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1 Introduction 

 
Since travel times are among the most important outputs of transport planning models it is 

somewhat surprising that, to date there has been no attempt to construct a unified formula t ion 

of travel time, not even under the assumption of steady-state conditions in the context of a 
single link. In this work we attempt to fill this gap, by deriving semi-dynamic and static link 

travel time formulations under steady-state conditions from a recent macroscopic dynamic 

continuous time model. Some of the benefits of having a unified formulation are to be found 
in the ability to, for example, compare different existing formulations in an objective fashion, 

pinpointing their (dis)benefits, and highlight why they might or might not be suitable for 

particular application contexts. Also, it allows one to verify if different modelling approaches, 
such as for example a dynamic model used for short term planning (traffic management, road 

works etc.) and a static longer term planning model (mode choice, destination choice, location 

choice) are consistent or not. This matters because in practice, models with a shorter planning 
horizon are typically constructed from the - coarser - longer term models, and only by 

maintaining consistency across these different models, results remain meaningful. 

 
Currently, both in practice and the literature, a plethora of different approaches exist with 

respect to constructing travel times for a road section, i.e. link. Traditionally, link travel times 

were often constructed according to a particular functional form with attractive mathematica l 
properties. These properties proved beneficial when finding solutions to the transport planning 

model as a whole (on a network level), but at the same time these approaches compromise the 

capability of the model to accurately reflect traffic conditions, especially in congested 
situations. In recent decades, more realistic travel time– and traffic flow propagation - methods 

have been developed that more closely match reality, but they do come at the price of a higher 

computational cost and less attractive mathematical properties. Still, due to the increase in 
computational power and the reliance on simulation based solution schemes rather than 

analytical models, these approaches, over time, have quickly become more popular, both in 

dynamic, as well as static planning models. 
 

Travel time formulations are often directly associated with a particular type of model. Models 

with an explicit time dimension for example, i.e. dynamic models, construct travel times often 
as a post-processing step, based on the resulting densities/speeds and/or cumulative inflow and 

outflows on a link. Static models on the other hand, do not do this. In traditional static models,  

travel times are constructed based on so called link performance functions, where the flow rate 
uniquely determines the travel time and queues are modelled only implicitly. In the past 

decades, attempts have been made to model queues explicitly in static models by 

supplementing, or replacing, the link performance function with something that more 
accurately reproduces the delay due to the formation of queues. Semi-dynamic models reside 

between the static and dynamic modelling paradigm, they are effectively static models that 

transfer residual queues and/or demand between periods. Semi-dynamic models come with 
their own challenges in formulation (link) travel time formulations, due to the interact ions 

between periods. 

 
Currently, due to the existence of all these different modelling approaches, it is not 

straightforward to compare existing, or novel, travel time formulations in a meaningful way, 

nor is it readily apparent how to quantify the capability of each of these formulations. In this 
work, we attempt not only to overcome this lack of insight, but provide generalised link travel 

time formulations for the continuous time, semi-dynamic, and static modelling paradigms 
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under steady-state conditions, based on which we subsequently classify and/or derive existing 
formulations in the literature as special cases. 

 

To be able to do so we make a number of simplifying assumptions: (i) we only consider a single 
road section, i.e. a link, (ii) each link is assumed to be in a steady-state, where steady-state is 

defined as the link having stable inflow/outflow rates for the period considered, (iii) only a 

single user class (mode) is considered, (iv) traffic flow propagation is assumed to be consistent 
with any general concave two-regime Fundamental Diagram (FD), i.e. a macroscopic 

perspective of traffic flow is adopted, adhering to the First-In-First-Out (FIFO) principle, (v) 

only first order effects are considered such that any transition between two traffic flow states 
results in an immediate change in speed, density, and flow rate. 

 

Throughout this paper, we explore two conceptually different perspectives when constructing 
link travel times. First, one can take the perspective of a (virtual) vehicle driver. The driver 

experiences a portion of the link in free flow conditions, while the remainder is traversed in 

congested conditions. Both components yield a constant, but different, travel time per distance 
unit travelled. Therefore, in these models, we must explicitly track the physical location of the 

tail of the queue to be able to make this distinction. This perspective is termed experienced 

travel time decomposition. It has the benefit that one can attribute different utilities to the free 
flowing and queuing component. This can be important for route choice, as it is well-known 

that drivers experience delay in a different way than they do free flow conditions (Hensher, 

2001). The other, second, perspective adopts a more mathematical, or functional, approach, 
where one constructs the travel time by taking the minimum link travel time and supplements 

it with additional delay that is governed by the two branches of the FD. Here, there is no explic it 

tracking of a queue needed. This approach is termed functional travel time decomposition. This, 
currently, is the most common way to formulate link travel time. It has the benefit of being less 

cumbersome than an experienced approach, but lacks the capability to attribute different 

weights to the difference in experience between congestion and free flow. 
 

The static and semi-dynamic generalised link travel time formulations are directly derived from 

a state-of-the-art continuous time traffic flow propagation model by Bliemer and Raadsen (in 
press) and Raadsen and Bliemer (in press) assuming steady-state conditions. This model solves 

the well-known LWR model (Lighthill and Witham, 1955; and Richards, 1956) and is referred 

to as the event-based Generalised Link Transmission Model (eGLTM).  
 

1.1 Contributions and outline 

There are several contributions made in this paper: (i) we formulate two different perspectives 

on link travel times, i.e. a functional and experienced perspective. We prove that, when derived 

from eGLTM under steady-state conditions, they yield identical results, (ii) we derive semi-
dynamic link travel time formulations that are consistent with first order traffic flow theory and 

do the same for the static modelling paradigm, (iii) we demonstrate that depending on the 

assumptions made, existing travel time formulations in the literature appear as special cases by 
deriving them explicitly, (iv) we provide a classification framework that allows one to 

categorise future and existing link travel time formulations in an objective manner and 

conducted this classification for a comprehensive number of existing studies for the readers 
convenience. 

 

The remainder of this paper is organised as follows: Section 2 discusses the existing literature 
and introduces the link travel time classification framework and its categories In Section 3 the 
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general concave two-regime FD and the continuous time link model components, required for 
our link travel time derivation, are discussed. In Section 4, the experienced link travel time 

decomposition is formulated for the different time dimensions considered, while Section 5 does 

the same for the functional approach. Section 6 proves that the two perspectives yield identica l 
results under a consistent initial state. Then, in Section 7 we show how relaxing some of the 

conditions for a consistent link travel time function can lead to a link performance function 

oriented approach. Then, in Section 8, we explicitly derive two special cases in the current 
literature, demonstrating how the general formulation unifies existing methods. Finally, we 

draw some conclusions and discuss research gaps in Section 9. 

 

2 Link travel time: existing formulations and classification framework  
 

Let us discuss existing model formulations and their link travel time formulations in a static, 

semi-dynamic, and dynamic context. 
 

2.1 Static link travel time in the literature 

Seminal traditional static approaches such as described in Beckman et al., (1956) adopt link 

performance functions such as the BPR function (Bureau of Public Roads, 1964) and only 

model queues implicitly. As a result they are only capable of modelling the uncongested branch 
of the FD, where density increases with increasing flow. They allow flow rates above capacity 

and, which is not realistic and are therefore mainly suitable for uncongested conditions, yet 

they do represent steady-state conditions and are heavily used in practice, so we do consider 
them here as a special case, see also Section 7.2. Other traditional static approaches were often 

formulated as optimisation problems, where delay was merely used as a mathematical construct 

to find a solution to the problem posed (Bell et al. 1995, Yang and Yagar, 1994). In those 
approaches, delay is not related to the actual flow rates in the period considered and does not 

have a physically meaningful interpretation. To address this issue, models emerged that 

constructed delay based on explicit queues following from the assignment. Some models 
retained a link performance function, but supplemented it with a penalty for violating the 

physical road capacity, introducing a queuing delay (Nakayama and Connors, 2012; Lam and 

Zhang, 2000; Hungerink, 1989). This queuing delay approach stems from the non-random 
delay, or persistent delay, formulation used in intersection modelling (Akçelik and Rouphail, 

1993; van Vliet, 1982)1. It is constructed by dividing the number of vehicles in the queue, by 

the saturation flow rate, i.e. outflow rate. Combining a link performance function with queuing 
delay can lead to potential double counting of link travel time. Other approaches opted to 

replace the link performance function with a flow invariant, free flow travel time (Smith 1987; 

Payne and Thompson, 1975), or a (capacity constrained) flow dependent free flow travel time 
(Bliemer et al. 2014). None of the aforementioned models accounts for blocking back, i.e. 

spillback. They also lack restrictions on the inflow, even when the link has a predefined 

maximum capacity, in turn impacting on the resulting link travel times, which can become 
unrealistically large. Attempts to capture blocking back, limiting the maximum travel time that 

one can experience on a single link, can be found in (Brederode et al., 2018; Bliemer and 

Raadsen, 2017; Smith, 2013; Smith et al. 2013, Bundschuh, 2006, Bakker et al., 1994). 
Capacity based inflow restrictions, which avoid constructing queues inside bottlenecks, were 

first introduced in Bliemer et al. (2014), but remain a rarity in static assignment models to date. 

