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ABSTRACT 

 
Colorectal cancer is the second most leading cause of death among all reported cancer 

mortality. Chemotherapy is the treatment of choice to treat metastasized colorectal 

cancer patients. Combined administration of drugs having different mechanism of 

actions has been demonstrated better efficacy than conventional monotherapy. 

Epidemiological data suggests that consumption of phytochemicals has a great impact 

in prevention and treatment of colorectal cancer. In this study four phytochemicals 

including curcumin, colchicine, EGCG and taxol were combined with cisplatin and 

oxaliplatin in a binary mode at three different concentrations and sequence of 

administrations against four different colorectal cancer cell lines (HT-29, CACO-2, 

LIM-1215 and LIM-2405). When oxaliplatin is combined with curcumin or EGCG, the 

cytotoxic outcome is more synergistically effective than the combination of cisplatin 

with either phytochemicals in a binary combination. However, cisplatin in combination 

with colchicine showed greater synergism than that of oxaliplatin with colchicine. 

Observed synergisms of the combinations were found to be correlated with 

platinumDNA binding and cellular accumulations of platinum. DNA damage study 

indicated that antagonistic combinations were less damaging towards DNA. Proteomic 

study revealed eleven proteins which displayed significant changes in expression 

following different drug treatments which were: NPM, ACTB, TBB5, HSP7C, K2CB, 

GSTP1, GRP78, PSB6, COF1, IDHC and K1C18. Among these proteins NPM and 

ACTB was considered as antiapoptotic whereas IDHC and K1C18 believed to be 

proapoptotic. 
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1 INTRODUCTION 
 

Preamble: Cancer is the main health concern all around the world. Cancer research UK 

(2014) reports 14.1 million new cases diagnosed, which make it one of the most 

devastating diseases of our time. This number will increase because of ageing and 

growth of world population and increasing adaptation to sedentary lifestyle. Colorectal 

cancer is the second most cancer affecting people in Australia and third (1.23 million) 

worldwide after the lung (1.61 million) and breast (1.38 million) cancer according to 

cancer council NSW (2017). More than 41265 new cases of colorectal cancer were 

detected and around 15903 colorectal cancer deaths occurred in year 2014 worldwide 

according to the statistical study from the cancer research. Chemotherapy is still in the 

main stream of the management of colorectal cancer along with surgery and 

radiotherapy. Platinum drugs such as: oxaliplatin, cisplatin and carboplatin have been 

extensively used as chemotherapy in treating variety of cancers including colorectal 

cancer. Specially, oxaliplatin has been incorporated in standard combination therapy of 

advanced stages of colorectal cancer. In this study oxaliplatin and cisplatin have been 

combined with selected phytochemicals with the aim of maximizing the antitumour 

activity without increasing the side effects against colorectal cancer models. This 

chapter provides brief overview on cancer with special focus on colorectal origin, 

selected phytochemicals and aim of the present study. 
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1.1 Hallmarks of cancer 
 

Cancer cells exhibit six hallmarks in their physiology. These are growth signal 

autonomy, inhibitory signals insensitivity, death programmed cell (apoptosis), 

metastasis and tissue invasion, sustained angiogenesis (formation of new blood 

vessels), and limitless replicative potential. In addition, two consequential 

characteristics genome instability and mutation and tumour-promoting inflammation 

are currently regarded as enabling attributes of cancer (Hanahan and Weinberg 2011). 

Carcinogenesis is a multistep process that requires accumulation of several mutations. 

1.2 Types of cancer 
 

Currently, over 200 types of cancer have been classified (Chambers, Groom et al. 

2002). They are classified either by their tissue of origin or location of first development 

in the body. Approximately 80- 90% of cancers are classified as carcinomas. Cancer 

originated from mesoderm cells (such as bone, muscle) is called sarcomas, and cancers 

of glandular tissue (breast) are named adenocarcinomas (Ying, Dey et al. 2016). Blood 

cancer is known as leukaemia (liquid cancer), while cancer in lymphatic system is 

called lymphoma (solid cancer). Based on the anatomical site cancer can be names as 

lung, breast, ovarian, prostate, brain, pancreatic, oral, colorectal cancer, testicular and 

so on. Cancers of different origins have distinct features. For example, skin cancer has 

many characteristics that differ from lung cancer. Whereas ultraviolet radiation from 

the sun can easily target skin, cigarette smoke can target the cells of the lungs. 
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1.3 Common causes of cancer 
 

Genetic factors, ageing and hormonal imbalances are regarded as three major internal 

factors (beyond any control) responsible for cancer. Various external factors such as 

environment, lifestyle (eg. smoking causes lung cancer, alcohol consumption can cause 

liver cancer), diet (excessive meat consumption can cause colon cancer), toxic 

chemicals (eg. benzopyrene in cigarette smoke), radiation (eg. excessive exposure to 

UV radiation from sun causes skin cancer), viruses (eg. Papilloma virus causes cervical 

cancer) are also found to be linked to cause various cancers (Stewart and Wild 2017).  

1.1 Cell cycle 

The trillions of cells that constitute the human body maintain a balance between cell 

death and division. Both normal and cancer cells multiply themselves through the cell 

cycle process. The steps and different phases of cell cycle are showed in the Figure 1.1 
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Figure 1.1: The phases of Cell Cycle (Alberts 2002) 

There are five steps in overall cell cycle process which are G0, G1, S, G2, and M 

(Mattanovich, Dragosits et al. 2015). The cells in G0 or resting phase are not yet ready 

to divide. The length of this stage varies from hours to years depending on cell types. 

In the G1 phase, the cell prepares to reduce by increasing the production of RNA and 

protein. This phase lasts twelve to thirty hours and is followed by the phase S. 

Throughout the phase S, the cell duplicates its DNA, and the purpose of replication is 

so that the cell division will have the right amount of DNA. This phase continues 6 to 

20 hours. The G2 phase is the period right before cell division. During this period, 

which lasts 2-10 hours, RNA and protein are synthesized. During this phase the fidelity 

of DNA replication is determined and errors corrected. The last phase is called the M 

phase or the mitosis that lasts only 30-60 minutes and during which the cell separates 
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into two new cells. Throughout the cycle there are check-points that regulate 

progression through the cycle ensuring that each step takes place only once and in the 

right sequence. The cell must make commitment at the G1 check point to continue into 

the S-phase, the DNA making step or to halt at G1 and wait until situations are more 

suitable for cell duplication to happen. Once the commitment is made the cell 

automatically goes through S, G2 and M to return to G1. If the cell is blocked at S, G2 

or M check points it dies. The G1 and S check points are regulated by many gene 

proteins such as p53, pRb, p15, p16 and cyclins A, D, E and cdk 2, 4 (Ross, Stagliano 

et al. 2001).  

1.4 Cell proliferation 
 

There is a precise balance in normal cells between growth restraining and promoting 

signals such that proliferation happens only when it is required (Roos, Thomas et al. 

2016). The balance shifts when increased numbers of cells are required, such as injury 

healing and normal tissue turn over. There is slight systematic overlay between the parts 

inducing proliferation and apoptosis. Somewhat, the two processes are attached at 

numerous levels across the individual molecular factors responsible for coordinating 

cell growth. Proliferations of cells in these processes happen in controlled manner and 

terminate when they are not at all longer needed. However, the process disrupts in 

tumour cells, and cell proliferation continually occurs and some loss of differentiation 

also originates (Evan and Vousden 2001).  
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1.5 Cell death 
 

Cell death is an autonomous and inevitable process of eukaryotes. Broadly cell death 

can be classified into accidental or regulated. Accidental cell death occurs due to severe 

exposure of cells with physical, chemical or mechanical stresses e.g. high pressure, 

extreme pH or shear forces. In contrast, regulated cell death is based on specific 

molecular signals which can be modulated (Galluzzi, Bravo-San Pedro et al. 2016). 

Morphologically cell death can be categorized into three types: Type I, Type II and 

Type III. 

Type I cell death is also called apoptosis which is characterized by cell shrinkage, 

pyknosis, karyorrhexis and membrane blebbing. Type II cell death is also known as 

autophagy which is manifested by vacuolization, phagocytic uptake and lysosomal 

degradation. Type III cell death or necrosis is demonstrated by cellular swelling and 

premature membrane damage (Galluzzi, Vitale et al. 2018). Recent updated 

classification of different types of cell death recommended by nomenclature committee 

of cell death is given in figure 1.2. 



 7 

 

Figure 1.2: Classification of cell death [ where RCD= regulated cell death; ICD= 

immunogenic cell death; ADCD= autophagy dependent cell death; LDCD= lysosome 

dependent cell death; MPT= mitochondrial permeability transition, adapted from 

(Galluzzi, Vitale et al. 2018)] 

1.6 Oxidative stress and cancer 
 

Life is unimaginable without oxygen and production of reactive oxygen species (ROS) 

is a continual process in human body. ROS is the byproduct generated from the 

metabolism of molecular O2, which includes superoxide (O2
.
) and hydroxyl radical 
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(HO
.
) and nonradical hydrogen peroxide (H2O2).  The organelle where most of ROS is 

generated is mitochondria, during ATP synthesis through oxidative phosphorylation. 

One or two electron reduction instead of four electrons leads towards the formation of 

O2
. 
or H2O2 which later transformed into other ROS. Cytochrome P-450 enzymes and 

oxidases (peroxisomal, NADPH and xanthine) enzymes can also cause the production 

of ROS (Mao and Huang 2014, Kumar, Ghosh et al. 2017).  

However, increased level of ROS is harmful for the cells and can initiate various disease 

processes. A homeostasis of ROS in the human body is maintained by several 

antioxidant systems working simultaneously (Rahal, Kumar et al. 2014). Major 

antioxidant systems working in human body are: catalases, thioredoxin system, 

glutathione peroxidases, peroxiredoxins, eosinophil peroxidases and 

myeloperoxidases. An imbalance in this in vivo homeostasis process cause to the effect 

called ‘oxidative stress’. Generation of oxidative stress is dependent on the available 

molecular oxygen in the cell, physical or chemical external stimuli and type of the 

cell/tissue or organ (Sies, Berndt et al. 2017).  

Oxidative stress can initiate and maintain the progression of cancer in multiple ways: 

cause DNA damage and increase the mutagenicity (Gupta, Patel et al. 2014); promote 

cell survival and proliferation by increasing transcriptional activity (Sies, Berndt et al. 

2017); exert prosurvival functions by activating ERK/MEK and PI3K/AKT signal 

transduction pathways (Oh and Mouradian 2017); and by enhancing invasiveness and 

metastasis (K Auyeung and K Ko 2017). 

Master regulators of oxidative stress are responsible for controlling 

stimulation/inhibition of redox signalling cycles and to modulating the integrate activity 

of redox sensing systems. Molecular redox switches which act as master regulators and 

control diverse biological activities involve mainly Nrf2/Keap1 (nuclear factor 
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erythroid 2-related factor 2/ kelch-like ECH-associated protein-1) and NF-κB (nuclear 

factor kappa B) pathway. 

When cells undergo stressed conditions whether intrinsic or extrinsic, human body 

automatically cope the situation via Nrf2-Keap1 pathway dependent antioxidant 

response. During normal physiologic situations, Keap1 acts as an adaptor of Cul3-based 

E3 ligase and consequently stimulates Nrf2 degradation. Stimulation of the Nrf2/Keap1 

pathway is protective, but over activation can be destructive. With the exposure of 

extreme oxidative stress, Nrf2 is restricted in the nucleus and regulate carcinogenesis 

(Kensler, Wakabayashi et al. 2007). After translocating from the nucleus, Nrf2 recruits 

other transcriptional devices including CREB binding protein (CBP), coactivator-

associated arginine methyltransferase (CARM1) and protein arginine methyl-

transferase (PRMT1). 

NF-κB is a transcription factor having multiple subunits which can stimulate the gene 

expressions associated with inflammation and immune responses. When cells are 

exposed to oxidative stress, the inhibitory subunit of the NF-κB inhibitor (IκB) is 

released and then binds with tumour necrosis factor (TNF) receptor and interleukin 

(IL)-1 receptor, proceed towards inflammatory response. 

1.7  Colorectal cancer (CRC)   
 

 CRC is the outcome of successive pathologic changes which alter normal colorectal 

epithelium into invasive carcinoma. In case of CRC, most of the tumours are found in 

the distal large intestine while comparatively lesser frequency is observed in proximal 

regions. CRC usually originate on the intestinal wall as polyps which are benign in 

nature, but become malignant later on. Initially CRC develops locally into the deeper 
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layers of the bowel wall and subsequently spread from there to the lymph nodes. And 

in advanced cases (late stages), it could spread to other organs (Figure 1.3).  

 

 

Figure 1.3: Initiation and progression of CRC (reproduced from 

bowelcanceraustralia.org) 

1.7.1 Global incidence and mortality of CRC 
 

Among all different types of cancer, CRC is in third position in respect to commonly 

diagnosed malignancy and in fourth position in respect to mortality throughout the 

world. There are approximately 1.4 million new cases and around 0.7 million mortality 

stated in last GLOBOCAN report (Ferlay, Soerjomataram et al. 2015). The incidence 

of CRC is higher in developed countries, comprising 75% of all cases compared to 

lower income regions of the world. Almost 60% of all mortality cases from CRC are 

from the countries of higher income. However, fast progression in both CRC incidence 
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and death rate are currently evident in several mid income countries of East Europe, 

Asia and South America. But, decrease or stability in the new diagnosis and death has 

been achieved in United States and Oceania regions. 

1.7.2 Aetiology of CRC 
 

The exact causes of colorectal cancer are not known, but it has been reported that it 

needs several mutations in different genes to cause colorectal cancer. Mutation of genes 

could be categorized into inherited or acquired gene mutations. Epidemiological studies 

revealed that approximately fifteen percent of CRC occur due to inherited gene 

mutations (Kinzler and Vogelstein 1996). The most common causes of inherited gene 

mutations are familial adenomatous polyposis (FAP) and hereditary nonpolyposis 

colorectal cancer (HNPCC). Human with FAP usually develop 100 to 1000s of 

adenomas or adenomatous polyps at the age of 30 or more. APC gene is responsible for 

FAP which is in fact a tumor suppressor gene and mutation of it causes to form benign 

polyps in the colon. Later on, malignant cancer could develop in one or more of these 

polyps. In contrast, mutation of HNPCC genes which allow DNA repair is responsible 

for hereditary nonpolyposis colorectal cancer or Lynch syndrome. Examples of such 

are MLH1, MSH2, MLH3, MSH6, and PMS1 (Lynch, Smyrk et al. 1996).  2-3% of 

total CRC is the outcome of the mutation of HNPCC genes. 

Most CRC is the consequence of acquired gene mutations which are associated with a 

number of risk factors, such as: high consumption of red meat, heavy alcohol drinking, 

obesity, old age, less exercise, inflammatory bowel disease, type-II diabetes, race and 

ethnicity (Singh, Singh et al. 2014). However, the diets high in vegetables, fruits, and 

whole grains have shown a decreased risk of colorectal cancer. 
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1.7.3 Pathogenesis of CRC 
 

After a long term research on the different stages of CRC, Vogelstein suggested a model 

of colorectal carcinogenesis that is linked with explicit genetic events with changing 

tissue morphology (Fearon and Vogelstein 1990). This pathogenetic framework 

through which a normal mucosa is transformed into malignant lesions is called 

adenoma–carcinoma sequence. Wnt/𝛽-catenin pathway displays a significant role in the 

initial phase of CRC carcinogenesis. Mutation of the APC gene is a key determinant 

which stimulates the Wnt pathway through 𝛽-catenin. Detail molecular signalling 

pathways associated with colorectal cancer pathogenesis are vividly depicted in figure 

1.5. 
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Figure 1.4: Molecular signal transduction pathways involved in CRC pathogenesis 

[Adapted from(Alam, Almoyad et al. 2018)] 
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1.7.4 Stages of CRC 
 

In earlier days, CRC was classified by using Dukes method from Dukes A to Dukes D 

depending on the tumour metastasis. However, clinicians diagnose CRC by combining 

‘TNM staging’ and ‘Grade’ system (Obrocea, Sajin et al. 2011). In TNM classification, 

T indicates tumour; N refers to node and M is meant for metastasis. Clinicians diagnose 

the patient by scanning the question- is there any evidence of tumour and how many 

layers for determining T. Similarly, for determining N or M: has the tumour 

disseminated to lymph node or other organs and how much. Grade of CRC is identified 

from 1 to 4 depending on the differentiation from normal cells and tissues. The higher 

the grade the worse is the prognosis. CRC staging system adopted by oncologists of 

USA is given in figure 1.5.  
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Figure 1.5: CRC staging system proposed by American joint committee of cancer 

 

1.7.5 Diagnosis and management of CRC 
 

Common symptoms of CRC are abdominal pain, rectal bleeding, irritable bowel 

syndrome, constipation or diarrhoea (Vega, Valentín et al. 2015). Physicians usually 

diagnose CRC by computed tomography (CT) scan, magnetic resonance imaging 

(MRI) or ultrasonography. In addition, recently developed technique 
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fluorodeoxyglucose-positron emission tomography (FDG-PET) scan is now gaining 

popularity among the doctors for CRC diagnosis. 

Like all other cancers, primary treatment methods of CRC are: surgery, cryosurgery, 

stereotactic body radiation therapy, radiofrequency ablation and chemotherapy. 

Surgery is a gold standard for the treatment of localized colorectal cancer. In most of 

newly diagnosed cases (80%) required surgery. The principles of this surgery are 

isolation the tumor, removal of all tissue having cancer cells, removal of regional lymph 

nodes, and maintain the organ function. Cryosurgery is mainly used when cancer cells 

metastasize to liver of CRC patients. The probe perfused with liquid nitrogen to produce 

an ice ball within the liver having predictable thermal zones ranging from –40°C to 

0°C. Tumour cells die at –20°C to –40°C due to the disruption of the cell membranes 

(Pathak, Jones et al. 2011).  

Radiotherapy can be used alone or with surgery and chemotherapy.  Stereotactic body 

radiation therapy provides accurate delivery of a very high dose of radiation to tumour 

cells, sparing normal adjacent tissues (Nosher, Ahmed et al. 2015).  In contrast, 

radiofrequency ablation therapy utilizes an electrode probe to kill cancer cells. A thin 

electrode probe is placed within the metastasized organ under ultrasound control. After 

positioning the tip array, an electrical current is applied (in the range of 350–500 kHz), 

generating heat (80–100°C) that kills the cancer cells (Nosher, Ahmed et al. 2015). 

Chemotherapy is the treatment of choice for advanced stages of CRC when tumours 

have been metastasized into other organs of the body. Examples of FDA approved drugs 

to treat colorectal cancer are capecitabine, oxaliplatin, 5-fluorouracil, irinotecan and 

trifluridine. Combination therapy with FOLFOX (5-fluorouracil, leucovorin plus 

oxaliplatin) and FOLFIRI (5-fluorouracil, leucovorin plus irinotecan) is the most 
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popular due to their high efficacy (Souglakos, Androulakis et al. 2006, Wang, Dong et 

al. 2015). 

1.8 Platinum metal based chemotherapy  
 

Serendipitous discovery of cisplatin during 1970s explore a new horizon of the 

treatment of cancer using platinum metals. Several thousands of platinum antitumour 

drugs have been designed and it is hard to find a cancer hospital today which is not 

using platinum based drugs. Among all platinum analogues only cisplatin, oxaliplatin 

and carboplatin are used globally by the clinicians. Nedaplatin has been locally 

approved to be used in the clinic as anticancer drug in Japan, while lobaplatin has 

approved for China and heptaplatin in Korea. Since cisplatin and oxaliplatin has been 

used in this study in combination with selected phytochemicals against colorectal 

cancer models brief description on cisplatin and oxaliplatin is given in following 

sections. 

1.8.1 Cisplatin 
 

Chemically cisplatin is cis-diamminedichloroplatinum (II) which was discovered by 

Peyrone in 1845 as Peyrone’s salt. But antitumour activity of cisplatin was unknown 

until Barnett Rosenberg identified during conducting experiments to measure the effect 

of electrical currents on the cell growth of the bacteria Escherichia coli (Muggia, 

Bonetti et al. 2015). Afterward, Hill’s group has carried out the first clinical studies 

which reported to demonstrate cisplatin efficacy against several human malignancies, 

and it get the first approved for clinical use in the USA in 1978.  
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Figure 1.6: Chemical structure of cisplatin 

Cisplatin has shown the highest successful rates and it is the preferred therapy for many 

cancers such as testicular, urothelial, lung, and gynecological. Specifically, successful 

application of cisplatin has resulted testicular cancer as the most curable solid tumour 

(Amidi, Hosseini et al. 2017). Besides, cisplatin is also given during the treatment of 

metastatic tumours such as: breast cancer, melanoma, prostate cancer and 

mesothelioma.  

1.8.1.1 Mechanism of action of cisplatin 
 

Cisplatin is usually administered through intravenous injection. After entering into cells 

from blood into the cells, aquation of cisplatin takes place which converts cisplatin into 

its active form. In this aquation process chloride groups are being replaced by water 

molecules due to lower concentration of chlorine inside the cell compared to 

extracellular fluid. The generated active species then binds with RNA, DNA and 

proteins. But cytotoxicity is the outcome of PtDNA binding, predominantly 

bifunctional and monofunctional adducts (Zamble and Lippard 2006). Cisplatin binds 

to the N(7) position of adenine or guanine bases, forming primarily 1,2-d(GpG) and 

1,2-d(ApG) intrastrand cross-links which is about 90% of total DNA adducts. The rest 
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of the adducts are due to 1,3-d(GpNpG) intrastrand, interstrand and protein-DNA cross-

links (Lepre and Lippard 1990, Comess and Lippard 1993).  

DNA damage that is caused thorough binding of cisplatin is then recognized by 

downstream proteins which activate various signalling pathways leading towards cell 

death unless the damage is repaired. The important proteins that recognize the DNA 

damage caused by cisplatin binding and involved in apoptotic programmed cell death 

are: Casp-8, Fas/FasL, p53, ATR, Chk2, MAPK and c-Abl. Schematic representation 

of the subsequent events causing tumour cell death is given in figure 1.7. 

 

 

Figure 1.7: Mechanism of action of cisplatin [Adapted from(Ma, Xiao et al. 2015)]   

1.8.1.2 Limitations of cisplatin 
 

The major limitation of cisplatin as anticancer drug is its numerous adverse effects and 

drug resistance. Administration of cisplatin into cells does not only kill the tumour cells 

but also other highly proliferating normal cells without showing any selectivity. The 

most common side effects are nephrotoxicity, ototoxicity, gastrotoxicity, 

immunosuppression and hypersensitivity (Wilmes, Bielow et al. 2015). 
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Drug resistance, particularly during the relapse of cancer is another aspect which served 

to limit the use of cisplatin against cancer. Mechanism of cisplatin resistance could be 

attributed to increased drug efflux from the cell, decreased uptake into the cell, 

increased deactivation through glutathione and increased DNA repair by nucleotide 

excision repair (NER) and mismatch repair (MMR) proteins (Galluzzi, Vitale et al. 

2014). Among NER proteins the most important for cisplatin resistance is the mutation 

of excision repair cross-complementing group 1 (ERCC1), whereas mutS homolog 2 

and mutS homolog 1 are from MMR proteins (Aebi, Kurdi-Haidar et al. 1996, Friboulet, 

Olaussen et al. 2013). 

1.8.2 Oxaliplatin 
 

Oxaliplatin is a third generation platinum drug having a bulky diaminocyclohexane 

(DACH) moiety and the oxalate as leaving group. Chemical name of oxaliplatin is 

(trans-R,R-1,2-diaminocyclohexane)oxalateplatinum(II) and its chemical structure is 

shown in figure 1.8. Due to the presence of oxalate in its structure, oxaliplatin 

undergoes rapid hydrolysis to give its reactive metabolite. 

 

Figure 1.8: Chemical structure of oxaliplatin 

The activity profile of oxaliplatin is similar to cisplatin and carboplatin but shows 

sensitivity towards those cancers where the later drugs prove to be resistant. Moreover, 
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oxaliplatin is significantly active against colorectal cancer and it has been used in clinic 

in combination with 5-fluorouracil, folinic acid and capecitabine (Perego and Robert 

2016).  

 

1.8.2.1 Mechanism of action of oxaliplatin  
 

Alike to cisplatin and carboplatin, primary target of oxaliplatin is DNA, particularly N 

(7) of purine nucleotides and it forms both intra- strand, inter-strand and DNA-protein 

cross-links. However, oxaliplatin is more potent than other approved platinum drugs 

and it requires fewer adducts to produce same effects (Cvitkovic 1998). Although inter-

strand adducts play a significant contribution in cisplatin cytotoxicity, but it is proved 

to be less important in regards to the mode of action of oxaliplatin (Zwelling, Anderson 

et al. 1979, Woynarowski, Faivre et al. 2000). Although it is obvious that oxaliplatin 

cause to form DNA-protein cross links and results into disruption of enzymes as well 

as other proteins, those cross links are not associated with the killing of tumour cells. 

Moreover, in contrast to cisplatin the formed monoadducts of DNA from binding with 

the bio-transformed metabolites of oxaliplatin do not show any lethality towards cancer 

cells (Di Francesco, Ruggiero et al. 2002). 

