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1. Introduction1 

Following the accidents at the Fukushima nuclear power plants in Japan in 2011, there was a shift 

towards the use of non-nuclear energy in electricity generation which includes both fossil fuels 

(natural gas, coal, and oil) as well as renewable (hydro, wind, solar, geothermal) energy. This shift 

can have significant impacts on the environment (in terms of CO2 emissions) as well as on the 

welfare of consumers (in terms of higher electricity prices). To understand these impacts, it is 

important that the scope and mechanism of substitution between different types of electricity 

generation technologies be properly understood. Up to now, models which are used for the study 

of this type of substitution are often ‘bottom-up’ partial equilibrium models which assume that 

outputs from these technologies are perfectly substitutable, but given the different capacities of 

these technologies in the short run and their different marginal running costs, their utilizations will 

depend on a ‘merit order’ (i.e. lowest marginal running cost capacities will be utilized first, then 

the next more expensive ones, until the most expensive (marginal) capacity is utilized to meet with 

a certain level of (total) demand. Such a ‘partial equilibrium’ approach may describe well the 

competition between different technologies in the short run but often leaves the levels of capacities 

for the long run unexplained. A ‘top-down’ general equilibrium model, on the other hand, may be 

able to explain the long run demand for capacities in terms, not only of short run marginal running 

costs, but also of long run marginal capital (i.e. capacity) costs. However, such a model is often 

highly aggregate, assuming only a single electricity sector with little description of the 

technologies involved. When the model is disaggregated into various ‘sub-sectors’ each to 

represent a different technology, a different issue arises and that is: how to re-aggregate the outputs 

of different technologies to add up to the total output of the single electricity sector. If the outputs 

of these technologies are assumed to be perfectly substitutable (which is reasonable since 

electricity is a homogenous commodity) then the outputs of these technologies can be simply 

added up to a total output. But perfect substitution poses a different challenge: ‘corner’ solution 

and how to overcome this. A bottom-up linear programming approach handles this issue by the 

assumption of fixed capacities for different types of technologies, and hence no single technology 

                                                 
1 An earlier version of this paper was presented at the 2nd International Conference on “Energy, Regional Integration 

and Socio-Economic Development” in Baku, Azerbaijan. 1-3 Oct 2014. 
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can cope with the total demand for electricity output, but fixed capacities (and the associated 

mathematical problem of mixed complementarities) are not easily handled within the neoclassical 

framework of a top-down CGE model, therefore a ‘conventional’ approach is to assume that 

electricity outputs from different technologies are only imperfectly substitutable so that they can 

be considered as though intermediate inputs into a neoclassical production function (such as 

CRESH) or as imperfect choices in a probabilistic market share function (such as LOGIT)2 and 

then let these functions the selection of outputs from different sources (i.e. technologies). But the 

assumption of imperfect substitution (or imperfect choices) is artificial, and not well explained, 

when considered in the context of empirical evidences (since electricity is a fairly homogenous 

product and their production cost structures are fairly deterministic). For example, attempts at 

explaining the imperfect substitutability of the outputs in terms of the different transmission and 

distribution costs, or different ‘availability factors’ and/or supply characteristics (‘intermittency, 

etc.) of the supplied outputs cannot be sustained. Firstly, transmission and distribution activities 

should be considered as part of the secondary (or ‘margin’) activities rather than the primary 

(generation or production) activities.3 Transmission and distribution costs will often affect the final 

consumer’s or purchaser’s price but not producer’s price. Secondly, if different technologies have 

different ‘availability factors’ and/or ‘intermittency’ characteristics, then this must be taken into 

consideration but as part of the determination of the quantities of their outputs rather than their 

‘qualities’. Confounding these issues can lead to artificiality and inaccuracies. For example, 

suppose that wind (or solar) electricity is available only for certain time periods. This may or may 

not affect the ‘quality’ (i.e. ‘value’) of supply, and even if it does, the effect may not always be in 

the same direction. Thus, if supply is available only during peak hours, then the effect would be 

different than if it is available only during off-peak periods. The values of the outputs in these cases 

                                                 
2 In the case of CRESH, this is the so-called ‘technology bundle’ approach first used in the MEGABARE model 

(ABARE (1996)) and subsequently also adopted in many other models (see Cai and Arora (2015) for a good review 

of this approach). In the case of LOGIT, this function strictly is not a ‘production function but rather a ‘market share’ 

function, i.e. outputs are still assumed to be perfectly substitutable, but the costs of production are not directly 

‘substitutable’ or comparable because they are ‘probabilistic’. Clarke and Edmonds (1993) for example assumed that 

the costs of (steel) production are probabilistic due to the problem of ‘geographical heterogeneity’. Probabilistic 

discrete choice function (such as LOGIT) is often used in the context of discrete individual choice, where the 

‘attributes’ of the individual consumers are unobservable, and hence their utilities are assumed to be probabilistically 

distributed. In the case of technological choice, the interpretation must be different: here it is the ‘unobserved 

attributes’ or characteristics of the supply cost functions that makes the choices between these alternative supply 

sources ‘imperfect’.  
3 In fact, most models, including our approach, will treat these activities as separate rather than as a single activity. 
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are influenced, not by their supply ‘qualities’ but rather by the levels of demand during these 

different periods.  

Because of this conceptual4 difficulty associated with the assumption of imperfect substitutability 

between electricity outputs, in this paper, we retain the conventional assumption (in a ‘bottom-up’ 

linear programming approach) that electricity outputs from different technologies are perfectly 

substitutable. However, we recognize the ‘imperfect substitutability’ between the technologies that 

produce these outputs, and this imperfect substitutability arises not from the ‘qualities’ of their 

outputs but rather from the different engineering as well as economic characteristics of the 

capacities which are used to produce these outputs. It can be said that ex-post electricity outputs 

are perfectly substitutable once produced, but ex-ante (i.e. in consideration of the types of 

technologies (or types of capacities) used to produce them; the choices between these capacities 

are only ‘imperfectly substitutable’. Furthermore, the choices between the different types of 

capacities are also conditional on the particular types of electricity demand (i.e. electric ‘loads’) 

which are to be satisfied, and these types of demand loads are also imperfectly substitutable. In 

short, while electricity outputs are highly substitutable, their means of production are only 

imperfectly substitutable.  

The plan of the paper is as follows. Section 2 presents a theoretical analysis of the electricity sector 

with different features of demand and supply in electricity generation as well as different structures 

of the electricity supply market taken into account. Section 3 then applies this analysis to an 

empirical study of the Japanese electricity market to see how the imposition of various climate 

change and/or energy policies in Japan can impact on the electricity sector, especially after the 

                                                 
4 There is another more practical issue and that is the problem of  non-addability of all the quantities of electricity 

outputs from different technologies into that of the sector as a whole when using an aggregate production function 

such as CRESH or CES (or in the case of a LOGIT market share function, non-addability of all the technology costs 

into the total cost of the sector as a whole because of the probabilistic nature of the cost functions). This ‘adding up’ 

problem, however, is a relatively minor issue because it can always be resolved either by an ‘adjustment’ factor, or by 

the use of a so-called ‘volume preserving’ production function such as ACES (see Dixon and Rimmer (2003)) This 

type of function has been used in the context of land-use and labour market specification (see Giesecke et al. (2013), 

Dixon and Rimmer (2003, 2006)). The problem, however, is more conceptual than practical because there is a 

significant difference between the assumption of ‘imperfect substitutability’ between land or labour inputs (which are 

seen to be heterogeneous commodities) and the assumption of ‘imperfect substitutability’ between electricity outputs 

(which are seen to be more homogeneous). 
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Fukushima nuclear incidences. Section 4 concludes the paper and gives some suggestions for 

future extensions. 

2. Theoretical analysis of the electricity supply sector 

Electricity has some special characteristics which makes a study of the electricity market rather 

different from a study of other markets. Firstly, electricity is a non-storable commodity5 therefore 

this imposes a special restriction on production activity: output at any time cannot exceed capacity 

of production. Secondly, electricity demand is highly variable in the short run (daily) as well as in 

the medium or long run (seasonally or yearly). This means the issue of capacity planning to meet 

with different types of demand (referred to as ‘loads’) must often be considered as joint decision 

with the issue of output allocation. Traditionally in the literature, these joint issues of capacity and 

output decisions are often discussed under the heading of ‘peak load’ pricing and investment rules 

where, firstly, total electricity demand is divided into different types of loads which together will 

make up a  so-called ‘load duration curve’ (see Figure 1). From this load duration curve, demand 

at different periods of time can then be identified as consisting of many kinds of loads each to be 

looked after by different types of capacities.6 These capacities are then considered as suitably 

constructed from different types of technologies, each with a different set of engineering as well 

as economic characteristics. For example, base load capacities (typically constructed from coal or 

nuclear technologies) would have high per unit capital costs but low running costs. In contrast 

peak load capacities (normally constructed from oil or gas technologies) would have low per unit 

capital costs but high running costs. Intermediate between these two types are ‘intermediate load 

capacities’ using technologies such as hydroelectric or geothermal. A theoretical concept which 

has been used to capture the engineering and economic characteristics of these different types of 

capacities is the so-called ‘load factor’. Engineers define the load factor (of a machine, plant, or 

system) as the ratio of the average power to the maximum power during a certain period of time. 