 

                                                 
1 In this work persistent delay is equivalent to the hypercritical delay of the functional perspective, see Section 5. 
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2.2 Semi-dynamic link travel time in the literature  

To date, semi-dynamic models either adopt traditional link travel time functions of their static 

counterparts (Nakayama et al., 2012), or they do consider explicit residual queues that are 

transferred between the periods, attempting to account for the resulting queuing delay 
(Nakayama and Connors, 2012; Davidson et al., 2011; Akamatsu et al., 1998 (cited in 

Kanamori et al., 2007)). Compared to the static and dynamic approaches the semi-dynamic 

literature is somewhat lagging. Either the adopted model form is based on traditional static 
methods, or the models are solely described as algorithms, without any clear description of the 

underlying model. We hope our formulations can contribute in providing new opportunities in 

this area by providing a more rigorous starting point. 
 

2.3 Dynamic link travel times in the literature: 

The earliest macroscopic dynamic models, like semi-dynamic models, extended traditiona l 

static models, adopting link travel time functions, but now adopting a continuous time 

formulation (Astarita; 1996; Wie et al., 1994; Friesz et al., 1993, 1989). These models are no 
longer considered suitable to construct accurate link travel times, because they lack the 

capability to properly reflect traffic conditions in congested situations, can be inconsistent with 

LWR, might violate FIFO, and are computationally costly2. For this reason, in practice, these 
models are mostly abandoned in favour of more capable (simulation based) models adopting 

the cell transmission solution scheme, or the link transmission solution scheme, both of which 

solve the LWR model. 
 

The cell transmission model was among the first efficient macroscopic dynamic solution 

methods that could solve LWR in a reasonable amount of time. (Daganzo, 1995, 1994). To 
extract link travel times in this model, one typically constructs average densities, or speeds 

over a predefined period of time (a few minutes), by aggregating the simulation time steps (of 

a few seconds) and extract travel times based on this information. In (time discretised) link 
transmission models (van der Gun et al., 2017; Himpe et al., 2016; Gentile, 2010; Yperman, 

2007) link travel times are also constructed as a post-processing step, only now by comparing 

the time a (virtual) vehicle enters the link, with the moment it leaves, see for example Szeto 
and Lo (2005), for a general discussion on this topic. This approach has the benefit of incurr ing 

less smoothing errors than a cell transmission approach (Raadsen et al.,2016). Another, more 

recent work investigating link travel times in a dynamic context is found in Long et al. (2011), 
who specifically explore the effect of discretising continuous time dynamic link travel time 

formulations. In eGLTM however, all smoothing errors – on the link level – are absent due to 

the fact that this link transmission model type is formulated in continuous time, rather than 
discretised. To the best of the authors’ knowledge, none of the current literature provides a 

comprehensive overview of link travel time formulations across the different modelling 

paradigms, nor derives them mathematically from a common base model that is consistent with 
LWR and has been demonstrated to not exhibit any modelling error (on the link level). 

 

2.4 Categorisation and Classification 

Based on the current literature, we present the reader with our link travel time classifica t ion 

framework, see also Table 1, to objectively categorise existing (and future) link travel time 
formulations as special cases of our forthcoming generalised link travel time formulation.  

                                                 
2 These models construct outflows for example as a function of the link performance function, leading to the 

strange phenomenon that they cannot construct a steady-state situation when the link is oversaturated. Also, a link 

performance function only reflects the uncongested branch of a FD, making it unsuitable to model congestion 

properly. 
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Formulations are classified based on the fact if their formulation is dynamic (D), semi-dynamic 

(Sd) or static (St) in nature. While our proposed link travel time formulation is consistent with 

LWR, adopting a two-regime FD, and is therefore both capacity and storage constraint (CSC), 
i.e. it considers capacity constraints as well as spillback, existing formulations might not be. 

Hence, we also provide a capacity constrained category (Cc), i.e. spillback is not considered, 

and a capacity restrained category (Cr), i.e. no capacity nor storage constraints. The latter 
alludes to link performance functions which deter the usage of congested links, but do not 

withhold any flow. We denote capacity restrictions that are only imposed on one of the two 

link boundaries as follows, where -/Cc reflects no inflow restrictions, but the outflow is 
restricted by capacity, i.e. queues emerge inside the bottleneck rather than in front of it.  For an 

in-depth discussion on the properties of traffic assignment models in general, rather than 

pertaining to link travel times specifically, we refer the reader to Bliemer et al. (2017). 
 

Table 1: Categories and category options in constructing link travel time formulations. 

 
 
Interestingly, while most model formulations are capable of constructing steady-state 

conditions regarding inflow and outflow rates (Ss), we found that some of the earlier 

formulations cannot (Astarita, 1996; Wie et al., 1994; Friesz et al. 1993). This is due to the 
outflow being a function of a link performance function rather than the other way around. 

Hence these models are classified as non-steady-state compliant (NSs). Models capable of 

constructing steady-state conditions are further differentiated by how link travel time is 
decomposed, following a functional (F) or experienced (E) approach. While the two 

perspectives decompose the link travel time differently, in both cases, the sum of the 

decomposed components should reflect the total link travel time. If this is the case the 
formulation is considered consistent (C), as per Figure 1(a).  

 

 
Figure 1: Decomposing the link travel time, (a) total travel time, (b) consistently, (c) with 

overlapping components, (d) with gaps.  
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However, there exist formulations where the components are not disjunct, i.e. they overlap (O), 
leading to overestimation of travel time as per Figure 1(b), or alternatively there can be gaps 

(G) between the components, resulting in an underestimation, as per Figure 1(c). Note that if 

the link travel time is based on a link performance function, the travel time as a whole is 
inconsistent with traffic flow theory and depending on the parameter settings either over or 

underestimates the actual travel time, hence they are referred to as G/O. Existing formulat ions 

also make different assumptions on how queues are constructed (or not), queues either grow 
(G), shrink (Sh), or remain stable (St). Stable queues can alternatively be thought of as a super 

steady-state, where not only flow rates are stable, but also the queue itself. Lastly, we also 

determine if the formulation accounts for the possibility of an initial queue, or not (Y/N). 
 

Utilising this classification with respect to our base model, i.e. eGLTM, from a functiona l 

perspective (Section 5.1), yields the following classification D:CSC:Ss:F:C:G+Sh+St:Y. 
Alternatively, the formulation in Smith et al. (2013) is classified as St:-/CSC:Ss:E:C:St:Y, 

while Bliemer et al. (2014) is defined through St:Cc:Ss:F:C/O:Gr:N. A comprehensive, but 

inevitably incomplete, overview of existing link travel time formulations and their respective 
classifications can be found in the table provided in Appendix A. 

 

3 Fundamental diagram and dynamic network loading link model 

 
In order to derive the generalised link travel time formulations, we adopt a generalised concave 

FD. This FD has two regimes, or branches; an uncongested hypocritical branch where flow 

increases with increasing density, and a congested hypercritical branch where flow decreases 
with increasing density (Cascetta, 2009). The choice of fundamental diagram and its underlying 

properties play an important role in the modelling of traffic flow propagation and therefore the 

travel time formulation. The FD uniquely describes the relationship between a flow rate q
[veh/h], density k [veh/km] and speed   [km/h] on a cross section of the road. In addition, 

each link has a length [km], maximum throughput, termed capacity, maxq [veh/h], maximum 

vehicle speed max [km/h], and maximum density jamk [veh/km]. This notation largely follows 
the two-regime concave fundamental diagram formulation of Bliemer and Raadsen (in press). 

Most traffic flow models, including eGLTM, assume links to be homogeneous such that the 

FD is representative for the entire link instead of a single point. 
 

The (uncongested) hypocritical branch, is captured by flow-density function 1 crit( )I q k− 

[veh/km], while the (congested) hypercritical branch, is captured by 1 crit( )II q k−   [veh/km], 
see also Figure 2(a)3. Flow dependent hypocritical and hypercritical speeds are formula ted 

similarly via ( ), ( )I IIq q  [km/h], respectively such that: 

 

max

1 1
( ) and ( ) , [0, ].

( ) ( )
I II

I II

q q
q q q q

q q
 

− −
= = 
 

 
(1) 

 

The shockwave speed that separates two flow states can traverse a link in either direction and 

is obtained via hypo hyper( , )q q [km/h]. In steady-state conditions, the shockwave speed, together 
with the time and location of its inception, determines the location of the tail of a queue.  

                                                 
3 We explicitly refer to the density functions as inverses to highlight that traditionally one converts density into 

flow rather than the other way around. Having two separate functions allows for this – in our context - more 

convenient formulation. 
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Graphically, the shockwave speed equates to the slope connecting the two flow states on the 
FD, see Figure 2(b), and is given by: 

 
hyper hypo

hypo hyper hyper hypo max

1 hyper 1 hypo
( , ) , , [0, ].

( ) ( )II I

q q
q q q q q

q q


− −

−
= 
 −

 
(2) 

 

 
Figure 2: (a) two-regime concave FD with hypocritical and hypercritical branches, (b) same 

FD picturing the shockwave speed given two flow states, (c) wave speeds and effect of 

difference between vehicle speed and wave speed. 