DNA lesions from binding with metabolites of oxaliplatin cause to trigger downstream 

proteins to enter into the pathways for programmed cell death. It includes the activation 

of caspase-3, followed by translocation of Bax into mitochondria and release of 

cytochrome-C in cytoplasm (Arango, Wilson et al. 2004). Due to significant 

cytotoxicity of oxaliplatin towards cisplatin resistant cells, it has been presumed that 

oxaliplatin adducts are unique which can not be recognized by MMR proteins (Alcindor 

and Beauger 2011). In addition to DNA-lesion mediated apoptosis, oxaliplatin can also 

cause apoptotic cell death by inhibiting DNA and RNA synthesis, initiating 
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immunogenic reactions (Fischel, Formento et al. 2002, Todd and Lippard 2009, 

Tesniere, Schlemmer et al. 2010). Figure 1.9 summarizes the important mode of action 

of oxaliplatin (DNA lesion mediated cell death). 

 

Figure 1.9: DNA-lesion mediated apoptotic pathway for oxaliplatin action 

1.8.2.2 Limitations of oxaliplatin 
 

Although the mode of action and activity profile of all platinum drugs are similar but 

oxaliplatin shows different toxicity profile than other platinum drugs. The major side 

effects produced from the administration of oxaliplatin are: gastrointestinal toxicity, 

haematological toxicity and neuropathy (Tesniere, Schlemmer et al. 2010).   

Several studies have been proved that oxaliplatin is less prone to resistance compared 

to other platinums. However oxaliplatin is not devoid of drug resistance. Elevated 
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expression of glutathione through γ-glutamyl transpeptidase is the principal mechanism 

of oxaliplatin resistance. Additionally, decreased uptake of oxaliplatin via mutation in 

copper transporter proteins has also been indicated for oxaliplatin resistance. 

 

1.9 Combination therapy 
 

Co-administration of two or more drugs to treat a disease in a better way with improved 

efficacy or lowering toxicity is known as combination therapy. It is now gaining 

popularity among clinicians to combat many diseases including cancer, arthritis, 

diabetes, hypertension and other cardiac diseases, hyperlipidaemia, alzheimer’s 

disease, microbial and fungal infections (Gudzune, Monroe et al. 2014, Sitbon, Jaïs et 

al. 2014, Matsunaga, Kishi et al. 2015, Maruthur, Tseng et al. 2016, Beganovic, Luther 

et al. 2018).  Only in USA there are about ten thousands clinical trials on combination 

therapy are continuing against neoplasia, infections, diabetes, autoimmune, 

cardiovascular and nervous system disorders. 

1.9.1 Combination therapy to combat cancer 
 

Combination therapy is used against cancer to increase efficacy of individual drugs 

used at reduced doses with minimal side effects. Combined therapy can chemosensitize 

cells though additive or synergistic effects and thus minimize the possibility for 

development of drug resistance or overcome acquired drug resistance.  The concept of 

combined chemotherapy was first postulated by Emil Frei in 1965 against acute 

leukaemia. The study on the children showed that POMP combination regimen 

comprising of prednisone, 6-mercaptopurine, methotrexate and vincristine offered 

significantly higher success rate over single therapy (FREI, KARON et al. 1965). Due 

to the success of POMP regimen, subsequently a number of studies have been 
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conducted using different types of drugs against variety of cancers. For instance, 

sabutoclax with minocycline against pancreatic cancer (Quinn, Dash et al. 2015), 

carboplatin and paclitaxel against ovarian cancer (Ozols, Bundy et al. 2003). Combined 

treatment regimens FOLFOX and FOLFIRI are being used in the management of 

advanced stages of colorectal cancer. Recently newer techniques in combination 

therapy have been introduced, such as: restrictive combinations and drug repositioning. 

Restrictive combination involves planned dosing and drug administration to selectively 

kill the cancer cells without causing any effects towards normal cells. To fulfil the 

purpose, combined therapy advantageously use the minor differences exists between 

malignant and normal cells, i.e. the absence of a target (deficiency of p53), or by the 

manifestation of a target (surface marker) (Bayat Mokhtari, Homayouni et al. 2017). 

Drug repositioning is the strategy where present therapeutic agent primarily employed 

against non-cancerous conditions is being used for management of cancer (Chong and 

Sullivan Jr 2007).  

Mokhtari et al, reviewed the pathways through which combination therapy provide 

better efficacy against cancer with limited side effects. The mentioned important 

pathways are antioxidant pathways and phytochemicals; hypoxia and carbonic 

anhydrase inhibitors; epigenetics and histone deacetylases inhibitors; autocrine growth 

factor pathways and serotonin receptor inhibitors; angiogenesis and vascular 

endothelial growth factor (VEGF) inhibitors; apoptotic cell death and agents targeting 

apoptosis (Bayat Mokhtari, Homayouni et al. 2017).  
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1.9.2 Phytochemicals in combination 

chemotherapy 
 

Many of the phytochemicals can act as antioxidants and thus give chemopreventive 

(blocking the initiation step of carcinogenesis) effects to combat cancer. 

Epidemiological studies (more than 200) suggest that higher consumptions of fruits and 

vegetables which are the major sources of antioxidant phytochemicals can implicate in 

reducing the incidence of cancer (Willett and Trichopoulos 1996). Phytochemicals can 

protect the cells from oxidative DNA damage from the interactions of reactive oxygen 

species (ROS) being generated continuously inside the cell. Moreover they can regulate 

various transcription factors including nuclear factor erythroid 2-related factor 2 (Nrf2), 

nuclear factor kappa B (NFκB), beta catenin and TGF-β (Russo 2007).  

Studies from the combinations of chemotherapeutic drugs and phytochemicals in 

clinical settings result into synergistic effects in many instances in various cancers. 

(Block, Koch et al. 2008, Panahi, Saadat et al. 2014). Paclitaxel has been approved by 

FDA in combination with carboplatin to treat ovarian cancer. A number of 

phytochemicals in combination with other chemotherapeutic drugs have been 

investigated and entered into clinical trials, such as resveratrol, EGCG, curcumin, 

quercetin, genistein and daidzein. Our group has been published a significant number 

of research articles showing the combined effect of platinum drugs and phytochemicals 

against ovarian cancer (Yunos, Beale et al. 2011, Mazumder, Beale et al. 2012, Nessa, 

Beale et al. 2012, Al-Eisawi, Beale et al. 2013, Huq, Yu et al. 2014, Huq 2015, 

Arzuman, Beale et al. 2016). In this project, the study has been extended in colorectal 

cancer models to find out the combined effect of selected phytochemicals and platinum 

drugs.   
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1.10 Phytochemicals used in this study 

1.10.1 Curcumin 
 

Curcumin is the main active ingredient of turmeric (Curcuma longa) which is 

indigenous to Asia and commonly used as spices in preparing different dishes. 

Although turmeric is familiar component of kitchen, traditional healers of Asian 

countries have been using it since 500 BC for the treatment of various diseases (Gupta, 

Sung et al. 2013, Deogade and Ghate 2015). Curcumin constitutes 2-5% of the total 

contents of turmeric which is orange-yellow in colour and water insoluble. Chemically, 

it is a polyphenol and known as diferuloylmethane which is shown in figure 1.10. 

  

Figure 1.10: Curcumin and its botanical source 

A diverse range of biological activities is shown by curcumin, such as: antibacterial, 

antifungal, antioxidant, anti-inflammatory, cholesterol lowering as well as anticancer 

(Patil, Jayaprakasha et al. 2009, Prasad, Gupta et al. 2014). Owing to the above 

mentioned bioactivities curcumin has been proven to be beneficial in various diseases 

(Kocaadam and Şanlier 2017). Figure 1.11 pictorially describes the potential uses of 

curcumin in different disease conditions and its molecular targets obtained from various 

in vitro and in vivo studies.    
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Figure 1.11: Benefits of curcumin in different diseases and its molecular targets 

[Adapted from(Kunnumakkara, Bordoloi et al. 2017)] 
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1.10.2 Colchicine 
 

Colchicine is an alkaloid extracted from the plants meadow saffron (Colchicum 

autumnale) or glory lily (Gloriosa superba). The medicinal uses of rhizome of 

colchicum have been traced back to 550 AD in ancient Egypt against rheumatism. In 

early 1900s colchicine was isolated and named as active ingredient of colchicum, 

applied against gout management in France (Mandhare and Banerjee 2016). Colchicine 

has been indicated in other clinical conditions, such as: familial Mediterranean fever, 

Behcet’s disease, pericarditis, coronary artery diseases, cirrhosis and Sweet’s syndrome 

(Leung, Yao Hui et al. , Larocque, Ovadje et al. 2014). But the compound has low 

therapeutic index and cautiously prescribed in the patients having kidney problems.  

 

Figure 1.12: Colchicine and its botanical source 

Colchicine has also shown anticancer activities by inhibiting tubulins and 

polymerization of microtubules. Depolymerization of microtubules happen through 

inhibition of lateral contacts between protofilaments (Bhattacharyya, Panda et al. 2008). 

From a recent clinical trial, it has been suggested that colchicine could be used in the 

treatment of everolimus-induced oral ulcers (Ropert, Coriat et al. 2017). A number of 

synthetic analogues of colchicine have also been synthesized and found to be active 

against multiple cancers including: lung, colorectal, prostate, ovarian and breast 
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(Blakey, Westwood et al. 2002, Mandhare and Banerjee 2016). Established anti-

inflammatory mechanism of colchicine is given in figure 1.13. 

 

Figure 1.13: Anti-inflammatory action of colchicine [Adapted from (Nuki 2008)] 
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1.10.3 EGCG (Epigallocatechin-3-gallate) 
 

EGCG is a catechin, belongs to large polyphenol class which is found in green tea 

(derived from dried fresh leaves of the plant Camellia sinensis). Traditional healers of 

China and India used green tea as a stimulant, diuretic, astringent, antiflatulent and 

cardio tonic (Chopade, Phatak et al. 2008). EGCG was first isolated by Michiyo 

Tsujimura in 1929 in Japan along with other three catechins from green tea (Rady, 

Mohamed et al. 2017). Structurally (Figure 1.14), it is a flavone-3-ol having 8 hydroxyl 

groups, which renders EGCG as bioactive compound with diverse range of functions 

including: antioxidant, anti-inflammatory, lipid lowering, antitumour and antidiabetic.  

 

Figure 1.14: EGCG and its botanical source 

Anticancer potential of EGCG has been evidenced from a huge number of in vitro 

cancer-related molecular targets and in vivo model studies (Nagle, Ferreira et al. 2006, 

Rady, Mohamed et al. 2017). The molecular targets identified from those studies which 

are thought to be associated with anticancer action of EGCG have been shown in figure 

1.15. 
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Figure 1.15: Molecular targets of EGCG linked with its antitumour activity [Adapted 

from Rady et.al. 2017] 

1.10.4 6-gingerol 
 

It is a pungent phenolic constituent, obtained from the rhizomes of ginger (Zingiber 

officinale) and constitutes the most abundant contents of that. Ginger has a long history 

(5000 years back) of being an important ingredient of traditional medicines of China 

and Asia in the treatment of cataract, arthritis, constipation, and digestive disorders 

(Edwards, Rocha et al. 2015). Traditional use of ginger relies on the activity of 

gingerols. 6-gingerol has anticancer, neuroprotective, anti-inflammatory and anti-

oxidant effects (Zeng, Zong et al. 2015).  
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Figure 1.16: 6-gingerol and its botanical source 

Antitumour activity of 6-gingerol has been observed in many studies e.g. cell growth 

arrest and apoptosis against colon cancer (Lee, Cekanova et al. 2008) and pancreatic 

cancer (Park, Wen et al. 2006), inhibition of angiogenesis and metastasis against breast 

cancer (Kim, Min et al. 2005, Lee, Seo et al. 2008) and ROS mediated cell death against 

lung cancer (Nigam, Bhui et al. 2009). Molecular targets for antitumour activity of 6-

gingerol have been reported as NF-κB, IL-8 and VEGF. Proposed mechanism for the 

anticancer action of 6-gingerol mediated through NF-κB pathway is shown in figure 

1.17.   
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Figure 1.17: NF-κB mediated anticancer action of 6-gingerol [Adapted from 

(Oyagbemi, Saba et al. 2010)] 

1.10.5 Taxol 
 

Taxol (Figure 1.18) was isolated from Pacific yew tree (Taxus brevifolia) and named in 

1967. However, the antitumour activity of the crude extracts of the plant collected by 

Arthur Barclay in 1962 was identified during the natural compounds screening program 

conducted by National Cancer Institute, USA. After around 30 years, it was renamed 

as paclitaxel and patented by Bristol-Myers Squibb and got approval for ovarian cancer 

in 1992, breast cancer 1994 and lung cancer in 1999 (Weaver 2014). Taxol kills the 

cancer cells by promoting the assembly of microtubules and mitotic arrest (Runowicz, 

Wiernik et al. 1993). It can also bring cell apoptotic cell death via binding with Bcl-2 

(Haldar, Chintapalli et al. 1996). However, paclitaxel also suffers with drug resistance 
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and adverse effects at higher doses. The major side effects are allergic reactions, loss 

of hair, neutropenia, peripheral neuropathy, myalgia, arrhythmia, nausea and mucositis. 

 

Figure 1.18: Taxol and its botanical source 

1.11 Aim of the present study 
 

Colorectal cancer is one of the leading causes of mortality and morbidity from cancer 

around the globe. For the treatment of advanced stages of CRC, chemotherapy is the 

first-line treatment. However, existing treatment strategies of metastasized CRC are 

greatly suffered by side effects, resistance or high cost. Phytochemicals are usually 

cheap, devoid of adverse effects and a many of them possess antitumour activities. 

Combination of tumour active phytochemicals with platinums might provide a better 

option of combating CRC with lesser toxicity and overcome drug resistance. The 

primary objective of the present study is to find out the combined drug effects from the 

binary combinations of platinums (cisplatin and oxaliplatin) and selected 

phytochemicals against CRC as a matter of sequence of addition and concentration. 

Mechanistic studies have been carried out to get the insights behind the combined drug 

effects. The specific aims of the present study were: 

 Determination of the cytotoxicity of platinum drugs (cisplatin and oxaliplatin) and 

selected phytochemicals (curcumin, colchicine, EGCG, 6-gingerol and taxol) against 
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four different colorectal cancer models (HT-29, Caco-2, Lim-1215 and Lim-2405 cell 

lines)  

 Investigation on binary sequenced drug effects from the combinations of platinums 

and phytochemicals of choice against the mentioned colorectal cancer models 

 Investigation on the damage to the DNA caused by the selected drug combinations 

through DNA damage study using Agar gel electrophoresis   

 Determination of cellular accumulation of platinums from selected drug combinations 

 Determination of PtDNA binding levels from the selected drug combinations 

 Proteomic study to identify the proteins responsible for combined drug actions 
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2 EXPERIMENTAL 
 

Preamble: This chapter details the methodology used in the present study which are 

well-established and have been used in the host laboratory for last twenty years. Before 

starting the combination study between platinum drugs (cisplatin/oxaliplatin) with 

phytochemicals (colchicine, curcumin, EGCG, 6-gingerol and taxol), cytotoxicity of 

the individual compounds were determined against four colorectal cancer cell lines 

(HT-29, CACO-2, LIM-1215 and LIM-2405). The binary combination study was 

carried out and the combined effect was determined as a function of concentration and 

sequence. The mechanisms behind the combined effect were also investigated through 

study of interactions with the DNA extracted from the drug treated cells, cellular 

accumulation, platinum-DNA binding study. Finally proteomic study was conducted to 

reveal the proteins associated with the combined drug effects. 

2.1 Reagents and equipment 
The important chemicals and instruments used for the different studies carried out in 

the present study are listed in Table 2.1. All of the selected phytochemicals: colchicine 

(Col), curcumin (cur), epigallocatechin-3-gallate (EGCG), 6-gingerol (6-gin) and taxol 

(Tax) were purchased from Sapphire Bioscience, Pty. Ltd., Australia. 

2.2 Preparation of the stock solution of platinums and phytochemicals 

Stock solutions of the compounds were prepared in the beginning of this study to be 

used later on for the determination of cytotoxicity, combination study and other 

mechanistic studies. Ethanol was used as a solvent for dissolving the phytochemicals 

Mixture of DMF and mQ water was used to dissolve the platinum drugs. Information 

relating to the prepared stock solution of the compounds is tabulated in Table 2.2. 
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Table 2.1: List of the important equipment and reagents used in the study 
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Table 2.2: Concentrations of the stock solutions used in the study 

Compound Molecular weight Concentration 

(?g/5mL 

Solvent 

Cis 300 1 mM (0.0015) 1 mL DMF+ 4 mL 

DMF 

Ox 397.29 1 mM (0.0019) 1 mL DMF+ 4 mL 

DMF 

Cur 368.38 10 mM (0.018) Ethanol 

EGCG 458.37 10 mM (0.022) Ethanol 

Col 399.43 1 mM (0.002) Ethanol 

6-gin 294.39 10 mM (0.014)* Ethanol 

Tax 853.93 1 mM (0.004) Ethanol 

* indicates mL instead of g, because the compound is liquid  

2.2 Cell lines 
Amongst the four colorectal cancer cells used in the present study two cell lines (HT-

29 and CACO-2) were got from Dr. Mu Yao of Endocrinology department from The 

University of Sydney. Other two cell lines: LIM-1215 and LIM-2405 were purchased 

from Cell Bank of Australia.   

 

2.3 Cell culture and cytotoxicity study 
 

2.3.1 Recovery of frozen cancer cells 
 

Cryovial containing the desired cell line was taken out from the liquid nitrogen tank 

and thawed very rapidly (less than 1 min) using preheated 37°C water bath available in 

the host laboratory. The vial was swirled gently in water bath until 80% of the ice gets 

melted. The vial was then transferred into laminar air flow cabinet and the contents 

were dissolved with 9 mL of 10% RPMI media (pre-warmed) in a centrifuge tube. The 

tube was then spun at 2000 rpm for 5 minutes. The clarity of the supernatant and 

visibility of the cell pellet was checked. Fresh medium (2 mL) was added after 

discarding the old medium without disturbing the cell pellet. The cell pellet was 



 39 

resuspended thoroughly in the fresh medium using pipette and then transferred into a 

cell culture flask having 8 mL of medium. The flask was kept in an incubator (37°C, 

5% CO2) for the cells to grow.  

2.3.2 Subculturing technique 
 

Subculturing of the cells was conducted to make sure that cells are healthy are actively 

growing, by breaking the bonds between the cells and also with the substrate (plastic or 

glass surface) where the cells were grown. Usually enzymes (trypsin, dispase or 

collagenase) are used to break the cellular glue. There are two types of subculturing 

method: monolayer and adherent. Monolayer subculturing method was used in the 

present study. Initially, cells having 80-90% confluence, grown in corning cell culture 

flask (25 cm2) was taken out from the incubator and checked for any contamination 

under microscope. The old medium was discarded using sterile pipette and then washed 

with PBS, followed by addition of trypsin. The corning cell culture flask was kept in 

incubator for 3 min. The effect of the trypsinization was checked under microscope and 

confirmation was made from the detachment of cells from the substrate as well as 

rounding up. RPMI media was added by vigorous pipetting and cell suspension was 

transferred into new flask. The corning cell culture flask containing the cell suspension 

was incubated at desired atmosphere (37°C, 5% CO2) and allowed the cells to grow. 

For maintenance of cell lines the technique was repeated twice a week to make sure that 

cells were growing in logarithmic phase. Cells were counted periodically and necessary 

dilution was done. For 10 tomes dilution, 9 mL of the cell suspension was discarded 

and another 9 mL of fresh medium was added to the cell.   

2.3.3 Composition of cell culture media 
 



 40 

10% foetal calf serum in RPMI media was used for culturing HT-29, CACO-2, LIM-

1215 and LIM-2405 cell lines. To prepare the media; 100 mL of FCS, 20 mL of hepes, 

20 mL of NaHCO3, 10 mL of glutamine  and 0.5 mL of NaOH were added with 200 

mL of RPMI solution. The exact concentration of each ingredients of cell culture media 

used in the study is listed in Table 2.3. 

 

Table 2.3: Components of Cell culture media 

Component  Concentration 

RPMI 1640 5 X 

FCS 10% 

Hepes 1 M 

NaHCO3 5.6% 

Glutamine 200 mM 

NaOH Saturated 

  

2.3.4 Preparation of PBS 
 

To prepare 2 L of PBS solution, 1800 mL of milli Q water was taken in a 2L volumetric 

flask and 19.2 g of PBS powder was added. PBS powder was dissolved into water by 

gentle stirring. pH of the solution was adjusted to 7.3 using 1 M of HCl. Finally, the 

volume of the solution was made up to 2L by addition of mQ water carefully and 

sterilized by filtration.  

2.3.5 Preparation of trypsin solution 
 

Initially, 0.02 g of ethylene diamine tetra-acetic acid (EDTA) was measured and 

dissolved in 1 mL of mQ water in a 100 mL volumetric flask. 10 mL of trypsin (2.5%) 

was then added and the final volume was made to 100 mL by addition of 89 mL of PBS. 

The mixture was mixed thoroughly by tilting the volumetric flask and then sterilized by 

filtration.     
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2.3.6 Cell counting and seeding 
 

In the cell culture, concentration of cells was quantified using counter slide, trypan blue 

and automated cell counter (T10 Bio-Rad). 10 µL of cell suspension was taken and 

mixed with equal volume of trypan blue. It was then added on the both sides of counting 

slide. Finally, the slide was inserted and the counting was recorded.  

In most of the cases 96-well plates were used and 100 µL of cell suspensions were 

added into each well. The cell concentration was approximately 2 X 105 cells/mL of 

suspension. For seeding purpose, 96-well plates were placed in 5% CO2 incubator at 

37°C for 24 h after addition of cell suspensions into the well.  

 

2.3.7 Preservation of cell lines 
 

The cell lines were preserved using cryopreservation technique which involve the use 

of cryoprotective agents: such as ethylene glycol, polyvinyl pyrrolidine, DMSO, 

glycerol. In this study DMSO was used as a cryoprotective agent and cell lines were 

stored below -130°C using nitrogen tank. Briefly the technique involved the harvesting 

of the cells at late log phase having concentration 3 X 106 cells/mL. The cells were spun 

for 3000 rpm for 3 min to get the cell pellet. The supernatant was decanted and the 

pellet was resuspended using 10% FCS. Equal volume of cell suspension was added 

with 20% DMSO (2 mL DMSO + 8 mL of 10% FCS) to obtain the desired 

concentration of 10% DMSO. The mixture was then aliquoted into different prelabelled 

cryovials.   

2.3.8 Cellular viability assay 
 

Viability of cells can be determined by three major techniques i.e. imaging, flow 

cytometry and microplate assays. In this study MTT reduction assay, was used to 
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quantify the viable cells which is the most popular microplate assay and provides a 

measure of viable cells in a quantitative manner. Dehydrogenase enzymes present in 

metabolically active cells can reduce tetrazolium salts and produce purple coloured 

formazan which can be quantified using spectrophotometer. 

During preparation of MTT solution, required amount of MTT powder was measured 

and dissolved in 500 mL of RPMI medium (serum free) to make desired concentration 

of 1 mg/mL. The powder was dissolved into the medium through moderate shaking and 

avoiding from sunlight for 1 hour to make sure that every particle mixed properly. The 

solution was then sterilized by filtration and aliquoted into 50 mL tubes (covered with 

aluminium foil), kept into refrigerator. 

During assay, 96-well plate was taken out from the incubator and the medium was 

discarded. 50 µL of MTT solution was added to each well and incubated again for 4 h. 

After discarding the MTT solution from the 96-well plate, 150 µL was added into each 

well (Abdullah, Huq et al. 2003). The optical density (OD) was recorded from a 

microplate reader (iMark) at 595 nm. The percentage of viable cells was obtained from 

the following formula: 
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2.3.9 Estimation of cells killing 
 

The cytotoxicity of the compounds tested in this study was expressed as a measure of 

concentration required to kill half of the cells (IC50) value. It was determined from the 

dose response curve constructed from the plot of drug concentration versus percentage 

of viable cells. Each experiment was carried out for minimum four times to obtain 

statistically significant results.  

2.4 Binary sequenced combination study 
 

The main objective of the present study was to find out the combined drug effects from 

the combinations of platinums and phytochemicals. Drugs were combined with the idea 

that mechanisms of cell killing applied in combination would be different and would 

facilitate cancer cell killing more efficiently with reduced side effects. Drugs were 

combined at a constant ratio of their IC50 values and combined effects were determined 

from dose response curves and combination indices.  

2.4.1 Addition of drugs 
 

IC50 values obtained from the cytotoxicity study of the individual compounds used as a 

pilot for designing combination study. Drugs were added alone and in combinations at 

three different concentrations and sequences. During combination drugs were added at 

a constant ratio based on their IC50 values. Molar ratios of added combined drugs in 

different cell lines are shown in Table 2.4.  

96-well plate seeded with 100 μL of cells in each well (at least 24 h before) was taken 

out from the incubator and placed inside the laminar air flow cabinet for drug addition. 

