from backup supplier l  and transporting it 

to factory m  
urlm

Initial production capacity of factory m  w m

Maximum extendable capacity of factory m  km

Percentage production capacity of factory m  disrupted under scenario s  vms

Unit cost of manufacturing in factory m  pm

The cost per unit for adding extra production capacity to factory m  em

Unit cost of transportation from factory m to the market zone j  ymj

Unit cost of lost sales in market zone jb j

Possibility of occurrence of scenario ss

Decision variables: 

A binary variable, equal to 1 if primary supplier n is selected; 0, otherwise  nX

A binary variable, equal to 1 if backup supplier l is selected; 0, otherwise  lZ

Extra production capacity added to factory m  Em

Quantity of raw material type r  transported from primary supplier n to factory m under 

scenario s  
rnmsQ

Quantity of the raw material type r  transported from backup supplier l to factory m

under scenario s  
rlmsU

Quantity of production in the factory m under scenario s  msP

Quantity of products transported from factory m to market zone j under scenario sY mjs

Quantity of lost sales in market zone j under the scenario sB js

Using the above notations, the stochastic bi-objective model can be formulated as follows: 
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(6) 

1
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The objective function (6) minimizes the expected total costs of supply chain under different scenarios. 

The cost components are cost of evaluating and selecting primary and backup suppliers, cost of adding 

extra production capacity to factories, shipment cost from suppliers (both primary and backup suppliers) 

to factories, manufacturing cost, shipment cost from factories to market zones, and cost of lost sales, 

respectively. The objective function (7) maximizes the aggregate weighted sustainability scores of all 

suppliers under different scenarios. Constraints (8)-(10) enforce the capacity limitations of the primary 

suppliers, backup suppliers and factories, respectively. Constraint (11) imposes the maximum 

extendable production capacities in factories. Constraint (12) ensures the fulfillment of the required raw 

material in factories. Constraints (13) and (14) indicate the flow balance constraints in the factories and 

markets, respectively. Constraints (15)-(22) define the domain of the decision variables. 

Now, we apply the augmented ε-constraint method to convert the bi-objective model into a single-

objective formulation. The augmented ε-constraint method is amongst the most efficient and powerful 

multi-objective approaches (Fahimnia et al., 2015a; Mavrotas, 2009; Mavrotas and Florios, 2013; 

Torabi et al., 2015). Unlike many popular techniques (such as goal programming and weighted sum 

methods), the augmented ε-constraint approach obviates the need to assign weights to objectives. As an 

improved version of the original ɛ-constraint method, this approach avoids the production of weakly 

efficient (weakly Pareto) solutions and accelerates the solution by avoiding redundant iterations 

(Mavrotas, 2009). In the augmented ε-constraint method, one of the objective functions is optimized, 

whilst the other objectives are converted into constraints and an upper bound limit is set for each of 

them. Efficient solutions can be found by varying the bounds and solving the single-objective model. 

Let us assume a multi-objective model with k objective functions as follows: 

1 2{ ( ) ( ( ), ( ),... ( ))}kMin F x F x F x F xx   , (23) 

where X ,   and ( )F x  indicate vector of decision variables, vector of k  objective functions, and   

the space of feasible solutions, respectively. Based on the augmented ε-constraint method, the multi-

objective problem in (23) can be transformed into the following single-objective in which only objective 

function ( )
p

F x  is optimized as the primary objective function and the other objective functions are 

treated as constraints. 

1 2{ ( ) ( ... )}p kMin F xx           (24) 

Subject to 

( )i i iF x    {1, 2,..., } / { }i K k   (25) 
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Where variables 1 2, ,..., k   indicate surplus variables and parameters i represent the bounds of 

respective constraints. Also, parameter   takes a value in the interval of
6 3

[10 ,10 ]
 

. For more details 

of the augmented ε-constraint technique,  one can refer to (Mavrotas, 2009). 

Applying the augmented ε-constraint method to our bi-objective optimization model, we convert the 

objective function (7) into a constraint with upper bound  which is called sustainability degree 

hereafter. Therefore, the bi-objective model is converted to a single-objective model as follows: 

1( )Min Z     (26) 

Subject to: 

2Z     (27) 

Constraints (8)-(22). 