3.1 Steady-state continuous time traffic flow propagation 

We now briefly revisit the underpinnings of eGLTM, adopting the above FD, to introduce the 

notation required to derive the link travel time formulations. Link transmission models like 
eGLTM are formulated in terms of a cumulative inflow ( )U t  [veh] and cumulative outflow 

( )V t  [veh] on their respective upstream and downstream link boundary (Bliemer and Raadsen, 

in press; Raadsen and Bliemer, in press). Each cumulative curve is the result of integrat ing 
their respective inflow rates ( )u t [veh/h], and outflow rates ( )v t [veh/h] across the considered 

time period, as per Equation (3):  

 

0 0

( ) ( ) , and ( ) ( ) .

t t

U t u d V t v d   = =   (3) 

In this work we assume steady-state conditions in the period 
start endt t t  [h], i.e. 

start end( ) ( ),and ( ) ( ), ( , ) [ , ].u t u t v t v t t t t t  = =    Therefore, Equation (3) simplifies4 to: 

                                                 
4 We could also refrain from making the flow rate time dependent due to its steady -state, but since we also derive 
semi-dynamic and static versions of this formulation later, we refrain from doing so, to more clea rly distinguish 
between the flow rate variables across each model type. 
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start start start start start end( ) ( ) ( )( ), and ( ) ( ) ( )( ), .U t U t u t t t V t V t v t t t t t t= + − = + −    (4) 

 

The interaction between the two cumulative curves is governed by the aforementioned two-

regime FD. Following Bliemer and Raadsen (in press), two additional “projected” cumulat ive 
curves are also defined. First, ( )U t  [veh], constructs the maximum potential outflow curve 

assuming hypocritical conditions, while ( )V t [h] represents the maximum potential inflow 

curve under hypercritical conditions, i.e. spillback. They are defined as follows : 
 

max[0, ]

1 1
( ) min ( ) , with ( ) ,

( ) ( ) ( )
I I

q q
I I I

U t U t q q q
q q q

 
  

     
= − + = −    

     

 

 
max[0, ]

1 1
min ( ) ( ) , with ( ) ,

( ) ( ) ( )
II II

q q
II II II

V t V t q q q
q q q

 
  

   
− = + = −   

   
 

 

(5) 
 

 

(6) 

 

where ( ), ( ),I IIq q  are the characteristic wave speeds given by the tangent of the FD in each 
branch. Compensation factors ( ), ( ),I IIq q   represent the number of vehicles that one would 

encounter if one would traverse the link with the characteristic wave speed consistent with ,q

see also Figure 2(c). In the special case the FD would be triangular (Newell, 1993), ( ) 0,I  =

and 
jam( ) .II k  = Only in that case it holds that ( ) ( ),I I  =   otherwise  ( ) ( ).I I     This 

generally leads to an underestimation of the link travel time (assuming max( )I  = ). 

 
The projected flow rates that go with each curve are defined as sub-derivat ives 

( ) ( ), ( ) ( ),u t U t v t V t  i.e. these are the flow rates q  that are compatible with the specified 

minimisation. However, under steady-state conditions ( ) ( ),u t u t= and ( ) ( ),v t v t=
start end ,t t t   simplifying Equations (5) and (6) to: 

 

( )
( ) ( )( )( ) ( ) ( ) ,

( )
I I

I

U t U t u t U t u t
u t

 


 
= − + = −  

 

 

( )
( ) ( )( )( ) ( ) ( ) ,

( )
II II

II

V t V t v t V t u t
v t

 


 
= − + = −  

 
 

 
(7) 

 

 
(8) 

 

with: 
 

max( ) , and ( ) , [0, ],
( ) ( )

I II

I II

q q q q
q q

 
 

= =   
(9) 

 

where ( ), ( )I IIq q   [h] represent the hypocritical and hypercritical link travel times under 
steady-state conditions. Let us demonstrate this with an example as per Figure 3(a). The total 

link travel time ( )t [h] is the time difference between entering a link and leaving it, i.e. 

( )( ) ( ) .U t V t t= + Under hypocritical conditions Equation (7) must hold such that 

( ) ( )( ) ( ) ( )U t U t t V t t = + = +  ( )( ) ( ) .It u t = Similarly, we find that in a spillback state, 

see Figure 3(b), that  ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) .IIV t V t t U t t t v t   = − = −  =  Special cases of the 

hypocritical and hypercritical link travel times are the absolute minimum link travel time 
min

and the absolute maximum link travel time 
max :   
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min max max

max
(0) , and (0) , [0, ].I II q q   


= = = =    

(10) 

 

 
Figure 3: Cumulative curves under (a) hypocritical free flow conditions, i.e. inflow curve is 

restricting the outflow rate, (b) hypercritical spillback conditions, i.e. outflow curve is 
restricting the inflow rate. 

 

Let us now derive the generalised formulations for the functional and experienced perspectives 

under steady-state conditions. We start with the latter in continuous time and subsequently 
derive its semi-dynamic and static counterparts. 

 

4 Experienced link travel time perspective 

 

The generalised link travel time formulation that adopts the experienced perspective 
decomposes the total link travel time in two distinct components; the experienced free flowing 

component, denoted free ( )  [h], representing the portion of the link that the traveller 

experiences in free flow, and the experienced queuing component queue( )  [h], for the remainder 
of the link that is traversed in congestion. Unless the location of tail of the queue is stable, this 

requires an active tracking of the queue’s location over time. We do so via ( ) [0,1],t   where 

( ) 1t =  reflects a link that is in a hypocritical steady-state, while ( ) 0t =  signifies spillback 
conditions. Further, we assume that start start( )t =  is known and given, such that the number of 

vehicles present in an initial queue queue,start queue start( )N N = [veh], with: 

 

( ) ( )queue 1 start end( ) (1 ) ( ) , with { ( ) | },IIN v t t t t t   −= −       (11) 

 

where we assume that the density ( )1 ( )II v t− in the queue is consistent with the current outflow 

rate. This is an unavoidable assumption since we do not know how this queue was constructed 
since its build up occurred outside the period of consideration.  

 

4.1 Experienced link travel time: continuous time perspective 

The total link travel time in the dynamic continuous time formulation is constructed from the 

free flowing and congested portion of the link such that: 
 

( ) ( )free queue start end( ) ( ), ( ) ( ), ( ) , ,t u t t v t t t t t    = +    (12) 

 

where both components depend on their respective inflow and outflow rates as well as the 
location of the tail of the queue. In steady-state conditions, a queue that grows or shrinks, does 

( )a

( )v t

( )t
( ( )) ( ( ))U t t V t t − = −

( )V t( ) ( )u t v t=

( ) ( )v t u t=

( )U t

( )u t

( )( ( )) ( )U t t V t t + = +

( )t

cu
m

ul
a

ti
ve

 v
e
hi

cl
e
s

cu
m

ul
a

ti
ve

 v
e
hi

cl
e
s

time time
( )b

U U V=
U V= V

V
U

( )v t

( )u t
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so in a linear fashion because the shockwave separating the free flow portion of the link from 
the congested portion of the link, i.e. the tail of the queue, travels at a constant speed, see 

Equation (2). Further, when the link is in a hypocritical state there is no queue, i.e.
queue ( ) 0, ( ) 1,t  = = hence free( ) ( ) ( ).I   =  =   Knowing that the location of the queue only 

changes linearly, if at all, we find that5: 

 
free max start end( , ) ( ), [0, ], { ( ) | }.Iq q q q t t t t     =       (13) 

 
We construct the experienced queuing travel time queue ( )  in an identical fashion. In steady-

state hypercritical conditions free ( ) 0, ( ) 0,t  = =  hence queue( ) ( ) ( ).II   =  =   Only now the 

travel time is inversely related to , resulting in: 
 

queue max start end( , ) (1 ) ( ), [0, ], { ( ) | }.IIq q q q t t t t     = −       (14) 

 

Let us now determine ( )t for the three different steady-state scenarios (growing, shrinking, or 
stable queue), either in absence, or the presence of an initial queue, as depicted in Figure 4. 

 

 
Figure 4: Experienced link travel time – tail of the queue as red solid line – (a) growing 
queue starting in free flow state, (b) shrinking queue starting in spillback state, (c) stable 

queue scenario, (d) growing queue starting in partially congested state, (e) shrinking queue 

starting in partially congested state. 

First, depending on the scenario, the queue moves in different directions (or not at all), resulting 
in separate formulations of ( )t  depending on the scenario. Secondly, the steady-state period 

is necessarily finite under a growing or shrinking queue scenario, because if the period does 

not end once the link reaches spillback, or free flow conditions, one of the flow rates necessarily 

                                                 
5 To construct a linear function, one only requires a point and its rate of change, both of which we know. 

U

VU
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( )U t
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( )d ( )e
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violates our steady-state assumption. Therefore, under a growing queue scenario 
start spillback( ) ( ), ,u t v t t t t   with end spillback .t t Similarly, under a shrinking queue, 
start free( ) ( ), ,u t v t t t t    with end free ,t t where spillback free, ,t t denote the moment the link first 

reaches spillback, or free flow respectively. Observe from Figure 4(a) and (b) that spillbackt and 
freet  are defined in relation to the upstream link boundary, that way, we are able to 

geometrically interpolate ( )t  via: 

 

( )( )

( )( )

start

spillback start

start

free start

start

start

start

1 , if ( ) ( ),

( ) 1 , else if ( ) ( ),

, otherwise,

t t

t t

t t

t t

u t v t

t u t v t



 



−

−

−

−

 − 


= + 



 (15) 

 

with start end .t t t  The first two cases relate to a growing or shrinking queue, respectively, 

where depending on the scenario, the free flow portion of the link shrinks or grows linear ly. 
Under a stable queue, or super steady-state, ( )start( ) 0,t =  hence ( ) ( )u t v t= and this steady-

state is the only state that has no limit on the period end time, see Figure 4(c). Only in this 

special case, the experienced travel time components are constant and directly determined by 
start .  