The wells intended for single drug addition, was added with 100 μL of respective drugs. 

The wells intended for combined drug addition, was added with 50 μL of each selected 
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drugs (Alshehri, Beale et al. 2011). The wells intended for serve as control, was added 

with 100 μL of medium. Three different sequences namely: bolus or 0/0 (platinum and 

phytochemical added at the same time); 0/4 (platinum drug added first and 

phytochemical 4 h later) and 4/0 (phytochemical added first and platinum 4 h later) 

were used for combined drug addition. A model for combination study design is shown 

in Figure 2.1. MTT reduction assay was done to obtain percentage of viable cells after 

72 h of drug addition and incubation in 5% CO2 incubator.  
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Table 2.4: Summary of the molar concentration ratios between platinum compounds 

(Cis and Ox) and phytochemicals (Cur, EGCG, Col and taxol), while administered in 

combination to the human colorectal cancer CACO-2, HT-29, LIM-1215, and LIM-

2405 cell lines 

 

 

 

 

 

Cell lines 

 

Drug Combination 

 

Cis+Cur 

 

Cis+EGCG 

 

Cis+Col 

 

Cis+Tax 

 

CACO-2 

 

0.814 

 

0.424 

 

0.0072 

 

17.3 

 

HT29/219 

 

0.298 

 

0.208 

 

0.0017 

 

10 

 

LIM1215 

 

0.239 

 

0.512 

 

0.003 

 

14.75 

 

LIM2405 

 

0.597 

 

0.135 

 

0.0023 

 

3.25 

 

 

 

Ox+Cur 

 

Ox+EGCG 

 

Ox+Col 

 

Ox+Tax 

 

CACO-2 

 

0.128 

 

0.0444 

 

0.092 

 

1.813 

 

HT29/219 

 

0.029 

 

0.018 

 

0.025 

 

0.94 

 

LIM1215 

 

2.18 

 

9.7 

 

0.010 

 

0.401 

 

LIM2405 

 

0.910 

 

0.206 

 

0.002 

 

0.131 
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1 2 3 4 5 6 7 8 9 10 11 12 

 

A Pt-1 Phyt1 (1) Phyt2 (1) Pt + Phyt2 (4/0)-1 A 

B Pt-2 Phyt1 (2) Phyt2 (2) Pt + Phyt2 (4/0)-2 B 

C Pt-3 Phyt1 (3) Phyt2 (3) Pt + Phyt2 (4/0)-3 C 

D Pt + Phyt1  (0/4)-1 Pt +Phyt1  (0/0)-1 Pt + Phyt2 (0/0)-1 Pt + Phyt2 (0/4)-1 D 

E Pt + Phyt1 (0/4)-2 Pt +Phyt1 (0/0)-2 Pt + Phyt2 (0/0)-2 Pt + Phyt2 (0/4)-2 E 

F Pt + Phyt1 (0/4)-3 Pt +Phyt1 (0/0)-3 Pt + Phyt2 (0/0)-3 Pt + Phyt2 (0/4)-3 F 

G Pt + Phyt1  (4/0)-1 Pt + Phyt1 (4/0)-3 Blank G 

 H Pt + Phyt1 (4/0)-2   H 

 
1 2 3 4 5 6 7 8 9 10 11 12 

 
 

Figure 2.1: Combination study design for the addition of drugs in a 96 well plate, 

where Pt=platinum drug; Phyt1=phytochemical 1; Phyt2=phytochemical 2; 1=five 

times diluted IC50 concentration; 2=IC50 concentration and 3=five times higher IC50 

concentration    

 

2.4.2 Determination of combined drug action 
 

The nature of combined drug action was determined from dose response curves and 

combination indices. Dose response curves were obtained by plotting the concentration 

of drugs against cell survival fractions. Qualitative measure of combined drug actions 
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can be obtained from dose response curves and it provides visually appealing 

presentation of the results. 

In contrast, combination indices (CI) represent the quantitative measure of combined 

drug action, which is more accurate and reliable. The values indicate the nature of 

combined drug action i.e. a value less than 1 refers to synergistic combined effect, a 

value greater than 1 refers to antagonistic combined effect and a value 1 refers to 

additive combined drug effects. CI values were calculated by using the software 

Calcusyn which calculates the combined drug effects through Chou-Talalay method 

(Chou and Talalay 1984).  

Chou-Talalay initially develops the formula to describe enzyme kinetics but now is 

being modified and extensively used for determination of combined drug effects 

(Ashton 2015, Zhang, Fu et al. 2016, Anastasiadi, Polizzi et al. 2018). CI correlates 

dose and effects in a simplest possible form and can be calculated for binary 

combination using the following equation 

 

Where, Dpt refers to concentration of platinum drug required for z% cell kill while in 

combination; Dp refers to concentration of phytochemical required for z% cell kill in 

combination; Dpt refers to concentration of platinum drug required for z% cell kill while 

applied alone; Dp refers to concentration of phytochemical drug required for z% cell 

kill while applied alone. Dz can be determined from the formula  

Dz= Dm [fa/(1-fa)]1/m 

Where Dm refers to median effect dose; fa refers to affected fraction by the dose and m 

refers to exponent of dose response curve 
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2.5 Cellular accumulation of platinum 
 

2.5.1 Addition of drugs and cell collection 
 

Based on the combined drug effects few combinations were selected for this study to 

gather the link between combined drug action and cellular accumulation of platinum 

inside the cell. Combinations of platinums and phytochemicals producing 

synergistic/additive/antagonistic effects in HT-29 and CACO-2 cell lines were only 

selected for this study. Selected combinations are shown is Table 2.5. For cellular 

accumulation study, stock solutions of the compounds were again prepared (Cis: 1mM; 

Oxa: 0.63 mM; Cur: 0.71 mM; EGCG: 5.09 mM; Col: 1.23 mM and Tax: 1.16 mM).  

Exponentially growing HT-29 and CACO-2 colorectal cancer cells in 4.75 mL 10% 

FCS/RPMI medium (cell density = 50 x 104 cells mL-1) were seeded into cell culture 

dishes and allowed to attach overnight. While drugs were added in combination, 125 

μL of each selected drugs were added to the cells. But in case of Cis and Ox alone 

treatment 125 μL of drug and 125 μL of each medium were added. Then the culture 

dishes were incubated for 24 h at 37°C, 5% CO2 incubator. Cells were collected as 

shown in Figure 2.2.  
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Table 2.5: Combinations selected for cellular accumulation study 

 

Cell Sample Combined action 

HT-29 Cis  Not applicable 

HT-29 Cis & Cur (4/0) Additive 

HT-29 Cis & EGCG(0/0) Synergistic 

HT-29 Ox  Not applicable 

HT-29 Ox & Cur (0/0) Synergistic 

HT-29 Ox & Cur (4/0) Synergistic 

HT-29 Ox & EGCG(0/0) Synergistic 

HT-29 Ox & Col (0/4) Additive 

HT-29 Ox & Tax (4/0) Antagonistic 

CACO-2 Cis  Not applicable 

CACO-2 Cis & Cur (0/0) Additive 

CACO-2 Cis & EGCG (0/0) Additive 

CACO-2 Ox  Not applicable 

CACO-2 Ox & Cur (0/0) Synergistic 

CACO-2 Ox & EGCG (0/0) Synergistic 

CACO-2 Ox & Col (0/4) Additive 

CACO-2 Ox & Tax (4/0) Antagonistic 
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Figure 2.2: Flow diagram showing cell collection methodology 

2.5.2 Accumulated platinum content estimation 
 

1% triton –X 100 solution was made by dissolving required amount of triton X-100 in 

mQ water. In each prelabelled cell pellet, 0.5 mL of freshly prepared triton-X solution 

was added. Cell lysis was done very carefully using sonicator held on ice for about half 

an hour. The lysed cells were then spun in a large capacity refrigerated centrifuge at 

14,000 rpm for 2 min. The supernatant was then taken for further determination of 

platinum contents using AAS.   

Platinum standard solution used in the assay was prepared by mixing 0.001 mL of 

concentrated Pt standard solution (970 ppm) with 9.999 mL of 0. 1 M of HCl. 

Calibration curve was generated by loading serially diluted platinum standard solution 

using auto sampler (Abdullah, Huq et al. 2003). At least three different individual 
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experiments were conducted for each sample.

 

Figure 2.3: Calibration curve used in AAS assay for determination of platinum 

2.6 PlatinumDNA binding 
 

The study was also designed to reveal the link between the combined drug actions and 

binding of DNA with platinums. Drugs were added to the cells using the same 

combined treatments and same methodology as described in previous section (2.6.1). 

The final concentrations of the drugs used in the study are presented in Table 2.6.    
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Table 2.6: Final concentration of drugs applied to cells in platinum-DNA binding study 

Drugs Single drug Drugs in combination 

Cis 50 25 

Ox 38 19 

Cur Not applicable 17 

Col Not applicable 127 

EGCG Not applicable 29.47 

Tax Not applicable 29 

 

After collection of cells as pellets as portrayed in figure 2.3, pure genomic DNA was 

isolated from the cells with the use of EZ-10 spin column minipreps KIT. The method 

described in the booklet provided with the kit was exactly followed to extract the DNA. 

Flow chart of the entire procedure is given in figure 2.4. Concentration of DNA was 

quantified by following the equation: DNA concentration = Absorbance of DNA at 260 

nm x 50 ng/μL. 

After extracting DNA, 200 μL of each sample was injected into AAS using auto sampler 

to determine the extent of platinum-DNA binding. Each sample underwent into 

minimum three times individual experiment to obtain the statistically significant results.   

 



 53 

 

Figure 2.4: DNA extraction protocol 

2.7 Study of interaction with DNA 
 

Agar gel – electrophoresis study was carried out to gather the information relating to 

the interactions of the combinations with DNA. The aim of this study is to get the 

mechanistic insight relating to the combined drug action and damage to the DNA. Final 

concentration of the added drugs used in this study was same as tabulated in Table 2.6. 

Drugs were added by following the same technique as described in section 2.6. 
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 Cell collection methodology as well as DNA extraction techniques have already been 

described in section 2.6 and 2.7. Agar gel-electrophoresis was conducted on all 

phytochemicals and platinums as single drug and seven combinations in DNA obtained 

from HT-29 cells. Moreover, six combinations were selected along with all single drug 

treatments for study with DNA obtained from CACO-2 cells.   

Before starting agar gel electrophoresis, Tris-acetate-EDTA (TAE) buffer was freshly 

prepared. Initially 50 X TAE stock buffer (50 mL) was made by stirring 12.11 g of Tris 

base, 2.85 mL of glacial acetic acid and 0.93 g of EDTA in 47.15 mL of mQ water. 

Then it was diluted to 1 X TAE working buffer by measuring 40 mL of 50 X TAE and 

making the final volume up to 2 L using mQ water. 2 g of agarose gel powder was 

weighed and dissolved in 200 mL of working buffer using microwave. 125 µL of 

ethidium bromide was then added and mixed thoroughly to the gel. Prepared gel was 

then solidified on the tray (with comb in appropriate place). After 45 minutes, in each 

side of the electrophoresis chamber was added with 250 µL of ethidium bromide. 

Entire gel was dipped into the electrophoresis chamber using TAE working buffer. 

Estimated volume of DNA sample (measured as corresponding to 0.2 µg of DNA) was 

mixed with required volume of mQ water to make the total of 18 µl, followed by 

mixing with 2 µl of bromophenol blue chromatogram. Finally, each DNA sample was 

loaded into the well and electrophoresis was conducted for 120 min at 120 V. Image 

of the gel with DNA bands was visualized using UV lamp and Kodak Gel Logic (Huq, 

Yu et al. 2004).    

2.8 Proteomic study 
 

At the end of this study, proteomics was conducted with the aim of identifying the key 

proteins associated with the cytotoxicity of the single and combined drug 

administration. Only HT-29 and CACO-2 cancer cells were chosen for this study with 



 55 

few selected treatments (alone and in combination). HT-29 cell line was treated with 

Ox alone, Col alone, EGCG alone, Ox+Col (0/4) and Ox+EGCG (0/0). In contrast, 

CACO-2 cell line was treated with Ox alone, Cur alone and Ox+Cur (0/0). Images of 

the gels obtained from drug treated HT-29 and CACO-2 colorectal cancer cells was 

matched and compared with the untreated gels of the same lines. The expression of the 

various proteins were compared with treated and untreated gels, hence the proteins 

responsible for cytotoxicity/combined drug action were identified. A pictorial diagram 

demonstrating the different steps of proteomic study is present in figure 2.5. 

 

Figure 2.5: Summary of different steps carried out in proteomic study 
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2.8.1 Drug addition in colorectal cells 
 

HT-29 and CACO-2 colorectal cells were sub cultured into large corning surface cell 

culture flask (175 cm2) for proteomic study. Exponentially growing cells were 

harvested and seeded into 50 cm2 culture dishes having 4.25 mL of medium and 

incubated for cell to grow with 80 percent confluence. After the incubation period, 

prelabelled culture dishes were added with drugs. For single drug additions: 0.375 mL 

of drug and 0.375 mL of medium; for combined drug additions: 0.375 mL of each drug; 

and for control 0.75 mL of medium was added. After the addition of drugs, the culture 

dishes were transferred into the 5% CO2 incubator for 24 h.  

2.8.2 Preparation of cell pellet 
 

Cell collection methodology was similar to that described in figure 2.2, except that cell 

collections were done from large culture dishes instead of small culture dishes. Since 

the volume was greater, 50 mL tubes were used instead of 10 mL tubes and 5 mL PBS 

was used for washing in place of 2 mL.  

2.9.3 Lysis of cells and protein content determination 

Cell lysis was performed by following the established protocol in the host laboratory 

using the freshly prepared buffer composed of urea, thiourea, CHAPS, DTT and 

protease inhibitor tablets (Al-Eisawi, Beale et al. 2016). Exact composition of the lysis 

buffer and detail method for measuring the protein concentration is provided in 

Appendix –I.  

2.8.3 Separation of individual proteins 
 

2-D gel electrophoresis was conducted to separate the proteins initially on the basis of 

isoelectric points (pI) and subsequently as a function of molecular weight. pI based 

separation was performed in first dimension through iso-electric focusing (IEF) on 



 57 

immobilized pH gradient (IPG) strips. In addition, second dimensional separation of 

the proteins was accomplished through polyacrylamide electrophoresis (PAGE) gels. 

Coomasie blue was used to stain the gels and 0.05% sodium azide solution was used 

for gel preservation (Salvato, Carvalho et al. 2012). Figure 2.6 shows the sample of IPG 

strip and other instruments used in 1D electrophoresis. The detail procedure of gel 

electrophoresis is provided in Appendix-1.   

 

 

Figure 2.6: IPG strip and PROTEAN IEF system used in the study 

2.8.4 Protein gel image analysis 
 

Proteins spots on gels were analysed using updated version of Melanie software. 

Minimum two gels obtained from the same treatment were used for accuracy and 

precision. Initially the gel images were imported into the software and arranged into 

separate groups and classes. In this study 10 matched groups were created which 
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belonged to two different classes. Figure 2.7 illustrates the matched classes and groups 

created in this study. During analysis of spots, two spots were selected as marker spots 

which were found to be present in every gel for the matched groups and class. Then the 

matching of the spots was performed through Melanie software. Change in fold of a 

protein by 1.5 or more was considered as significant in the study. Statistical test was 

performed by analysis of variance method (ANOVA) and a value of 0.05 was cut off 

point.  

 

 

Figure 2.7: Matched classes and groups in proteomic study  

2.8.5 Determination of protein identity 
 

Selected protein spots were excised from the gels and sent to Australian Proteomic 

Analysis Facility (APAF), located at Macquarie University, Sydney, Australia for 

protein characterisation and identification. Matrix Assisted Laser Desorption Ionisation 

mass spectrometry (MALDI-MS) was employed with an Applied Biosystems 4800 

HT-29 gels

Non treated

Ox alone treated

Col alone treated

EGCG alone treated

Ox + Col (0/4)

Ox + EGCG (0/0)

CACO-2 gels

Non treated

Ox alone treated

Cur alone treated

Ox + Cur (0/0)
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Proteomics Analyser to determine the identity of selected proteins. The detail of 

experimental is given in Appendix I. 
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3 RESULTS 
 

Preamble: Colorectal cancer is one of the most dreaded diseases of our time and 

chemotherapy stands as frontline treatment in metastasized advanced level of CRC. The 

objective of this study was to look for the phytochemicals which give synergism with 

platinum drugs against colorectal cancer models.  This chapter consists of the results 

obtained from the cytotoxicity of platinum compounds and phytochemicals investigated 

in this study either alone or in combination against four different colorectal cancer cell 

lines (HT-29, CACO-2, LIM-1215 and LIM-2405). Results of the mechanistic studies 

e.g. cellular accumulation, platinum DNA binding, DNA damage and proteomics will 

also detailed in this chapter.  

3.1 Antitumour activity of the 

compounds alone 
 

Cytotoxicity of the individual compound was determined using MTT reduction assay 

against four colorectal cancer cell lines. The result of the cytotoxicity of the compounds 

has been described here in terms of dose response curves and IC50 values. Obtained IC50 

values were further used in designing the plan for combination study. 

3.1.1 HT-29 cell line 
 

Figure 3.1 gives the cell survival versus concentration plots for platinum drugs: Cis, Ox 

and phytochemicals: Tax, Col, Cur, EGCG, and 6-gin as applied to the human 

colorectal cancer cell line HT-29. 
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Figure 3.1 : Dose response curves for the tested compounds as applied to the human 

colorectal cancer cell line HT-29. 

It can be seen that the most active compound against the colorectal cancer cell line HT-

29 is Col followed by Tax and the least active compound is 6-gin. Among the platinum 

drugs, the oxaliplatin is more active than cisplatin against the cell line. 

3.1.2 CACO-2 cell line 
 

Figure 3.2 gives the cell survival versus concentration plots for platinum drugs: Cis, Ox 

and phytochemicals: Tax, Col, Cur, EGCG, and 6-Gin as applied to the human 

colorectal cancer cell line CACO-2. 
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Figure 3.2 : Dose response curves for the tested compounds as applied to the human 

colorectal cancer cell line CACO-2 

It can be seen that the most active compound against the colorectal cancer cell line 

CACO-2 is Col followed by Tax and the least active compound is 6-gin. Among the 

platinum drugs, the Ox is more active against the cell line than Cis. 

3.1.3 LIM-1215 cell line 
 

Figure 3.3 gives the cell survival versus concentration plots for platinum drugs: Cis, Ox 

and phytochemicals: Tax, Col, Cur, EGCG, and 6-Gin as applied to the human 

colorectal cancer cell line LIM-1215. 
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Figure 3.3: Dose response curves for the tested compounds as applied to the human 

colorectal cancer cell line LIM-1215. 

It can be seen that the most active compound against the colorectal cancer cell line LIM-

1215 is Col followed by Tax and the least active compound is 6-Gin. Among the 

platinum drugs, the Ox is more active than Cis against the cell line. 

3.1.4 LIM-2405 cell line 
 

Figure 3.4 gives the cell survival versus concentration plots for platinum drugs: Cis, Ox 

and phytochemicals: Tax, Col, Cur, EGCG, and 6-gin as applied to the human 

colorectal cancer cell line LIM-2405. 
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 Figure 3.4: Dose response curves for the tested compounds as applied to the human 

colorectal cancer cell line LIM-2405 

It can be seen that the most active compound against the colorectal cancer cell line LIM-

2405 is Col followed by Tax and the least active compound is 6-Gin. Among the 

platinum drugs, the cisplatin is more active than oxaliplatin against the cell line. 

3.1.5 Summary of IC50 values  
 

Table 3.1 gives a summary of IC50 values of the compounds platinums: cisplatin (Cis), 

oxaliplatin (Ox) and phytochemicals: taxol (Tax), colchicine (Col), curcumin (Cur), 

epigallocatechin-3-gallate (EGCG), and 6-gengirol (6-Gin) as applied to the cell lines 

HT-29, CACO-2, LIM-1215 and LIM-2405. Figure 3.5 gives a graphical representation 

of the IC50 values of the studied compounds (except 6-Gin which showed very large 

values in all cell lines). 
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Table 3.1: Summary of the IC50 values (μM) for Cis, Ox, 6-Gin, Cur, Col, EGCG and 

Tax as applied to HT-29, CACO-2, LIM-1215 and LIM-2405 human colorectal 

cancer cell lines 

Cell 

lines 

Platinum drug Phytochemical 

Cis Ox Col 
Cur EGCG Tax 6-Gin 

HT-29 5.00±0.00 0.47±0.00 0.01±0.00 17.25±0.02 28.40±0.04 0.50±0.00 146.46±0.27 

CACO-2 26.02±0.05 2.72±0.00 0.19±0.00 21.20±0.02 61.30±0.1 2.50±0.00 116.96±0.21 

LIM-

1215 
7.49±0.02 1.25±0.00 0.02±0.00 31.30±0.06 14.60±0.02 1.00±0.02 147.39±0.29 

LIM-

2405 
4.98±0.01 7.60±0.01 0.01±0.00 8.30±0.01 37.00±0.05 1.50±0.2 161.89±0.37 

 

 
 

Figure 3.5: IC50 values (μM) for Cis , Ox, Cur, Col, EGCG and Tax as applied to HT-

29, CACO-2, LIM-1215 and LIM-2405 human colorectal cancer cell lines  
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It can be seen that colchicine is the most potent compound in all four colorectal cancer 

cell lines which is followed by taxol then oxaliplatin. The exact order of antitumour 

activity from highest to lowest in different colorectal cancer cell lines was as follows: 

HT-29: Col>Ox>Tax>Cis>Cur>EGCG>6-Gin 

CACO-2: Col>Tax>Ox>Cur>Cis>EGCG>6-Gin 

LIM-1215: Col>Tax>Ox>Cis>EGCG>Cur>6-Gin 

LIM-2405: Col>Tax>Cis>Ox>Cur>EGCG>6-Gin  

These results are discussed in more detail in the next chapter. 

  



 67 

3.2 Drugs in Combination 
 

After the determination of the IC50 values, studies on drug combination were carried 

out to investigate whether the combined action of the drugs was synergistic, additive or 

antagonistic. Since 6-gin showed very low antitumour activity in all selected colorectal 

cancer cell lines with IC50 values greater than 100 µM, the phytochemical was not 

considered for combination study. Dose response curves and combination indices were 

used as measures of the combined drug action in this study.  

3.2.1 Dose response curves 
 

3.2.1.1 Combinations between platinum drugs and 

phytochemicals in HT-29 cell line   
 

Table 3.2 gives the dose effect values (affected cell fractions) at three different 

concentrations of Cis  and phytochemicals added alone and in combination according 

to three different sequences of administration (Cis/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to HT-29 cell line. Figures 3.6 -3.9 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.6), it can be said that 4/0 addition of Cis with 

Cur against HT-29 cell line produced greater cell kill whereas 0/4 addition of the same 

was the least effective. Bolus addition of Cis with Col displayed highest cytotoxicity 

against HT-29 cell line while 4/0 addition did the lowest in the same cells (Figure 3.7). 

When Cis was combined with EGCG, bolus addition caused greater cell kill whereas 

0/4 sequence of addition was the least effective (Figure 3.8). In contrast, when Cis was 

combined with Tax, bolus addition produced greater cell kill whereas 4/0 administration 

was the least effective against HT-29 cell line (Figure 3.9).   
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Table 3.2: Cell fractions affected by drug treatments (Cis and phytochemicals) alone 

and in combination against HT-29 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Cis (μM) Effect   

0.4 0.09 ± 0.01 

4 0.54 ± 0.12 

40 0.85 ± 0.05 

Cur (μM) Effect Col (μM) Effect 

1.38 0.11 ± 0.03 0.001 0.21 ± 0.09 

13.8 0.61 ± 0.05 0.01 0.49 ± 0.07 

137.98 0.90 ± 0.06 0.07 0.71 ± 0.04 

EGCG (μM) Effect Tax (μM) Effect 

1.92 0.08 ± 0.06 0.04 0.001 ± 0.02 

19.2 0.33 ± 0.03 0.4 0.51 ± 0.10 

192 0.86 ± 0.01 4 0.88 ± 0.08 

Effects observed at different concentrations (μM) of drugs administered in 

combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Cis Cur Effect Effect Effect 

0.2 0.69 0.31 ± 0.10 0.4 ± 0.04 0.28 ± 0.02 

2.0 6.9 0.55 ± 0.03 0.59 ± 0.09 0.53 ± 0.04 

20.0 68.99 0.87 ± 0.05 0.89 ± 0.08 0.87 ±  0.08 

Cis Col    

0.2 0.0005 0.743 ± 0.07 0.745 ± 0.07 0.803 ± 0.06 

2.0 0.0047 0.744 ± 0.04 0.828 ± 0.07 0.825 ± 0.08 

20.0 0.047 0.745 ± 0.14 0.924 ± 0.06 0.8852 ± 0.02 

Cis EGCG    

0.2 0.96 0.31 ± 0.03 0.4 ± 0.04 0.28 ± 0.01 

2.0 9.6 0.55 ± 0.05 0.59 ± 0.02 0.53 ± 0.03 

20.0 96 0.87 ± 0.01 0.89 ± 0.08 0.87 ± 0.07 

Cis Tax    

0.2 0.02 0.001 ± 0.11 0.001 ± 0.14 0.001 ± 0.10 

2.0 0.2 0.337 ± 0.09 0.3873 ± 0.04 0.3345 ± 0.05 

20.0 2 0.9036 ± 0.13 0.8977 ± 0.09 0.8833 ± 0.08 
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Figure 3.6 : Dose response curves obtained from combination of Cis with Cur as 

employed to HT-29 cell line 

 

Figure 3.7 : Dose response curves obtained from combination of Cis with Col as 

employed to HT-29 cell line 
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Figure 3.8 : Dose response curves obtained from combination of Cis with EGCG as 

employed to HT-29 cell line 

 

Figure 3.9 : Dose response curves obtained from combination of Cis with Tax as 

employed to HT-29 cell line 
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 Table 3.3 gives the dose effect values (affected cell fractions) at three different 

concentrations of Ox  and phytochemicals added alone and in combination according 

to three different sequences of administration (Ox/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to HT-29 cell line. Figures 3.10 -3.13 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.10), it can be said that 4/0 addition of Ox with 

Cur against HT-29 cell line produced greater cell kill whereas 0/4 addition of the same 

was the least effective. Bolus addition of Ox with Col displayed highest cytotoxicity 

against HT-29 cell line while 0/4 addition did the lowest in the same cells (Figure 3.11). 