                                                 
5 Even if storable, the cost of storing electricity is large hence it is impractical (and expensive) to consider storing 

electricity as a means to circumvent the production-capacity constraint. In this respect, electricity is similar to other 

services (including for example transport as a service) even though electricity is a commodity rather than a service. 
6 Although different types of capacities are often associated with different types of demand e.g. (peak capacity for 

peak demand, base capacity for base demand, etc.) the correspondence between capacity type and demand type is not 

one-on-one. Thus, for example, gas-type capacity can be used to satisfy both peak demand as well as base demand, 

wind powered electricity or solar-powered electricity can be used to satisfy either base load or peak load, but 

depending on the timing of their output availability in particular regions. 
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This factor compares the average rate of output to the maximum rate and it can be used to indicate 

the extent of the ‘reserve power’ still held by a machinery while running. Such reserve power can 

then be used to indicate the extent of ‘reliability’ or ‘certainty-of-supply’ which can be expected 

from the machine. Seen from an economic point of view, however, the concept of load factor can 

be used to indicate the level of economic efficiency or productivity being associated with a 

particular type of capacity. Therefore, this concept can be used as a parameter or variable in the 

problem of production optimization (in the short run) or capacity planning (in the long run).7 

Let Ki, i={1,2,3} stand for the base load, intermediate load and peak load capacities respectively, 

and let Qi, i={1,2,3} be the total outputs generated by these capacities during the total time period 

T of the load duration curve. The ‘load factors’ for these capacities can then be defined as 

 i=Qi/[KiT]. For example, if Ki is in megawatts (MW), T is in hours (h) then the maximum output 

that can be produced from capacity Ki in T hours is [KiT] in megawatt-hours (MWh). If the actual 

output produced from such capacity (measured by the area of the load duration curve covered by 

capacity Ki) is only Qi < KiT then the load factor is i=Qi/[KiT] <1. It can be seen from Figure 1 

that the load factor for a base load capacity is usually large relative to that of an intermediate or 

peak load capacity. 

Let ri be the marginal running costs associated with capacity Ki and ci be the marginal capital rental 

cost of this capacity.8 The total marginal cost of producing a unit of output from capacity Ki over 

                                                 
7 Load factor is not the same thing as ‘capacity factor’ which is purely an engineering factor and which defines the 

ratio of average unrestricted output of a machine relative to the maximum (‘rated’) output. Capacity factor is a ‘supply’ 

characteristic of a machine not dependent on demand, while load factor is both a supply characteristic and also an 

indicator of demand level. A capacity factor can be less than 100% if the machine needs regular shut down for 

maintenance and/or repair, or if (in the case of hydroelectric, wind, or solar powered generation plants) the ‘inputs’ 

required for the operation of the machine is not available at all times. In this latter case, the concept of an ‘availability 

factor’ can be used in place of ‘capacity factor’. Both of these concepts, however, relate only to the supply side. On 

the demand side, a similar concept of ‘demand factor’ has also been used to describe the ratio of the average power 

demanded by a system of consumer-operated machineries relative to the maximum power which can demanded if all 

machineries are turned on together at the same time and at full capacity. Capacity factor and demand factor are only 

‘partial equilibrium’ concepts, relating either to the supply, or to the demand side, but ‘load factor’ is a genuine 

‘general equilibrium’ concept relating both to the supply side (engineering characteristics) as well as demand side 

(load characteristics). Thus, this is perhaps the reason why Watkins (1915) exclaimed: “We owe the term [load factor] 

to the electrical engineers. But it is not impossible that economists will prove the better interpreters of an idea that 

relates so definitely to economic technology”. 
8 If both ri and ci are constants then they can also be referred to as the average or per unit running and capital costs 

respectively. Constant ri implies there is no diminishing returns in the short run, while constant ci implies there is 

‘constant returns to scale’ (CRTS) in the long run. In practice, ri can consist of things like materials, fuels, and labour 

costs associated with the production of a marginal unit of output while ci can be measured by the so-called ‘levelised 
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the production time period T is therefore given by [ri+ci/(iT)] where the first part ri is also referred 

to as the ‘short run’ marginal cost (SRMC)9 and the second part (ci/(iT) is referred to as the 

‘effective’ marginal capital cost (MCC).10 The sum of these two cost components then defines the 

‘long run’ marginal cost (LRMC) and this is the cost to be considered in the long run optimization 

of capacity. The LRMC is therefore seen to be dependent on the load factor i while the SRMC is 

not. 

                                                 
capital cost’ which is the ‘rental’ cost of a unit of capital of type i (to be distinguished from the capital price or per 

unit construction costs of capital). 
9 Since in the short run, capacity is assumed to be fixed, its costs do not enter into the marginal (i.e. variable) cost 

calculation. 
10 Note that ri will be measured in ($/kWh) while ci is in ($/kW), therefore (ci/T) is in ($/kWh) and i is a dimensionless 

ratio used to convert the actual installed capacity cost ci into effective (i.e. utilized) capacity cost. 
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Figure 2  

Cost curves for a technology with constant returns to scale in the long-run and capital is divisible 

(i.e. continuously variable). 

D2 

P* 

Q1 

D1 

E 

P1 

Price/ 

Costs 

SRMC 

SRATC 

QE 

LRMC = min SRATC 

Quantity (electricity) 

B’ 

P2 

DLR 

B 

MCC 



Disaggregating the electricity sector in a CGE model to allow competition theory to explain the introduction of 

new technologies to the sector 

Truong P. Truong and Hiroshi Hamasaki 

 

9 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Capacity utilization and production level in the electricity generation market 

 

  

  

  

SRMC 

LRMC 

D3 

g 

f e 
d c 

a b r3 
r2 r1 

Cave 
P 

Price 

($/kWh) 

D2  

C3 
D1  

K1  
(Base) 

K2 
(Intermediate) 

Capacity 

(kW) 

K3  

(Peak) 

Cost 

($/kW) 

C2 

D 

Production 

(kWh) 

Q 

C1 



Disaggregating the electricity sector in a CGE model to allow competition theory to explain the introduction of 

new technologies to the sector 

Truong P. Truong and Hiroshi Hamasaki 

 

10 

 

2.1 Constant returns to scale in production and perfect competition in the market 

Now consider the case of an electricity supply technology with constant returns to scale (CRTS) 

operating in a perfectly competitive (PC) market. CRTS implies the long run marginal cost 

(LRMC) of production is constant (while short run marginal cost can be increasing with production 

level due to diminishing returns in the short run).11 For simplicity, assume that the SRMC is a 

constant hence average variable cost (AVC) will also be a constant. Short run average total cost 

(SRATC) therefore will be a decreasing function of production with the minimum being at the 

point of maximum capacity utilization where LRMC = SRMC + MCC (see Figure 2). If demand 

in the short run falls short of the maximum capacity utilization level (e.g. D1 in Figure 2) then to 

ensure that capacity is utilized to the full extent possible, price may need to fall below the level of 

LRMC to reach the level of SRMC (e.g. P1 in Figure 2). On the other hand, if demand far exceeds 

capacity in the short run then the price level may need to rise above the LRMC (e.g. to P2 in Figure 

2) to ration demand to existing capacity. Only when demand is equal exactly to long run 

equilibrium level (assumed to be DLR in Figure 2) that the competitive pricing rule P = LRMC will 

result in both full cost recovery for the supplier and also market equilibrium. 

Now, assume that total electricity demand on average is represented by a demand curve such as D 

on the right hand diagram of Figure 3. Since actual demand is highly fluctuating and is assumed 

to consist of different types or ‘loads’, the (instantaneous) level of demand can be assumed to be 

represented by different demand curves such as D1 (when only the ‘base’ load is present), D2 (when 

both the ‘base’ and ‘intermediate’ loads are present), or D3 (when the ‘peak’ load is also present). 

These are represented in the left diagram of Figure 3 with demand (i.e. output units in kWh) being 

converted into capacity unit (kW). To cater for the different types (and therefore levels) of demand, 

supply capacities are also categorized into different types: ‘base’, ‘intermediate’, and ‘peak’ 

capacities.12 If these capacities are now ‘ordered’ along the horizontal axis according to their levels 

                                                 
11 LRMC is defined as the minimum of all SRATC (short run average total cost) as the level of ‘scale’ or capacity is 

continuously varied. SRATC is the sum of average fixed cost (AFC) and average variable cost (AVC). 
12 In practice, there is also a special type of capacity called “always turned on” which applies to the case of some 

renewable energy technologies (such as solar, wind, etc.). These capacities are “always turned on’ because the outputs 

from these capacities are not subject to the supplier’s decision but are conditional on the natural environment 

(availability of sunlight, wind, etc.), therefore they must be left ‘turned on’ (except when under repair or maintenance). 
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of increasing LRMC costs, then the overall LRMC curve can be said to represent the ‘supply curve’ 

(of capacity) for the electricity market.13 Capacity planning therefore implies the following 

optimisation problem: 

 +=+=
i

iiii

i

iiiitot
K

KcTrKcQrC
i

][][ Minimise        (1) 

tot

i

i KK   s.t.             (2) 

where Ctot is the total production cost over the production time period T and Ktot is the (minimum) 

total capacity required to satisfy demand at all times for the period T; Ki, i={1,2,3} are the ‘optimal’ 

levels of capacities for different types. The first order condition for optimality gives:14 

.3,2,1;][/ ==+= icTrKC iiiitot           (3) 

where  is the Lagrange multiplier associated with the total capacity constraint (2). Equation (3) 

can be interpreted as the requirement that at optimality the LRMC of supply (for a unit of capacity) 

must be equal to the ‘shadow value’ of capacity, i.e.  for any type of capacity To determine the 

value of  multiply both sides of equation (3) with K i and sum up over all i’s, we have: 

tottottottot CKFV ==+             (4) 
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The concept of ‘load factor’ in this case is replaced by the concept of ‘availability factor’, i.e. the percentage of the 

total time when output is available from this type of capacity. 
13 For simplicity, it is assumed in Figure 3 that each capacity of a particular type (e.g. base capacity) has a single and 

constant LRMC curve but in practice, each LRMC curve can be upward-sloping and also consisting of different types 

dependent on the particular type of technology used. Hence instead of a simple step function as shown in Figure 3, 

the actual LRMC can be of multi steps or smoothly upward sloping. This, however, will not change the main 

arguments of the analysis. 
14 Strictly speaking, the values of i’s can be seen to be related to the choices of Ki’s for any given load duration curve, 

therefore, although the optimization problem of (1)-(2) is formulated in terms of the values of Ki’s, the optimal results 

can be formulated in terms of the values of i’s rather than Ki’s. 
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The values of Vtot and Ftot can be referred to as the total variable (i.e. running) and total fixed (i.e. 