 

To determine 
spillback ,t we first construct queue,start ,t denoting the time the first vehicle reaches the 

tail of the queue. From that moment in time, the growing queue needs to traverse the free flow 

portion of the link in the opposite direction of the traffic flow to reach the upstream link 

boundary, resulting in:  
 

( )
( )

start
spillback queue,start queue,start start free start start

start start
, with ( ), ( ) .

( ), ( )
t t t t u t t

u t v t


 


= + = +

−
 (16) 

 

To determine 
freet we follow the same approach, only now the queue is shrinking. Since 

freet is 
an upstream point of reference and the queue dissipates downstream, we first construct the 

“projected” downstream time 
freet the link first enters a hypocritical state and then find the time 

the corresponding exiting vehicle, entered, i.e. ( )( )free free free( ) ( ) ( )IIV t U t U t u t= = −  
following Equation (7). This then, results in:   

 

( )
( )

start
free free start free queue,start

start start

(1 )
( ) , with .

( ), ( )
It t u t t t

u t v t






−
= − = +  (17) 

 

4.2 Experienced link travel time: semi-dynamic perspective 

Let us now derive the semi-dynamic link travel time consistent with the continuous time 
formulation of the previous section. In a semi-dynamic context, we consider multiple periods 

,iI  where a period does not consider the time dimension explicitly, but implicitly. We 

therefore only obtain an average link travel time per period, replacing ( )t with i  and 
replacing 

free queue( ), ( ),t t  with 
free

i and 
queue

i per period ,i respectively:  

 
free queue , .i i i i  = +   I  (18) 
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Since we assumed steady-state conditions in continuous time, it holds that 
start end( ) , ( ) , ,i i i iu t u v t v t t t= =   where 

iu and 
iv are the average flow rates within steady-state 

period ,i  demarcated by start end[ , ].i it t  Further, the initial queue location in each period becomes 

dependent on the final queue of the preceding period like the following: 
 

start

start

end

1

, 1,

, otherwise,
i

i

i


 −

 =
= 


 (19) 

 

with ,iI with end end( ).i i it =  Since the travel time changes linearly over time (or not at all) 
under steady state conditions, we can construct free

i  and queue

i by taking the average of the two 

extreme points in continuous time within the considered period. For free

i  this results in: 

 

( )
start end

free free start free end ( ) ( )1
( , ) ( , ) , .

2 2

i i I i
i i i i i

u
u u i

  
    

+ 
= + = I  (20) 

 

Then, for queue ,i utilising Equation (14), yields: 

 

( )
start end

queue queue start queue end ( ) ( )1
( , ) ( , ) ( ) , .

2 2

i i II i
i i i i i II i

v
v v v i

  
     

+ 
= + = − I  (21) 

 

This leaves us with determining end .i  This requires replacing t  with the fixed end

it  in Equation 

(15), as well as replacing the other constants with their period based counterparts, yielding: 
 

( )( )
( )( )

end start

spillback start

end start

free start

start

end start

start

1 , if ,

1 , else if ,

, otherwise,

i i

i i

i i

i i

t t

i i it t

t t

i i i it t

i

u v

u v



 



−

−

−

−

 − 


= + 




 (22) 

 

where in the first case end spillback

i it t while in the second case end free.i it t We then construct 
spillback

it and free

it following Equations (16) and (17), replacing the continuous time variables with 

their semi-dynamic counterparts, yielding:  

 
start

spillback queue,start queue,start start free start

,, with ( , ), ,
( , )

i
i i i a i i i

i i

t t t t u i
u v


 


= + = + 

−
I  (23)  

 

and: 

 
start

free free free queue,start (1 )
( ), with , .

( , )

I

i i i i i

i i

t t u t t i
u v






−
= − = + I  (24) 

 

In case the adopted scenario results in a stable queue, i.e. 
end start end

1 .i i i  − = =  Then, 
free queue, ,i i 

can be simplified further to:   
 

free start queue start( ), and  (1 ) ( ), .II

i i I i i i iu v i     =  = −  I  (25) 
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We point out that this formulation does introduce a (slight) inconsistency between periods, 
because the last vehicle of period 1i − , which is the same vehicle as the first vehicle in period 

,i receives a different travel time depending on which period we allocate it to. This is due to 

the fact that the density in the queue is assumed to be consistent with the flow rate of the period 
under consideration. For example, when transferring a queues that emerged in the current 

period to a new period; the current queue is consistent with the current period’s flow rate (and 

density), but when it is transferred, it is assumed that it is consistent with the new period’s flow 
rate (and density), altering the link travel time. While we acknowledge this discrepancy, we 

also point out that semi-dynamic models assume rather large periods, often up to an hour or 

more, and therefore we expect the effect of this discrepancy on the overall average travel time 
in the entire period to be rather small. Also, to the best of the authors’ knowledge, no semi-

dynamic models to date either have mentioned this inconsistency, nor do they address it. 

Therefore, for the sake of simplicity and to prevent an unnecessarily complex notation, we 
acknowledge this fact, but refrain from addressing it in this paper, leaving it for further 

research. 

 

4.3 Experienced link travel time: static perspective 

In a static context, periods are aggregated into a single (large) time period, for which we assume 
start 0.t =  The semi-dynamic period based flow rates , ,i iu v iI  collapse into a single average 

inflow and outflow rate, denoted , ,u v respectively. The link travel time of Equation (18) then 

reduces to: 
 

free queue ,  = +  (26) 

 

where free queue, ,  are the static equivalents of free queue, ,i i  respectively. We derive free and 
queue  by abstracting out period i  in Equations (20) and (21), yielding: 

 
start end

free ( ) ( )
,

2

I u  


+ 
=  (27) 

 
and:  

 
start end start end

queue ( ) ( ) ( )
( ) ( ) 1 ,

2 2

II
II II

v
v v

    
  

 +  +
= − = − 

 
 (28) 

 
where 

start is readily available as before, leaving end  to be constructed from end

i  in Equation 

(22). Given 
start 0,t =  we find: 

 

( )
( )

end

spillback

end

free

start

end start

start

1 , if ,

1 , else if ,

, otherwise,

t

t

t

t

u v

u v



 



 − 


= + 




 (29) 

 

where in the first case 
end spillbackt t while in the second case 

end free.t t Variables 
spillbackt and 

freet  are found by abstracting out the period and plugging in the steady-state flow rates in 
Equations (23) and (24), yielding: 
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start

spillback free start( , ) ,
( , )

t u
u v


 


= +

−
 (30)  

and: 

 
start

free free free free start (1 )
( ), with ( , ) .

( , )
It t u t u

u v


  



−
= − = +  (31) 

 
Similar, to the semi-dynamic case, the scenario with a stable queue allows for a further 

simplification, because end start = and consequently free queue, ,  in Equations (27) and (28) 

reduce to: 
 

free start queue start( ), and   (1 ) ( ).I IIu v     =  = −   (32) 

 

In, for example, Smith et al. (2013), this particular super-steady-state scenario is more 
informally referred to as “peak of the peak” period and in the context of that particular work  

start is alternatively referred to as “shrinkage factor”, because it represents a reduction of the 

original free flowing portion of the link.  
 

5 Functional link travel time perspective 

 

The functional link travel time perspective refrains from establishing a 1:1 relationship between 
how a traveller experiences travel time and the decomposition of the travel time formulat ion. 

Instead it adopts a more abstract approach akin to queuing theory. The premise here is that one 

assumes one can traverse the link in uncongested conditions under all circumstances, and in 
case some of the inflow that cannot leave the link, due to outflow restrictions, this excess 

demand is placed in a (vertical) queue causing additional hypercritical delay. Therefore, this 

approach is sometimes referred to as a point queue based method, although in this general 
formulation the storage constraints of the link are also taken into account, making it effective ly 

irrelevant how one pictures the physical presence of this delay. 

 
In this approach, two types of delay are formulated in addition to the absolute and unchanging 

minimum link travel time min .  These two additional delay components are directly governed 

by the underlying FD, where we distinguish between hypocritical delay, denoted hypo ( )d  [h], 
and hypercritical delay, denoted hyper ( )d  [h]. Concretely, this perspective, and the hypercrit ica l 

delay in particular, relies on the cumulative flow curves on the link boundaries, rather than 

tracking the location of the queue explicitly, resulting in a rather different travel time 
formulation. 

 

In the experienced perspective we captured the initial state via the number of vehicles in the 
physical link queue through 

queue,start ,N obtained via start( )t , recall Equation (11). However, in 

this perspective, we no longer actively track the tail of the queue. Also, the number of excess 

vehicles on a link compared to a free flowing (hypocritical) state, denoted 
hyper,start ,N  is 

generally not the same as 
queue,start .N We therefore adopt the more suitable 

hyper,startN [veh] in the 

context of this perspective. The interested reader is referred to Appendix B, demonstrating that, 

in general, it holds that 
hyper,start queue,start .N N   
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One direct benefit of adopting a functional approach, over an experienced one, is found in the 
fact that regardless if a queue is growing, shrinking, or stable, the formulation of the travel time 

components and its parameters do not change. We also find that one can not only construct a 

functional travel time decomposition by adding delays to the minimum travel time, but one can 
alternatively invert this formulation to construct link travel times by subtracting excess delay, 

denoted excess ( ),d   from the (steady-state) hypercritical link travel time ( ),II q (see Section 

5.1.1). To the best of the author’s knowledge such a formulation has to date never been used 
in conjunction with a semi-dynamic or static formulation, but might in some situations be more 

intuitive than the conventional approach of adding queuing delay, for example when a link is 

moving to a spillback state.  
 