When Ox was combined with EGCG, bolus addition caused greater cell kill whereas 

0/4 sequence of addition was the least effective (Figure 3.12). In contrast, when Ox was 

combined with Tax, 4/0 sequenced addition produced greater cell kill whereas bolus 

addition was the least  effective against HT-29 cell line (Figure 3.13).   
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Table 3.3: Cell fractions affected by drug treatments (Ox and phytochemicals) alone 

and in combination against HT-29 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Ox (μM) Effect   

0.04 0.001 ± 0.00 

0.38 0.44 ± 0.04 

3.76 0.75 ± 0.01 

Cur (μM) Effect Col (μM) Effect 

1.38 0.11 ± 0.05 0.001 0.21 ± 0.03 

13.8 0.61 ± 0.02 0.01 0.49 ± 0.01 

137.98 0.90 ± 0.02 0.07 0.71 ± 0.04 

EGCG (μM) Effect Tax (μM) Effect 

1.92 0.08 ± 0.01 0.04 0.001 ± 0.12 

19.2 0.33 ± 0.06 0.4 0.51 ± 0.05 

192 0.86 ± 0.03 4 0.88 ± 0.02 

Effects observed at different concentrations (μM) of drugs administered in 

combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Ox Cur Effect Effect Effect 

0.02 0.69 0.02 ± 0.00 0.01 ± 0.01 0.15 ± 0.00 

0.19 6.9 0.38 ± 0.03 0.30 ± 0.03 0.56 ± 0.05 

1.88 68.99 0.92 ± 0.01 0.91 ± 0.08 0.92 ± 0.09 

Ox Col    

0.2 0.0005 0.09 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 

2.0 0.0047 0.55 ± 0.03 0.28 ± 0.04 0.48 ± 0.03 

20.0 0.047 0.78 ± 0.07 0.76 ± 0.05 0.77 ± 0.02 

Ox EGCG    

0.2 0.96 0.15 ± 0.01 0.02 ± 0.03 0.23 ± 0.01 

2.0 9.6 0.71 ± 0.06 0.61 ± 0.02 0.67 ± 0.06 

20.0 96 0.86 ± 0.11 0.82 ± 0.07 0.84 ± 0.05 

Ox Tax    

0.2 0.02 0.001 ± 0.01 0.001 ± 0.00 0.001 ± 0.07 

2.0 0.2 0.25 ± 0.03 0.3 ± 0.06 0.28 ± 0.04 

20.0 2 0.67 ± 0.07 0.64 ± 0.01 0.67 ± 0.06 
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Figure 3.10 : Dose response curves obtained from combination of Ox with Cur as 

employed to HT-29 cell line 

 

Figure 3.11 : Dose response curves obtained from combination of Ox with Col as 

employed to HT-29 cell line 
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Figure 3.12 : Dose response curves obtained from combination of Ox with EGCG as 

employed to HT-29 cell line 

 

Figure 3.13: Dose response curves obtained from combination of Ox with Tax as 

employed to HT-29 cell line 
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3.2.1.2 Combinations between platinum drugs and 

phytochemicals in CACO-2 cell line   
 

Table 3.4 gives the dose effect values (affected cell fractions) at three different 

concentrations of Cis  and phytochemicals added alone and in combination according 

to three different sequences of administration (Cis/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to CACO-2 cell line. Figures 3.14 -3.17 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.14), it can be said that bolus addition of Cis 

with Cur against CACO-2 cell line produced greater cell kill whereas 0/4 addition of 

the same was the least effective. 4/0 sequence of addition of Cis with Col displayed 

highest cytotoxicity against CACO-2 cell line while bolus addition did the lowest in the 

same cells (Figure 3.15). When Cis was combined with EGCG, 0/4 sequence of addition 

caused greater cell kill whereas 4/0 sequence of addition was the least effective (Figure 

3.16). In contrast, when Cis was combined with Tax, bolus addition produced greater 

cell kill whereas 0/4 sequence of addition was the least  effective against CACO-2 cell 

line (Figure 3.17).   
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Table 3.4: Cell fractions affected by drug treatments (Cis and phytochemicals) alone 

and in combination against CACO-2 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Cis (μM) Effect   

4.1632 0.25 ± 0.10 

20.816 0.71 ± 0.02 

104.08 0.87 ± 0.01 

Cur (μM) Effect Col (μM) Effect 

1.7 0.1 ± 0.03 0.02 0.35 ± 0.06 

16.96 0.43 ± 0.02 0.15 0.47 ± 0.03 

169.56 0.88 ± 0.05 1.5 0.60 ± 0.01 

EGCG (μM) Effect Tax (μM) Effect 

4.9 0.15 ± 0.02 0.12 0.001 ± 0.04 

49.04 0.32 ± 0.05 1.2 0.09 ± 0.01 

490.4 0.83 ± 0.08 12 0.48 ± 0.02 

Effects observed at different concentrations (μM) of drugs administered in 

combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Cis Cur Effect Effect Effect 

2.0816 0.085 0.21 ± 0.02 0.15 ± 0.01 0.2 ± 0.02 

10.408 8.488 0.65 ± 0.06 0.55 ± 0.05 0.63 ± 0.05 

52.04 84.78 0.89 ± 0.06 0.87 ± 0.08 0.89 ± 0.09 

Cis Col    

2.0816 0.01 0.001 ± 0.10 0.41 ± 0.04 0.35 ± 0.03 

10.408 0.075 0.81 ± 0.05 0.78 ± 0.07 0.84 ± 0.06 

52.04 0.75 0.92 ± 0.07 0.92 ± 0.06 0.91 ± 0.02 

Cis EGCG    

2.0816 2.45 0.17 ± 0.02 0.15 ± 0.01 0.17 ± 0.01 

10.408 24.52 0.78 ± 0.06 0.77 ± 0.03 0.76 ± 0.07 

52.04 245.2 0.85 ± 0.01 0.86 ± 0.07 0.83 ± 0.05 

Cis Tax    

2.0816 0.06 0.15 ± 0.01 0.17 ± 0.02 0.17 ± 0.02 

10.408 0.6 0.77 ± 0.10 0.76 ± 0.07 0.78 ± 0.11 

52.04 6 0.86 ± 0.13 0.83 ± 0.08 0.85 ± 0.07 
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Figure 3.14 : Dose response curves obtained from combination of Cis with Cur as 

employed to CACO-2 cell line 

 

Figure 3.15: Dose response curves obtained from combination of Cis with Col as 

employed to CACO-2 cell line 

0

0.5

1

0 20 40 60 80 100

F
ra

ct
io

n
 a

ff
ec

te
d

Conc (µM)

Cis

Cur

Cis + Cur 0/0

Cis + Cur 0/4

Cis + Cur  4/0

0

0.5

1

0 20 40 60 80 100

F
ra

ct
io

n
 a

ff
ec

te
d

Conc (µM)

Cis

Col

Cis + Col 0/0

Cis + Col 4/0



 78 

 

Figure 3.16: Dose response curves obtained from combination of Cis with EGCG as 

employed to CACO-2 cell line 

 

Figure 3.17: Dose response curves obtained from combination of Cis with Tax as 

employed to CACO-2 cell line 
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Table 3.5 gives the dose effect values (affected cell fractions) at three different 

concentrations of Ox  and phytochemicals added alone and in combination according 

to three different sequences of administration (Ox/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to CACO-2 cell line. Figures 3.18 -3.21 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.18), it can be said that bolus addition of Ox 

with Cur against CACO-2 cell line produced greater cell kill whereas 4/0 addition of 

the same was the least effective. Bolus addition of Ox with Col displayed highest 

cytotoxicity against CACO-2 cell line while 0/4 sequence of addition did the lowest in 

the same cells (Figure 3.19). When Ox was combined with EGCG, bolus addition 

caused greater cell kill whereas 0/4 sequence of addition was the least effective (Figure 

3.20). In contrast, when Ox was combined with Tax, 4/0 sequence of addition produced 

greater cell kill whereas 0/4 sequence of addition was the least effective against CACO-

2 cell line (Figure 3.21).    
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Table 3.5: Cell fractions affected by drug treatments (Ox and phytochemicals) alone 

and in combination against CACO-2 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Ox (μM) Effect   

0.22 0.26 ± 0.00 

2.18 0.47 ± 0.04 

21.76 0.73 ± 0.01 

Cur (μM) Effect Col (μM) Effect 

1.7 0.10 ± 0.01 0.02 0.35 ± 0.11 

16.96 0.43 ± 0.08 0.15 0.47 ± 0.05 

169.56 0.88 ± 0.03 1.5 0.60 ± 0.02 

EGCG (μM) Effect Tax (μM) Effect 

4.9 0.15 ± 0.01 0.12 0.001 ± 0.02 

49.04 0.32 ± 0.06 1.2 0.09 ± 0.07 

490.4 0.83 ± 0.01 12 0.48 ± 0.04 

Effects observed at different concentrations (μM) of drugs administered in 

combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Ox Cur Effect Effect Effect 

0.11 0.085 0.2 ± 0.02 0.14 ± 0.01 0.16 ± 0.01 

1.09 8.488 0.44 ± 0.04 0.37 ± 0.03 0.46 ± 0.04 

10.88 84.78 0.9 ± 0.06 0.89 ± 0.08 0.85 ± 0.07 

Ox Col    

0.11 0.01 0.09 ± 0.01 0.08 ± 0.01 0.16 ± 0.01 

1.09 0.075 0.47 ± 0.03 0.15 ± 0.01 0.54 ± 0.04 

10.88 0.75 0.7 ± 0.06 0.66 ± 0.04 0.68 ± 0.02 

Ox EGCG    

0.11 2.45 0.25 ± 0.02 0.11 ± 0.01 0.28 ± 0.02 

1.09 24.52 0.50 ± 0.04 0.42 ± 0.02 0.52 ± 0.03 

10.88 245.2 0.85 ± 0.11 0.80 ± 0.07 0.82 ± 0.05 

Ox Tax    

0.11 0.06 0.001 ± 0.06 0.15 ± 0.07 0.13 ± 0.08 

1.09 0.6 0.32 ± 0.04 0.57 ± 0.05 0.57 ± 0.06 

10.88 6 0.72 ± 0.01 0.65 ± 0.01 0.75 ± 0.01 
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Figure 3.18 : Dose response curves obtained from combination of Ox with Cur as 

employed to CACO-2 cell line 

 

Figure 3.19 : Dose response curves obtained from combination of Ox with Col as 

employed to CACO-2 cell line 
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Figure 3.20 : Dose response curves obtained from combination of Ox with EGCG as 

employed to CACO-2 cell line 

 

Figure 3.21 : Dose response curves obtained from combination of Ox with Tax as 

employed to CACO-2 cell line 
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3.2.1.3 Combinations between platinum drugs and 

phytochemicals in LIM-1215 cell line   
 

Table 3.6 gives the dose effect values (affected cell fractions) at three different 

concentrations of Cis  and phytochemicals added alone and in combination according 

to three different sequences of administration (Cis/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to LIM-1215 cell line. Figures 3.22 -3.25 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.22), it can be said that combination of Cis with 

Cur 4/0 sequence of addition caused greater cell kill at lower concentration but 0/4 

sequence of addition produced greater cell kill at higher concentration against LIM-

1215 cell line. 0/4 sequence of addition of Cis with Col displayed highest cytotoxicity 

against LIM-1215 cell line while bolus addition did the lowest in the same cells (Figure 

3.23). When Cis was combined with EGCG, bolus addition caused greater cell kill 

whereas 4/0 sequence of addition was the least effective (Figure 3.24). In contrast, when 

Cis was combined with Tax, 4/0 sequence of addition produced greater cell kill whereas 

0/4 sequence of addition was the least effective against LIM-1215 cell line (Figure 

3.25).    
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Table 3.6: Cell fractions affected by drug treatments (Cis and phytochemicals) alone 

and in combination against LIM-1215 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Cis (μM) Effect   

0.5992 0.001 ± 0.04 

5.992 0.172 ± 0.02 

59.92 0.8009 ± 0.01 

Cur (μM) Effect Col (μM) Effect 

1.33 0.001 ± 0.05 0.001 0.19 ± 0.12 

13.33 0.5562 ± 0.03 0.02 0.22 ± 0.04 

133.28 0.8204 ± 0.02 0.18 0.83 ± 0.03 

EGCG (μM) Effect Tax (μM) Effect 

1.17 0.1682 ± 0.01 0.04 0.19 ± 0.03 

11.68 0.3341 ± 0.01 0.4 0.25 ± 0.02 

116.8 0.7637 ± 0.04 4 0.60 ± 0.02 

Effects observed at different concentrations (μM) of drugs administered in 

combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Cis Cur Effect Effect Effect 

0.2995 0.665 0.31 ± 0.03 0.40 ± 0.03 0.28 ± 0.04 

2.996 6.665 0.55 ± 0.05 0.59 ± 0.06 0.53 ± 0.02 

29.96 66.64 0.87 ± 0.06 0.89 ± 0.08 0.87 ± 0.08 

Cis Col    

0.2995 0.0005 0.07 ± 0.14 0.001 ± 0.01 0.001 ± 0.08 

2.996 0.01 0.32 ± 0.04 0.31 ± 0.03 0.23 ± 0.07 

29.96 0.09  0.78 ± 0.02 0.79 ± 0.04 0.74 ± 0.02 

Cis EGCG    

0.2995 0.585 0.19 ± 0.01 0.10 ± 0.01 0.015 ± 0.01 

2.996 5.84 0.32 ± 0.02 0.22 ± 0.01 0.27 ± 0.04 

29.96 58.4 0.80 ± 0.04 0.81 ± 0.07 0.78 ± 0.02 

Cis Tax    

0.2995 0.02 0.18 ± 0.11 0.17 ± 0.03 0.001 ± 0.01 

2.996 0.20 0.31 ± 0.04 0.32 ± 0.02 0.26 ± 0.04 

29.96 2 0.72 ± 0.01 0.54 ± 0.05 0.67 ± 0.06 
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Figure 3.22 : Dose response curves obtained from combination of Cis with Cur as 

employed to LIM-1215 cell line 

 

Figure 3.23 : Dose response curves obtained from combination of Cis with Col as 

employed to LIM-1215 cell line 
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Figure 3.24 : Dose response curves obtained from combination of Cis with EGCG as 

employed to LIM-1215 cell line 

 

Figure 3.25 : Dose response curves obtained from combination of Cis with Tax as 

employed to LIM-1215 cell line 
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Table 3.7 gives the dose effect values (affected cell fractions) at three different 

concentrations of Ox  and phytochemicals added alone and in combination according 

to three different sequences of administration (Ox/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to LIM-1215 cell line. Figures 3.26 -3.29 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.26), it can be said that combination of Ox with 

Cur bolus addition caused greater cell kill at lower concentration but 4/0 sequence of 

addition produced greater cell kill at higher concentration against LIM-1215 cell line. 

Bolus addition of Ox with Col displayed highest cytotoxicity against LIM-1215 cell 

line while 4/0 sequence of addition did the lowest in the same cells (Figure 3.27). When 

Ox was combined with EGCG, 4/0 sequence of addition caused greater cell kill whereas 

bolus addition was the least effective (Figure 3.28). In contrast, when Ox was combined 

with Tax, bolus addition produced greater cell kill whereas 4/0 sequence of addition 

was the least effective against LIM-1215 cell line (Figure 3.29).    
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 Table 3.7: Cell fractions affected by drug treatments (Ox and phytochemicals) alone 

and in combination against LIM-1215 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Ox (μM) Effect   

0.1 0.12 ± 0.10 

1 0.11 ± 0.02 

10 0.64 ± 0.01 

Cur (μM) Effect Col (μM) Effect 

1.33 0.001 ± 0.04 0.001 0.19 ± 0.07 

13.33 0.56 ± 0.01 0.02 0.22 ± 0.05 

133.28 0.82 ± 0.03 0.18 0.83 ± 0.08 

EGCG (μM) Effect Tax (μM) Effect 

1.17 0.17 ± 0.01 0.04 0.19 ± 0.09 

11.68 0.33 ± 0.01 0.4 0.25 ± 0.02 

116.8 0.76 ± 0.04 4 0.60 ± 0.05 

Effects observed at different concentrations (μM) of drugs administered in 

combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Ox Cur Effect Effect Effect 

0.05 0.665 0.11 ± 0.01 0.001 ± 0.01 0.001 ± 0.01 

0.5 6.665 0.27 ± 0.02 0.20 ± 0.02 0.36 ± 0.03 

5 66.64 0.88 ± 0.06 0.89 ± 0.08 0.88 ± 0.05 

Ox Col    

0.05 0.0005 0.11 ± 0.01 0.03 ± 0.01 0.09 ± 0.01 

0.5 0.01 0.13 ± 0.01 0.14 ± 0.02 0.17 ± 0.01 

5 0.09 0.82 ± 0.07 0.75 ± 0.05 0.72 ± 0.03 

Ox EGCG    

0.05 0.585 0.11 ± 0.01 0.03 ± 0.01 0.09 ± 0.04 

0.5 5.84 0.13 ± 0.04 0.14 ± 0.01 0.17 ± 0.02 

5 58.4 0.82 ± 0.11 0.75 ± 0.06 0.72 ± 0.03 

Ox Tax    

0.05 0.02 0.07 ± 0.01 0.13 ± 0.02 0.16 ± 0.05 

0.5 0.20 0.18 ± 0.02 0.19 ± 0.04 0.26 ± 0.03 

5 2 0.68 ± 0.06 0.68 ± 0.01 0.58 ± 0.04 
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Figure 3.26 : Dose response curves obtained from combination of Ox with Cur as 

employed to LIM-1215 cell line 

 

Figure 3.27 : Dose response curves obtained from combination of Ox with Col as 

employed to LIM-1215 cell line 
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Figure 3.28 : Dose response curves obtained from combination of Ox with EGCG as 

employed to LIM-1215 cell line 

 

Figure 3.29 : Dose response curves obtained from combination of Ox with Tax as 

employed to LIM-1215 cell line 
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3.2.1.4 Combinations between platinum drugs and 

phytochemicals in LIM-2405 cell line   
 

Table 3.8 gives the dose effect values (affected cell fractions) at three different 

concentrations of Cis  and phytochemicals added alone and in combination according 

to three different sequences of administration (Cis/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to LIM-2405 cell line. Figures 3.30 -3.33 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.30), it can be said that 0/4 sequence of addition 

of Cis with Cur against LIM-2405 cell line produced greater cell kill whereas bolus 

addition of the same was the least effective. 0/4 sequence of addition of Cis with Col 

displayed highest cytotoxicity against LIM-2405 cell line while 4/0 sequence of 

addition did the lowest in the same cells (Figure 3.31). When Cis was combined with 

EGCG, bolus addition caused greater cell kill whereas 4/0 sequence of addition was the 

least effective (Figure 3.32). Similarly, when Cis was combined with Tax, bolus 

addition produced greater cell kill whereas 4/0 sequence of addition was the least 

effective against LIM-2405 cell line (Figure 3.33).    
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 Table 3.8: Cell fractions affected by drug treatments (Cis and phytochemicals) alone 

and in combination against LIM-2405 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Cis (μM) Effect   

0.4 0.15 ± 0.01 

3.98 0.52 ± 0.10 

39.84 0.97 ± 0.06 

Cur (μM) Effect Col (μM) Effect 

0.67 0.07 ± 0.02 0.001 0.06 ± 0.07 

6.66 0.11 ± 0.05 0.01 0.16 ± 0.02 

66.64 0.88 ± 0.02 0.09 0.74 ± 0.03 

EGCG (μM) Effect Tax (μM) Effect 

2.96 0.08 ± 0.03 0.12 0.03 ± 0.02 

29.6 0.11 ± 0.01 1.2 0.07 ± 0.01 

296 0.86 ± 0.01 12 0.74 ± 0.04 

Effects observed at different concentrations (μM) of drugs administered in 

combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Cis Cur Effect Effect Effect 

0.2 0.33 0.21 ± 0.02 0.15 ± 0.01 0.2 ± 0.03 

1.99 3.33 0.65 ± 0.06 0.55 ± 0.04 0.63 ± 0.01 

19.92 33.32 0.89 ± 0.05 0.87 ± 0.02 0.89 ± 0.01 

Cis Col    

0.2 0.0005 0.16 ± 0.02 0.12 ± 0.01 0.02 ± 0.01 

1.99 0.005 0.22 ± 0.01 0.31 ± 0.06 0.39 ± 0.03 

19.92 0.045 0.94 ± 0.02 0.94 ± 0.03 0.59 ± 0.01 

Cis EGCG    

0.2 1.48 0.11 ± 0.01 0.0001 ± 0.07 0.13 ± 0.02 

1.99 14.8 0.29 ± 0.04 0.32 ± 0.01 0.39 ± 0.01 

19.92 148 0.90 ± 0.02 0.78 ± 0.03 0.70 ± 0.04 

Cis Tax    

0.2 0.06 0.16 ± 0.13 0.001 ± 0.03 0.14 ± 0.08 

1.99 0.60 0.28 ± 0.01 0.29 ± 0.01 0.05 ± 0.02 

19.92 6 0.90 ± 0.04 0.49 ± 0.05 0.87 ± 0.01 
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Figure 3.30 : Dose response curves obtained from combination of Cis with Cur as 

employed to LIM-2405 cell line 

 

Figure 3.31 : Dose response curves obtained from combination of Cis with Col as 

employed to LIM-2405 cell line 
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Figure 3.32 : Dose response curves obtained from combination of Cis with EGCG as 

employed to LIM-2405 cell line 

 

Figure 3.33 : Dose response curves obtained from combination of Cis with Tax as 

employed to LIM-2405 cell line 
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Table 3.9 gives the dose effect values (affected cell fractions) at three different 

concentrations of Ox  and phytochemicals added alone and in combination according 

to three different sequences of administration (Ox/Phytochemical h): (0/0 h), (0/4 h), 

and (4/0 h) to LIM-2405 cell line. Figures 3.34 -3.37 represent the corresponding dose 

response curves. 