capital) costs respectively and equation (4) says that with optimal capacities Ki’s being chosen, the 

shadow value of capacity will be given simply by the total effective utilization cost per unit of 

capacity, i.e. (Ctot/Ktot). From the values of ri, ci, and , equations (3) can be used to determine the 

optimal values of the load factors i’s (and hence the optimal values of i’s) as follows. First, 

assume that one of the load factors can be chosen as a ‘reference’ parameter, R (for example, 

choose the load factor for the base capacity as a ‘reference’ parameter, i.e. 1=R). Other load 

factors can then be determined relative to this reference parameter using equation (3):  

.]1))/()()[(/(

]1)/())[(/(/

RiQrKccrr

Trccrr

RRRiRiR

RRiRiRRi

+−=

+−=        (6) 

From equation (6) the (optimal) levels of the load factors can be determined relative to an assumed 

load factor of a ‘reference’ capacity, i.e. R . The find the absolute levels of all the optimal load 

factors, it is necessary to refer to the actual level of the load duration curve. Thus, for example, 

assuming that 
)0(

R
  is the initial value of the load factor assumed for the reference capacity. From 

equation (6), the (relative) optimal load factors for all other capacities can be estimated. Refer to 

these as 
)0(

i  and calculate the total outputs produced from all capacities, as  =
i iii i TKQ )( )0()0( 

. Clearly, it is unlikely that this total will happen to be equal to the actual level i iQ  as derived 

from the load duration curve, therefore we write:  =
i iii i TKQ )( )0( where 1 . We then 

iterate the next level of the reference load factor as )0()1(

RR  =  and re-estimate all the non-

reference load factors using (6) again. Repeat this process until the value of   gets close to 1.15 

With equation (6), it can be seen that if ri0 then the optimal load factor for capacity i should be 

considered as ‘infinite’. This can correspond to the case of some renewable electricity technologies 

such as wind or solar electricity where running cost is practically zero because there is no fuel cost. 

                                                 
15 We carry out this iteration in one of our experiments (see section 3 below) and the value of   is seen to converge 

fairly quickly, from .858 to .972 in just two iterations, and then .994 and .999 if the iterations continue. Furthermore, 

it was also observed that the final absolute values of the optimal load factors are not dependent on the initial choice 

of a ‘reference’ load factor. In our experiment, we can choose either coal or oil technologies as a ‘reference’ case 

without changing the final results. 
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In practice, however, ‘infinite’ load factor implies capacity should ‘always be left on’16 which 

means it is excluded from the optimization problem of equation (1). Therefore, equation (6) in fact 

applies only to those capacities which have ri>0. In these cases, if we compare two different types 

of capacities with ri>rR but ci<cR (for example, comparing oil-based and gas-based electricity to 

coal based electricity), equation (6) will say that iR and this makes sense. On the other hand, if 

ri<rR and ci<cR (for example, the case of biomass or waste-based electricity as compared to coal 

based electricity), equation (6) will say i>R which is also reasonable. Finally, for the intermediate 

case of ri<rR but ci>cR (for example, the case of nuclear electricity versus coal-based electricity), 

equation (6) cannot say definitely whether i>R or i<R and this depends on the relative 

magnitudes of ci and cR. This is also reasonable. Therefore, all of this can show that equation (6) 

is indeed a reasonable criterion for guiding the decisions on outputs of different technologies to 

meet with electricity demand in the short run (given fixed capacities). Alternatively, it can also be 

used in the long run to plan for capacities as shown below. 

In the short run when capacities (Ki’s) are fixed, output allocation will be guided mainly by the 

relative values of the short run marginal costs (ri’s). If some of these costs are changed (for 

example, following the imposition of a climate change policy which puts a tax on the emissions of 

CO2 in some technologies), the optimal load factors for these technologies will also change. The 

change in the optimal load factors can be used to guide production changes in the short run when 

capacities are fixed. This can be explained as follows.  

Let K={i} be the set of technologies (also used to denote the set of capacity), and let D={j} denote 

the set of demand categories.17 Let A={Aij} be a matrix which describes the proportion of total 

capacity which is of type i and used to cater for demand of type j. We can also define a 

                                                 
16 See footnote 13. In fact, with renewable electricity, the ‘load factor’ is not a relevant parameter and therefore, it is 

replaced by the so-called ‘availability factor’ which is an exogenous parameter rather than one being determined 

endogenously by optimization 
17 Up to now, it has been assumed that different capacity types are used to cater for different demand categories (‘loads’ 

type). However, the match between capacity types and demand loads is not one-to-one, hence the different sets K and 

D. 
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corresponding matrix B={ i Aij/
i j

iji A }={Bij} which will represent the proportion of total 

output or production which is from capacity i and used to cater for demand of type j. We then have: 

j
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ij

i j
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i

iji

D

j BBAAS ===   /)(        (7a) 
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j
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i j
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i BASS        (7c) 

where )/( SS

i

S

i QQS =  is the proportion of total output (supply) coming from technology (capacity) 

of type i, and )/( DD

j

D

j QQS =  is the proportion of total demand belonging to category j. These 

proportions are given by the column sum and row sum respectively of the B matrix as seen from 

equations (7a) and (7b). For equilibrium between supply and demand, we also have: QQQ SD ==

. 

Let 
SS Qdq ln=  be the log-change in total supply and S

i

S

i Qdq ln=  be the log-change in supply 

from capacity of type i. We have: 
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         (8) 

Similarly, let 
D

j

D

j Qdq ln=  be the log-change in demand of category j, and 
DD Qdq ln=  be the 

log-change in total demand.18  We have: 

                                                 
18 

DQ  is the total area under the load duration curve, and 
D

jQ  is the component area covered only by the specific 

demand load of type j (see Figure 1). 
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In the short run when capacity is fixed, we simply have: 
i

S

i

S

i dQdq lnln == . If we now define 

the optimal change in production as one being guided by the change in optimal load factor, then 

we can set *lnln ii

S

i ddq  +==  where   is a constant.19 Now we can consider market 

equilibrium between total demand and total supply changes i.e. qqq DS == . From equations (8) 

and (9), we have: 

 =
i j

S

iij

j i

D

jij qBqB           

or 

 +==
i

i

S

i

i

S

i

S

i

j

D

j

D

j dSqSqS *ln         (10) 

Equation (10) can be used to determine the equilibrium value for   which is then used to determine 

the optimal supply from various capacities as given by the relationship .lnln *

ii

S

i ddq  +==
 

Consider, for example, a simple situation where demand from various categories change by the 

same proportion20 (which is also equal to the proportionate change in total demand), i.e. 

.; jqq DD

j =  In this case equation (10) can be re-written as: 

−=
i

i

S

i

D dSq *ln            (11) 

                                                 
19 The reason for this constant is simply to ensure equilibrium between total supply and total demand. We also note 

that, as explained under equation (6), optimal load factor is a relative index between different capacities, therefore, to 

determine its absolute level, reference must be made to a specific market equilibrium condition, and this constant 

plays the role of a ‘scale factor’ to determine the absolute (‘equilibrium’) levels of the optimal load factors.  
20 i.e. the ‘shape’ of the load duration curve remains the same even if the absolute level of the curve has shifted. In 

this case, it can be assumed that the ‘structure’ of underlying demand loads (i.e. shapes of individual load curves) have 

remained the same, and this means the quantity shares of all the loads stay the same, not only for the overall time 

period, but also for specific individual time-periods. 



Disaggregating the electricity sector in a CGE model to allow competition theory to explain the introduction of 

new technologies to the sector 

Truong P. Truong and Hiroshi Hamasaki 

 

16 

i.e. the value of   is given simply by the difference between the log-change in total demand Dq  

and the quantity share-weighted log changes in optimal load factors.  

For the long run, when capacities can be changed, the planning for different capacities can proceed 

as follows. Firstly, we note that optimal load factors can change in the long run not only due to 

expected changes in running costs in the future but also to changes in marginal capital costs (see 

equation (6)). Secondly, demand levels in the future are also expected to change. Therefore, 

capacity changes in the future can be given by the following relation: 

*

**

ln])[/1(

lnlnlnln

i
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i
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ii

S

ii

dqBqS

dqdQdKd
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−−=

−=−=




      (12) 

In the simple case when it is assumed ,; jqqqq SDD

j ===
 
equation (12) can reduce to: 
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dq

dqSqSKd





−=

−−= 
       (13) 

Equation (12) can be used to determine the level of planning for capacity of various technologies, 

depending on the changes in the level of their optimal load factors in the long run, as well as on 

the predicted changes in the level of demand for electricity of various categories. This equation 

gives more details as to the (‘bottom-up’) factors that can affect investment in a particular type of 

technology/capacity as compared to a the more ‘general’ approach of a conventional top-down 

model. In the latter case, the concern is often focused only on a ‘rate of return’ to capital investment 

– usually applicable to the whole electricity sector rather than to any particular technology, and no 

details are mentioned of the technological factors (such as load factor optimization and constraints) 

or economic factors (such as demand variation and changes between different categories, i.e. the 

level and shape of the load duration curve). The new approach presented here thus can be regarded 

as an improvement, not only over the conventional ‘top-down’ approaches, but also over a standard 

bottom-up model where capacities are often assumed as fixed or given exogenously rather than 

being considered as factors which can be endogenous determined within the model.  
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2.2 Imperfect Competition 

So far, it has been assumed that the marginal capacity costs (ci) are constant for all capacity types, 

implying that all technologies are subject to constant returns to scale (CRTS) and furthermore 

capacity level Ki can be continuously varied (‘infinitely divisible’) so that it can correspond exactly 

to the optimal level as indicated by the intersection between the long run demand curve and LRMC 

curve (see Figure 2). In practice, however, some technologies may exhibit a certain degree of scale 

economies due to a number of factors. For example, these technologies may require large up front 

capital investments which cannot be divided into smaller (optimal) amount (problem of so-called 

capital indivisibility or ‘lumpiness’).21 In such a case, the actual installed capacity would tend to 

be larger22 than the optimal level  and this means the average long run total cost (ATC) will tend 

to be a decreasing function of production level rather than being a constant (at the minimum ATC 

level). In this case the LRMC (minimum long run ATC) will stay below the actual level of ATC 

and therefore competitive pricing rule (price = LRMC) cannot apply because such a pricing rule 

will result in producers running at a loss. Scale economies, on the other hand, imply some degree 

of ‘natural monopoly’ or market power (Baumol, 1977). This means instead of the competitive 

pricing rule, producers can mark-up the supply price over LRMC and control the level of 

production accordingly. The extent of this price mark-up will depend on the strength of the market 

power that each supplier possesses. Thus, for example, in a model which assumes one or two 

‘dominant’ suppliers among a group of ‘fringe competitors’23, the dominant suppliers are those 

who possess some degree of market power such that they together can act as though Cournot 

oligopolists restricting supply to raise the price above the LRMC level to maximize their profits. 