5.1 Functional link travel time: continuous time perspective 

As mentioned, the continuous time link travel time function under a functional perspective, 

consists of three components, where all but the hypercritical delay component are constant 

under steady-state conditions: 
 

( ) ( )min hypo hyper hyper start end( ) ( ) ( ), ( ) , .t d u t d v t N t t t t = + +    (33) 

 

Since the hypercritical delay hyper ( )d   only captures the additional delay compared to a 
hypocritical state, the link travel time under free flow conditions equates  to

( )min hypo( ) ( ) .t d u t = + Recall from Section 3.1 that in this situation ( ) ( ( )) ( ),U t U t t V t= + =  

as per Figure 3(a), where ( )( ) ( ) .It u t = Therefore, the hypocritical delay must necessarily be 
given by: 

 
hypo min max( ) ( ) , [0, ].Id q q q q = −   (34) 

 
Let us now consider the example in Figure 5(a) to graphically illustrate how we construct 

hypercritical delay hyper ( ).d   First, we construct hyper ( )N t [veh] describing the excess number of 

vehicles on the link compared to free flow conditions at time .t  We do so by taking the 
difference between the maximum potential cumulative outflow and the actual cumulat ive 

outflow for the vehicle departing at time ,t utilising Equation (4) this results in:  

 

( )( ) ( )( ) ( ) ( )

( )( ) ( )

( ) ( )

( )

hyper min hypo

start

hyper,start start

( ) ( ) ( ) ,     with ( ) ( ) ,

( ) ( ) ( )( ),  with ( ) ,

( ) ( ) ( ) ( ) ( ), with ( ) ,

( ) ( ) (

I I I

I

I

I

N t U t u t V t u t u t u t

U t u t V t v t t t t t u t

U t V t u t v t t t t t u t

N u t v t t t

    

 



= + − + = +

  = + − − − = +

      = − + − − = +

= + − − ),

 

 

 

(35) 

 

with 
start endt t t  and hyper,start ( ) ( ),N U t V t = − resulting in a convenient flow rate based 

formulation. Figure 5(a) demonstrates that hypercritical delay is found by the time it takes for 
hyper ( )N t  to dissipate under flow rate ( ),v t or more generally: 

 

( )hyper max hyper start end, , [0, ], { ( ) | }.
N

d q N q q N N t t t t
q

=      
(36) 
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This formulation is agnostic to whether the queue is growing, shrinking, or stable, see Figure 
5(b) and (c). Only the eligible period depends on the adopted steady-state flow rate conditions 

such that: 

 
spillback

end free

, if ( ) ( ),          

, else if ( ) ( ),   

, otherwise,

t u t v t

t t u t v t

 


= 


 

(37) 

 

where in the first case start spillback ,t t t  while for the second case start free .t t t   

  

 
Figure 5: Functional link travel time perspective under (a) growing queue starting in free 

flow state, (b) shrinking queue starting in spillback state, (c) stable queue scenario6.  

Since the functional decomposition approach utilises cumulative curves to derive the link travel 

time formulation, we formulate spillbackt and freet  in a similar fashion adopting the formula t ion 

in Raadsen and Bliemer (in press)7: 
 

 spillback startargmin ( , ] | ( ) ( ) 0 ,t t t U t V t=   − =  (38) 

 

and: 
  

 free startargmin ( , ] | ( ) ( ) 0 ,t t t V t U t=   − =  (39) 

 

which for 
spillbackt should be interpreted as identifying the moment the inflow rate must be 

reduced to the outflow rate due to spillback, i.e. the first moment the projected inflow curve 

dictates the actual inflow and they therefore coincide. The same holds for 
freet representing the 

first time the projected downstream curve coincides with the actual downstream curve. 
 

5.1.1 Alternative functional decomposition based on excess travel time 

We now demonstrate it is also possible to construct link travel times by subtracting excess 
travel time, instead of supplementing the minimum travel time with delay. In this situation, the 

link is assumed to be in a hypercritical state, such that ( )( ) ( ) .IIt v t =  However, this might not 

actually be the case and this requires us to subtract any excess delay, denoted excess ( )d   [h], 
compensating for our overestimation. This yields the following travel time function: 

                                                 
6 The cumulative curve of 

minU  relates to the projected curve under the fixed travel time of max
 and is the lower 

bound curve identical to (0).U  
7 Although one could also retain the earlier shockwave based formulation, if so desired. 

U VminU U

( )u t

( )v t

min
hypod( )U t

min hypo hyper( )V t d d+ + +

( )a ( )b

U

( )c

min hypo( )V t d+ +

( )u t

cu
m

ul
a

ti
ve

 v
e
hi
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e
s

time

min

( )u t ( )u t ( )v t

min hypo hyper( )V t d d+ + +

hyperd

U VminU U U
minU

( )u t ( )u t( )U t

( )U t min

hyper( )N t

V

( )v t
min hypo hyper( )V t d d+ + +

hyper,start 0N  hyper,start 0N hyper,start 0N =

hypod hyperd

hypod hyperd
hyper( )N t

hyper( )N t
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( ) ( )excess excess start end( ) ( ) ( ), ( ) , ,IIt v t d v t N t t t t = −    (40) 

 

We can construct excess ( )d   in a similar fashion as the hypercritical delay, only now utilising  

The number of projected excess vehicles excess ( ),N t instead of hyper ( ).N t  Consider the Example 
in Figure 6(a), as can be seen, the number of excess vehicles is given by the difference between 

the projected potential cumulative inflow ( )V   and the actual cumulative inflow ( ),U  such that:  

 

( )( ) ( )( )
( )( ) ( )( )

excess excess excess excess excess

start excess excess,start start excess excess,start

( ) ( ), ( ) ( ), ( )

( ), ( ),

                                                                 

N t V t d v t N t U t d v t N t

V t d u t N U t d u t N

= − − −

= − − −

( )

( )

start

excess,start start

              ( ) ( ) ( ),

( ) ( ) ( ),

u t v t t t

N u t v t t t

+ − −

= + − −

 

(41) 

  

Where excess,startN is assumed given, so all but the flow rates conveniently drop out. The excess 

delay, analogous to Equation (36), is found via: 
 

excess max excess start end( , ) , [0, ], { ( ) | },
N

d q N q q N N t t t t
q

=      
(42) 

 

 
Figure 6: Functional link travel time (excess) perspective under (a) growing queue starting 

in free flow state, (b) shrinking queue starting in spillback state, (c) stable queue scenario.  

Alternatively, under a stable queue, i.e. start end( ) ( ), ,u t v t t t t=    it holds that 
excess,start excess start end( ), ,N N t t t t=    see Figure 6(c). While this alternative link travel time 

formulation is equally valid as supplementing the minimum travel time with additional delay, 

we only derive semi-dynamic and static formulations for latter approach. The reason being that 
there are no existing models (yet) that follow this novel excess delay based approach. 

 

5.2 Functional link travel time: semi-dynamic perspective 

Analogous to Section 4.2, we consider multiple time periods ,iI and their respective steady-

state flow rates, start, and end times. The link travel time formulation in Equation (33) is then 
replaced with its average period based counterpart: 

 
min hypo hyper hypo hypo, with ( ), ,i i i i id d d d u i = + + =  I  (43) 
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where the absolute minimum travel time min , remains constant and the average hypocritica l 

delay, due to steady state conditions, is given by hypo hypo ( ), .i id d u i= I  The hypercritical delay 

however, depends on hyper ( ),N t for which a semi-dynamic based alternative is required. 
Analogous to Equation (19) we discretise hyper ( ),N t  on a per period basis, yield ing hyper

iN

through: 

 
hyper,start

hyper

hyper hyper,

1 1

, 1,

, otherwise,
i

i i

N i
N

N N 

− −

 =
= 

+
 

(44) 

 

where hyper

iN is the generalised per period version of hyper,start ,N while hyper, ,iN  reflects the 

change in the queue during period ,i  which based on Equation (35) yields: 
 

hyper, end start( )( ), .i i i i iN u v t t i = − −  I  (45) 

 

Then, analogous to constructing Equations (21) and (22), we utilise Equation (36) to construct 
the following average hypercritical delay per period:  

 

( ) ( )( )hyper hyper hyper start hyper hyper end

hyper hyper,hyper hyper hyper, 1
2

1
, ( ) , ( )

2

1
, .