From the dose response curve (Figure 3.34), it can be said that bolus addition of Ox 

with Cur against LIM-2405 cell line produced greater cell kill whereas 4/0 sequence of 

addition of the same was the least effective. 4/0 sequence of addition of Ox with Col 

displayed highest cytotoxicity against LIM-2405 cell line while 0/4 sequence of 

addition did the lowest in the same cells (Figure 3.27). When Ox was combined with 

EGCG, 4/0 sequence of addition caused greater cell kill whereas bolus addition was the 

least effective (Figure 3.28). In contrast, when Ox was combined with Tax, 0/4 

sequence of addition produced greater cell kill whereas bolus addition was the least 

effective against LIM-2405 cell line (Figure 3.29). 
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Table 3.9: Cell fractions affected by drug treatments (Ox and phytochemicals) alone 

and in combination against LIM-2405 cell line 

Effects observed at different concentrations (μM) of drugs administered alone 

Ox (μM) Effect   

0.61 0.09 ± 0.01 

6.08 0.41 ± 0.03 

60.8 0.71 ± 0.03 

Cur (μM) Effect Col (μM) Effect 

0.67 0.07 ± 0.01 0.001 0.06 ± 0.06 

6.66 0.114 ± 0.02 0.01 0.16 ± 0.03 

66.64 0.879 ± 0.01 0.09 0.74 ± 0.02 

EGCG (μM) Effect Tax (μM) Effect 

2.96 0.08 ± 0.02 0.12  0.03 ± 0.01 

29.6 0.11 ± 0.01 1.2  0.07 ± 0.04 

296 0.86 ± 0.03 12  0.74 ± 0.02 

Effects observed at different concentrations (μM) of drugs administered in 
combination 

Concentration  Sequence and drug effect 

  (0/0 h) (0/4 h) (4/0 h) 

Ox Cur Effect Effect Effect 

0.305 0.33 0.06 ± 0.01 0.01 ± 0.02 0.01 ± 0.02 

3.04 3.33 0.15 ± 0.01 0.09 ± 0.01 0.05 ± 0.03 

30.4 33.32 0.87 ± 0.04 0.86 ± 0.03 0.87 ± 0.08 

Ox Col    

0.305 0.0005 0.09 ± 0.01 0.11 ± 0.02 0.02 ± 0.01 

3.04 0.005 0.33 ± 0.02 0.22 ± 0.04 0.25 ± 0.02 

30.4 0.045 0.72 ± 0.06 0.62 ± 0.03 0.77 ± 0.02 

Ox EGCG    

0.305 1.48 0.04 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

3.04 14.8 0.13 ± 0.03 0.10 ± 0.07 0.06 ± 0.01 

30.4 148 0.79 ± 0.01 0.80 ± 0.02 0.84 ± 0.04 

Ox Tax    

0.305 0.06 0.04 ± 0.01 0.01 ± 0.06 0.09 ± 0.07 

3.04 0.60 0.23 ± 0.04 0.20 ± 0.03 0.30 ± 0.04 

30.4 6 0.62 ± 0.05 0.64 ± 0.02 0.69 ± 0.01 



 97 

 

Figure 3.34 : Dose response curves obtained from combination of Ox with Cur as 

employed to LIM-2405 cell line 

 

Figure 3.35 : Dose response curves obtained from combination of Ox with Col as 

employed to LIM-2405 cell line 
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Figure 3.36 : Dose response curves obtained from combination of Ox with EGCG as 

employed to LIM-2405 cell line 

 

Figure 3.37 : Dose response curves obtained from combination of Ox with Tax as 

employed to LIM-2405 cell line 
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3.3 Combination Index (CI) values 
 

CI provides the quantitative measure of combined drug action which is more reliable 

and accurate than dose effect curves. If the potency of the combined drugs differ greatly, 

interpretation of results from dose effect curves may mislead towards wrong findings. 

In this study, Calcusyn software was used to determine the CI values. CI<1 refers to 

synergism; CI>1 refers to antagonism and CI=1 refers to additiveness. 

3.3.1 Combinations from Cis and phytochemicals 

against HT-29 cell line   
 

Table 3.10 describes the list of CI values obtained from the combinations of Cis with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.10 that, among all combinations only Cis with Col produced 

synergism at all different concentrations and sequences of additions. Highest synergism 

was shown by Cis with EGCG at ED50 level with all sequences of additions.  Cis in 

combination with Cur showed antagonism at ED50 level. Cis in combination with Tax 

displayed antagonism irrespective of sequences and added concentrations. Figure 3.38 

shows pictorial presentation of CI as a function of added sequences and concentrations 

at ED50 level for all combinations of selected phytochemicals with Cis against HT-29 

cell line.  
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Figure 3.38 : Combination indices at ED50 in HT-29 cell line (Cis with Phytochemicals)  
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Table 3.10: Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of cisplatin and phytochemicals (Cur, Col, EGCG and Tax) for the three 

modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line HT-

29. (Dm is the medium effect dose, m is the exponent defining shape of the dose effect 

curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m R 

Cis NA NA NA 3.38 0.90 0.9947 

Cur NA NA NA 4.15 0.67 0.96 

Cis + Cur 0/0 1.51 0.97 0.65 1.33 1.04 0.98 

Cis + Cur 0/4 2.26 1.20 0.665 2.00 1.27 0.99 

Cis +Cur 4/0 1.27 0.92 0.69 1.12 0.93 0.98 

Col N/A N/A N/A 0.002 1.11 0.99 

Cis +Col 0/0 0.74 0.74 0.74 0.24 1.08           0.99 

Cis +Col 0/4 0.75  0.83 0.92 0.32 0.60            0.99 

Cis +Col 4/0 0.80 0.83 0.85 0.34 0.63              
0.95 

EGCG N/A N/A N/A 31.0 0.92 
0.99 

Cis +EGCG 0/0 0.21 0.39 0.73 0.95 0.58 
0.99 

Cis +EGCG 0/4 0.15 1.14 8.75 0.67 0.33 
1.00 

Cis +EGCG 4/0 0.25 0.42 0.71 1.11 0.61 
0.99 

Tax NA NA NA 0.92 1.93 
0.95 

Cis +Tax 0/0 11.17 7.20 4.70 4.90 1.98 
0.98 

Cis +Tax 0/4 10.97 7.09 4.65 4.81 1.97 
0.97 

Cis +Tax 4/0 11.87 7.75 5.12  5.21 1.93  
0.98 
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3.3.2 Combinations from Ox and phytochemicals 

against HT-29 cell line 
 

Table 3.11 describes the list of CI values obtained from the combinations of Ox with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.11 that, among all combinations Ox with EGCG and Ox with 

Cur produced synergism at all different concentrations and sequences of additions. 

Highest synergism was shown by Ox with Cur at all added concentrations with 4/0 

sequence of addition.  Ox in combination with Col showed strong synergism at ED90 

level. Ox in combination with Tax displayed antagonism irrespective of sequences and 

added concentrations. Figure 3.39 shows pictorial presentation of CI as a function of 

added sequences and concentrations at ED50 level for all combinations of selected 

phytochemicals with Ox against HT-29 cell line.    

 
 

Figure 3.39 : Combination indices at ED50 in HT-29 cell line (Ox with 

Phytochemicals)  
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Table 3.11 Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of oxaliplatin and phytochemicals (Cur, Col, EGCG and Tax) for the 

three modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line 

HT-29. (Dm is the medium effect dose, m is the exponent defining shape of the dose 

effect curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m r 

Ox 
NA NA NA 0.86 0.82 0.98 

Cur 
NA NA NA 0.31 1.39 1.00 

Ox + Cur 0/0 
0.35 0.21 0.12 0.31 1.39 1.00 

Ox + Cur 0/4 
0.44 0.24 0.13 0.38 1.52 1.00 

Cis +Cur 4/0 
0.16 0.14 0.12 0.14 0.92 1.00 

Col 
N/A N/A N/A 0.01 0.52 1.00 

Ox +Col 0/0 
0.88 0.45 0.23 0.28 0.79 0.97 

Ox +Col 0/4 
1.95 0.59 0.18 0.61 1.26 0.99 

Ox +Col 4/0 
1.31 0.48 0.18 0.41 1.03 0.97 

EGCG 
N/A N/A N/A 12.54 0.66 0.86 

OX +EGCG 0/0 
0.15 0.16 0.17 0.13 0.78 0.96 

Ox +EGCG 0/4 
0.38 0.25 0.17 0.33 1.19 0.94 

Ox +EGCG 4/0 
0.12 0.18 0.27 0.10 0.63 0.98 

Tax 
N/A N/A N/A 0.48 2.77 1.00 

Ox +Tax 0/0 
2.66 3.30 1.67 0.82 0.96 2.17 

Ox +Tax 0/4 
2.17 2.70 3.38 0.83 1.64 0.94 

Ox +Tax 4/0 
2.10 2.58 3.20 0.80 1.67 0.95 
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3.3.3 Combinations from Cis and phytochemicals 

against CACO-2 cell line   
 

Table 3.12 describes the list of CI values obtained from the combinations of Cis with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.12 that, no combination produced synergism at all different 

concentrations and sequences of additions. Greater synergism was shown by Cis with 

Col at sequenced additions (0/4 and 4/0) than all other combinations.  Cis with EGCG 

and Cis with Cur showed additiveness towards antagonism at different concentrations 

and sequence of additions. Cis in combination with Tax displayed antagonism 

irrespective of sequences and added concentrations. Figure 3.40 shows pictorial 

presentation of CI as a function of added sequences and concentrations at ED50 level 

for all combinations of selected phytochemicals with Cis against CACO-2 cell line.  

 
 

Figure 3.40 : Combination indices at ED50 in CACO-2 cell line (Cis with 

Phytochemicals)  
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Table 3.12: Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of cisplatin and phytochemicals (Cur, Col, EGCG and Tax) for the three 

modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line 

CACO-2. (Dm is the medium effect dose, m is the exponent defining shape of the dose 

effect curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m r 

Cis 
N/A N/A N/A 11.34 0.93 0.98 

Cur 
N/A N/A N/A 12.05 1.02 0.99 

Cis + Cur 0/0 
1.05 0.95 0.86 6.74 1.06 1.00 

Cis + Cur 0/4 
1.45 1.24 1.06 9.34 1.13 1.00 

Cis +Cur 4/0 
1.11 0.99 0.88 7.10 1.08 1.00 

Col 
N/A N/A N/A 7.99 0.38 0.87 

Cis +Col 0/0 
7.62 2.40 0.76 3.28 2.03 0.91 

Cis +Col 0/4 
0.75 0.83 0.92 0.32 0.61 1.00 

Cis +Col 4/0 
0.80 0.83 0.85 0.35 0.64 0.95 

EGCG 
N/A N/A N/A 38.20 1.54 1.00 

Cis +EGCG 0/0 
0.89 0.88 1.09 10.82 0.72 0.92 

Cis +EGCG 0/4 
0.98 0.88 0.99 11.92 0.77 0.93 

Cis +EGCG 4/0 
0.98 1.04 1.39 11.91 0.69 0.92 

Tax 
N/A N/A N/A 9.71 1.48 0.98 

Cis +Tax 0/0 
0.98 1.21 1.55 0.42 0.58 0.97 

Cis +Tax 0/4 
2.96 2.76 2.66 1.27 0.69 0.91 

Cis +Tax 4/0 
1.77 1.65 1.59 0.76 0.69 1.00 
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3.3.4 Combinations from Ox and phytochemicals 

against CACO-2 cell line   
 

Table 3.13 describes the list of CI values obtained from the combinations of Ox with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.13 that, among all combinations Ox with EGCG and Ox with 

Cur produced synergism at all different concentrations and sequences of additions. 

Strongest synergism was shown by Ox with Cur at all added sequences at ED90 level.  

Ox in combination with Col showed strong synergism at ED90 level. Ox in combination 

with Tax displayed mixed outcome with synergism and antagonism depending on 

sequences and added concentrations. Figure 3.41 shows pictorial presentation of CI as 

a function of added sequences and concentrations at ED50 level for all combinations of 

selected phytochemicals with Ox against CACO-2 cell line.    

 

 

Figure 3.41 : Combination indices at ED50 in CACO-2 cell line (Ox with 

Phytochemicals)  
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 Table 3.13: Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of oxaliplatin and phytochemicals (Cur, Col, EGCG and Tax) for the 

three modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line 

CACO-2. (Dm is the medium effect dose, m is the exponent defining shape of the dose 

effect curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m R 

Ox 
N/A N/A N/A 2.49 0.44 1.00 

Cur 
N/A N/A N/A 20.28 0.91 1.00 

Ox + Cur 0/0 
0.35 0.13 0.05 0.86 0.78 0.98 

Ox + Cur 0/4 
0.49 0.16 0.05 1.21 0.85 0.98 

Cis +Cur 4/0 
0.46 0.18 0.08 1.13 0.74 1.00 

Col 
N/A N/A N/A 0.34 0.21 0.99 

Ox +Col 0/0 
1.01 0.23 0.12 2.36 0.69 0.98 

Ox +Col 0/4 
2.65 0.61 0.32 6.18 0.68 0.95 

Ox +Col 4/0 
0.75 0.28 0.23 1.75 0.52 0.96 

EGCG 
N/A N/A N/A 74.43 0.72 0.97 

OX +EGCG 0/0 
0.31 0.16 0.08 0.77 0.62 0.99 

Ox +EGCG 0/4 
0.69 0.25 0.09 1.72 0.76 1.00 

Ox +EGCG 4/0 
0.29 0.19 0.13 0.73 0.54 1.00 

Tax 
N/A N/A N/A 7.01 1.67 1.00 

Ox +Tax 0/0 
2.00 0.50 0.33 4.04 1.70 0.95 

Ox +Tax 0/4 
0.93 1.04 3.10 1.87 0.51 0.92 

Ox +Tax 4/0 
0.01 0.00 0.00 0.02 -0.71 0.41 
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3.3.5 Combinations from Cis and phytochemicals 

against LIM-1215 cell line   
 

Table 3.14 describes the list of CI values obtained from the combinations of Cis with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.14 that, among all combinations Cis with Cur produced 

synergism at all different concentrations and sequences of additions except for ED90 at 

bolus addition. Greater synergism was shown by Cis with Cur at ED50 level of all added 

sequences of administration. Combination of Cis with Col displayed synergism with all 

added sequences and concentrations except for bolus addition which showed 

antagonism. Cis with EGCG showed mainly additiveness whereas Cis with Tax 

displayed antagonism. Figure 3.42 shows pictorial presentation of CI as a function of 

added sequences and concentrations at ED50 level for all combinations of selected 

phytochemicals with Cis against LIM-1215 cell line.  

 

Figure 3.42 : Combination indices at ED50 in Lim-1215 cell line (Cis with 

Phytochemicals)  
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Table 3.14: Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of cisplatin and phytochemicals (Cur, Col, EGCG and Tax) for the three 

modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line LIM-

1215. (Dm is the medium effect dose, m is the exponent defining shape of the dose 

effect curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m R 

Cis 
N/A N/A N/A 22.23 1.80 0.99 

Cur 
N/A N/A N/A 66.17 1.73 0.93 

Cis + Cur 0/0 
0.22 0.59 1.57 4.57 0.69 0.95 

Cis + Cur 0/4 
0.49 0.51 0.52 10.14 1.72 0.99 

Cis +Cur 4/0 
0.21 0.39 0.72 4.30 0.89 1.00 

Col 
N/A N/A N/A 7.99 0.38 0.87 

Cis +Col 0/0 
7.62 2.40 0.76 3.28 2.03 0.91 

Cis +Col 0/4 
0.75 0.83 0.92 0.32 0.61 1.00 

Cis +Col 4/0 
0.80 0.83 0.85 0.35 0.64 0.95 

EGCG 
N/A N/A N/A 38.20 1.54 1.00 

Cis +EGCG 0/0 
0.89 0.88 1.09 10.82 0.72 0.92 

Cis +EGCG 0/4 
0.98 0.88 0.99 11.92 0.77 0.93 

Cis +EGCG 4/0 
0.98 1.04 1.39 11.91 0.69 0.92 

Tax 
N/A N/A N/A 1.75 1.68 0.97 

Cis +Tax 0/0 
0.64 2.75 11.87 6.93 0.53 0.97 

Cis +Tax 0/4 
1.84 17.73 170.57 20.03 0.38 1.00 

Cis +Tax 4/0 
1.18 1.22 1.27 12.83 1.66 0.95 
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3.3.6 Combinations from Ox and phytochemicals 

against LIM-1215 cell line  
 

  

Table 3.15 describes the list of CI values obtained from the combinations of Ox with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.15 that, all combinations from Ox with selected 

phytochemicals demonstrated significant synergism at all added concentrations and 

sequence of additions except for very few instances. For example Ox with Cur and Ox 

with EGCG at ED90 with bolus addition, Ox with Tax at higher concentrations from 4/0 

addition exhibited additiveness. Figure 3.43 shows pictorial presentation of CI as a 

function of added sequences and concentrations at ED50 level for all combinations of 

selected phytochemicals with Ox against LIM-1215 cell line.    

 

Figure 3.43 : Combination indices at ED50 in Lim-1215 cell line (Ox with 

Phytochemicals)  
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Table 3.15: Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of oxaliplatin and phytochemicals (Cur, Col, EGCG and Tax) for the 

three modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line 

LIM-1215. (Dm is the medium effect dose, m is the exponent defining shape of the 

dose effect curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m R 

Ox 
N/A N/A N/A 27.70 0.85 0.92 

Cur 
N/A N/A N/A 34.12 1.83 0.93 

Ox + Cur 0/0 
0.45 0.70 1.16 4.55 0.90 0.96 

Ox + Cur 0/4 
0.90 0.72 0.62 9.04 1.93 0.99 

Cis +Cur 4/0 
0.78 0.62 0.53 7.79 1.94 0.97 

Col 
N/A N/A N/A 0.03 0.55 0.85 

Ox +Col 0/0 
0.65 0.36 0.20 1.43 0.78 0.89 

Ox +Col 0/4 
0.93 0.39 0.16 2.04 0.99 0.99 

Ox +Col 4/0 
0.91 0.60 0.39 2.01 0.71 0.95 

EGCG 
N/A N/A N/A 314.59 1.86 0.98 

OX +EGCG 0/0 
0.60 0.76 1.07 9.02 0.97 1.00 

Ox +EGCG 0/4 
0.80 0.61 0.53 11.95 1.71 0.96 

Ox +EGCG 4/0 
0.79 0.60 0.51 11.82 1.75 0.98 

Tax 
N/A N/A N/A 2.36 0.40 0.94 

Ox +Tax 0/0 
0.68 0.30 0.15 2.33 0.73 0.98 

Ox +Tax 0/4 
0.66 0.43 0.32 2.24 0.58 0.93 

Ox +Tax 4/0 
0.93 1.15 1.63 3.17 0.43 0.98 

 

  



 112 

3.3.7 Combinations from Cis and phytochemicals 

against LIM-2405 cell line   
 

Table 3.16 describes the list of CI values obtained from the combinations of Cis with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.16 that, Cis with Cur produced synergism at all different 

concentrations and sequences of additions except for ED75 and ED90 at bolus addition. 

Cis in combination with EGCG also exhibited synergism at all added concentrations 

and sequences, but for higher concentrations with 4/0 additions. Combination of Cis 

with Col and Cis with Tax displayed antagonism irrespective of sequences and 

concentrations. Figure 3.44 shows pictorial presentation of CI as a function of added 

sequences and concentrations at ED50 level for all combinations of selected 

phytochemicals with Cis against LIM-2405 cell line.  

 

Figure 3.44 : Combination indices at ED50 in Lim-2405 cell line (Cis with 

Phytochemicals)  
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Table 3.16: Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of cisplatin and phytochemicals (Cur, Col, EGCG and Tax) for the three 

modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line LIM-

2405. (Dm is the medium effect dose, m is the exponent defining shape of the dose 

effect curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m R 

Cis 
N/A N/A N/A 12.94 1.73 0.93 

Cur 
N/A N/A N/A 29.32 0.69 0.96 

Cis + Cur 0/0 
0.74 1.66 4.00 7.62 0.70 0.97 

Cis + Cur 0/4 
0.30 0.38 0.51 3.08 1.10 0.98 

Cis +Cur 4/0 
0.28 0.41 0.65 2.89 0.96 0.98 

Col 
N/A N/A N/A 0.01 0.89 0.95 

Cis +Col 0/0 
1.24 1.38 1.53 2.18 0.95 0.91 

Cis +Col 0/4 
1.18 1.22 1.28 2.07 1.01 0.96 

Cis +Col 4/0 
4.77 5.38 6.12 8.35 0.94 0.94 

EGCG 
N/A N/A N/A 46.52 0.87 0.98 

Cis +EGCG 0/0 
0.21 0.36 0.61 2.64 0.93 0.97 

Cis +EGCG 0/4 
0.57 0.48 0.41 7.13 2.28 0.94 

Cis +EGCG 4/0 
0.37 1.21 4.00 4.61 0.60 1.00 

Tax 
N/A N/A N/A 6.45 0.98 0.94 

Cis +Tax 0/0 
1.06 1.41 1.87 2.29 0.85 0.94 

Cis +Tax 0/4 
5.30 4.04 3.08 11.49 1.49 0.92 

Cis +Tax 4/0 
2.98 4.12 5.71 6.46 0.82 0.73 
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3.3.8  Combinations from Ox and phytochemicals 

against LIM-2405 cell line   
 

Table 3.17 describes the list of CI values obtained from the combinations of Ox with 

Cur, Col, EGCG and Tax at three different sequences of additions and concentrations. 

It is evident from Table 3.17 that, among all combinations only Ox with EGCG 

demonstrated synergism at all added concentrations and sequence of additions. 

Combination of Ox with Cur also displayed synergism in all added concentrations and 

sequences but for ED50 level with 0/4 and 4/0 sequence of additions. Ox with Col and 

Ox with Tax exhibited predominantly antagonism. Figure 3.45 shows pictorial 

presentation of CI as a function of added sequences and concentrations at ED50 level 

for all combinations of selected phytochemicals with Ox against LIM-2405 cell line.    

 

Figure 3.45 : Combination indices at ED50 in Lim-2405 cell line (Ox with 

Phytochemicals)  
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Table 3.17 Combination indices (CIs) at ED50, ED75 and ED90, applying to binary 

combinations of oxaliplatin and phytochemicals (Cur, Col, EGCG and Tax) for the 

three modes of addition: (0/0 h), (0/4 h), and (4/0 h), in the colorectal cancer cell line 

LIM-2405. (Dm is the medium effect dose, m is the exponent defining shape of the 

dose effect curve and r is the reliability coefficient) 

Drug Combination Index Values at 

 ED50 ED75 ED90 Dm m R 

Ox 
N/A N/A N/A 21.45 1.11 0.95 

Cur 
N/A N/A N/A 16.26 0.99 0.92 

Ox + Cur 0/0 
0.72 0.73 0.74 6.98 1.03 0.95 

Ox + Cur 0/4 
1.05 0.77 0.57 10.22 1.48 0.99 

Cis +Cur 4/0 
1.17 0.88 0.67 11.38 1.43 0.96 

Col 
N/A N/A N/A 0.04 0.84 0.97 

Ox +Col 0/0 
1.01 1.11 1.25 8.11 0.71 1.00 

Ox +Col 0/4 
2.09 3.48 5.90 16.73 0.56 0.98 

Ox +Col 4/0 
1.18 0.75 0.48 9.49 1.11 1.00 

EGCG 
N/A N/A N/A 78.77 0.93 0.90 

OX +EGCG 0/0 
0.53 0.58 0.64 10.77 1.00 0.97 

Ox +EGCG 0/4 
0.60 0.52 0.44 12.21 1.30 0.99 

Ox +EGCG 4/0 
0.60 0.49 0.40 12.16 1.37 0.97 

Tax 
N/A N/A N/A 2.89 0.62 0.99 

Ox +Tax 0/0 
1.79 1.36 1.05 15.53 0.80 1.00 

Ox +Tax 0/4 
1.75 0.89 0.46 15.13 1.12 0.99 

Ox +Tax 4/0 
1.12 1.09 1.07 9.74 0.68 1.00 
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3.4  Cellular Accumulation and DNA 

Binding  
 

Cellular accumulations of platinum and platinum-DNA binding study was conducted 

for platinum drugs (cisplatin and oxaliplatin) alone and few selected combinations with 

Col, Cur, EGCG and Tax as applied to the cell lines HT-29 and CACO-2. The aim of 

this study was to determine whether there was any correlation between cellular 

accumulation of platinum drugs and PtDNA binding levels with the combined drug 

action. Based on the dose response curves and combination indices; few synergistic, 

antagonistic and additive combinations were selected for this study to obtain the 

mechanistic insight of combined drug action. 

3.4.1 Cellular accumulation study 

3.4.1.1 HT-29 cell line 
 

Table 3.18 gives the results of cellular accumulation of platinum expressed as nmol Pt 

per 5x106 cells in HT-29 cell line for cisplatin and oxaliplatin administered alone and 

its selected combinations with the phytochemicals. Figure 3.46 (a) and Figure 3.46 (b) 

shows the visual presentation of the same. 
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Table 3.18: Cellular accumulations of platinum in HT-29 cell line 

Sample Combined Effect at ED50 Pt (nmol/5x106cell) Standard deviation 

Cis (alone) Not applicable 4.27 0.04 

Cis with Cur (4/0) Additive 4.90 0.26 

Cis with EGCG (0/0) Synergistic 9.10 0.23 

Ox (alone) Not applicable 0.09 0.28 

Ox with Cur (0/0) Synergistic 0.08 0.01 

Ox with Cur (4/0) Synergistic 0.09 0.22 

Ox with EGCG(0/0) Synergistic 0.11 0.02 

Ox with Col (0/4) Additive 0.03 0.12 

Ox with Tax (4/0) Antagonistic 0.07 0.14 
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(a) Accumulation of Pt from Cis and its combinations 

 
(b) Accumulation of Pt from Ox and its combinations 

Figure 3.46 : Cellular accumulation of platinum in HT-29 cell line  

From the above results it can be seen than, synergistic combination of Cis with EGCG 

(bolus) manifests higher platinum accumulation into HT-29 cells than Cis alone and 

additive treatment of Cis with Cur (4/0). In contrary, synergistic combined treatments 

from combinations of Ox did not show increase in platinum accumulation except for 

Ox with EGCG (bolus). However, antagonistic and additive combinations cause 

reduction in platinum accumulation compared to Ox alone and synergistic treatments.  
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3.4.1.2 CACO-2 cell line 
 

Table 3.19 gives the results of cellular accumulation of platinum expressed as nmol Pt 

per 5x106 cells in CACO-2 cell line for cisplatin and oxaliplatin administered alone and 

its selected combinations with the phytochemicals. Figure 3.47 (a) and Figure 3.47 (b) 

shows the visual presentation of the same. 