4. Implementation and Discussion

4.1 Case problem 

Plastic pipes have gradually supplanted competing materials (e.g., steel, copper and ductile iron) in 

many applications due to their low cost, installation ease, and performance advantages. World demand 

for plastic pipe is projected to rise by approximately 6.7 percent per annum through 2019 to 19.3 billion 

meters, where polyvinyl chloride (PVC) pipe accounts for the largest share of demand. PVC is utilized 

in various fields ranging from water supply and sewage to supply of electric power. In particular, efforts 

to expand access to potable water and sewage systems has boosted the demand for PVC pipe in water-

scarce region of the Middle East (wpp, 2015). One of the leading manufacturers of PVC pipe in Middle 

East is Golpayegan Industrial Park (GIP). The PVC pipe manufactured by GIP is used widely in water 

supply and sewage structures. GIP has four factories1 whose primary raw material are PVC powder, 

stabilizer and Calcium Carbonate. The required raw material at each factory can be supplied through a 

number of petrochemical companies (suppliers) located in Abadan, Isfahan, Golpayegan, Arak, 

Mahshahad, Boushehr and Kermanshah cities. The products are transported from factories to market 

zones including Tehran, Tabriz, Ahvaz, Razavi Khorasan, Yazd, Fars, Hamadan, Ilam and Ardebil 

1 Loolegostar Golpayegan factory: http://www.loolegostar.ir/fa 

   Tak Setare Golpayegan factory: http://taksetare.looleh.ir/fa 
  Polymer Golpayegan factory:  http://pgproduct.com/fa/ 
  Sahel Golpayegan factory:  http://www.isomer.ir/profile/index/user/isomer-psag 
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provinces (here we only focus on the domestic market demand). Figure 3 shows the schematic view of 

the GIP’s supply chain.  

Figure 3. Geographical location of suppliers and market zones in GIP’s supply chain 

The sustainability performance of the suppliers has been evaluated based on the metrics outlined in 

IMPACT 2002+ (Jolliet et al., 2003) and GRI (GRI, 2011) as well as the sustainability criteria 

developed by National Petrochemical Company2. The main environmental measures involved safe 

treatment and disposal of hazardous materials (such as Hydrogen Peroxide), waste collection, emission 

of pollutants, and renewable and non-renewable energy consumption. The social criteria focused on 

human rights, labor working conditions, society contributions, and product responsibility issues. The 

economic measures included market shares, profitability and operating expenses.  

Having the sustainability measures established, a panel of experts was formed to visit each supplier site 

for initial sustainability performance assessment against each of these criteria. The experts also 

2 National Petrochemical Company is a national entity that uses a number measures to assess the performance 
of petrochemical companies (http://english.nipc.ir/). In a same fashion, we use these environmental and social 
measures sustainability assessment of the suppliers. 
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evaluated the potential disruption risks at supplier sites and the factories to assist with developing 

disruption scenarios. Applying the fuzzy c-means clustering method, the disruption scenarios were 

grouped based on three scales of small, medium and large disruptions (each disruption cluster contains 

a number of related scenarios). To hedge against disruptions, three potential buttressing strategies were 

envisaged: (1) multiple sourcing strategy, (2) contracting with backup suppliers (the suppliers located 

in Tabriz and Ahvas were considered as backup suppliers), and (3) adding extra production capacity in 

factories. 

The proposed hybrid approach was utilized to complete a resilience-sustainability analysis for GIP. The 

fuzzy c-means clustering method presented in Section 3.1 and the optimization model developed in 

Section 3.2, were coded in R2014b MATLAB and GAMS 24.1, respectively. All experiments were 

completed on a laptop with Intel Core i7-4702HQ CPU, 2.2 GHz with 16 GB of RAM. Following 

sections provide the numerical results and related sensitivity analyses. Please note that the runtimes are 

not reported as variations were shown to be negligible. 

4.2 Analysis on the suppliers’ performance 

The output of the fuzzy c-means clustering method is depicted in Figure 4 providing the normalized 

scores of suppliers’ performance in economic, environmental and social dimensions. As illustrated in 

Figure 4, the algorithm groups the suppliers into three clusters based on the scores obtained. Suppliers 

1, 3, 5 and 8 are categorized as the most sustainable suppliers, whilst suppliers 6 and 7 are classified as 

suppliers with the lowest overall sustainability performance. The sustainability performance of the 

suppliers grouped into the second cluster (i.e., suppliers 2, 4 and 9) locates between those of suppliers 

in the first and third clusters.   
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Figure 4. The output of fuzzy c-means clustering approach for the case problem 

The sustainability performance of the third cluster does not meet the minimum requirement, suppliers 

6 and 7 are excluded from the list of potential suppliers. To determine the quantities to purchase from 

the remainder of suppliers under each scenario of disruption, the bi-objective model developed in 

Section 3.2 was solved. For different sustainability degrees, Table 1 shows the percentage capacity of 

each supplier that is utilized to supply the required raw material at the factories given different 

disruption scales.  
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Table 1. The percentage capacity utilization of each supplier at different sustainability and disruption degrees 