2

i i i i i i i

i ii i i

i i i

d d v N t d v N t

N NN N N
i

v v v



= +

  ++
= + =  

 
I

 

(46) 

 
The period end times end ,it  follow from Equation (37), yielding: 

 
spillback

end free

, if ,          

, else if ,   

, otherwise,

i i i

i i i i

t u v

t t u v

 


= 


 (47) 

 
with iI .  Rewriting Equations (38)and (39) yield:  

 

 
start

spillback excess start excess start start

( , ]

argmin | ( )( ) 0 , with ,
i

i i i i i i i i
t t

t t N t t u v N U V
 

= + − − = = −  (48) 

 
and:  

 

 
start

free hyper start hyper start start

( , ]

argmin | ( )( ) 0 , with ,
i

i i i i i i i i
t t

t t N t t v u N V U
 

= − − − = = −  (49) 

 
with ( ) ( )start start start start( ) , ( )i I i i I iU U t u V V t u = + = + which makes 

hyper

iN consistent with 

Equation (35). We leave it to the reader to observe that 
excess start start

i i iN U V= −  can be derived in 

an identical fashion as 
hyper .iN  Similar to the semi-dynamic experienced travel time formula t ion 

(see Section 4.2), an inconsistency arises here in the form of the underlying assumption that 
hyper

iN is constructed in conjunction with ,iv while in reality, it is consistent with preceding 

periods’ flow rates. As stated before, we do not pursue this any further in this work, for the 
sake of keeping a clear focus. 
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5.3 Static functional link travel time decomposition 

Following the same process as discussed in Section 4.3, the link travel time function of 

Equation (43) reduces to it static counterpart through: 

 
min hypo hyper hypo hypo, with ( ),d d d d u = + + =  (50) 

 

where the static hypercritical delay hyperd is derived from Equation (46), yielding: 

 

( )
hyper hyper,1

hyper hyper hyper,start hyper hyper,start hyper, 21
( , ) ( , ) ,

2

N N
d d v N d v N N

v


 +

= + + =  
(51) 

 

with hyper,N   obtained from Equation (45) and reduced to:  

 
hyper, end ( ).N t u v = −  (52) 

 

This completes the two generalised steady-state link travel formulations. 

 

6 Experienced travel time versus functional travel time  
 

Theorem: decomposing travel time based on a functional or experienced perspective yields 

identical travel times such that:  
 

( ) ( )free queue min hypo hyper( ) ( ) ( ) ( ) 0,d d   +  − +  +  =  (53) 

 

with ( ) max start end start( ), ( ) [0, ], [ , ], ,u t v t q t t t N   where startN refers to some valid initial state, 
reflected through hyper,startN or queue,start ,N depending on the perspective, which are assumed to be 

consistent with each other, even though they carry different information. 

 
The above can be interpreted as follows: constructing link travel times by actively tracking the 

free flowing and congested portion of a link yields the exact same result as when one would 

supplement the absolute minimum travel time with a hypocritical delay and hypercritical delay, 
conditional on both formulations having the same initial state and the formulations being 

derived from eGLTM. 

 
Proof: the proof consists of two parts: (i) demonstrating the derivatives of the functional and 

experienced components in Equation (53) - towards time - are identical, i.e. both perspectives 

model any changes to the link travel time identically, (ii) for a known feasible link state, 
Equation (53) holds, i.e. both experienced and functional travel time yield the same link travel 

time for a particular, consistent, input. When (i) and (ii) hold, Equation (53) holds. 

 
We verify condition (ii) of the proof by considering any free flowing hypocritical state, 

irrespective of the actual flow rates.  From an experienced perspective this means that no initia l 

queue exists, hence
queue,start start end0 1.N  =  = = Therefore, ( ) ( )free( ) ( ),1 ( ) .It u t u t  = =

From a “functional” perspective, this same situation implies 
hyper,start 0,N = yielding

( ) ( )min hypo( ) ( ) ( ) .It d u t u t  = + = Therefore, the hypocritical link travel times of both 

perspectives, under consistent inputs, yield identical link travel times. 
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Condition (i) of the proof requires the construction of each perspective’s derivative towards 
time; for the functional approach we find: 

 

( )min hypo hyper( ) ( )( ) ( ) ( )
,

( )

d t d tt u t v t

t t v t

  + + −
= =

 
 

(54) 

 
with ( ) max start end hyper,start( ), ( ) [0, ], [ , ], .u t v t q t t t N    For the experienced travel time some 

algebraic manipulation is required to demonstrate it equates to Equation  (54):  
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(55) 

 

This concludes the proof. 

 

7 Impact of violating fundamental diagram consistency 
 

So far, our generalised link travel time formulations are consistent with a general concave two-

regime FD and therefore link travel times comply with physical link capacity restrictions as 
well as storage constraints and classify as SCS, recall Section 2.4. However, most models 

violate either the capacity constrained condition, the storage capacity condition, or both. We 

now illustrate how to derive a capacity constrained, but non-storage constrained formula t ion 
(Cs), and non-capacity constrained, non-storage constrained, i.e. a capacity restrained 

formulation (Cr) by relaxing some of the existing conditions. 
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7.1 Violating storage constraints 

The violation of storage constraints only arises naturally under a growing queue. To move from 

a CSC to a Cs classification, and allow the queue to grow beyond what is physically possible, 

one simply removes the restriction of end spillback end spillback, ,i it t t t  for a semi-dynamic, or static 
model, respectively. Hence, end ,it and/or endt become free variables. In the functiona l 

perspective this results in a vertical queuing - or point queue - approach without any additiona l 

effort. In an experienced link travel time setting however, where we track the queue explicit ly, 
removing aforementioned condition is not feasible because it can result in a negative free flow 

and queuing travel times whenever end 1,  which is possible since now end [0, ).    In Smith 

et al. (2013), they therefore instead choose an artificially increased link length to make sure 
spillback doesn’t occur in this situation. We do point out that this is far from ideal, since this 

artificial and arbitrary length does impact on the travel time, so one ends up with a formula t ion 

with an additional variable that needs calibration. 
 

We do not discuss a shrinking queue scenario in this context, because in that situation the 

conservation of flow is violated, i.e. it leads to the disappearance of vehicles and eventua lly 
results in a negative number of vehicles on a link. Given that any proper network loading model 

prevents this behaviour there is little point in constructing such a formulation. 

 

7.2 Violating capacity constraints and storage constraints 

When one not only allows for storage constraint violations, but also allows for capacity 
constraints to be violated, i.e. flow can exceed capacity, the underlying FD is no longer 

considered consistent with a two-regime approach. In other words, the hypercritical branch 

where flow decreases with increasing density is absent. In that case, the hypocritical branch 
continues to grow with increasing density, as is the case with well-known link performance 

functions, such as the BPR function. This has two important impacts: (ii) flow is not actively 

held back and inflow rates become identical to the outflow rates, i.e. start( ) ( ), ,u t v t t t=   (ii) 
queues are implicit rather than explicit and do not take up physical space, i.e. 

queue,start hyper,start 0.N N= =  

 
From an experienced link travel time perspective, this results in start( ) 1, ,t t t =    because 

there is no explicit queue. Hence, Equation (12) reduces to ( ) ( )free( ) ( ),1 ( ) ,It u t u t  = =
start ,t t  and the fundamental diagram is replaced by the link performance function of choice, 

which in case of the BPR function results in: 

 

min

max
( ) 1 , [0, ),I

q
q q

q



  
  
 = +      

 
(56) 

 
with  and   being parameters that require calibration. In case of a functional link travel time 

formulation, the hypercritical travel time component is absent ( )hyper ( ) 0d  = , resulting in 

( ) ( )min hypo( ) ( ) ( ) ,It d u t u t  = + =
start .t t  Hence, both perspectives collapse to the same 

link travel time formulation, however, since most link performance functions supplement the 

minimum link travel time with additional delay, we do classify them as functional (F) in our 

classification of existing models in Appendix A, although they are in no way consistent with 
traffic flow theory. 

 

8 Special cases resulting in existing models 
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Let us now derive two recent formulations explicitly from our generalised link travel time 
formulations. The first adopts an experienced (E) perspective and is discussed in the work of 

Smith et al. (2013), the second adopts a functional form (F) and is proposed in the work of 

Bliemer et al. (2014). Both are static models (St). Also, the former is storage constrained 
(CSC), while the latter is not (Cs).  We refer the reader to Appendix A for other existing model 

classifications.  

 
Smith et al. (2013) term their model quasi-dynamic, where there is some initial queue, 

queue,start 0,N  and ,u v=  i.e. the queue is stable. Their model is both capacity and storage 

constrained, however, the storage constraint itself is not necessarily consistent with the FD and 
is a free variable. Their free flow component free ( )  is identical to Equation (27), while their 

queuing component queue  is formulated as follows: 

 
queue,start

queue .
N

v
 =  

(57) 

 

They can do this, because this is a special case where the number of vehicles in the queue does 

not change, i.e. start end . =  In that case, we can indeed derive Equation (57) from the more 
general Equation (28), utilising the fact that 

queue,start

1

start

( )
1

II

N

v
 −

= −  from Equation (11), yielding: 

 

( )
start end queue,start

queue start

1

queue,startqueue,start queue,start
( )

1

( )

( )
( ) 1 ( ) 1 ( ) 1 1

2 ( )

( )
.