Table 3.19: Cellular accumulations of platinum in CACO-2 cell line 

Sample Combined Effect at ED50 Pt (nmol/5x106cell) Standard deviation 

Cis (alone) Not applicable 2.02 0.03 

Cis with Cur (4/0) Additive 3.52 0.03 

Cis with EGCG (0/0) Synergistic 5.48 0.22 

Ox (alone) Not applicable 0.27 0.30 

Ox with Cur (0/0) Synergistic 0.09 0.19 

Ox with EGCG(0/0) Synergistic 0.17 0.12 

Ox with Col (0/4) Antagonistic 0.12 0.05 

Ox with Tax (4/0) Antagonistic 0.10 0.03 

 

It is evident from the results that, additive combination from Cis with Cur (4/0) and 

synergistic combination from Cis with EGCG (0/0) caused greater platinum 

accumulation than Cis alone treatment. Similar to HT-29 cell line, synergistic combined 

treatments from Ox and phytochemicals did not cause greater cellular accumulation of 

platinum than Ox alone treatment. But Antagonistic treatment of Ox with Tax (4/0) 

showed lower platinum accumulation than synergistic treatments and Ox alone 

treatment.  



 120 

 

(a) Accumulation of Pt from Cis and its combinations 

 

 
(b) Accumulation of Pt from Ox and its combinations 

Figure 3.47 : Cellular accumulation of platinum in CACO-2 cell line 
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3.4.2 PlatinumDNA binding study 

3.4.2.1  HT-29 cell line 
 

Table 3.20 gives the results of PtDNA binding levels, expressed as nmol Pt per mg of 

DNA in HT-29 cell line for cisplatin and oxaliplatin administered alone and its selected 

combinations with the phytochemicals. Figure 3.48 (a) and Figure 3.48 (b) shows the 

visual presentation of the same. 

Table 3.20: PlatinumDNA binding in HT-29 cell line  

Sample Combined Effect at ED50 Pt (nmol)/DNA(mg) Standard deviation 

Cis (alone) Not applicable 1.00 0.08 

Cis with Cur (4/0) Additive 0.93 0.15 

Cis with EGCG (0/0) Synergistic 11.30 0.12 

Ox (alone) Not applicable 0.20 0.03 

Ox with Cur (0/0) Synergistic 0.26 0.15 

Ox with Cur (4/0) Synergistic 0.24 0.04 

Ox with EGCG(0/0) Synergistic 0.14 0.14 

Ox with Col (0/4) Additive 0.15 0.14 

Ox with Tax (4/0) Antagonistic 0.11 0.01 

 

It is observed from the study that synergistic combination of Cis with EGCG (bolus) 

showed greater extent of binding of DNA with platinum than Cis alone and additive 

combined treatment Cis with Cur (4/0). The same trend was also evident from study 

with Ox and its combinations: synergistic combined treatments displayed higher degree 

of PtDNA binding than Ox alone treatment. Antagonistic and additive treatments 

manifested lower degree of PtDNA binding compared to Ox alone treatment in HT-

29 cell line. 
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(a) Extent of PtDNA binding from Cis and its combinations 

 

(b) Extent of PtDNA binding from Ox and its combinations 

Figure 3.48 : Magnitude of PtDNA binding in HT-29 cell line 
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3.4.2.2 CACO-2 cell line 
 

Table 3.21 gives the results of PtDNA binding levels, expressed as nmol Pt per mg of 

DNA in CACO-2 cell line for cisplatin and oxaliplatin administered alone and its 

selected combinations with the phytochemicals. Figure 3.49 (a) and Figure 3.49 (b) 

shows the visual presentation of the same. 

Table 3.21: PlatinumDNA binding in CACO-2 cell line 

Sample Combined Effect at ED50 Pt (nmol)/DNA(mg) Standard deviation 

Cis (alone) Not applicable 1.28 0.14 

Cis with Cur (4/0) Additive 1.55 0.27 

Cis with EGCG (0/0) Synergistic 0.79 0.33 

Ox (alone) Not applicable 0.19 0.50 

Ox with Cur (0/0) Synergistic 0.17 0.12 

Ox with EGCG(0/0) Synergistic 0.21 0.17 

Ox with Col (0/4) Antagonistic 0.12 0.12 

Ox with Tax (4/0) Antagonistic 0.11 0.02 

 

It can be said from the above results that, combined treatments of Cis with 

phytochemicals did not follow any specific trend in regards to the extent of 

platinumDNA binding in CACO-2 cell line. Synergistic combined treatment of 

Ox with EGCG (0/0) increased the magnitude of platinumDNA binding. 

Antagonistic and additive combined treatments decrease the Pt-DNA binding level 

in CACO-2 cell line. 
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(a) Extent of PtDNA binding from Cis and its combinations 

 

(b) Extent of PtDNA binding from Cis and its combinations 

Figure 3.49 : Magnitude of PtDNA binding in CACO-2 cell line 
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3.5 Interactions with DNA 
  

One of the modes of action of anticancer drugs is targeting of the DNA of cancer cells. 

In this study, agar gel electrophoresis was conducted to gather qualitative information 

on conformational changes in DNA and DNA damage due to interaction with platinum 

drugs and phytochemicals while administered alone and in combinations.  

3.5.1  HT-29 cell line 

Table 3.22 provides the mobility and fluorescence of DNA obtained from HT-29 cell 

line after different drug treatments and control. Figure 3.50, figure 3.51 and figure 3.52 

represents the electrophoretograms, mobility and net intensity of DNA bands 

respectively.  
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Table 3.22: Mobility and fluorescence of DNA bands in HT-29 cell line 

Bands Sample Mobility (mm) Net Intensity 

1 & 14 HT-Blank 3.96 49801.49 

2 HT-Cis 3.7 45927.49 

3 HT-Cis + Cur (4/0) 3.79 39748.15 

4 HT-Cis + EGCG(0/0) 4.04 6477.8 

5 HT-Col 3.62 31469.5 

6 HT-Tax 3.79 35536.18 

7 HT-Ox 3.79 32815.53 

8 HT-Ox + Cur (4/0) 4.13 6273.96 

9 HT-Ox + EGCG(0/0) 4.46 19459.7 

10 HT-Ox + Col (0/4) 4.29 28103.68 

11 HT-Ox + Tax (4/0) 3.96 66926.4 

12 HT-Cur 4.46 10979.88 

13 HT-EGCG 4.38 28408.44 

 

Figure 3.50 : Electrophoretograms of HT-DNA 
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Figure 3.51 : Mobility of DNA obtained from HT-29 cells 

 

 
 

Figure 3.52 : Fluorescence of DNA obtained from HT-29 cells 

 

It has been observed from the above study that, combination of Ox with Cur (4/0) 

caused the highest DNA damage in HT-29 cell line followed by Cis with EGCG (bolus). 

Combination of Ox with Tax (4/0) was found to be least damaging towards DNA. The 

detailed discussion of the results is given in next chapter. 
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3.5.2  CACO-2 cell line 
 

Table 3.23 provides the mobility and fluorescence of DNA obtained from CACO-2 cell 

line after different drug treatments and control. Figure 3.53, figure 3.54 and figure 3.55 

represents the electrophoretograms, mobility and net intensity of DNA bands 

respectively.  

 Table 3.23: Mobility and fluorescence of DNA bands in CACO-2 cell line 

Bands Sample Mobility (mm) Net Intensity 

1 CA-Blank 5.8 16623 

2 CA-Cis 5.21 13041.2 

3 CA-Cis + Cur (4/0) 5.29 9644 

4 CA-Cis + EGCG(0/0) 5.13 22608.2 

5 CA-Ox 5.04 23210.5 

6 CA-Ox + Cur (4/0) 5.13 11958.9 

7 CA-Ox + EGCG(0/0) 5.04 13045.7 

8 CA-Ox + Col (0/4) 5.13 21688.8 

9 CA-Ox + Tax (4/0) 4.87 24323 

10 CA- Cur  5.13 16467.5 

11 CA-EGCG 5.04 17917.2 

12 CA-Col 4.71 25248.1 

13 CA-Tax 4.45 32933.3 

 

Figure 3.53 : Electrophoretograms of CACO-2 DNA 
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Figure 3.54 : Mobility of DNA obtained from HT-29 cells 

 

Figure 3.55 : Fluorescence of DNA obtained from CACO-2 cells 
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3.6 Proteomic study 
 

The study was carried out with the aim of identifying proteins which are responsible 

for the drug actions alone or in combinations. Two dimensional gel electrophoresis 

study was conducted using IEF and SDS-PAGE gel.  Ox, Col, Cur, EGCG alone and 

their selected combinations were chosen for this study. 

For analysis of results ten matched groups were created for all of the images of gels 

through Melanie Software and then combined into two classes. First class was named 

as HT-29 gels which included untreated control, Ox alone, Col alone, EGCG alone, Ox 

with Col (0/4) and Ox with EGCG (bolus). Another class was named as CACO-2 gels 

which was consisted untreated control, Ox alone, Cur alone and Ox with Cur (bolus). 

According to the software, 153 protein spots were identified from HT-29 untreated gel 

and 195 from CACO-2 untreated gel. All of the proteins identified as spots were given 

common match ID throughout the groups. Expression of each protein spot in the treated 

gels was then compared with the expression of the same in untreated gels. The 

difference in expression of a protein spot 1.5 or greater was considered as significant.  

3.6.1  Expression of protein in HT-29 gels 
 

Among 153 spots identified in untreated HT-29 gels, 60 spots underwent significant 

alteration in expression in Col alone treated gel. However the number of spots 

experienced significant changes in expression with EGCG alone and Ox alone 

treatments were 42 and 44 respectively. Interestingly the same number of spots (42 and 

44) underwent significant altered expression with the treatments of Col (0/4) and Ox 

with EGCG (bolus) respectively, but the match ID of the spots were different. The spots 

were selected for excision based on the criteria that showed significant changes in 
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expression commonly with most of the treatments. However many of the spots were 

not able to cut due to very low intensity in untreated reference gel, unsuitable position 

of the spot and other factors. At last only 7 spots were chosen for excision from HT-29 

gels, followed by characterization of the protein using matrix-assisted laser 

desorption/ionization (MALDI) mass spectrometry combined with Swiss-Prot 

Database. But spot 2 and spot 134 both appeared to be same protein after 

characterization as Glutathione S transferase P1. Figure 3.56 give the images of 

untreated and treated HT-29 gels showing the spots. Figure 3.57 represents the 

annotated untreated HT-29 gel. The protein spots underwent significant changes in 

expression commonly in the treated gels and selected for further characterization are 

listed in Table 3.24.  

 

(a) HT-29 reference gel (not treated with drug, blank) 
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(b) Ox alone treated HT-29 gel 

 

(c) Col alone treated HT-29 gel 
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(c) EGCG alone treated HT-29 gel 

 

  

(d) Ox with Col (0/4) treated HT-29 gel  
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(e) Ox with EGCG (bolus) treated HT-29 gel  

Figure 3.56: Two dimensional gel images (a-e) of HT-29 gels 
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  Figure 3.57 : Annotated HT-29 reference gel (showing the noted spot number) 
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Table 3.24: Selected spots of the proteins displayed alteration in expression in HT-29 

gel 

 

Match 

ID 

 

Ox alone Col alone EGCG alone 

 

Ox + Col (0/4) 

 

 

 

Ox + EGCG (0/0) 

 

 

HT18 Up-regulated Not detected Down-regulated Not changed Not detected 

HT22 Down-regulated Down-regulated Down-regulated Down-regulated SDR 

HT31 Up-regulated Down-regulated Up-regulated Not detected Down-regulated 

HT39 Not changed Up-regulated Up-regulated Not changed Up-regulated 

HT55 Up-regulated Up-regulated SDR Up-regulated Down-regulated 

HT134 Not changed Up-regulated Up-regulated Not changed Down-regulated 

 SDR denotes slight downregulation 

The summary of the characterized proteins is given in Table 3.25 and the further details 

are provided in Appendix II. 

Table 3.25: Proteins characterized from HT-29 cell lines (MALDI-MASS analysis) 

 

Match ID Short name Full Nmae Mass (Da)/pI Mascot score 

and Sequence 

coverage (%) 

HT18 NPM Nucleolar 

phosphoprotein 

B23 

32555/4.64 65 and 14 

HT22 ACTB Actin 

cytoplasmic 1 

protein 

41710/5.29 220 and 15 

HT31 TBB5 Tubulin beta 

chain 

49639/4.78 130 and 18 

HT39 HSP7C Heat shock 

cognate 71 kDa 

protein 

70854/5.37 80 and 18 

HT55 K2CB Keratin, type II 

cytoskeletal 8 

53671/4.95 348 and 12 

HT134 GSTP1 Glutathione S 

transferase P 1 

23341/5.43 343 and 27 
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3.6.2  Expression of protein in CACO-2 gels 
 

Among 195 protein spots identified in reference (untreated) CACO-2 gels, 80 spots 

underwent significant alteration in expression in Cur alone treated gel. However the 

number of spots experienced significant changes in expression with Ox alone 

treatments were 148.  After treatment with Ox with Cur (bolus) 86 protein spots 

underwent significant altered expression. The criteria for selection of the spots to be cut 

for further characterization were the same as described in section 3.5.1. Finally 24 spots 

were chosen for excision from CACO-2 gels but only seven proteins were successfully 

characterized. Figure 3.58 give the images of untreated and treated CACO-2 gels 

showing the spots. Figure 3.59 represents the annotated untreated CACO-2 gel. The 

protein spots underwent significant changes in expression commonly in the treated gels 

and selected for further characterization are listed in Table 3.26. The summary of the 

characterized proteins is listed in Table 3.27 and further details are given in Appendix 

III. 

 

(a) CACO-2 reference gel (not treated with drug, blank) 



 138 

 

(b) Ox alone treated CACO-2 gel 

 

(c) Cur alone treated CACO-2 gel 

 

(d) Ox with Cur (bolus) treated CACO-2 gel 

Figure 3.58: Two dimensional gel images (a-d) of CACO-2 gels 
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Figure 3.59 : Annotated CACO-2 reference gel (showing the noted spot number) 
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Table 3.26: Selected spots of the proteins displayed alteration in expression in CACO-

2 gel 

Match 

ID 

 

Ox alone Cur alone Ox with Cur (0/0) 

Ca35 SDR  Up-regulated Up-regulated 

Ca37 SUR Up-regulated Up-regulated 

Ca39 Up-regulated Up-regulated Up-regulated 

Ca53 Down-regulated Up-regulated Not changed 

Ca85 SUR Down-regulated Up-regulated 

Ca125 Up-regulated SUR Up-regulated 

Ca166 SUR Up-regulated Up-regulated 

SDR denotes slightly downregulated and SUR denotes slightly upregulated  

 Table 3.27: Proteins characterized from CACO-2 cell lines (MALDI-MASS analysis) 

Match ID Short name Full Nmae Mass (Da)/pI Mascot score 

and Sequence 

coverage (%) 

Ca35 K2CB Keratin, type II 

cytoskeletal 8 

53671/4.95 256 and 19 

Ca37 HSP7C Heat shock 

cognate 71 kDa 

protein 

70854/5.37 536 and 24 

Ca39 GRP78 78 kDa glucose-

regulated 

protein 

72288/5.07 588 and 27 

Ca53 PSB6 Proteasome 

subunit beta 

type-6 

25341/4.80 62 and 10 

Ca85 COF1 Cofilin-1 18491/8.22 138 and 31 

Ca125 IDHC Isocitrate 

dehydrogenase 

[NADP] 

cytoplasmic 

46630/6.53 130 and 16 

Ca166 K1C18 Keratin, type I 

cytoskeletal 18 

48029/6.36 345 and 4 
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3.6.3  MALDI-Mass spectral analysis of the 

identified proteins 
 

Among seven excised protein spots from HT-29 gels, two were identical of GSTP1. 

Although no such coincidence observed among the seven protein spots cut from CACO-

2 gels. However, two proteins namely K2CB and HSP7C were found to be 

characterized from both HT-29 and CACO-2 gels. That is why total number of proteins 

characterized and found to contribute substantially in anticancer action of the drugs 

studied ultimately reduced to eleven. 

3.6.3.1 Nucleolar phosphoprotein B23 (NPM) 
 

The protein was appeared as spot number HT18 in HT-29 gel which was downregulated 

followed by most of drug treatments except for Ox alone treatment where upregulation 

was evidenced. Molecular mass of the protein was 32.55 kDa with isoelectric point (pI) 

of 4.64. The peptides found from this study matched with 14% of entire sequence of 

the protein NPM, showing mascot score of 65. Base peak in the mass spectrum was 

found at m/z of 842.56. The sequence of matched peptides for the protein NPM (spot 

HT18) obtained from UniprotKB database; masses of peptides from MALDI-MS scan 

and mascot score histogram are shown in Figure 3.60.  
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Figure 3.60: Matched peptides, mass spectrum and mascot score histogram for NPM 
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3.6.3.2  Actin Cytoplasmic 1 protein (ACTB) 
 

The protein was appeared as spot number HT22 in HT-29 gel which was downregulated 

followed by all of the drug treatments. Molecular mass of the protein was 41.71 kDa 

with isoelectric point (pI) of 5.29. The peptides found from this study matched with 

15% of entire sequence of the protein ACTB, showing mascot score of 220. Base peak 

in the mass spectrum was found at m/z of 1516.77. The sequence of matched peptides 

for the protein ACTB (spot HT22) obtained from UniprotKB database; masses of 

peptides from MALDI-MS scan and mascot score histogram are shown in Figure 3.61.  
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Figure 3.61: Matched peptides, mass spectrum and mascot score histogram for ACTB 

3.6.3.3  Tubulin beta chain (TBB5) 
 

The protein was appeared as spot number HT31 in HT-29 gel which was upregulated 

after treatments with Ox alone and EGCG alone. However the same protein was 

downregulated followed by the rest of the drug treatments. Molecular mass of the 

protein was 49.63 kDa with isoelectric point (pI) of 4.78. The peptides found from this 

study matched with 18% of entire sequence of the protein TBB5, showing mascot score 

of 130. Base peak in the mass spectrum was found at m/z of 842.53.The sequence of 

matched peptides for the protein TBB5 (spot HT31) obtained from UniprotKB 

database; masses of peptides from MALDI-MS scan and mascot score histogram are 

shown in Figure 3.62.  
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Figure 3.62 : Matched peptides, mass spectrum and mascot score histogram for TBB5 
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3.6.3.4  Heat shock cognate 71 kDa (HSP7C) 
 

The protein was appeared as spot number HT39 in HT-29 gel and spot number Ca37 in 

CACO-2 gel. HSP7C was upregulated after most of treatments in both cell lines. 

Mascot was higher in the protein obtained from CACO-2 (536) cell line compared to 

HT-29 (80) cell line. Similarly matched peptide sequence was also greater in case of 

CACO-2 gel excised protein (24%) than the one excised from HT-29 gel (18%). The 

sequence of matched peptides for the protein HSP7C (spot HT39) obtained from 

UniprotKB database; masses of peptides from MALDI-MS scan and mascot score 

histogram are shown in Figure 3.63. Although the protein was identified from both HT-

29 and CACO-2 gels, data images of only one spot of HT-29 is shown here as a 

representative. Molecular mass of the protein was 70.85 kDa with isoelectric point (pI) 

of 5.37. The base peak in the mass spectrum was observed at m/z of 819.12 and 1487.76.   
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Figure 3.63: Matched peptides, mass spectrum and mascot score histogram for 

HSP7C 

3.6.3.5  Keratin, type II cytoskeletal 8 (K2CB) 
 

The protein was appeared as spot number HT55 in HT-29 gel and spot number Ca35 in 

CACO-2 gel. K2CB was upregulated after most of treatments in both cell lines. Mascot 

was higher in the protein obtained from HT-29 (348) cell line compared to CACO-2 

(256) cell line. But matched peptide sequence was greater in case of CACO-2 gel 

excised protein (19%) than the one excised from HT-29 gel (12%). The sequence of 

matched peptides for the protein K2CB (spot HT55) obtained from UniprotKB 

database; masses of peptides from MALDI-MS scan and mascot score histogram are 

shown in Figure 3.64. Although the protein was identified from both HT-29 and CACO-

2 gels, data images of only one spot of HT-29 is shown here as a representative. 

Molecular mass of the protein was 53.67 kDa with isoelectric point (pI) of 4.95. The 

base peak in the mass spectrum was observed at m/z of 1082.60.   
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Figure 3.64: Matched peptides, mass spectrum and mascot score histogram for K2CB 

3.6.3.6  Glutathione S transferase P1 (GSTP1) 
 

The protein was appeared as spot number HT134 in HT-29 gel which was upregulated 

after treatments with Col alone and EGCG alone. However the same protein was 

downregulated followed by combined treatment of Ox with EGCG (bolus). Molecular 

mass of the protein was 23.34 kDa with isoelectric point (pI) of 5.43. The peptides 

found from this study matched with 27% of entire sequence of the protein GSTP1, 

showing mascot score of 343. Base peak in the mass spectrum was found at m/z of 

1060.07.The sequence of matched peptides for the protein GSTP1 (spot HT134) 

obtained from UniprotKB database; masses of peptides from MALDI-MS scan and 

mascot score histogram are shown in Figure 3.65.  
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Figure 3.65 : Matched peptides, mass spectrum and mascot score histogram for GSTP1 
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3.6.3.7  78 kDa glucose regulated protein (GRP78) 
 

The protein was appeared as spot number Ca39 in CACO-2 gel which was upregulated 

following all the treatments. Molecular mass of the protein was 72.28 kDa with 

isoelectric point (pI) of 5.07. The peptides found from this study matched with 27% of 

entire sequence of the protein GRP78, showing mascot score of 588. Base peak in the 

mass spectrum was found at m/z of 1566.81.The sequence of matched peptides for the 

protein GRP78 (spot Ca39) obtained from UniprotKB database; masses of peptides 

from MALDI-MS scan and mascot score histogram are shown in Figure 3.66.  
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Figure 3.66 : Matched peptides, mass spectrum and mascot score histogram for GRP78 
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3.6.3.8 Proteasome subunit beta type-6 (PSB6) 
 

The protein was appeared as spot number Ca53 in CACO-2 gel which was upregulated 

following Cur alone treatment but downregulation of the same protein was observed 

following Ox alone treatment. Molecular mass of the protein was 25.34 kDa with 

isoelectric point (pI) of 4.80. The peptides found from this study matched with 10% of 

entire sequence of the protein PSB6, showing mascot score of 62. Base peak in the mass 

spectrum was found at m/z of 842.51.The sequence of matched peptides for the protein 

PSB6 (spot Ca53) obtained from UniprotKB database; masses of peptides from 

MALDI-MS scan and mascot score histogram are shown in Figure 3.67.  
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Figure 3.67 : Matched peptides, mass spectrum and mascot score histogram for PSB6 
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3.6.3.9 Cofilin1 (COF1) 
 

The protein was appeared as spot number Ca85 in CACO-2 gel which was 

downregulated following Cur alone but upregulation of the same protein was found 

following combined treatment of Ox with Cur (bolus) treatment. Molecular mass of the 

protein was 18.49 kDa with isoelectric point (pI) of 8.22. The peptides found from this 

study matched with 31% of entire sequence of the protein COF1, showing mascot score 

of 138. Base peak in the mass spectrum was found at m/z of 842.51.The sequence of 

matched peptides for the protein COF1 (spot Ca85) obtained from UniprotKB database; 

masses of peptides from MALDI-MS scan and mascot score histogram are shown in 

Figure 3.68.  
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Figure 3.68 : Matched peptides, mass spectrum and mascot score histogram for COF1 
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3.6.3.10 Isocitrate dehydrogenase [NADP] cytoplasmic 

(IDHC) 
 

The protein was appeared as spot number Ca125 in CACO-2 gel which was upregulated 

following all the drug treatments. Molecular mass of the protein was 46.63 kDa with 

isoelectric point (pI) of 6.53. The peptides found from this study matched with 16% of 

entire sequence of the protein IDHC, showing mascot score of 130. Base peak in the 

mass spectrum was found at m/z of 903.45.The sequence of matched peptides for the 

protein IDHC (spot Ca125) obtained from UniprotKB database; masses of peptides 

from MALDI-MS scan and mascot score histogram are shown in Figure 3.69.  
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Figure 3.69: Matched peptides, mass spectrum and mascot score histogram for IDHC 
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3.6.3.11  Keratin, type I cytoskeletal 18 (K1C18) 
 

The protein was appeared as spot number Ca166 in CACO-2 gel which was upregulated 

following all the drug treatments. Molecular mass of the protein was 48.02 kDa with 

isoelectric point (pI) of 6.36. The peptides found from this study matched with 4% of 

entire sequence of the protein K1C18, showing mascot score of 345. Base peak in the 

mass spectrum was found at m/z of 1041.62.The sequence of matched peptides for the 

protein K1C18 (spot Ca166) obtained from UniprotKB database; masses of peptides 

from MALDI-MS scan and mascot score histogram are shown in Figure 3.69.  