Supplier 
Disruption Scale Sustainability Degree 

8 5 4 3 2 1 

1 100 100 97 Small 
 8.1 30 100 100 100 Medium 

100 84 100 100 86 Large 

34 100 100 79 Small 
 8.2 38 100 100 100 Medium 

100 100 100 100 86 Large 

44 100 100 69 Small 
 8.3 53 23 100 100 100 Medium 

100 100 100 100 86 Large 

62 100 100 79 Small 
 8.4 100 60 50 100 88 Medium 

100 100 32 100 86 Large 

79 33 55 95 94 Small 
 8.5 81 94 100 86 92 Medium 

100 100 100 100 100 Large 

83 100 100 100 Small 
 8.6 100 100 50 100 98 Medium 

100 100 100 100 100 Large 

77 100 100 100 Small 
 8.7 100 100 100 100 Medium 

100 100 56 100 100 Large 

From Table 1, we observe that primary supplier 3 and backup supplier 8 serve factories in almost all 

situations. On the other hand, the backup supplier 9 is selected under no circumstances. In addition, 

suppliers 1, 2, 4, and 5 act as primary suppliers only in specific cases.  These observations can be 

justified as follows. Suppliers 3 and 8 are recognized as the most efficient suppliers for GIP due to their 

desired performance in terms of sustainability and cost efficiency. While the sustainability performance 

of the backup supplier 8 is acceptable, its unattractive price prevents GIP from working with this 

supplier. 

The selection of the suppliers 1, 2, 4 and 5 depends on the degrees of sustainability and disruption. 

Supplier 1 is a more expensive supplier with higher sustainability score compared to supplier 2. Thus, 

as the sustainability degree increases, suppliers 1 tends to be selected independent of disruption scale. 

More specifically, an optimal solution requires that supplier 2 is replaced with supplier 1 when the 

sustainability degree is higher than 8.4 (i.e., 8.4  ). This may imply that the main roles of suppliers 

1 and 2 are to contribute toward enhancement of sustainability and cost efficiency, respectively. A 

relatively analogous observation can be seen for suppliers 5 and 4. That is, supplier 5 is a more costly 

supplier with better sustainability performance when compared to supplier 4. Another observation is 

that with the rise in the scale of disruptions, the capacity utilization of suppliers 5 and 8 also increases. 
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This observation is independent of the sustainability degree. Therefore, we may conclude that suppliers 

5 and 8 mainly contribute to building resilience against larger disruptions for GIP.  

4.3 Analysis on the tradeoff between total cost and sustainability 

In this section, we aim to explore the tradeoff between the total cost and overall sustainability 

performance of the GIP’s supply chain. Such a tradeoff can be developed by varying the sustainability 

degree (ε) and solving the model (26) under constrains (8)-(22) and (27). The results are illustrated in 

Figure 5. The figure consists of four charts indicating the tradeoff between cost and sustainability for 

situations in which we account for a) all disruption  clusters, b) small-scale disruptions only, c) medium-

scale disruptions only, and d) large-scale disruptions only.  
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5b. Small-scale disruptions only 5a. All disruptions clusters 

5d. Large-scale disruptions only 5c. Medium-scale disruptions only 

Figure 5. Tradeoff between cost and sustainability for different disruption clusters  
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Not surprisingly, Figure 5a shows that the greater the sustainability degree is, the larger the total supply 

chain cost would be. When the degree of sustainability increases, supply chain tends to contract with 

more sustainable suppliers which may be more expensive and less robust to disruptions. What is more 

interesting though is the linear pattern of increase in the total cost with rise in sustainability degree of 

the supply chain. This finding can be helpful as it allows a decision maker to predict the expected total 

cost under disruption risks when planning for enhancing the sustainability performance of the supply 

chain.  

Focusing on the scales of disruption can provide further insights regarding the relationship between 

sustainability and total cost. There are situations in Figures 5b and 5d upon which improving the 

sustainability degree does result in substantial growth in supply chain cost. For example, Figure 5.d 

indicates that as the sustainability degree is improved from 8.1 to 8.3, the supply chain cost is not 

influenced in case of large-scale disruptions. As opposed to Figure 5.c, moving from 8.3   to 8.4 

in Figure 5.d leads to only a slight increase in total cost. A similar observation can be seen in Figures 

5c for small-scale disruptions in the range of8.3 8.4  . This means that there may be opportunities 

enhance the supply chain sustainability, while remaining cost efficient under specific disruption 

scenarios.  