The Cournot oligopolists (as a group) will face with a demand curve which is ‘residual’ from the 

total market demand curve after subtracting the competitive supply curves (i.e. LRMC curves) of 

all the ‘fringe competitors’, i.e. we have: 

                                                 
21 The ‘lumpiness’ of capital or capacity can arise from factors other than technological. For example, coal-fired power 

stations may need to be located nearer to the source of coal supply (mines or ports) to minimize transport costs. Nuclear 

powered stations may need to be located nearer to the source of water supply (for cooling purposes). Both are also to 

be located further away from residential areas to conform to environmental regulations. This results in geographical 

concentration and hence in capital ‘lumpiness’ of these power plants. 
22 It can also be smaller, but for reason of security of supply (to avoid the problem of black out or brown out when 

demand temporarily exceeds normal total supply) it is more likely to be larger. 
23 This is the so-called ‘dominant versus fringe competitors’ model of electricity supply, often adopted in most 

‘bottom-up’ approaches, see for example, Cardell, Hitt, and Hogan (1997), Bonacina and Gulli (2007), Wolak (2007). 



Disaggregating the electricity sector in a CGE model to allow competition theory to explain the introduction of 

new technologies to the sector 

Truong P. Truong and Hiroshi Hamasaki 

 

18 

FL

Fj

j

Li

itot QQQQQ +=+= 
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         (14) 

where Qtot is the total level of demand for the market, Qi and Qj are the outputs of individual i and 

j respectively in the L- and F-groups (L stands for ‘Leaders’ and F stands for ‘Fringe’). Assuming 

that fringe competitors behave as perfect competitors, i.e. their output and capacity decisions will 

continue to be determined by the optimal relation: *lnln ii

S

i ddq  ==  as described in the 

previous section,24 this then leaves only the decisions of members of the L-group to be considered 

in this section. Since total QL is ‘given’ (as the ‘residual’ demand from Qtot after taking away the 

total output QF of the F-group), the only issue is how the Cournot oligopolists will share this total 

among themselves. Cournot oligopolists are known to maximize their own profits according to the 

following model: 

)().(),( iiiiiLiiQ QCQQQPQQMax i
i

−+=       (15) 

Here, ),( ii QQi is the profit function of the ith-member in the L-group, taking the level of 

production of all other members in this group, i.e. )( iLi QQQ −= , as given; )( iiL QQP +  is the 

inverse of the residual demand function, and Ci(.) is the total cost function for the i-producer. 

Assuming that both PL(.) and Ci(.) are differentiable, then the first-order condition for optimality 

is given by: 

0/)./( =−+ iiiiLL dQdCQQPP         (16) 

The first two terms on the left-hand side of the equation represent the marginal revenue from an 

additional unit of output, while the third term represents the marginal cost (MCi) of that output.25 

Given that each Cournot oligopolist takes the total outputs of all other members are given, this 

                                                 
24 In this case, there is no need for the adjustment constant   for the F-group because the supply by the L-group will 

act as a ‘residual’ which ensures total supply and demand are in equilibrium, because 
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jS  are relative shares within the L-

group and F-group respectively, i.e. 
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= ,  and 

S

kFk

S
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S
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= . 

25 Note that in contrast to the optimization problem (1) which is concerned with capacity planning (in the long run), 

optimization problem (15) is concerned only with profit maximisation in the short run, i.e. conditional on the given 

levels of capacities. Therefore, the value of dCi/dQi = MCi in equation (16) is to be interpreted as equal to the value of 

the short run (i.e. running) cost ri. 
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implies dQi=dQL, or )/()/( LLiL dQdPQP = . Equation (16) can then be written in an 

alternative form: 

)/(

)/)(/)(/(/)(

D

L

S

i

LLLLLiLiL

S

PQdQdPQQPMCP

=

−=−
     (17) 

Equation (17) says that a Cournot oligopolist’s price mark-up over its MC is proportional to its 

market26 share within the group (i.e. S

L

S

i

S

i QQS /= ) and inversely related to the price elasticity of 

the residual demand curve (i.e. 
D
L ). If MC is to change, for example following the imposition of 

some climate change or energy policies in the electricity sector, then the level of equilibrium 

supply price for the L-group as a whole will also change. This determines not only the supply price 

for the L-group but also for the F-group (since they are price-takers or price-followers), i.e. for the 

market as a whole. From equation (17), let i be the ratio (or power of change) of the MC for the 

i-supplier, i.e. iMCi is the ‘new’ marginal cost level compared to the ‘old’ level MCi. If similarly 

PL is defined as the ‘new’ equilibrium price for the L-group as a whole compared to the ‘old’ 

equilibrium price PL, then a relationship between  and the i’s can be determined as follows. Let 

iS and 
*
iS  be the ‘old’ and the ‘new’ shares for supplier i respectively following changes to the 

equilibrium price. From equation (16) we can write:27
 

iLiL

D

L SPMCP =− /)(           (18a) 

*)/()( iLiiL

D

L SPMCP =−           (18b) 

Summing over all i’s in equation (18a) and (18b) and noting that   
==

Li Li ii SS 1* , we have 
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or: 

                                                 
26 Note that this ‘market share’ is defined in terms of quantity rather than cost- or value share. See also footnotes 16 

and 18 above.  

27 Assuming that the price elasticity of demand for the residual demand curve 
D
L is an ‘arc-elasticity’, i.e. measured 

as an average over the two price situations. 
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Equation (20) says that  is simply the marginal-cost-weighted average of all the i ’s. Equation 

(20) can then be used to determine the new equilibrium price (for the L- group and the market as 

a whole), and given this equilibrium price, the outputs for members of the L- group can be 

determined accordingly. For example, equation (18a) can be used to ‘calibrate’ the value of the 

elasticity 
D
L  assuming an initial equilibrium price for the oligopolists (which is also the initial 

equilibrium price for the market). Given this elasticity value, equation (18b) then can be used to 

determine the new share 
*
iS  for the ith-member of the L-group.  

As an alternative to equation (20), we can also sum up equation (17) over the L-group to give: 
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where n is the number of members in the L-group. Equation (21) is equivalent to saying that the 

oligopolists as a whole acts as though as a monopolist, with price markup over the (average) 

marginal cost given by the inverse of the price elasticity of the (residual) demand curve. Equation 

(21b) can therefore be used to determine the (‘new’) equilibrium price 
LP  for the monopolist (and 

the market as a whole) following some policy ‘shocks’ to the marginal costs. Once this new 

equilibrium price is determined, the relative market shares between the oligopolists can then be 

determined via equation (17) or (18a)-(18b) as before. The relative market shares must of course 

be conditional on the feasibility of production levels given the (short run) fixed capacities of all 

the oligopolists. Therefore, we can impose the ‘feasibility’ constraints on these shares as follows: 
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The first term on the right hand side of equation (22) indicates the constraint that – given fixed 

capacity, production changes cannot exceed the change in (optimal) load factor. The terms within 

the square brackets on the right hand side of equation (22) stands for the change in ‘residual’ 

demand  (i.e. total ‘residual supply’ from of the L-group), taking into account changes in total 

supply ( SQd ln ) and changes in supply of the F-group. 
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Figure 4 

Strategic behaviour between (a) Cournot oligopolists price leaders (L) using technologies which have scale economies, and (b) 

perfectly competitive fringe suppliers (F) who use technologies which have no scale economies, in (c) the electricity market (graphs 

are not to scale). 
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3. Application to the case of Japan 

Electricity in Japan is produced from coal, oil, gas, nuclear energy and hydro power with some 

small proportions from renewable energy sources. To decompose the electricity sector in the 

GTAP v9 data base28 (Aguiar et al., 2016) into these different technologies, we use a methodology 

which can be described as follows. First we define the set of electricity generation technologies as 

consisting of those using coal, oil, gas, nuclear energy, hydro power, onshore wind, solar energy, 

biomass, waste, and other renewable energy (mainly geothermal). To facilitate a study into future 

usage of carbon capture and storage (CCS) technologies, we also add coal CCS, oil CCS, and gas 

CCS to the set of technologies by taking away 1% of the shares from coal, oil, and gas respectively 

and giving these to the CCS counterpart.29 Next, to distribute the values of the inputs into the 

electricity sector in the GTAP data base to these technologies, we make the following assumptions. 

a. Generation activities: generation activities are technology specific, therefore the distribution of 

fuels, capital, labour and non-fuel materials inputs into these technologies must vary according to 

the different cost structures of these technologies: 

i. Fuel inputs: All coal inputs into the electricity sector are assumed to go into the coal and 

coal-CCS technologies in proportion to their outputs30; similarly for gas as fuels into gas 

and gas-CCS technologies, and oil (and p_c) as fuels into oil and oil-CCS technologies. 