  



 163 

 

Figure 3.70: Matched peptides, mass spectrum and mascot score histogram for K1C18 
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4 DISCUSSION 
 

Preamble  

Cancer remains a major health concern all over the world with colorectal cancer being 

the 2nd most common cancer in Australia and 3rd (1.23 million) worldwide, treated with 

different methods and drugs according to the disease stage. For advanced stages of CRC 

chemotherapy in combination with surgery and radiotherapy is the front-line treatment 

strategy. The primary goal of this study was to determine the drug effects from the 

combinations of platinum based chemotherapeutics and phytochemicals in terms of 

synergism, additiveness or antagonism against CRC. This chapter provides the detail 

discussion of the results mentioned in chapter three. Mechanistic insights of the 

combined drug actions obtained from DNA-damage study, cellular accumulation and 

Pt-DNA binding study is also discussed. Finally the proteins identified from proteomic 

study which ultimately determines the drug actions alone or in combination are also 

discussed. 

4.1 Cytotoxicity of the compounds alone 
 

Anticancer activity of the compounds against four colorectal cancer cell lines has been 

given in Table 3.1. It is evident from the result that Col has demonstrated highest 

antitumour activity against all tested cell lines, having the lowest IC50 value of the order 

of 10 nM against HT-29 and LIM-2405 cell line. IC50 values of Col were found about 

20 nM and 190 nM against LIM-1215 and CACO-2 cell lines respectively. Compared 

to clinical standard Ox, Col showed 14 to 760 times greater cytotoxicity against the 

tested cell lines. The activity was 136 to 500 and 13 to 150 times higher when compared 

with other clinical drugs Cis and Tax respectively. Although high anticancer activity of 
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Col has been noted before, studies against CRC is very limited (Sivakumar 2013). IC50 

values of Col at nanomolar levels also have been reported against parent and resistant 

A2780 ovarian cancer models (Alamro 2015). In an in vivo mice model study it has 

been found that Col significantly reduced the progression of advanced level cancer 

(Baguley, Holdaway et al. 1991).  Activity of colchicine has been attributed to its 

capacity to bind with tubulin and microtubules (Ahmed, Peters et al. 2006). However 

the major limitation of Col for development as an anticancer agent, is its toxicity against 

normal cells (Balasubramanian and Gajendran 2013). One possible way to overcome 

the toxicity of Col is to combine with other chemotherapeutics producing synergism 

which would further reduce the dose required to kill cancer cells and eventually reduce 

the side effects. 

Second most active drug against the selected colorectal tumour models found from this 

study was Tax, the most successful phytochemical for treatment against cancer. In this 

study, Tax displayed superiority over all other studied compounds except colchicine. 

The drug is being clinically used against lung, breast and ovarian cancer but very few 

reports available in literature regarding the effect of Tax against CRC (Kennedy, 

Harrison et al. 2000). Antitumour activity of Tax also has been associated with the 

binding with tubulin and microtubules. Tax is considered to be the first drug that targets 

tubulin and named as microtubule stabilizing agents (Orr, Verdier-Pinard et al. 2003). 

Moreover it can block the cell cycles as well (Hamel 2008). However, Tax suffers from 

drug resistance and toxicity at high doses. Interestingly, it has been observed from this 

study that both Col and Tax were most potent towards HT-29 cell line and least towards 

CACO-2 cell line. This is might be due to their similarity in mechanism of action. 
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Platinum compound Ox is proved as third most active compound among all the tested 

compounds against the four colorectal cancer cell lines. The order of activity from 

highest to lowest among different cell lines was:  

HT-29>LIM-1215>CACO-2>LIM2405.  

Another platinum compound Cis showed the order oactivity as the following:  

LIM2405≈HT-29>LIM1215>CACO-2.  

Cis had lower activity compared to Ox against all cell lines except for LIM-2405. Ox 

and Cis displayed similar cytotoxicity profile in other tumour models as well (Nessa, 

Beale et al. 2012). Greater activity of Ox than Cis has been implicated with the presence 

of bulky ligand (1,2-diaminocyclohexane) in the structure of Ox (Nessa, Beale et al. 

2012). 

 Among three common phytochemicals used daily in the kitchen, curcumin showed 

greater antitumour activity than EGCG and 6-gingerol against all cell lines except for 

EGCG in LIM-1215. Cur manifested greatest sensitivity against LIM-2405, followed 

by HT-29 and CACO-2, the least against LIM-1215 cell lines. In contrast, EGCG 

showed the highest sensitivity against 1215, followed by HT-29 and LIM-2405, the 

least against CACO-2 cell lines. The IC50 values for Cur and EGCG found in this study 

were higher than those found against ovarian tumour models, indicating lower 

cytotoxicity of the phytochemicals in CRC (Mazumder, Beale et al. 2012, Nessa, Beale 

et al. 2012, Alamro 2015).  

Mechanism of anticancer action of curcumin in colorectal cancer has been reviewed by 

Johnson and Mukhtar. The authors mentioned that curcumin can cause tumour cell 

death by inducing apoptosis and cell cycle arrest using multiple signalling pathways 

including: inhibition of PKC (serine/threonine kinases – protein kinase C) and JNK (c-

jun N-terminal kinase); inhibition of AP-1 (Activator protein-1); inhibition of NF-κB 
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(Nuclear factor-kappa B); reduction of early growth response (Egr-1) gene products and 

inhibition of Cycloxygenase-2 (COX-2) (Johnson and Mukhtar 2007). Moreover, 

curcumin showed the capacity to inhibit metastasis through blocking MMPs (Matrix 

metalloproteinase) (Hong, Ahn et al. 2006). 

Anticancer action of EGCG against CRC has been associated with inhibition of AMPK 

signalling pathway (Hwang, Ha et al. 2007); inhibition of insulin like growth factor 

receptor-1 (Shimizu, Deguchi et al. 2005); inhibition of the expression of HER3 and 

COX-2 (Shimizu, Deguchi et al. 2005); regulation of Notch signalling (Jin, Gong et al. 

2013) and inhibition of VEGF (Shimizu, Shirakami et al. 2010). EGCG also has been 

reported to induce autophagic cell death (Hu, Wei et al. 2015).   

Table 3.1 shows that, the least active compound was 6-gin among all compounds 

studied against colorectal cancer models. The low activity of 6-gin against colorectal 

cancer models (SW480, HT-29, LoVo, and Caco-2) is also supported by previous report 

(Lee, Cekanova et al. 2008). Due to the large range of IC50 values displayed by 6-gin 

against all colorectal cancer cell lines, the compound was not selected for combination 

and mechanistic studies. 

4.2 Drugs in combination 
 
The major hurdle in cancer treatment is probably drug resistance, when treatment does 

not respond. Drug resistance can be of two types: intrinsic (cancer cells show 

insensitivity against the drug at the very beginning of exposure) or acquired (cancer 

cells develop resistance gradually after long term exposure of the drug and cause relapse 

of the disease) (Holohan, Van Schaeybroeck et al. 2013). One of the proposed methods 

of combating multidrug resistant cancers is to administer two or more drugs 

simultaneously which act differently against cancer cells (Al-Lazikani, Banerji et al. 
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2012). Combination therapy can provide benefits over monotherapy by improving the 

efficacy and reducing the side effects. However, most of the combination therapy 

currently being used (e.g. chemotherapy with monoclonal antibody, chemotherapy with 

mRNA, two or more chemotherapeutics) suffers with the increase of treatment cost (Lu, 

Lu et al. 2013). Combining phytochemicals having anticancer potential with 

chemotherapeutic drug might provide cost-effective solution of drug resistance in 

cancer. Of note, sequence of administered chemotherapeutic drugs has been implicated 

to determine the combined drug actions (Levis, Pham et al. 2004). In this study binary 

combination of platinum drugs and four phytochemicals have been investigated using 

three different sequences of administration and concentrations against colorectal cancer 

models.  

 

4.2.1 Combination of platinums with curcumin 
 

When Cis was combined with Cur against the colorectal tumour models, strong 

synergism was found in LIM-1215 cell line and LIM-2405 cell lines depending on 

concentrations and sequence of administrations. In LIM-1215 cell line, stronger 

synergism was observed at lower concentrations than at higher concentrations. But only 

0/4 and 4/0 sequences showed synergism against LIM-2405 cell line, with greater 

synergism being observed at lower concentrations. In contrary, antagonism was 

predominant in HT-29 and CACO-2 cell lines except for ED90 level in HT-29 model 

where moderate synergism was evident. 

When Ox was combined with Cur, synergism was found against all tested colorectal 

tumour models at all added concentrations and sequences of administrations. A general 

trend of increasing synergistic effect was evidenced with the increase in added 

concentration for all sequences of administrations against the colorectal cancer models. 
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Stronger synergism was demonstrated against CACO-2 tumour model compared to 

other cell lines.  

It can be concluded from the above discussion that combination of Ox with Cur is better 

in cell kill than that of Cis with Cur against studied CRC models. Higher concentrations 

showed greater synergism in the combination of Ox with Cur but the effect is converse 

in case of Cis with Cur. Previous studies from our group against ovarian cancer models 

(including cisplatin and picoplatin resistant A2780 cell lines) also revealed synergism 

from the combination of cisplatin and curcumin (Yunos, Beale et al. 2011, Nessa, Beale 

et al. 2012). Younos et al. also reported that the observed synergism from the 

combination of cisplatin and curcumin is stronger at ED50 levels compared to that of 

ED75 and ED90 levels. Similarly, oxaliplatin in combination with curcumin also 

produced sequenced dependent synergism against ovarian tumour models. Sequenced 

addition of curcumin first and platinum drugs 2 h later was found to show more 

pronounced synergistic effect against three ovarian cancer cells (Nessa, Beale et al. 

2012). Another group also noticed significant synergism from combination of curcumin 

with cisplatin and oxaliplatin against 2008 and C13 ovarian cancer cell lines 

(Montopoli, Ragazzi et al. 2009). Moreover, curcumin and carboplatin in combination 

synergistically inhibited apoptosis and metastasis against lung cancer (Kang, Kang et 

al. 2015). 

A number of studies against CRC models also demonstrated synergism from the 

combinations of curcumin with platinum drugs. Oxaliplatin in combination with 

liposomal curcumin showed significant synergism during in vitro and in vivo xenograft 

model study using Lovo and Colo-205 colorectal cancer cells (Li, Ahmed et al. 2007). 

Another in vitro and in vivo model study using HCT-116 cell lines reported that 

curcumin in combination with oxaliplatin reduces the chemoresistance towards 
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oxaliplatin (Howells, Sale et al. 2011). Curcumin in combination with camptothecin 

also exhibited strong synergism against a colorectal cancer model (Xiao, Si et al. 2015). 

In an animal model study using FOLFOX resistant HT-29 and HCT-116 cancer cells, 

curcumin in combination with dasatinib showed inhibition of tumour growth, 

metastasis and colonosphere formation. The combined therapy significantly decreased 

the number of cancer stem cells by reducing CD133, CD44, CD166 and ALDH 

(Nautiyal, Kanwar et al. 2011). The mechanism behind the synergistic effects from 

combination of curcumin with platinum drugs was reported to be associated with the 

down regulation of matrix metalloproteinases (MMP-2 and MMP-9), BCL-2, NF-κB 

as well as upregulation of caspases (caspase-3 and caspase-9) and p53 (Kang, Kang et 

al. 2015). The mechanisms behind the combined drug actions of curcumin with 

different drugs have been reviewed by Troselj et al (Gall Troselj and Novak Kujundzic 

2014). The proposed mechanisms of synergistic actions of Curcumin with platinum 

drugs are summarised in Figure 4.1. 

 

Figure 4.1: Mechanisms of synergistic action from curcumin with platinums 
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4.2.2 Combination of platinums with colchicine 
 

When Cis was combined with Col against the colorectal tumour models, moderate 

synergism was found in HT-29 cell line at all added concentrations and sequence of 

administrations. In CACO-2 and LIM-1215 cell line, synergism was observed only with 

0/4 and 4/0 sequences of administration but antagonism was found with bolus 

administration. The degree of synergism was higher at lower added concentration than 

higher concentrations in all of the above mentioned three cell lines. In contrast, 

antagonism was evidenced in LIM-2405 cell lines irrespective of sequences of 

administration and concentrations. 

When Ox was combined with Col, synergism was found in LIM-1215 cell line at all 

added concentrations and sequence of administrations. But the observed synergism was 

increased with the increase of added concentrations. In HT-29 and CACO-2 cell lines 

synergism was found only at ED75 and ED90 levels, but antagonism at ED50 level. In 

contrast to the observed synergism in these cell lines, antagonism was predominant in 

LIM-2405 cell line. 

It is obvious from the above discussion that combination of cisplatin with colchicine is 

better in synergistic outcome at lower concentration than higher added concentrations 

and the converse is true for the combination of oxaliplatin with colchicine. Combination 

of both of the platinums with colchicine is mostly synergistic against HT29, CACO-2 

and LIM-1215 colorectal cancer models, but antagonistic against LIM-2405 cell line. 

In an earlier study from the host laboratory, it has been reported that 4/0 sequence of 

addition of cisplatin with colchicine at ED50 level produced strongest synergism against 

ovarian cancer models (Yunos, Beale et al. 2010). Similarly oxaliplatin in combination 

with colchicine exhibited the greatest synergism while oxaliplatin was administered 4 

h after the administration of colchicine against parent and cisplatin resistant A2780 
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ovarian cancer cell lines (Yunos, Beale et al. 2011). Moreover colchicine in 

combination with curcumin, EGCG and resveratrol displayed sequence and dose 

dependent synergism against three ovarian cancer models (Alamro 2015). Since 

antitumour activity of colchicine has been solely attributed to its ability to disrupt the 

assembly of microtubule, colchicine might provide synergistic actions in combinations 

with other platinums by killing cancer cells using a different mechanism of actions. 

Although colchicine has not been considered as a single agent therapy against cancer 

due to its toxicity, it could be further investigated as a combination therapy for safety 

and efficacy in a suitable animal model. 
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4.2.3 Combination of platinums with EGCG 
 

When Cis was combined with EGCG against the colorectal tumour models, additive to 

moderate synergism was generally found in the four studied cell lines. In very few 

instances depending on concentration or sequence of administration antagonism was 

manifested. Strongest synergism was shown at ED50 level with all the sequences of 

administration in HT-29 cell line. Generally, lower added concentrations displayed 

greater synergism than higher added concentrations. 

When Ox was combined with EGCG, synergism was found against all tested colorectal 

tumour models at all added concentrations and sequence of administrations (except for 

at ED90 level with bolus administration in LIM-1215). A general trend of increasing 

synergistic effect was evidenced with the increase of added concentration for all 

sequences of administration against the colorectal cancer models. Stronger synergism 

was demonstrated against HT-29 and CACO-2 tumour models compared to other cell 

lines.  

It is obvious from the above discussion that combination of Ox with EGCG is better 

than that of Cis with EGCG against tested CRC models. Higher added concentrations 

showed more synergism in the combination of Ox with Cur but the converse was true 

for Cis with Cur. Article published from our group reported that cisplatin in 

combination with EGCG showed sequence and concentration dependent synergism 

against four ovarian tumour models, where more synergism was observed at lower 

added concentrations (Yunos, Beale et al. 2011, Mazumder, Beale et al. 2012). Many 

other research groups also reported synergistic action of EGCG in combination with 

platinum drugs and other chemotherapeutic and chemopreventive agents against a 

variety of cancer models. In a study against colorectal cancer cell lines (DLD-1 and 

HT-29), EGCG acted synergistically with cisplatin and oxaliplatin through inducing 
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autophagic cell death. Autophagy was confirmed by elevated levels of LC3-II protein, 

acidic vesicular organelles, and development of autophagosome (Hu, Wei et al. 2015). 

Another study in lung cancer models revealed that combination of cisplatin with EGCG 

enhanced the sensitivity against resistant cells through upregulation of copper 

transporter-1 CTR1 which caused increased uptake of cisplatin into the cells (Jiang, Wu 

et al. 2016). EGCG in combination with N-(4-hydroxyphenyl) retinamide was also 

reported to provide synergistic effect against neuroblastoma via modulating oncogenic 

mRNAs (Chakrabarti, Khandkar et al. 2012). Sulforaphane in combination with EGCG 

displayed synergism against paclitaxel resistant ovarian cancer cells by down regulating 

BCL-2 and telomerase regulatory subunit hTERT (Chen, Landen et al. 2013). The detail 

mechanisms for the synergistic effects obtained from 42 in vitro and 13 animal model 

studies from the combination of EGCG with NSAIDs, phytochemicals, and anticancer 

drugs have been portrayed in a published review (Fujiki, Sueoka et al. 2015). Co-

administration of EGCG with other chemotherapeutic drugs has not only demonstrated 

increased cancer cell death but also reduce side effects mediated by chemotherapy 

(Lecumberri, Dupertuis et al. 2013). A proposed mechanism has been given in figure 

4.2 showing how EGCG reduce nephrotoxicity produced by cisplatin (Pan, Chen et al. 

2015).  



 175 

 

Figure 4.2: Role of EGCG in preventing nephrotoxicity mediated by cisplatin 

[Adapted from (Pan, Chen et al. 2015)]   

It can be suggested that EGCG can be investigated further in clinical settings with 

conventional chemotherapies (platinum drugs) in colorectal and other cancers.  

 

4.2.4 Combination of platinums with taxol 
 

When Cis was combined with Tax against the colorectal tumour models, strong 

antagonism was found against all cell lines studied. However, Ox in combination with 

Tax gave synergism in CACO-2 and LIM-1215 cell lines. Strongest synergism was 

evident with 4/0 administration at all added concentrations in CACO-2 cell line. Bolus 

administration also displayed synergism but only at higher concentrations in the same 

cell line. 0/4 addition proved to be additive at ED50 level but antagonistic at ED75 and 

ED90 levels in CACO-2 cell line. In contrast, bolus and 0/4 sequences of administration 

produced synergism in LIM-1215 cell line, more so at higher added concentrations. 4/0 

sequence of administration exhibited additiveness at lower concentrations but 

antagonism at higher concentrations against LIM-1215 cell line. Against HT-29 and 
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LIM-2405 cell line combination of Ox with Tax showed antagonism with all added 

sequences of administration and concentrations. 

Although the combined effect is antagonistic for cisplatin with taxol against four 

colorectal tumour models as found in the present study, synergism was reported earlier 

from the same combination against ovarian tumour models (Yunos, Beale et al. 2010). 

Another study from our group also described sequence and dose dependent synergism 

from the combination of taxol with cisplatin and oxaliplatin against three ovarian cancer 

cell lines (Nessa 2013). Taxol is being used in the clinic to treat ovarian cancer in 

combination with carboplatin. Moreover, taxol has also been gone through clinical trials 

in combination with oxaliplatin against lung cancer (Liu, Kraut et al. 2002, Winegarden, 

Mauer et al. 2004). However combination study with taxol and platinums against 

colorectal tumour models is very scarce in literature. One study reported that sequenced 

administration of taxol followed by oxaliplatin produced synergism but oxaliplatin 

followed by taxol displayed antagonism (Fujie, Yamamoto et al. 2005). Figure 4.3 

depicts the mechanism through which taxol give anticancer actions (Kampan, Madondo 

et al. 2015). Since multiple signalling pathways are modulated by the administration of 

taxol, it is conceivable that Tax can kill cancer cells using the pathways different than 

Ox and thus aid the synergistic effects. However it could not be understood from this 

study why Tax exhibited antagonism in combination with Cis against all cell lines, and 

also with Ox against HT-29 and Lim-2405 cell lines. 
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Figure 4.3: Signalling pathways modulated by Tax administration [Adapted from 

Kampan, Madondo et al. 2015)]  

4.3 Cellular accumulation of platinums 

from alone and combined treatments   
 

To reach into the targets to give antitumour activity, drugs must have to enter into the 

cell. Moreover, one of the key mechanisms for the development of resistance towards 

platinum based anticancer drugs is to decrease the influx of the drugs into the cell. 

Another important mechanism is to increase the efflux of platinums from the cell (Zhu, 

Shanbhag et al. 2017). In both of the cases, ultimate result is reduced accumulation of 

platinums to reach into the target DNA to show its antitumour activity (Yu, Yang et al. 

2015). Cellular accumulation study was conducted with the idea that: synergistic and 
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additive treatments would cause increased cellular accumulation of platinum or at least 

would not reduce the accumulation; and antagonistic treatment might cause lower 

cellular accumulation of platinum. 

It is apparent from Table 3.18 that synergistic (Cis with EGCG using bolus 

administration) and additive (Cis with Cur using 4/0 sequence of administration) 

combined treatments from Cis and phytochemicals caused significant increase in the 

accumulation of platinum into HT-29 cells compared to Cis alone treatment. Cellular 

accumulation of platinum was increased by 2.13 folds with synergistic combined 

treatment. However the increase in platinum accumulation with additive treatment was 

not substantial, which suggests that synergism from combination of Cis with 

phytochemicals might be due to increased cellular accumulation. When the study was 

conducted with the combinations from Ox with phytochemicals in HT-29 cell line, it 

was also observed that synergistic combined treatment of Ox with EGCG using bolus 

administration produced 1.22 times greater platinum accumulation than Ox alone 

treatment. However synergistic combined treatments of Ox with Cur using bolus and 

4/0 administration did not cause significant increase in accumulation of platinum, rather 

displayed almost the same amount of accumulation when compared with Ox alone 

treatment. But additive and antagonistic combined treatments of Ox with Col using 0/4 

sequence of administration and Ox with Tax using 4/0 sequence of administration 

reduced the platinum accumulation in HT-29 cell by 3.33 and 1.27. This study also 

supports the concept that, antagonistic effect in HT-29 cell line from combination of 

Ox with phytochemical is due to either decreased uptake of platinum into the cell or 

increased efflux of platinum from the cell. The findings are corroborated with earlier 

reports where synergistic combinations displayed increased accumulation of platinum 

in many instances (Mazumder 2013, Arzuman 2014). 
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When the study was further extended in CACO-2 cell line to find out the relationship 

with the combined drug action and cellular uptake levels, the results (Table 3.19) 

reinforced the outcome obtained from the study in HT-29 cell line. Synergistic 

combined treatment of Cis with EGCG using bolus administration caused 2.5 times 

greater platinum accumulation in CACO-2 cell line than Cis administered alone. 

Additive combined treatment of Cis with Cur using 4/0 sequence of administration also 

increased the platinum accumulation. In contrast, no combined treatment produced 

greater cellular accumulation of platinum in CACO-2 cell line than Ox alone treatment. 

However, synergistic combined treatment of Ox with EGCG using bolus administration 

showed significantly greater accumulation of platinum into the cell than antagonistic 

treatments. All told, it can be proposed from this study that synergism obtained from 

this study was correlated with the increased accumulation of platinums inside the cell 

and antagonism is the consequence of vice versa.    

4.4 PlatinumDNA binding from alone 

and combined treatments   
 

Platinum drugs are believed to kill cancer cells through forming covalent bonds with 

DNA. That is why it was assumed that synergistic combined drug action from platinums 

and phytochemicals might be the result of increased platinumDNA binding and 

antagonism is the converse. It is noticeable from Table 3.20 that, synergistic combined 

treatment of Cis with EGCG using bolus administration displayed 11.3 times greater 

extent of platinumDNA binding than Cis alone and additive (Cis with Cur, 4/0) 

treatments in HT-29 cell line. Synergistic combined treatments of Ox with Cur using 

bolus and 4/0 administration demonstrated 1.2 to1.3 times greater extent of 

platinumDNA binding than Ox alone treatment in the same cell line. In contrast, 
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antagonistic combined treatment of Ox with Tax using 4/0 sequence of administration 

reduced the extent of platinumDNA binding by half compared to Ox alone treatment 

in HT-29 cell line. The above discussed results obtained from platinumDNA binding 

study in HT-29 cell line suggest that synergism attained from the combination of 

platinums and phytochemicals in this study is directly proportional to the extent of 

platinumDNA binding.  

The study was further extended in CACO-2 cell line but no significant correlation was 

perceived between the observed combined drug action and the extent of platinumDNA 

binding from the combination of Cis and phytochemicals. However, combinations from 

Ox with phytochemicals revealed that synergistic combined effect might be the 

outcome of greater extent of platinumDNA binding and antagonistic effect was due to 

reduced extent of platinumDNA binding (Table 3.21) in CACO-2 cell line.  

Altogether, it can be perceived from this study that combined drug actions of platinums 

and phytochemicals are associated with the extent of platinumDNA binding in 

colorectal cancer models where synergism is evidenced from greater binding and 

antagonism with lesser binding. 