( )

II

II

II II II

II

II
v

v
II v

N
v v v

v

Nv N N

v v





 
    



−

−

   +
= − = − = − −         

= = =


 

(58) 

 
The other special case is the (static) model by Bliemer et al. (2014). Unlike Smith et al. (2013), 

this model does not assume a stable queue, but only stable flow rates. This model is special in 

the sense that it is one of the few models that places the queues in front of the bottleneck, so 
the outflow is constrained by the capacity of the next link and not its own link, therefore the 

inflow can exceed the outflow without violating the current link’s capacity constraints. This 

model does not impose storage constraints, i.e. it constructs a vertical queue and is therefore of 
the Cs family. It adopts a functional perspective and its minimum and hypocritical link delay 

comply Equation (50). However, hypercritical delay is formulated differently via: 

 

( )
end

hyper , ,
1 , with ,

2
1, otherwise.

au
u vt

d v 




= − = 



 

(59) 

 

with queue,start 0,N = so a queue is non-existent or grows, i.e.
hyper, 0,N    restricting Equation (52) 

to ( )hyper, endmax 0, ( ) .N t u v = − Under these conditions, we find that this indeed is a special 
case of Equation (51): 
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( ) 

( ) 

( )

hyper,start end1hyper,start hyper,1
2hyper 2

end1 end
2

end

max 0,

0 max 0,
max 0,

2

, ,
1 , with ,

1, otherwise.2

u
v

N u v tN N
d

v v

u v t t u v

v v

u vt
 

 + −+
= = =

+ −  − 
= = =  

  


= − = 



 

 
 

 

 
(60) 

 

9 Observations and research gaps 
 

In this work we derived general steady-state link travel time formulations from a state-of-the-

art macroscopic dynamic continuous time first order link model consistent with LWR. These 
formulations adopted either a functional or experienced perspective. Both perspectives have 

(dis)benefits depending on the application context, where the latter is attractive for attaching 

different utilities to the driver experience depending on if he/she is in a queue or not, while the 
former is less cumbersome to execute and more widely accepted. We proved that, when 

properly defined, both perspectives yield identical results. Consistent formulations are derived 

for both for a semi-dynamic and static (quasi-dynamic) modelling perspective as well and we 
demonstrated that existing formulations can be derived explicitly as special cases. Further, a 

comprehensive classification of existing models is provided based on a newly presented 

classification framework  allowing one to objectively compare the consistency and capabilit ies 
of existing models with respect to one of their most values outcomes; their predicted link travel 

times.Based on our findings we also make a number of observations: 

 
- Early continuous time dynamic model formulations adopting link performance 

functions are incapable of constructing steady-state link conditions, 

- Almost all existing model formulations seem to prefer a functional formulation of link 
travel time over an experienced perspective, even though they are equally viable. 

- To date, there exists hardly any semi-dynamic nor static models that are fully consistent 

with state-of-the-art dynamic continuous time formulations regarding their link travel 
times. 

- Link performance functions are still used frequently, and inconsistently, even when one 

models queues explicitly. We demonstrated that this leads to overestimation of link 
travel times unless link inflows are restricted to the physical link capacity. 

 

These findings open up opportunities for future research: 
 

- The lack of experienced link travel time formulations in assignment models presents an 

opportunity to construct new models that attribute congestion and free flow travel times 
differently. For example by exploring the impact of such models compared to the 

current practice of considering travel time “as a whole”. 

- There exist, to the best of the authors’ knowledge, no semi-dynamic model formula t ion 
that are capable of dealing with the inconsistency in travel times when transferr ing 

queues between (static) periods. 

- There exist, to the best of the authors’ knowledge, hardly any applications that adopt 
semi-dynamic and static models with link travel time formulations consistent with the 

ones presented here. The few that do exist, are currently highly theoretical rather than 

practically applied.  
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Appendix A  

 

  General Link travel time Queue 

 
Time 

dimension 

Inflow/outflow 

restrictions 

Steady-state 

compliance 
Perspective Decomposition Scenario Initial 

 

Dynamic: 

       

Friesz (1989) D Cr NSs - - - - 

Friesz (1993) D Cr NSs  - - - - 

Wie et al. (1994) D Cr NSs - - - - 

Daganzo (1995,1994) D CSC Ss -4,15 G3 Gr+Sh+St Y5 

Astarita (1996) D -/Cc1 NSs - - - - 

Huang and Lam (2002) D -/Cc2 Ss F G3 Gr+Sh+St Y5 

Himpe et al. (2016), Yperman (2007) D CSC Ss -4,15 G3 Gr+Sh+St Y5 

van der Gun et al.(2017), Gentile (2010) D CSC Ss -4,15 C Gr+Sh+St Y5 

Bliemer and Raadsen (in press), 

Raadsen and Bliemer (in press)  
D CSC Ss -4 C Gr+Sh+St Y5 

        

Semi-dynamic:        

Hall et al. (1980), van Vliet (1982) Sd -/Cc2 Ss F G3 Gr+Sh+St Y 

Akamatsu et al. (1998), Kanamori et al. 

(2007) 
Sd -/Cc2 Ss F O6 Gr+Sh+St Y 

Davidson et al. (2011) Sd -/CSC Ss n/a 10 n/a 10 Gr+Sh+St Y 

Nakayama et al. (2012) Sd Cr Ss F O/G9 I N 

Nakayama and Connors (2012) Sd -/Cc2 Ss F O6 Gr+Sh+St Y 

        

Static:        

Bureau of Public Roads (1964) St Cr Ss F O/G9 I N 

Smit (1987), Payne and Thompson 

(1975) 
St -/Cc2 Ss F G3 I/St11 Y 

Hungerink (1989) St -/Cc2 Ss  F O6 Gr N 

Akçelik and Rouphail (1993) St n/a12 Ss F n/a + C12 Gr+Sh Y 

Bakker et al. (1994) (in Dutch) St -/CSC2,7 Ss F n/a + O6,8 Gr N 

Bell (1995, 1997) St -/Cc2 Ss F G3 I/St11 Y 

Bifulco and Crisalli (1998) St -/CC2 Ss n/a10 n/a10 Gr N 

Lam and Zhang (2000) St -/CC2 Ss F O6 Gr N 

Bundschuh (2006) St -/CSC2,7 Ss F n/a10 Gr N 

Bliemer et al. (2012), Brederode et al. 

(2018) 
St+D14 CSC Ss -4 C14 Gr N 

Smith (2013) St -/CSC2,7 Ss F G3 I/St11 Y 

Smith et al. (2013) St -/CSC2,7 Ss E C I/St11 Y 

Bliemer et al. (2014) St Cc Ss F C Gr N 

Bliemer and Raadsen (2017) St CSC Ss F C Gr N 

 
1outflow rates based on link performance function that in the limit results in capacity outflows, so while capacity 

restrained, the net effect is an outflow that does not exceed capacity. 
2Inflow not restricted by link capacity. 
3The free flow travel time is (partly or completely) constant, irrespective of the hypocritical flow rate, this is only 

correct under the assumption of a linear hypocritical branch of the FD. However, we assume a generalised concave 
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FD, hence the hypocritical branch can be non-linear, generally leading to an underestimation of the travel time 

under this simplified formulation. 
4Link travel time is only computed as a total travel time based on cumulative curves  (link transmission models), 

or average densities/speeds (cell transmission models), no explicit decomposition formulated.  

5Network starts empty in formulation, but formulation can be easily  altered to support an initial state that has a 

queue. 
6hypocritical delay is based on link performance function capturing part of delay beyond hypocritical delay and 

the fact that this is supplemented with a separate hypercritical queuing delay, generally  leads to an overestimation 

of link travel time.  
7Storage capacity that is a free variable or heuristic inconsistent with an FD. 
8Extension of Hungerink (1989), but now with inconsistent storage capacity 7, so unknown what the effect on the 

link travel time consistency is on top of the originally overestimating formulation. 
9Link travel time based solely on link performance function, leading to inconsistent link travel times which either 

over or underestimate depending on the parameter calibration. 
10Information not provided in paper. 
11Queue is assumed to be present and stable during the modelled period and not the result of the modelling period 

itself, because during the modelled period inflow is assumed to be equal to the outflow. 
12Intersection delay, perspective is that on the stop line of a junction, instead of a whole link, so only formulation  

of (functional) hypercritical delay is formulated here and that bit is consistent. 
13Storage capacity is not formally defined. However, if it were to be consistent with the adopted FD, than the link 

travel times could be consistent with our general formulation. This depends on if the capacity restrained link 

performance function (also not defined) represents a valid uncongested branch of a general concave two -regime 

FD. 
14Hybrid model, where a capacity constrained static assignment is complemented with a dynamic model based on 

LTM to propagate the vertical queues backward. In this approach, travel times remain consistent on the link level, 

but not on the path level. 
15Solution scheme is time discretised, resulting in smoothing errors in the resulting travel time, compared to a 

continuous time formulation. 

 

Appendix B 
 

The difference between queue,startN and hyper,startN is intuitively best understood by considering a 

link in spillback, then queue,start hyper,start0, 0.N N  To make this more concrete, we establish a 
density based, formulation of both variables to make them comparable. The density on a link 

in spillback is given by 1( ),II v− while the free flow density is defined through 1( ).I u−  Recall 

that hyper,startN represents the excess vehicles on the link compared to free flow, i.e. 

( )1 1( ) ( ) .II Iv u− − −  At the same time, in spillback, all vehicles on the link traverse the queue 

physically, i.e. start end 0. = = Hence, following  Equation (11) queue,start 1( ).IIN v−=   So, in this 

particular scenario it indeed holds that hyper,start queue,start .N N  Based on Theorem 1 in Section 6, 
this now necessarily also holds in general. 

 

References 

 

Akçelik, R., Rouphail, N.M., 1993. Estimation of delays at traffic signals for variable demand 
conditions. Transp. Res. Part B Methodol. 27, 109–131. doi:10.1016/0191-

2615(93)90003-S. 
Akamatsu, T., Makino, Y., and Takahashi, E., 1998. (in Japanese) Semi-dynamic Traffic 

Assignment Models with Queue Evolution and Elastic OD Demands, Infrastructure 

Planning Review, Vol.15, 535-545. 
Astarita, V., 1996. A continuous time link model for dynamic network loading based on travel 

time function. Transp. traffic theory. Proc. 13th Int. Symp. Transp. traffic theory 79–101. 