For nuclear technology, in principle, uranium should be considered as the main source of 

fuel into this technology. However, in practice, since there is no explicit ‘uranium’ 

commodity in the GTAP data base, a ‘proxy’ fuel must be found such that this can 

adequately represent the extent of fuel inputs into (and therefore, running costs of) this 

technology. First, we look at commodity ‘omn’ (other mining and minerals nec 

commodities) which is supposed to include ‘uranium’ within it, but in the GTAP data base, 

                                                 
28 We use GTAP v9 database but choose the base year as 2007 rather than 2011. This is because 2011 is the year of 

the Fukushima accidents and we want to use the model to test the impacts of the Fukushima accidents, hence 2011 

cannot be chosen as the base year. 
29 This small proportion will not affect greatly the accuracy of the initial data base but will allow the simulation of the 

growth of CCS technologies to be carried out because growth cannot occur on a zero initial basis. 
30 We assume that CCS technologies use 20% more fuels than non-CCS counterpart However, the emissions levels 

from CCS technologies are assumed to be 1/10 of the emissions from non-CCS counterparts, i.e. 9/10 of the emissions 

are ‘captured and stored’, see IPCC (2005). 
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‘omn’ makes up only a negligible value compared to the value of nuclear electricity output. 

Therefore, this cannot be a main fuel source for nuclear electricity. Next, we look at the 

‘p_c’ commodity (which is described as including also the ‘processing of nuclear fuel’). 

However, since almost all of the p_c commodity input into the electricity sector has been 

allocated to the oil and oil-CCS technologies (to make up the required ‘fuel-to-output’ 

ratios for these technologies), there is little left to be considered as significant input into 

other technologies. Therefore, we finally look at electricity as a potential candidate. 

Electricity input makes up about 10% of the value of total electricity output which is a 

significant figure that cannot be attributed simply to ‘own consumption’ or considered as 

part of the ‘transmission and distribution losses’. The only feasible alternative explanation 

for this level of electricity input is that it must have been used as part of the total fuels 

input into the production of nuclear electricity, e.g. used in the processing of uranium. We 

therefore allocate a significant part of this total electricity input into the electricity sector 

as fuels to the nuclear technology, to make up to a level of about 21% of the total value of 

the nuclear electricity technology output.31 The rest of the electricity input is then 

distributed to all other technologies (including ‘non-generation’ activities) in accordance 

with the values of their outputs. Finally, for the rest of other technologies, we make the 

following assumptions: (1) for Biomass technology, we assume that all ‘agricultural and 

forestry commodity inputs’ into the electricity sector can be regarded as ‘fuels’ for the 

Biomass technology; (2) for electricity produced from ‘waste’ (ElyWas), since ‘waste’ is 

in principle ‘a commodity of no value’, there is no explicit representation of the value of 

waste in the data base; however, ‘waste’ can be considered as part of the ‘margin’ 

commodity in the ‘trade and transport’ of commodities from producers to consumers, 

therefore, we assign a small proportion of this margin commodity to the ‘fuels input’ into 

the ElyWas technology to make up to a level of 10% of the total value of this technology 

output. 

ii. Capital inputs: we use the EIA (2013) and IEA/NEA/OECD (2010) information on 

‘overnight capital cost’ ($/kW) – see Table 1, and also information on installed capacities 

                                                 
31 21% is the empirically accepted value of fuel-to-output ratio in the nuclear electricity technology for Japan in 2007. 
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(Million kW) for electricity generation by various technologies in Japan32 to estimate the 

values of the capital stock ($US million) in these technologies. The ‘capital’ endowment 

input in the GTAP database, however, refers to the value of capital services rather than 

capital stock. However, if we assume that the values of capital services are also in 

proportion to the values of the capital stocks, then we can use the latter to distribute the 

former. For the total value of capital services associated with the generation of electricity 

(as versus in non-generation activities), we assume a proportion of 67.7% (i.e. 32.3% is 

the total value of capital services are assumed to be associated with non-generation 

activities). 

iii. Labour inputs: the EIA (2013) information on fixed ($/kW-yr) and variable ($/MWh) 

O&M (operation and maintenance) costs – see Table 1, together with the information on 

production outputs (billion kWh) of various technologies can be used to estimate the total 

value of O&M costs for each technology. Assuming that these costs would consist mainly 

of labour (and some material costs), the relative proportions of these costs for different 

technologies therefore can then be used to distribute the total value of labour endowment 

in the generation of electricity. Again, as in the case of capital services, we assume 67.7% 

of the total value of all labour inputs into the electricity sector is associated with generation 

activities (leaving 32.3% to be allocated to the non-generation activities). 

iv. Intermediate material inputs: non-fuel material inputs into the electricity sector can be 

allocated to generation and non-generation activities as follows. Firstly, as in the case of 

capital and labour inputs, we assume 32.3% of all non-fuel material inputs into the 

electricity sector are allocated to non-generation activities.33 The rest is then allocated to 

the generation technologies in such a way that the total supply prices of all technologies 

are in accordance with some empirically estimated relative supply price. 

b. Non-generation activities: As already mentioned above, 32.3% of the total value of capital, 

labour, and some non-fuel material inputs into the electricity sector output in Japan in 2007 are 

                                                 
32 http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=7. 
33 Except for ‘agricultural sector’ commodity inputs which have already been allocated to biomass technology, 

‘minerals’ which are allocated to nuclear technology, part of the margin commodities which are allocated to the 

electricity-from-waste technology. 

http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=7


Disaggregating the electricity sector in a CGE model to allow competition theory to explain the introduction of 

new technologies to the sector 

Truong P. Truong and Hiroshi Hamasaki 

 

26 

assumed to belong to non-generation activities. This makes up about 20.8% of the total value of 

the total electricity sector output (see Table 2). 

Table 1: Cost Characteristics of Electricity Generating Technologies in the US and Japan 

Code Technology 

Description 

EIA Specification 

 

Overnight 

Capital Cost 

($/kW) 

Fixed 

O&M 

Cost 

($/kW-yr) 

Variable 

O&M 

Cost 

($/MWh) 

ElyCoa Coal Scrubbed Coal New  2,719 31 4 

ElyOil Oil Conv. Gas/Oil Comb Cycle 915 13 4 

ElyGas Gas Advanced Gas/Oil CC  1,549 15 3 

ElyNu Nuclear Advanced Nuclear  5,501 93 2 

ElyHyd Hydro Conventional Hydroelectric  2,936 15 3 

ElyWon Wind Onshore Wind  2,213 40 0 

ElySol Solar Photovoltaic  3,564 25 0 

ElyBio Biomass Biomass CC 4,114 106 5 

ElyWas Waste Municipal Solid Waste 8,312 393 9 

ElyOth Other Renewables Geothermal 2,494 113 0 

CoaCCS Coal CCS Dual Unit Advanced PC with CCS 6,567 73 8 

OilCCS Oil CCS Advanced CC with CCS 2,084 32 7 

GasCCS Gas CCS Advanced CC with CCS 2,084 32 7 

Source: Figures for Japan are from IEA/NEA/OECD (2010) Table 3.1 and for the US are from EIA (2013), Cai and 

Arora (2015). 

 

Table 2: Output and cost components of the generating and non-generating activities in the 

electricity sector in Japan in 2007 

Technology Output 

share 

 

Output 

(Billion 

kWh) 

Capacity 

(Million 

kW) 

Capital  

($ mill.) 

Labour  

($ mill.) 

Natural 

Resource 

($ mill.) 

Fuels  

($ mill.) 

Non-

fuels  

($ mill.) 

Supply 

price 

($/kWh) 

ElyCoa 0.252 259.7 43.9 4310.1 3183.8 0 6904.5 7076.9 0.083 

ElyOil 0.130 134.0 78.6 2599.0 1641.6 0 26514.1 3650.8 0.257 

ElyGas 0.273 281.3 54.5 3050.5 2586.0 0 15636.9 7666.6 0.103 

ElyNu 0.256 263.8 47.5 9436.2 1624.3 0 4601.6 7189.2 0.087 

ElyHyd 0.076 78.3 47.3 4015.4 719.9 1004 161.5 2134.3 0.103 

ElyWON 0.0009 0.9 1.5 97.7 0.012 24 1.8 24.0 0.168 

ElySol 0.0007 0.7 1.9 197.7 0.005 49 1.4 18.4 0.394 

ElyBio 0.0055 5.6 2.1 316.1 86.4 0 13.4 153.5 0.101 

ElyWas 0.0020 2.1 0.8 237.4 58.0 0 63.3 57.1 0.199 

ElyOth 0.0010 1.0 0.5 38.4 0.040 10 2.1 27.9 0.076 

CoaCCS 0.0010 1.0 0.2 41.7 25.3 0 32.5 28.1 0.124 

OilCCS 0.0010 1.0 1.2 92.7 22.1 0 244.3 28.1 0.376 

GasCCS 0.0010 1.0 0.2 18.5 22.1 0 68.3 28.1 0.133 

Non-GEN(*)       8252.2 4756.5   754.4 13339.5 0.030 

Total 1.000 1030.5 280.3 32703.5 14726.1 1087.3 55000.1 41422.3 0.144 

(*): non-generation (transmission and distribution) activities. 
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From the output, capacity, and cost information in Table 2, we can calculate the actual load factor 

(ALF) for different technologies in Japan in 2007 and compare these with the theoretically 

‘optimal’ values (OLF) which are estimated using equation (6). These values are shown in Table 

3. It can be seen from this Table that the actual load factors for fossil fuel technologies (ElyCoa, 

ElyOil, ElyGas) are generally higher than their theoretical optimal values, whereas the opposite is 

true for nuclear, hydro and other renewable technologies.. This implies that fossil fuel technologies 

are being ‘over utilized’ inefficiently and the opposite is true for non-fossil fuel technologies. This 

information is useful because it indicates that (in the short run) there are rooms for reducing the 

use of fossil fuel technologies and increasing the use of non-fossil fuel technologies and this will 

in fact improve on the efficient utilization of existing capacities. 