4.4 Analysis on the effectiveness of buttressing strategies 

As mentioned in section 3.1, GIP can potentially adopt the following strategies to hedge against 

disruptions: a) utilizing multiple sourcing strategy, b) contracting with backup suppliers, and c) adding 

extra production capacity to factories. We complete an experiment to evaluate the effectiveness of these 

strategies at different sustainability degrees. To this end, we calculate the total expected cost of GIP for 

cases in which the buttressing strategies include: 1) only multiple sourcing, 2) multiple sourcing as well 

as contracting with backup suppliers, 3) multiple sourcing and adding extra production capacity, and 4) 

all the aforementioned buttressing strategies. Figure 6 presents the results at four sustainability degrees. 
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Figure 6. The cost performance of various buttressing strategies at different sustainability degrees 

Figure 6 shows that all buttressing strategies are effective in reducing the expected total supply chain 

cost in disruptions. More precisely, comparing the expected total supply chain costs indicates that 

adopting the strategies of “backup supplier” and “extra capacity”, in addition to “multiple sourcing 

strategy”, can provide approximately 30% and 55% cost savings, respectively. The simultaneous 

adoption of the three buttressing strategies gains approximately 80% cost reduction benefits compared 

to the situation when only “multiple sourcing” strategy is used. These cost savings are almost analogous 

for different sustainability degrees meaning that the buttressing strategies can be consistently effective 

irrespective of the supply chain sustainability level.  

4.5 Analysis on the impacts of suppliers’ and factories’ disruptions on total cost 

Here, we examine how random disruptions at suppliers and factories can influence the expected total 

supply chain cost. At four sustainability levels, Figure 7 shows the percentage increase in expected total 

cost when either suppliers or factories or both supplier and factors are vulnerable to random disruptions. 

The figures consider the supply chain cost in the business-as-usual situation (i.e. when no facility and 

supplier is disrupted) as the baseline.  
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Figure 7. Percentage increase in total supply chain cost at different sustainability degrees for three 

disruption scenarios 

Comparing the costs in Figure 7, we find that supplier disruptions can have  greater impact on supply 

chain cost performance when compared to factory/production disruptions. This suggests that GIP needs 

to place more emphasis on and thus invest more on initiatives that prevent and/or mitigate supply-

initiated disruptions. Another interesting observation is that the higher is the degree of sustainability, 

the lower is the percentage increase in total supply chain cost in disruption situations. In other words, 

as the supply chain becomes more sustainable, its cost performance is less affected in disruptions.  This 

finding supports the idea that sustainability practices are supportive of enhanced supply chain resilience. 

5. Conclusions

Sustainability initiatives and resilience strategies have been at the forethought of supply chain research 

and practice. Despite the broad and numerous supply chain modeling efforts addressing various 

sustainability and resilience topics, scanty literature exists on joint consideration of the two topics to 

explore the interrelationship and potential interactions. In this paper, we presented a hybrid 

methodology that can be used to design a resilient and sustainable supply chain. The proposed approach 

is implemented in two phases of “sustainability assessment” and “resilience enhancement”. A fuzzy c-

means clustering method was proposed to evaluate the overall sustainability performance of each 

supplier. A stochastic bi-objective optimization model was developed to determine outsourcing 
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decisions and buttressing strategies that can help maintain the sustainability performance of the supply 

chain in random disruptions. The augmented ε-constraint technique was utilized to convert the bi-

objective formulation into a single objective model.  

We investigated the application of the proposed methodology in a real case study from plastic pipe 

industry. The hybrid approach was used to assess the contribution of each supplier to the supply chain 

resilience and sustainability. We showed, using our methodology, how tradeoff analysis can be used to 

identify the opportunities in which the supply chain can improve its sustainability performance whilst 

remaining cost efficient under various disruption scenarios. We also showed how the proposed approach 

can be used to examine the effectiveness of one buttressing strategy over another at different 

sustainability levels. From our case study, in particular, we found that sustainability practices are 

strongly supportive of supply chain resilience enhancement, evidenced by lower impact of disruptions 

on supply chain cost performance at higher sustainability degrees.  

While we have shown the important insights that can be gained from implementing the proposed model 

and methodology, our study is not without limitations. These limitations can set the stage for future 

work in this important area of research. For instance, future research can investigate how sustainability-

resilience tradeoffs can be influenced by operational risks caused by inherent interruptions such as 

uncertain customer demand, uncertain supply capacity, and uncertain procurement costs. Another 

direction for future research can be the incorporation of additional tactical and operational decisions 

such as facility location and routing decisions into the bi-objective model. Innovative solution methods 

are also needed for tackling larger-scale problems and dealing with extremely large datasets. 
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