Steady-state link travel time methods: formulation, derivation, and classification 

Raadsen and Bliemer 

26 

 

Bakker, D., Mijjer, P.H., Hofman, F., 1994. (in Dutch) QBLOK: een toedelingsmethodiek voor 
het modelleren van de afhankelijkheid tussen knelpunten en de voorspelling van 

blokkades. Proceedings of Colloquium Vervoersplanologisch Speurwerk, Delft, 313-332. 
Beckmann, M., McGuire, C.B., Winsten, B.W., 1956. Studies in the economics of 

transportation. Yale University Press, New Haven CT, USA. 
Bell, M.G.H., 1995. Stochastic user equilibrium assignment in networks with queues. Transp. 

Res. Part B Methodol. doi:10.1016/0191-2615(94)00030-4. 

Bliemer, M.C.J., Raadsen, M.P.H., (in press). Continuous-time general link transmiss ion 
model with simplified fanning (Part I Theory and link mode formulation). 

Bliemer, M.C.J., Raadsen, M.P.H., 2017. Static traffic assignment with residual queues and 
spillback, in: Proceedings of the 17th Swiss Transport Research Conference. Monte 
Verita, pp. 1--32. 

Bliemer, M.C.J., Raadsen, M.P.H., Brederode, L.J.N., Bell, M.G.H., Wismans, L.J.J., Smith, 
M.J., 2017. Genetics of traffic assignment models for strategic transport planning. Transp. 

Rev. 37, 56–78. doi:10.1080/01441647.2016.1207211. 
Bliemer, M.C.J., Raadsen, M.P.H., Smits, E.-S., Zhou, B., Bell, M.G.H., 2014. Quasi-dynamic 

traffic assignment with residual point queues incorporating a first order node model. 

Transp. Res. Part B Methodol. 68, 363–384. doi:10.1016/j.trb.2014.07.001. 
Bliemer, M.C.J., Brederode, L., Wismans, L., Smits, E., 2012. Quasi-dynamic traffic 

assignment : static traffic assignment with queuing and spillback. Transp. Res. Rec. 
Brederode, L., Pel, A., Wismans, L., de Romph, E., Hoogendoorn, S., 2018. Static Traffic 

Assignment with Queuing: model properties and applications. Transp. A Transp. Sci. 0, 

1–36. doi:10.1080/23249935.2018.1453561. 
Bundschuh, M., Vortisch, P., van Vuuren, T., Mott McDonald, 2006. Modelling queues in 

static traffic assignment. Eur. Transp. Conf. Proc. 
Bureau of Public Roads, 1964 Traffic Assignment Manual. U.S. Dept. of Commerce, Urban 

Planning Division, Washington D.C. 

Cascetta, E., 2009. Transportation Systems analysis: models and applications. Springer, New 
York (NY), USA. 

Davidson, P., Thomas, A., Teye-Ali, C., 2011. Clocktime assignment: a new mesoscopic 
junction delay highway assignment approach to continuously assign traffic over the whole 
day, in: European Transport Conference Proceedings. 

Daganzo, C.F., 1995. The cell transmission model, part II: Network traffic. Transp. Res. Part 
B Methodol. 29, 79–93. doi:10.1016/0191-2615(94)00022-R. 

Daganzo, C.F., 1994. The cell transmission model: A dynamic representation of highway 
traffic consistent with the hydrodynamic theory. Transp. Res. Part B 28, 269–287. 
doi:10.1016/0191-2615(94)90002-7. 

Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, R.L., Wie, B.W., 1993. A Variational Inequality 
Formulation of the Dynamic Network User Equilibrium Problem. Oper. Res. 41, 179–

191. doi:10.1287/opre.41.1.179. 
Friesz, T.L., Luque, J., Tobin, R.L., Wie, B., 1989. Dynamic Network Traffic Assignment 

Considered As a Continuous Time Optimal Control Problem. Oper. Res. 

Gentile, G., 2010. The General Link Transmission Model for Dynamic Network Loading and 
a comparison with the DUE algorithm, in: New Developments in Transport Planning: 

Advances in Dynamic Traffic Assignment (Chapter 8). pp. 1615–1620. 
van der Gun, J.P.T., Pel, A.J., van Arem, B., 2017. Extending the Link Transmission Model 

with non-triangular fundamental diagrams and capacity drops. Transp. Res. Part B 

Methodol. 98, 154–178. doi:10.1016/j.trb.2016.12.011. 
Hensher, D.A., 2001. Measurement of the valuation of travel time savings. J. Transp. Econ. 

Policy 35, 71–98.  



Steady-state link travel time methods: formulation, derivation, and classification 

Raadsen and Bliemer 

27 

 

Himpe, W., Corthout, R., Tampère, M.J.C., 2016. An efficient iterative link transmiss ion 
model. Transp. Res. Part B Methodol. 92, 170–190. doi:10.1016/j.trb.2015.12.013. 

Hungerink G.J., 1989. G. Hungerink. Q-Net: Assignment on Over-Congested Networks by 
Link Inflow Constraint, in: Proc., U.S.-Ita/y Joint Seminar on Urban Traffic Networks: 

Dynamic Control and Flow Equilibrium. Capri. 
Kanamori, R., Miwa, T., Morikawa, T., 2007. Application of Time-Dependent Stochastic 

Equilibrium Assignment Model Considering Activity Choices to Nagoya Metropolitan 

Area. J. East. Asia Soc. Transp. Stud. 7. 
Lam, W., Zhang, Y., 2000. Capacity-constrained traffic assignment in networks with residual 

queues. J. Transp. Eng. 121–128. 
Lighthill, M.J., Whitham, G.B., 1955. On Kinematic Waves. II. A Theory of Traffic Flow on 

Long Crowded Roads. Proc. R. Soc. A Math. Phys. Eng. Sci. 229, 317–345. 

doi:10.1098/rspa.1955.0089. 
Long, J., Gao, Z., Szeto, W.Y., 2011. Discretised link travel time models based on cumulat ive 

flows: Formulations and properties. Transp. Res. Part B Methodol. 45, 232–254. 
doi:10.1016/j.trb.2010.05.002. 

Nakayama, S., Connors, R., 2014. A quasi-dynamic assignment model that guarantees unique 

network equilibrium. Transp. A Transp. Sci. 10, 669–692. 
doi:10.1080/18128602.2012.751685. 

Nakayama, S., Takayama, J., Nakai, J., Nagao, K., 2012. Semi-dynamic traffic assignment 
model with mode and route choices under stochastic travel times. J. Adv. Transp. 46, 269–
281. doi:10.1002/atr.208. 

Newell, G.F., 1993. A simplified theory of kinematic waves in highway traffic, part II: 
Queueing at freeway bottlenecks. Transp. Res. Part B Methodol. 27, 289–303. 

doi:10.1016/0191-2615(93)90039-D. 
Payne, H.J., Thompson, W.A., 1975. Traffic assignment on transportation networks with 

capacity constraints and queueing. In: Paper Presented at the 47th National ORSA 

Meeting/TIMS 1975 North-American Meeting, Chicago, IL. 
Raadsen, M.P.H., Bliemer, M.C.J., in press. Continuous-time general link transmission model 

with simplified fanning, part II: Event based algorithm for networks. Transp. Res. Part B 
Methodol. 0, 1–31. doi:https://doi.org/10.1016/j.trb.2018.01.003. 

Raadsen, M.P.H., Bliemer, M.C.J., Bell, M.G.H., 2016. An efficient and exact event-based 

algorithm for solving simplified first order dynamic network loading problems in 
continuous time. Transp. Res. Part B Methodol. 92, 191–210. 

doi:10.1016/j.trb.2015.08.004. 
Richards, P.I., 1956. Shock Waves on the Highway. Oper. Res. 4, 42–51. 

doi:10.1287/opre.4.1.42. 

Smith, M.J., 2013. A link-based elastic demand equilibrium model with capacity constraints 
and queueing delays. Transp. Res. Part C Emerg. Technol. 29, 131–147. 

doi:10.1016/j.trc.2012.04.011. 
Smith, M.J., Huang, W., Viti, F., 2013. Equilibrium in Capacitated Network Models with 

Queueing Delays, Queue-storage, Blocking Back and Control. Procedia - Soc. Behav. Sci. 

80, 860–879. doi:10.1016/j.sbspro.2013.05.047. 
Smith, M.J., 1987. Traffic control and traffic assignment in a signal-controlled network with 

queueing, in: Gartner, N.H., Wilson M. (Eds.), Proceedings of the Tenth Internationa l 
Symposium on Transportation and Traffic Theory. Elsevier, pp. 61–68. 

Szeto, W.Y., Lo, H.K., 2005. Properties of dynamic traffic assignment with physical queues. 

J. East. Asia Soc. Transp. Stud. 6, 2108–2123. 
van Vliet, D., 1982. SATURN: a modern assignment model. Traffic Eng. Control 23, 575–581. 



Steady-state link travel time methods: formulation, derivation, and classification 

Raadsen and Bliemer 

28 

 

Wie, B., Tobin, R., Friesz, T.L., 1994. The augmented Lagrangian method for solving dynamic 
network traffic assignment models in discrete time. Transp. Sci. 28, 204–220. 

Yang, H., Yagar, S., 1994. Traffic assignment and traffic control in general freeway-arteria l 
corridor systems. Transp. Res. Part B Methodol. 28, 463–486. doi:10.1016/0191-

2615(94)90015-9. 
Yperman, I., 2007. The Link Transmission Model for Dynamic Network Loading. Katholieke 

Universiteit Leuven. 