Table 3: Actual and Optimal Load Factors for Different Generating Technologies in Japan in 

2007 

Technology Actual 

load factor 

(ALF) 

Optimal 

load factor 

(OLF)  

Availability 

factor 

(AF) 

Actual LF/ 

Optimal LF 

(ALF/OLF) 

Optimal LF/ 

Avail. Factor 

(OLF/AF) 

ElyCoa 0.676 0.560 0.9 1.21 0.62 

ElyOil 0.195 0.156 0.9 1.25 0.17 

ElyGas 0.589 0.402 0.9 1.47 0.45 

ElyNu 0.634 0.727 0.9 0.87 0.81 

ElyHyd 0.189 0.450 0.45 0.42 1.00 

ElyWon 0.066 0.250 0.25 0.26 1.00 

ElySol 0.040 0.120 0.12 0.34 1.00 

ElyBio 0.302 0.700 0.7 0.43 1.00 

ElyWas 0.302 0.434 0.7 0.70 0.62 

ElyOth 0.219 0.700 0.7 0.31 1.00 

CoaCCS 0.669 0.444 0.9 1.51 0.49 

OilCCS 0.096 0.129 0.9 0.74 0.14 

GasCCS 0.478 0.322 0.9 1.49 0.36 
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Having decomposed the electricity sector data for Japan into various technologies, the next step is 

to implement the theoretical structure of this sector (as explained in section 2) into a CGE model34 

and use this for various simulation experiments. The implementation consists of creating three 

options: (1) all technologies in the electricity sector are assumed to be subject to constant returns 

to scale and all suppliers are perfect competitors (see section 2.1), this option is referred to as the 

‘perfectly competitive’ (PC) scenario; (2) some technologies35 in the electricity sector are assumed 

to be market ‘leaders’, i.e. possessing some degree of market power due to the inherent ‘scale 

economies’ in their cost structures, and if these market leaders are assumed to act as though 

Cournot oligopolists (as described in section 2.2) then this option is referred to as the ‘imperfectly 

competitive’ (IC) scenario; (3) finally, to facilitate a comparison with a ‘conventional’ approach 

where the so-called ‘technology bundle’ approach (using a CRESH production function) is used, 

we also implement this approach in the model, and refer to this option as the ‘CRESH’ approach.36 

With a CRESH approach, there is the issue of value-preserving (i.e. sum of all the values of 

technology ‘inputs’ should equal the value of total electricity output) or ‘volume (or quantity)-

preserving’ (i.e. sum of all the quantities of technology ‘inputs’ should equal the total quantity of 

electricity output), therefore, we distinguish between these two cases by referring to them 

respectively as CRESHV (value-preserving) and CRESHQ (quantity-preserving) cases. 

Furthermore, a CRESH approach does not pay attention to the issue of capacity (i.e. ‘optimal’ load 

factor) constraint. Therefore, to facilitate a comparison with our approach, this restriction is also 

implemented as an option (L).37  

 

 

                                                 
34 We use the GTAP-E model (Burniaux and Truong, 2002) as a basic platform to implement this structure and the 

modified model is then referred to as GTAP-ETD for “GTAP-E model with electricity ‘Technology Decomposition’ 
35 The model is flexible with respect to this choice because in practice, different market situations in different countries 

or regions may have different sets of technologies which can play the role of ‘dominant’ suppliers. For the case of 

Japan, we assume that (after the Fukushima accidents) only coal, gas technologies can play this role. 
36 Details of this approach are given in the Appendix. 
37 This means ‘CRESHQ’ implies a standard CRESH approach with quantity-preserving restriction but no load-factor 

restriction. This means the load factor can exceed 1, which is infeasible. In our approach, we impose the restriction 

that load factor cannot exceed the ‘optimal’ value implied by equation (6). Therefore, only CRESHQL would be 

comparable with our approach. 
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Experiment 1: Japan’s heavy reliance on non-nuclear technologies following the Fukushima 

accidents 

After the accidents at the Fukushima nuclear power plants in Japan in March 2011, electricity 

generation in Japan had to rely mainly on natural gas, coal, and petroleum products with some 

small contribution from hydro and other renewable technologies to replace nuclear electricity 

capacity which was damaged in this accident (see Figure 5). To test the realism of our model in 

describing the Japanese electricity sector, we use the model to simulate a scenario of ‘Fukushima 

accidents’. To simulate this scenario, we shock the level of electricity generation capacity as well 

as output of nuclear technology by about -93% (this represents a fall in nuclear electricity output 

from a level of around 263.8 billion kWh in 2007 to a level of about 17.5 billion kWh in 2012 after 

the accident). We also shock the total level of electricity generation in Japan by about -8.7% 

(representing a fall in total electricity production from 1030.5 billion kWh in 2007 to 940.8 billion 

kWh in 2012). Note that in our model, we make a distinction between supply structure 

(composition of different types of capacities) and demand structure (composition of different types 

of demand), therefore an assumption must be made about the relationship between the two (i.e. 

structure of the A matrix as described in section 2.1).38 This is described in Table 4. We then let 

the model work out the various shares of all the technologies in the electricity market as well as 

estimating the possible increase in electricity price following these changes in supply capacity and 

outputs. The results are shown in Figures 6 and 7. 

In Figure 6, it can be seen that following the Fukushima accident, coal oil and gas (and also 

renewable) energy were used to replace nuclear energy in the generation of electricity and therefore 

the market shares for these technologies expanded. With a conventional CRESH approach, it 

seems all technologies (including hydro) will share in this expansion. However, with our new 

approach, it seems gas technology will enjoy the greatest expansion then followed by coal and oil. 

Hydro electricity does not expand as much as predicted by the CRESH approach. When we 

compare these model predictions with the actual data in 2013, it is clear that our model predictions 

are much closer to the actual result of 2013. Comparing the results of the PC and IC assumptions, 

it seems they are fairly close, although the outputs (and hence market shares) for gas and coal 

                                                 
38 The A matrix is given exogenously (and can be shocked) but the B matrix is endogenously determined because it 

depends on the optimal values of the load factors. 
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technologies (assumed to be ‘dominant’ players) are slightly less for the IC case as compared to 

the PC case. This is to be expected because suppliers with some market power would tend to 

restrict production output to raise the price level. This is confirmed in Figure 7 where the price 

increase for the IC case is slightly higher than that for the PC case (12.58% as compared to 

(12.55%) although  this difference is almost negligible (partly because this is the short run). The 

price increase for the case of CRESH approach seems to be the highest at 12.65% but only for the 

case of ‘quantity-preserving’ restriction (CRESHQ), otherwise, price increase would be smaller at 

(11%) if this restriction is not imposed (CRESHV). All the price increases by all approaches as 

predicted by the model do fall within the range of the actual price increases in 2012 when 

household experienced a price increase of 8% and industrial customers, 15%. These actual price 

increases continued to magnify through to 2013, when their values are nearly double of those in 

2012. All this seem to indicate that our model predictions are very much ‘short run’ predictions, 

and this is also to be expected.39   

                                                 
39 The ‘closure’ for our Fukushima experiment is a ‘short run’ one with all factor endowments assumed to remain 

unchanged and the only ‘shocks’ to the economy are those relating to capacity and total output of the electricity sector.  
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Figure 5 

Japan’s net electricity output by different technologies before and after the Fukushima accident in 

2011 
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Table 4: Shares of supply and demand categories in the electricity generation market for Japan 

in 2007 

Technology 

(supply options) 

Shares of demand categories supplied by each supply option category 

Peak Intermediate Base Total  

ElyCoa 0 0 0.157 0.157 
ElyOil 0.28 0 0 0.28 
ElyGas 0 0.194 0 0.194 
ElyNu 0 0 0.169 0.169 

ElyHyd 0 0 0.169 0.169 
ElyWon 0.002 0.001 0.002 0.005 
ElySol 0.005 0.002 0 0.007 
ElyBio 0 0 0.008 0.008 

ElyWas 0 0 0.003 0.003 

ElyOth 0 0 0.002 0.002 

CoaCCS 0 0 0.001 0.001 
OilCCS 0.004 0 0 0.004 

GasCCS 0 0.001 0 0.001 
Total  0.292 0.199 0.51 1 
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Figure 6 

Impacts of the Fukushima accidents: actual and predicted market shares for different electricity 

generating technologies in Japan before and after the accidents: (1) 2007 and 2013: actual shares, 

(2) CRESH: model predictions using the ‘technology bundle’ value-preserving (V), or quantity-

preserving (Q) constraints imposed, and/or also load factor (L) restriction; (3) PC: model 

prediction using the new approach with the ‘perfectly competitive’ market assumption; (4) IC: 

model prediction using the new approach with the ‘imperfectly competitive’ market assumption 

(with coal, gas, and nuclear technologies assumed to be ‘dominant’ players). 
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Figure 7 

Impacts of the Fukushima accidents: actual and predicted electricity price increases following the 

Fukushima accident: (1) 2012 and 2013: actual percentage price increases in 2012 and 2013 

respectively for household (HH) and industrial (IND) customers, (2) CRESH: model predictions 

using the ‘technology bundle’ approach with value-preserving (V), or quantity-preserving (Q) 

constraints imposed, and/or also load factor (L) restriction; (3) PC: model prediction using the new 

approach with the ‘perfectly competitive’ market assumption; and (4) IC: model prediction using 

the new approach with the ‘imperfectly competitive’ market assumption (with coal, gas, and 

nuclear technologies assumed as ‘dominant’ players). 
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Experiment 2: Japan’s Post-Kyoto commitments with and without an accompanying energy 

targeting policy 

Japan’s obligation under the Kyoto Protocol involves a cut back on CO2 emission levels by about 

31.8% (if measured from the 2007 emissions level). ‘Post Kyoto’, however, the target as aimed by 

the Government of Japan40 is to reduce CO2 emissions by about 26% (measured from the 2013 

level) and this is to be achieved by the year 2030. The government can impose this CO2 emissions 

target on the economy with or without an accompanying energy policy. It is expected that without 

an accompanying energy policy, the increase in market shares of non-fossil fuel based technologies 

will not be as great as to be able to replace for the reduction in the market share of nuclear based 

electricity. Therefore, the government also imposed some targets for energy shares for the year 

2030.41 These consist of : 20-24% share for renewable electricity (of which 1.0-1.1% is for 

geothermal, 3.7-4.6% is for Biomass, 1.7% is for wind energy 7% is for solar, and 8.6-9.2% is for 

hydro electricity); coal oil and gas shares will be 26%, 3% and 27% respectively, and finally, 

nuclear electricity will also be targeted to reach 20-22% by 2030. 

We can use our model to estimate what would be the economic cost (in terms of a carbon tax or 

emission price to be put on CO2 emissions level in Japan42 to achieve the climate change policy 

target, but also to estimate the impacts of the energy targeting policy on the climate policy. To do 

this, we first bring the data up-to-date to 2013 by shocking the levels of electricity generated by 

different technologies to the actual levels of 2013 and also shock the capacity level of nuclear 

electricity to the actual level in 2013 after the Fukushima accidents.43 Next, as estimated by the 

government, electricity generation (and consumption) would be increased by about 1.45% over 

the period 2013-2030, so this would be used as an exogenous shock for electricity generation in 

the model to reflect the ‘reference’ situation. The ‘Post-Kyoto’ climate policy scenario (CP) is then 

defined as the situation when the total level of CO2 emissions in 2030 would be reduced by 26% 

                                                 
40 See http://www.mofa.go.jp/press/release/press4e_000811.html.  
41 See http://www.meti.go.jp/press/2015/07/20150716004/20150716004_2.pdf.  
42 Emission levels and prices refer to all sectors of the Japanese economy and not just the electricity sector. In this 

paper, we assume that there is a domestic emission trading scheme imposed on the Japanese economy, therefore the 

emission price would be uniform across all sectors, but the cut back on emissions would be different across different 

sectors.   
43 This would be similar to the ‘Fukushima’ experiment except that here the market shares of different technologies 

would be exogenously shocked to bring them to the actual 2013 levels (whereas in the Fukushima experiment these 

market shares are endogenously determined and only the total level of production was exogenously shocked).   

http://www.mofa.go.jp/press/release/press4e_000811.html
http://www.meti.go.jp/press/2015/07/20150716004/20150716004_2.pdf
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below the 2013 level (but keeping the total amount of electricity generation and consumption in 

the economy at the same as in the ‘reference’ case). A CO2 tax can be imposed which would be 

regarded as the ‘price’ for achieving this total emission reduction. Figures 8-16 report on the results 

of our model simulations. 

Firstly, from Figure 8, it can be seen that our model’s prediction of what would happen to the 

market shares of different technologies when a climate change policy is imposed would depend on 

the types of approaches used. If a conventional technology bundle approach is used, the results 

seem to indicate that depending on whether a value-preserving (V) or a quantity-preserving (Q) 

option is chosen, the picture can be significantly different over the long run.44 A quantity-

preserving option may allow for the market shares of all technologies to vary more ‘freely’ than if 

a value-preserving option was chosen. Neither of these options, however, can guarantee that the 

variations in market shares (i.e. in production volumes) are always consistent with existing or 

future capacity constraints. Therefore, to guarantee this consistency, a ‘double’ restriction may be 

imposed, and that is, not only that quantities add up (or are ‘preserved’) but also the variations in 

production volumes are consistent with variations in capacities. This is implied in the ‘QL’ option, 

i.e. Quantity-preserving with Load factor constraint restriction imposed. When this ‘double 

restrictions’ are imposed, interestingly, the results then come back being closer to the original 

‘value-preserving’ option results. Furthermore, these results are also closer to the results of the 

new approach, in the sense that (i) expansion in nuclear technology is seen to be very limited, (ii) 

hydro and other renewable technologies can expand, but not to the same extent as gas and oil 

technologies – contrary to a common expectation that non-fossil fuel technologies would tend to 

do better than fossil fuel technologies under the imposition of a climate change policy. Finally, the 

CRESH approach would tend to predict that coal technology would be reduced significantly, but 

our new approach seem to maintain that this is not necessarily the case. Coal may suffer, but at the 

expansion of gas, rather than oil, hydro, or renewable. The extent of gas expansion would differ 

under the PC and IC assumptions, with the combined market shares of gas and coal increased 

under the IC case (as expected, because both are assumed to be ‘suppliers with market powers’) 

but coal cannot compete against gas, even if both are assumed to be ‘oligopolists’. Comparing the 

results of all approaches with the ‘energy targets’ for 2030, it is clear that these targets are not 

                                                 
44 That is, comparing the results of Figure 8 with those of Figure 7 which corresponds to a ‘short run’ experiment. 
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achievable, unless some conscious ‘restrictions’ or ‘regulations’ are imposed by the government 

in addition to climate change policy. For example, it is clear that the nuclear energy target is far 

from being achievable without any efforts at restoring the capacities of this technology to the pre-

Fukushima level. Similarly with renewable technologies: although under the CRESH approach, 

hydro and renewable technologies can do well (CRESHQ) but this is under the implicit assumption 

that (generating) capacities can always and easily follow production levels. Without explicitly 

allowing for this important issue of capacity expansion, all of the approaches (including 

CRESHQL) would seem to indicate that a  reliance on just (short run) production costs alone will 

not be able to achieve any target (whether for nuclear, or for hydro and renewable).45 Therefore, 

the issue of energy targeting’ must be considered in the context of an issue of  capacity expansion 

and investment rather than being regarded only as a matter of short run production (i.e. ‘running’) 

costs alone. 

Figures 9-12 show what the (implicit)46 capacities of various technologies would look like, if the 

technologies are to compete under the impact of a climate change policy without any additional 

‘energy targeting’ policies imposed. Under a ‘traditional’ CRESHV approach (Figure 9), only 

capacities for fossil fuel technologies seem to expand, but if a quantity-preserving restriction is 

imposed (CRESHQ), capacities for hydro and other renewable technologies would also increase 

(Figure 10). The picture is different with respect to the new approach: only the capacity for coal 

technologies would expand under the PC assumption (Figure 11), and only with the IC assumption 

that capacity for gas technology will also expand. At first sight, the results seem to be counter-

intuitive because production levels of coal technology has decreased rather than increased (Figure 

8). But on closer examination, the results can be explained by the fact that the load factor for coal 

technology has always been ‘low to medium’ pre-Fukushima accidents (it was around 0.68 in 2007 

with ‘optimal level’ being estimated to be around 0.56 – see Table 3). Since the Fukushima 

accidents, however, its load factor has increased significantly, to around 0.8 in 2013, perhaps as a 

                                                 
45 Note that CRESH relies on price (or cost of production) to allocate outputs between technologies, and these costs 

are primarily short run marginal cost, because the cost of capital (‘fixed costs’) is considered only in the context of 

investment, i.e. capacity expansion. Similarly, our approach looks at the issue of ‘optimal’ load factors, but in the 

short run, only differences between running costs of different technologies determine the relative levels of load factors. 

Only for consideration of investment that marginal capital (or capacity costs are taken into account.  
46 A CRESH approach does not explicitly consider the issue of ‘capacity’ (or ‘load factor’) therefore, for comparison 

with the new approach, we assume that changes in load factor and changes in demand (i.e. production) levels imply 

certain changes in capacity level.  
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way of replacing lost electricity production levels from nuclear technology by electricity 

production from coal. Therefore, with the imposition of climate change policy which makes the 

running costs of coal technology increase quite significantly relative to other technologies, the 

‘optimal’ level of the load factor for coal technology will be decreasing rather than increasing 

relative to other technologies. Therefore, despite production level being decreased relative to other 

technologies, capacities would expand to allow for load factor of coal technology to recover to its 

pre-Fukushima levels (i.e. around 2/3 the value in 2013) if there was no climate policy, and in fact 

because of climate policy the ‘optimal’ level of this load factor has even decreased further, 

therefore, capacity must expand relative to other technologies. 

Figures 13-15 show what the capacities for various technologies would look like if an energy 

targeting policy is imposed, in addition to the climate change policy. To be consistent with the 

energy (electricity production) targets (as seen in Figure 8) not only will production levels from 

nuclear and other renewable technologies need to increase to increase their market shares, but also 

their generation capacities. Because renewable technologies such as wind, solar, and even hydro 

electricity, typically have very low load factors as compared to those of fossil fuel technologies 

(see Table 3), their capacities need to increase even more than their production levels if they are 

to replace the outputs of fossil fuels, hence the sharp rise in capacities of these renewable 

technologies. 

Finally, Figure 16 shows the ‘cost’ of implementing the Post-Kyoto climate change policy in 

Japan, with and without an accompanying energy-targeting policy according to the different 

approaches. It seems that the predictions by the CRESH approach would vary greatly depending 

on the particular restriction (V or Q) imposed in the approach, with the Q-restriction resulting in 

much higher value predictions than are the V-option results. Using the new approach suggested in 

this paper, however, the model predictions would tend to fall roughly half-way between the two 

levels predicted by the CRESH approach. All these predictions, however, would come closer 

together if the assumption of an energy target policy is also imposed. This is because with a fixed 

set of energy targets (i.e. a fixed set of market shares for all the technologies) the cost of eventually 

achieving these targets are almost determinable, and hence there is little room for variations 

between the different approaches. 
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Figure 8 

Effects of climate change policy without an accompanying energy target policy: 

(1) 2013: actual market shares in 2013; (2) CRESH: predicted market shares for different 

electricity generating technologies in Japan in 2030 under the impact of climate change policy 

without an accompanying energy targeting policy using the CRESH (technology bundle) approach 

with value-preserving (V), or quantity-preserving (Q) and load factor (L) restrictions imposed; (3) 

PC, IC: similarly, but using the new approach with the assumption of ‘perfect competition’ and 

‘imperfect competition’ in the electricity market respectively; (4) 2030-target: market shares in 

2030 if an accompanying energy targeting policy is also imposed. 
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Figure 9 

Capacity expansion under the impact of climate change policy (without energy targeting) 

according to a ‘technology bundle’ (CRESH) approach with ‘value-preserving’ (V) restriction 

imposed. 

. 

. 

 

 

Figure 10 

Capacity expansion under the impact of climate change policy (without energy targeting) 

according to a ‘technology bundle’ (CRESH) approach with ‘quantity-preserving’ (Q) restriction 

imposed. 

. 
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Figure 11 

Capacity expansion under the impact of climate change policy (without energy targeting) 

consistent with the new approach under the assumption of perfect competition (PC). 

 

 

 

 

 

Figure 12 

Capacity expansion under the impact of climate change policy (without energy targeting) 

consistent with the new approach under the assumption of imperfect competition (IC). 

. 
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Figure 13 

Capacity expansion under the impact of climate change policy with energy targeting according to 

a ‘technology bundle’ approach with ‘quantity-preserving’ (CRESHQ) restriction imposed 

. 

 

 

Figure 14 

Capacity expansion under the impact of climate change policy with energy targeting consistent 

with the new approach under the assumption of perfect competition (PC). 
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Figure 15 

Capacity expansion under the impact of climate change policy with energy targeting consistent 

with the new approach under the assumption of imperfect competition (IC). 

 

 

Figure 16 

Effects of climate change policy without an accompanying energy target policy:  

Cumulative carbon tax level to achieve the Post-Kyoto CO2 emission reduction target in Japan 

according to the different approaches. 
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Conclusion 

In this paper we have shown a new way for disaggregating the electricity sector in a CGE model 

to take account of different technologies used in the sector and for explaining how outputs from 

these technologies can ‘compete’ to provide total supply for the sector as a whole. The approach 

adopted here provides an alternative way to explain how technologies can compete in a typical 

market such as the electricity sector market where not only technological factors (such as 

availability and load factors) but also economic factors (such as scale economies and lumpiness of 

capital, relativities between long run capital (or capacity) costs and short term marginal running 

costs) can determine the nature of ‘competition’ between the different technologies. Up to now, a 

‘conventional’ approach in a top-down model is to use an ‘aggregate production function’ (such 

as CRESH) or possibly a ‘probabilistic market share function’ (such as LOGIT) to explain how 

this competition occurs. Such an explanation lacks the realism of an actual electricity market 

because it ignores crucial characteristics, not only of supply (such as capacity and load factor 

constraints) but also of demand (such as different types and shapes of demand load structure in the 

electricity market). A ‘bottom-up’ model for the sector can often take into account certain features 

such as capacity constraints, and different types of load, but instead of explaining how competition 

can result in the different structures of capacities (supply) , it often assumes that this structure is 

‘exogenously’ given. The new approach adopted in this paper is an advancement over this 

approach because it seeks to ‘endogenise’, not only the decision on production levels (in the short 

run), but also of the decision relating to capacity planning in the long run. It uses the framework 

of a top-down CGE model where both types of these decisions can be taken into account in a 

consistent and interrelated fashion, but introducing into such framework factors that are often 

considered only in partial equilibrium bottom-models.   

Using the theoretical framework as explained above, the paper then showed how such a framework 

can be implemented in a practical CGE model to be used to analyse the impacts of climate change 

and energy polices on the electricity sector, using the case of the Japanese electricity sector as an 

example.  
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Appendix  

Technology bundle approach: To compare the new approach adopted in this paper with a 

’standard’ approach used in many CGE models which is called the ‘technology bundle’ approach, 

this approach is also implemented in our model (as a third option alongside with the PC and IC 

options described in the paper). Under this approach, all outputs from different technologies are 

assumed to be imperfectly substitutable and therefore can be treated as though ‘inputs’ into a 

CRESH production function. This function ‘produces’ the final output for the electricity sector. A 

CRESH production function (Hanoch, 1971) can be described as: 

−−=
j

jjiii pWpqq ][ *          (A.1) 

where (qi) is the percentage change in quantity of technology i and (pi) is the percentage change in 

its price; (
*

iW ) is the modified value47 share of input i which is related to the ordinary value share 

( =
j

jjiii QPQPW / ) via the relationship: )/( *

; =
j

jjii WWW  (see Dixon et al. (1982), p. 86 for 

more details); ( i ) are the CRESH elasticities of substitution. These substitution elasticities can 

be shown to be related to the own- and cross-price elasticities of demand for the outputs from 

technologies if we derive these elasticities from equation (A.2) 48 

0)1()/( *

,0
−−==

= iiijpiiii Wpq
j

        (A.2) 

0)/( *

,0
==

= jijkpjiij Wpq
k

         (A.3) 

For n CRESH parameters to be calibrated, there are only [(n2/2)-(n/2)-1] independent observation 

points49 in equations (A.2)-(A.3) which can be used. Therefore, if n>2, there would be more 

observation points than there are parameters to be calibrated and the system of equations in (A.2)-

(A.3) is therefore ‘over-identified’. If n=2, however, the system is exactly identified. This means 

                                                 
47 To be distinguished from the quantity share used in equation (17) of section 2.2 to describe Cournot competition 

between members of the L-group.  

48 Note that 1* iW  and  =
i iW 1*

 this means that since 0i for i therefore 0ii and 0ij for ., ji  

49 Since the (n2) values of the own and cross-price elasticities in equations (A.2)-(A.3) are subject to (one) homogeneity 

constraint and [n(n-1)/2] symmetry constraints there are only n2-[n(n-1)/2]-1= [(n2/2)-(n/2)-1] degrees of freedom or 

observational points left for use in the calibration of the n CRESH parameters. 
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we can use equations (A.2)-(A.3) to identify the CRESH parameters for any selected pair of 

technologies if the values of their own and cross price elasticities of demand are known. For fossil 

fuel based technologies, first, we define three ‘composite’ technologies as CES combinations of 

CCS and non-CCS technologies: Coatec=CES(ElyCoa, CoaCCS), Oiltec= CES(ElyOil, OilCCS), 

and Gactec=CES(ElyGas, GasCCS).50 Next, we assume that the own- and cross-price elasticities 

of demand for these composite technologies are known and are as given in Table A.1, From this 

information, we then estimate the CRESH parameters for different pairwise combinations of these 

technologies. It can be seen from Table A1 that the estimated CRESH parameter for each 

individual technology is fairly independent of the pairwise combinations of technologies being 

chosen, hence we can take the ‘average’ of these estimations as the final values of the CRESH 

parameters for each technology. 

For non-fossil based technologies, we do not have information on their empirical price elasticities 

of demand but we have some information on their price elasticities of supply. For example, an 

empirical study by Johnson (2011) for the case of the US found that price elasticities of supply for 

renewable electricity technologies to be about 2.7. For hydro-electricity it can be assumed that 

price elasticity of supply for this technology is about 0.5, reflecting the fact that the growth of this 

technology is subject to severe resource constraint, especially in the case of Japan. For nuclear 

technology, price elasticity of supply can be set to a zero or very low value if government policy 

is to restrict the return (and growth) of nuclear electricity in Japan, otherwise, it can be set to a 

high value such as 2. In other words, price elasticities of supply for different technologies can be 

estimated empirically, or assumed to be restricted to a certain range of values to reflect either 

policy or resource constraints. These elasticities are given in Table A.2. From the price elasticities 

of supply, we can assume that the CRESH elasticities of substitution (for non-fossil fuel 

technologies) are also close to these price elasticities of supply. This can be explained as follows. 

From equation (A.1), we can re-write this equation as: 

][ iii ppqq −+=             (A.4) 

                                                 
50 The values of these CES elasticities for combining the CCS and non-CCS technologies are assumed to be 5, 5, and 

10 respectively for Coatec, Oiltec, and Gastec, following from Arora and Cai (2015) who also use similar composite 

technologies. 
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where the term 
j

jj pW ]*
 is now replaced by a single variable p  which reflects the general shift 

in the supply curve of all technologies in the electricity market.51 The gap ][ ipp − therefore must 

represent a movement along a technology-specific supply curve i such that this can induce a change 

in the supply from this technology by an amount of ][ ii pp − . The CRESH parameter i is seen 

to act as a price elasticity of supply for technology i. Therefore the former can be assumed to be 

close to the value of the latter (in cases where cross-price effects are assumed to be relatively 

small). As a result, for the case of non-fossil fuel based technologies, it can be assumed that 

CRESH elasticities of substitution are simply be given by the price elasticity of supply.52 

                                                 
51 This can be due, for example, to a change in factor price inputs which affects all technologies equally. 
52 Conversely, for the case of fossil fuel based technologies, the price elasticities of supply assumed for these 

technologies must also be consistent with the CRESH elasticities of substitution, therefore they are assumed as given 

in Table A.2). 
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Table A.1: Price elasticity of demand for fossil fuel based technologies and their corresponding 

CRESH elasticities of substitution 

Technology Own- and cross-price elasticities 

of demand(*) 

( ii , ij ) 

Estimated CRESH parameter 

based on pair-wise consideration 

of the price elasticities of demand 

( i ) 

Average 

CRESH 

parameter 

using 

pairwise 

estimations 

based on 

price 

elasticities 

of demand  

( i ) 

CRESH 

parameter 

based on 

price 

elasticity of 

supply 

( i ) 

Coatec -.46 .03 .22 .603  .604 .60  

Oiltec .12 -.48 .18 .505 .503  .50  

Gastec .42 .08 -1.12  1.744 1.761 1.75  

ElyNu        0 – 2 (#) 

ElyHyd        .5 

ElyWon        2.7 

ElySol        2.7 

ElyBio        2.7 

ElyWas        2.7 

ElyOth        2.7 

(*) Based on Arora and Cai (2015) Table 1; (#) reflecting different policy options. 
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Table A.2: Price elasticity of supply for different electricity generation 

technologies 

Technology Price elasticity of 

supply 

ElyCoa .6 

ElyOil .5 

ElyGas 1.75 

ElyNu 0 - 2 

ElyHyd .5 

ElyWon 2.7 

ElySol 2.7 

ElyBio 2.7 

ElyWas 2.7 

ElyOth 2.7 

CoaCCS .6 

OilCCS .5 

GasCCS 1.75 

For renewable technologies, the values are based on an 

empirical study by Johnson (2011); for fossil fuel 

technologies, the values are assumed to be equal to the 

CRESH parameters (Table A.1); for the rest of the 

technologies, the values are assumed to reflect either 

resource and/or policy constraints. 
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