4.5 Study on interactions of DNA  
 

DNA damage study was conducted to get the relationship between damage towards 

DNA and combined drug action. The results of DNA damage study has been presented 

in Table 3.22 (HT-29 cell line) and Table 3.23 (CACO-2 cell line). Synergistic 

combinations (Cis with EGCG, bolus; Ox with Cur, 4/0 and Ox with EGCG, bolus), 

antagonistic combinations (Ox with Col, 0/4 and Ox with Tax, 4/0) and additive 

combination (Cis with Cur, 4/0) were selected for this study along with the single 

treatments of Cis, Ox, Cur, Col, EGCG and Tax. It has been noticed from Table 3.22 
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that synergistic combinations caused more damage towards DNA compared to 

antagonistic and additive treatments in HT-29 cell line. Highest damage was displayed 

by band 4 (Figure 3.50) which represented synergistic combination of Cis with EGCG 

at bolus administration followed by band 8 (Figure 3.50) representing synergistic 

combination of Ox with Cur at 4/0 sequence of administration. The lowest DNA 

damage was seen for band 11 (Figure 3.50) applying to antagonistic combination of Ox 

with Tax at 4/0 sequence of administration. The increase in intensity was observed in 

band 11 compared to band 1 and band 14 (untreated HT-29, control) which indicates 

the DNA protection effect from combined treatment of Ox and Tax at 4/0 sequence of 

administration. The combination index value at ED50 level of Ox with Tax, 4/0 

indicated strong antagonism which proved that co-administration of Tax inhibited the 

cytotoxic effect of Ox which is perceived due to the protection effect on DNA. When 

the phytochemicals were interacted with DNA as a single compound, it was found that 

Tax caused least damage towards DNA which further validates that how DNA damage 

is linked with the antagonism revealed from the combination of Ox with Tax at 4/0 

sequence of administration in HT-29 cell line. However, the antitumour activity of the 

compounds alone and their DNA damage property could not be correlated in HT-29 

cell line.  

When the study was conducted in CACO-2 cell line synergistic combinations (Cis with 

EGCG, bolus; Ox with Cur, 4/0 and Ox with EGCG bolus), antagonistic combinations 

(Ox with Col, 0/4 and Ox with Tax, 4/0) and additive combination (Cis with Cur, 4/0) 

were selected along with the single treatments of Cis, Ox, Cur, Col, EGCG and Tax.  

Highest damage was displayed by band 3 (Figure 3.51) which represented additive 

combination of Cis with cur at 4/0 sequence of administration followed by band 6 
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(Figure 3.51) applying to synergistic combination of Ox with Cur at 4/0 sequence of 

administration. 

The lowest DNA damage was seen for band 9 (Figure 3.51) applying to antagonistic 

combination of Ox with Tax at 4/0 sequence of administration. This was indicated by 

lowest mobility and increased intensity. Similar to the findings in HT-29 cell line, no 

correlation was observed between the antitumour activity of the compounds alone and 

their DNA damaging attributes in CACO-2 cell line.  

Finally, it can be concluded from the above discussion that synergistic combinations 

exhibited greater DNA damage and antagonistic combinations did the least damage. 

But DNA damage is not the only determinant of the antitumour activity of compound, 

rather the binding nature and extent of binding with DNA has more impact on 

recognition of the downstream proteins which are involved in the signalling 

mechanisms associated with cell survival or cell death (Abdullah, Huq et al. 2006, 

Mazumder 2013). That is why Cur and EGCG apparently caused greater DNA damage 

than Cis, Ox and Tax in both HT-29 and CACO-2 cell lines although less active.  

4.6 Proteomic study 
 

Proteomics involve the study of vibrant proteins present in the genome as well as the 

interactions of protein derivatives which connects the gap between genome sequence 

and cellular activities (Dove 1999). Two dimensional gel electrophoresis study 

followed by MALDI-MASS characterization of proteins have been conducted in the 

present study to identify the proteins associated with the combined drug actions. Among 

153 proteins identified from HT-29 cell line only seven proteins matched the selection 

criteria (mentioned in chapter three) whereas seven were chosen from 195 spots of 

CACO-2 cell line. However only eleven individual proteins were identified from the 
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two cell lines which underwent significant changes in expression following all different 

treatments. Based on the molecular functions the identified proteins fell into four 

classes namely:  

 Cytoskeleton organization proteins: Actin Cytoplasmic 1 protein , Tubulin beta 

chain , Keratin, type II cytoskeletal 8 , Keratin, type I cytoskeletal 18  and 

Cofilin1 

 Molecular chaperones: Nucleolar phosphoprotein B23 , Heat shock cognate 71 

kDa  and 78 kDa glucose regulated protein  

 Metabolic enzymes: Glutathione S transferase P1 and Isocitrate dehydrogenase 

[NADP] cytoplasmic  

 Proteasome associated protein: Proteasome subunit beta type-6  

Functional classification of the identified proteins is given in Figure 4.4. It is evident 

from the figure that most of the proteins belonged to cytoskeleton organization group 

comprising 46% of totality. Stress regulation proteins were the second most abundant 

group encompassing 27% of all identified proteins. 18% of the characterized proteins 

from this study categorized as enzymes and the rest 9% considered being proteasome 

associated protein.  
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Figure 4.4: Functional classification of identified proteins based on functions 

    

4.6.1 Cytoskeleton organization proteins 
 

The network of filaments that gives support to plasma membrane, contributes to provide 

the cell an overall shape, appropriate placing of organelles, tracking the movement of 

vesicles as well as regulate cell motility is called cytoskeleton. There are mainly three 

types of protein fibers which constructs the cytoskeleton in eukaryotes: actin 

microfilaments with a diameter of 6 nm, intermediate filaments with a diameter around 
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10 nm and microtubules with a diameter of 23-25 nm (Rufino-Palomares, Reyes-Zurita 

et al. 2013). In a normal cell cytoskeletal proteins regulate growth and stiffness, 

maintains polarity, and patterns the extracellular matrix. Thus cytoskeletal proteins 

subsequently impact on development and tissue differentiation (Bezanilla, Gladfelter et 

al. 2015). In cancer cytoskeleton are involved by modulating cell cycle events, 

morphogenesis and cellular migration or metastasis (Hall 2009). The proteins which 

belonged to this class and found to exhibit significantly changes in expression in this 

study are discussed here. 

4.6.1.1 Actin Cytoplasmic 1 protein  
 

Actin is a highly conservative protein which appears in vertebrates in multiple isoforms. 

Two isoforms are found in striated muscles e.g. α-skeletal muscle actin  and α-cardiac 

muscle actin. Whereas two isoforms are avaiale in smooth muscles e.g. α-smooth 

muscle actin and γ-smooth muscle actin. Another two isoforms is abundant in 

cytoplasm also known as non-muscle variants: β-cytoplasmic actin and γ-cytoplasmic 

actin (Popow, Nowak et al. 2006). Actin cytoplasmic 1 protein (beta actin) is the non 

muscle variant of actin, highly abundant in humans and other eukaryotes which serves 

in cell motility, mitosis, foetal development, healing process of wounds and gene 

expression (Bunnell, Burbach et al. 2011). The protein constitutes the meshwork actin 

which is primary found in the area of dynamic cytoplasm and appear at the tips of 

protrusive structures. That is how it functionally differs from another cytoplasmic actin 

(G-actin) which is predominant in the stress fibers and regulates cell shape as well as 

provide mechanical resistance (Herman 1993, Nowak and Malicka-Błaszkiewicz 1999, 

Popow, Nowak et al. 2006, Dominguez and Holmes 2011). Structurally, beta actin 

differs from gamma actin by only four similar amino acid acid residues (Bunnell, 

Burbach et al. 2011). In an animal model study it has been proved that beta actin is 
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essential for in vivo survival while G-actin is not like so. Knock out of beta actin results 

with deficiency in migration and cell growth (Bunnell, Burbach et al. 2011).  

Although corresponding gene of beta actin ACTB has been considered as a reference 

gene for many cancers (Majidzadeh-A, Esmaeili et al. 2011), now such use has been 

challenged (Jung, Ramankulov et al. 2007, Guo, Liu et al. 2013). Deregulation of 

ACTB has been evidenced in various malignancies e.g. hepatoma, melanoma, renal 

carcinoma, colon carcinoma, gastrocarcinoma, pancreatic carcinoma, breast 

adenocarcinoma, ovarian carcinoma, liquid blood cancer and solid lymphoma (Guo, 

Liu et al. 2013). In most of the above mentioned cancers, elevated expression of ACTB 

was found. However, four folds downregulation of ACTB was observed in a colorectal 

tumour model of DLD-1 cell compared to non cancerous cells (Kwon, Oh et al. 2009). 

Several other studies also showed altered expression of ACTB in colorectal cancer 

(Andersen, Jensen et al. 2004, Dydensborg, Herring et al. 2006, Kheirelseid, Chang et 

al. 2010). 

In the present study, beta actin was downregulated following all the treatments in HT-

29 cell line. Col alone treatment caused the highest downregulation of the protein by 

the factor of 7.38. The extent of downregulation caused by Ox alone, EGCG alone and 

antagonistic combined treatment of Ox with Col using 0/4 sequence of administration 

were found to be almost equal by the factor of 2. However, synergistic combined 

treatment of Ox with EGCG using bolus administration did not produce significant 

downregulation (1.2 fold change was obseved). It could be assumed from this study that 

beta actin might act as an antiapoptotic protein in HT-29 cell line, which was 

upregulated in cancerous cell line and downregulated by the effect of drug treatments. 

However, it remained unclear why anatgonistic combined treatment (Ox with Col, 0/4) 

caused downregulation of beta actin.     
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4.6.1.2 Tubulin beta chain  
 

Tubulins are the structural subunits of microtubules and composed of primarily with 

two subunits namely: alpha and beta. Tubulin monomers are bound with guanosine 

triphosphate (GTP) molecules which can be exchanged when it is attached with beta 

subunit. Alpha and beta tubulin shares forty percent of same amino acid sequences and 

differ in the rest sixty percent. Each subunit is composed of two beta-sheets encircled 

by alpha-helices and thus form a central core. Both alpha and beta subunits have 

multiple isoforms. Tubulin beta chain is one of the isoforms of beta subunit and 

responsible for intracellular transport and mitosis in all eukaryotes (Nogales, Wolf et 

al. 1998). Abnormalities in the expression of tubulin beta chain  is evident is many solid 

cancers and recognized as potential cause for chemotherapy resistance (Fan, Gao et al. 

2013). The protein has been considered as sepecific antigen for esophageal, gastric, 

pancreatic and colon cancer with sensitivity of 20% to 40% and sepecificity of 96% 

(Fan, Li et al. 2013). Beta tubulin was found to be upregulated in CRC (Fan, Kang et 

al. 2014), breast cancer (Cortesi, Barchetti et al. 2009) and esophageal cancer (Qi, Chiu 

et al. 2005).  

In the present study,  the protein was uprgulated following the treatments of Ox alone 

and EGCG alone in HT-29 cell line. However, it was downregulated after the treatment 

of Col alone and synergistic combined treatment of Ox with EGCG using bolus 

administration in the same cell line. The protein was not able to be detected following 

antagonistic combined treatment of Ox with Col using 0/4 sequence of administration 

in HT-29 cell line. The disapperance of the protein after drug treatment was thought to 

be due to extreme downregulation. However, it was difficult to decide about the nature 

of the protein from this study due to variation of response with different treatments.  
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4.6.1.3 Cofilin1 
 

Cofilin1 is an actin binding protein belong to the family of actin depolymerizing factor 

(ADF)/cofilin family. This superfamily comprises of 39 similar members, all of them 

have same backbone (ADF-homology domains) of six stranded mixed beta sheets 

composed of 150 amino acid residues (Lappalainen, Kessels et al. 1998). Cofilin1 (non 

muscle isoform) is one of the traditional cofilins along with cofilin2 (muscle isoform-

skeletal or cardiac) and destrins (available various tissues) (Bernstein and Bamburg 

2010). Cofilin1 is responsible for actin polymerization and depolymerization through 

severing of filaments. The dynamics of actin filaments (assembly or deassembly) is 

dependent on the concentration of active cofilin1. Activity of cofilin1 relies on the 

upstream effectors: LIM  and and TES kinases which cause phosphorylation and make 

cofilin1 inactive. In contrary, slingshot and chronophin phosphatases turns back the 

protein into active state through dephosphorylation (Yamaguchi and Condeelis 2007). 

At lower concentration cofilin1 favours severing of actin filaments and facilitate 

depolymerization, whereas at higher concentration actin nucleation and polymerization 

takes place (Shishkin, Eremina et al. 2016). Cofilin1 faciliates the  polymerization 

process of actin filaments by creating free pointed ends and providing actin monomers. 

Thus it is considered as essential regulator of cell motility and metastasis in malignannt 

cells (Ghosh, Song et al. 2004). Moreover, cofilin1 plays vital role in restructuring of 

actin cytoskeleton when exposed towards variety of stimuli and stressed conditions. 

Other molecular level fuctions of cofilin1 includes: release of cytochrome C (Chua, 

Volbracht et al. 2003) and activation of phospholipase D1 (Han, Stope et al. 2007).  

Elevated expression of cofilin1 has been found in lung (Keshamouni, Michailidis et al. 

2006), pancreatic (Sinha, Hütter et al. 1999), oral (Turhani, Krapfenbauer et al. 2006), 

kidney (Unwin, Craven et al. 2003), colorectal (Zhao, Liu et al. 2007) and ovarian 
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cancer (Martoglio, Tom et al. 2000). However downregulation of cofilin1 is also 

evidenced in lymphoma, cervical, hepatic and colon cancer (Nebl, Meuer et al. 1996). 

The role of cofilin1 (COF1) in mediating cancer and the mechanism of action has been 

portrayed in Figure 4.5. 

 

Figure 4.5: Contribution of cofilin1 (COF1) in cancer [Adapted from (Shishkin, 

Eremina et al. 2016)] 

In the present study, the protein was slightly upregulated after treatment with Ox alone 

and significantly upregualted following the treatment of synergistic combination of Ox 

with Cur using bolus administration in CACO-2 cell line. However, the protein was 

downregulated after the treatment with Cur alone in the same cell line. The variation in 

the expression of cofilin1 following drug treatments makes it difficult to ascertain the 

nature of the protein. The controversial nature of cofilin1 has been reported earlier as 

well (Tsai, Lin et al. 2015). The authors mention that, although strong evidence on 



 190 

upregulation of cofilin1 in multiple cancers is evident but overexpression of the protein 

may also cause suprression of cancer growth and invasion of cancer cells (Tsai, Lin et 

al. 2015).  It was suggested that overexpression of cofilin1 cause cell cycle arrest but 

not induce apoptotic cell death. That is why strict control of cofilin1 expression is 

indispensable for normal functioning of cells (Tsai, Chiu et al. 2009).  

4.6.1.4 Keratin, type II cytoskeletal 8 
 

Keratin is one type of intermediate filaments which belong to a family of similar 

proteins including keratin, desmin and peripherin; contribute in maintaining cell shape 

and structural reorganization (Wax and Backman 2009). Keratin is relatively stable 

cytoskeletal structure which acts as elastic materials during mechanical stress and resist 

breakage by providing high stiffness at large strains (Beil, Micoulet et al. 2003). 54 

different types of keratins identified which are broadly classified into two groups: type 

I (K9–K10, K12–K28, K31–K40) and type II (K1–K8, K71–K86). All keratins share 

common structural similarity among themselves by encompassing a central shaft 

domain of  around 310 amino acids; forms alpha-helix lined by non-helical head and 

tail (Moll, Divo et al. 2008). 

Keratin, type II cytoskeletal 8 (K2CB) is a type II cytoskeletal 8 keratin (K8) and 

usually coexpressed with K18 in normal epithelial cells. K2CB protein is the oldest 

keratin among all identified and play significant role in regulation of cell cycle (Magin, 

Vijayaraj et al. 2007), protecting cells from stress (Ku, Soetikno et al. 2003), injury and 

apoptosis (Caulin, Ware et al. 2000). Altered expression of K2CB protein is evidenced 

in lung (Hmmier, O'Brien et al. 2017), pancreatic, breast, renal, colorectal (Yamamoto, 

Kudo et al. 2016), liver (Takegoshi, Okada et al. 2016), endometrial, ovarian and gastric 

cancer (Moll, Divo et al. 2008). K2CB protein was reported to be upregulated in breast 
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cancer (Wu, Hancock et al. 2003, Hamler, Zhu et al. 2004), skin carcinoma (Larcher, 

Bauluz et al. 1992), bladder cancer cells (Lei, Zhao et al. 2013) compared to non 

cancerous counterparts. However downregulation of the protein in cisplatin resistant 

esophageal cell line and lung cancer has also been reported (Lai, Chan et al. 2016, 

Hmmier, O'Brien et al. 2017). 

 In the present study, K2CB protein was identified from both HT-29 and CACO-2 cell 

lines as spot number 55 and match ID 35 respectively. The protein was upregulated 

following the treatments with Ox alone, Col alone and anatgonistic combined treatment 

of Ox with Col using 0/4 sequence of administration. In contrast, K2CB protein was 

downregulated after the treatment of EGCG alone and synergsitic combined treatment 

of Ox with EGCG using bolus administration in HT-29 cell line. However, the same 

protein was upregulated following the treatments of Cur alone and synergistic 

combined treatment of Ox with using bolus administration but downregulated after the 

treatment of Ox alone. The role of the protein remained unclear from this study due to 

inconsistency in the expression of K2CB protein following different treatments. For 

exanple, following Ox alone treatment in HT-29 cell line the protein was upregulated 

but downregulation was found in CACO-2 cell line with the same treatment. Highly 

synergistic combined treatment of Ox with EGCG (bolus) caused downregulation of 

K2CB protein in HT-29 cell line but upregulation was revealed in CACO-2 cell line 

following highly synergistic combination treatment of Ox with Cur (Bolus). However, 

literature suggests that K2CB protein contributes significantly in promoting colorectal 

cancer. Natural tumour active compound sulforaphene has been reported to give 

anticancer activity by supressing K2CB protein; subsequently increased Fas 

concentration, decreased cFLIP activity and induced apoptosis (Yang, Ren et al. 2016). 

In a study on 25 patients of prostate cancer while receiving chemotherapy, level of K18 
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was monitored which is usually coexpressed with K2CB protein. It was observed that 

circulatory K18 level was increased or decreased following adminstration of different 

drugs. The authors commented that cell death induced by chemotherapy does not 

inevitably depend on apoptosis, rather multiple mechanisms are involved (Ueno, Toi et 

al. 2005). Further study is required to ascertain the role of K2CB protein in colorectal 

cancer.  

4.6.1.5 Keratin, type I cytoskeletal 18   
 

Five major groups of intermediate filaments are found in human among which type I, 

type II, type III, type IV are cytoskeletal and type V is neucleoskeletal (Helfand, Chang 

et al. 2004). Keratins comprise the largest portion of intermediate filaments and belong 

into first two groups: type I and type II. K1C18 protein is a type I cytoskeletal 18 keratin 

(K18) protein which is highly conserved from teleosts to mammals. In 1950s the 

association of keratins including K1C18 protein was reported (Björklund and Björklund 

1957, Björklund 1978). Later on it was discovered that K1C18 protein is cleaved during 

apoptosis of normal and malignant cells at two sites into three fragments (Ueno, Toi et 

al. 2005). 

Upregulation of K1C18 protein in ovarian carcinoma (Wang, Kachman et al. 2004), 

cholangiocarcinoma (Srisomsap, Sawangareetrakul et al. 2004) and breast carcinoma 

(Wu, Hancock et al. 2003, Vergara, Simeone et al. 2013) has been observed in different 

studies. On the contrary, other studies showed downregulation of K1C18 protein in 

several cancers including: prostate (O'Connell, Prencipe et al. 2012), cervical 

(Buddaseth, Göttmann et al. 2013) and colon carcinoma (Roblick, Hirschberg et al. 

2004). One earlier studies suggested upregulation of K1C18 protein is the good 

prognostic factor in breast cancer (Schaller, Fuchs et al. 1996).  
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In the present study, the protein has been identified from CACO-2 cell line. K1C18 

protein was upregulated following all the treatments indicating that the protein might 

act as apoptotic protein. The highest upregulation of the protein was caused with Cur 

alone treatment by a factor of 7.26. Whereas, synergistic treatment of Ox with Cur 

(bolus) caused 6.26 folds upregulation of K1C18 protein and Ox alone produced 2.6 

times upregulation of the same protein. Similar to this study, oxaliplatin has been 

reported to cause upregulation of the protein in three diffirent colorectal cancer cell 

lines (Yao, Jia et al. 2009). Moreover, the result of the present study is in accordance 

with earlier findings where maslinic acid (antitumour compound) downregulated the 

expression of K1C18 protein significantly in HT-29 colon cancer cell line (Rufino-

Palomares, Reyes-Zurita et al. 2013). Another in vivo study also revealed that elevated 

expression of the  protein leads to supression of malignancy in breast cancer cell (Bühler 

and Schaller 2005). It can be concluded that K1C18 protein is an apoptotic protein and 

could be targeted to design newer anticancer drugs. 

4.6.2 Molecular chaperone 
 

Living organism has to expose different stressful conditions throughout its life cycle to 

survive. For most of the organisms moderate increase in temperature above the 

optimum cause  threats to their life. To cope with the challenge of heat stress and 

exposure of toxic agents, cells actuate the expression of heat shock proteins (HSPs) 

which subsequently undergo multiple signalling mechanisms to avoid cell death 

(Richter, Haslbeck et al. 2010). These heat shock proteins have been classified into 

seven different categories such as: molecular chaperones, proteolytic system associated 

proteins , DNA-RNA modifying enzymes, metabolic enzymes, transcription factors and 

kinases, cytoskeleton sustaining proteins, transport and detoxification associated 
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proteins. Among the above mentioned heat shock proteins, the most predominant are 

molecular chaperones across the species. These molecular chaperones are recognized 

as the first discovered HSPs which act during new protein synthesis by controlling 

folding and defolding of non native polypeptide chains (Ellis, Van der Vies et al. 1989). 

The most distinct feature of molecular chaperones which differentiate them from 

traditional enzymes is the ability to work in stoichiometric ratios. Molecular chaperones 

could be further categorized into HSP110, HSP100s, HSP90s, HSP70s, HSP60s, and 

small heat shock proteins. Three proteins belong to this group have been identified in 

this study which are discussed in the following section. 

4.6.2.1 Heat shock cognate 71 kDa protein  
 

Heat shock cognate 71 kDa protein (HSP7C) belongs to HSP70s class of molecular 

chaperones. There are at least 13 different proteins identified as a member of HSP70s, 

all of them sharing a highly conserved domain structure (N-terminal ATPase domain 

of 44 kDa, substrate-binding domain of 18 kDa and C-terminal domain of 10 kDa) 

(Kampinga, Hageman et al. 2009, Liu, Daniels et al. 2012). HSP7C protein is also called 

HSC70, located mainly in cytoplasm and considered as constitutively expressed protein 

which is encoded by HSPA8 gene. As a member of HSP70s class, the protein HSP7C 

has 85% similarity in amino acid sequence. Unlike to other HSP70s, HSP7C is mildly 

induced in stressed conditions but exhibit more intense effect on lipid bilayers by 

creating greater extent of protein folding and polypeptide translocation (Ahn, Kim et 

al. 2005). Other than the ATPase activity of HSP7C, it serves in different biological 

processes including: protein homeostasis, faciliate protein maturation and translocation, 

targetting protein for lysosomal and proteasomal degradation, regulation of apoptotic 

cell death, embryogenesis and ageing (Liu, Daniels et al. 2012). However some 
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cofactors/co-chaperones are inevitavle to perform the complete functions of HSP7C 

protein. Imporatnt cofactors are J domain, BAG family, CHIP, Hop, Hip, and HSPBP1.   

In an earlier study, expression of HSP7C protein was found to be higher in cancerous 

cell lines compared to nonmalignant cells e.g. lung, gastric, pancreatic, breast, cervical 

and endometrial cancer (Maeda, Ohguro et al. 2000). The level of HSP7C protein was 

found to be significantly increased in 95% samples collected from the patients with 

colon cancer compared to the control group (Kubota, Yamamoto et al. 2010). The 

protein has been suggested as potential biomarker in neuroblastoma (Sandoval, Hoelz 

et al. 2006). In the present study, HSP7C protein was identified from both HT-29 and 

CACO-2 cell lines as match ID 39 and match ID 37 respectively. In HT-29 cell line, 

the protein was significantly upregulated following the treatments of Col alone, EGCG 

alone and synergistic combination of Ox with EGCG using bolus administration. 

Highest extent of upregulation of the protein was caused by the synergistic treatment 

and the lowest with Col alone treatment. However Ox alone and antagonistic 

combination treatments did not cause significant change in the expression of HSP7C 

protein. In contrast in CACO-2 cell line, the protein was upregulated following all the 

treatments. Synergistic combined treatment of Ox with using bolus administration 

produced highest upregulation by a factor of 4.53, followed by Cur alone treatment by 

the factor of 2. 

From the above discussed results, it can be assumed that observed upregulation of 

HSP7C protein (following the treatments) and cell death might have a positive link. In 

both colorectal cell lines, synergistic combined treatments caused the highest amount 

of cell death. It could be the role of HSP7C protein as inducer of autophagy, promoting 

cytotoxity by upregulating HSP7C. The protein has been reported to induced all three 
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forms of autophagy: chaperone mediated autophagy, macroautoghagy and 

microautophagy (Stricher, Macri et al. 2013).  

4.6.2.2 78 kDa glucose regulated protein  
 

Among the 13 members of HSP70s class the major five proteins are HSP70 (HSPA1), 

HSPA6 (HSP70B), HSC70 (HSPA8), mortalin (HSPA9 or GRP75) and GRP78 

(HSPA5) (Arispe and De Maio 2000). Another alternative name of GRP78 is Bip 

(immunoglobulin heavy-chain binding protein) which is mainly located in endoplasmic 

reticulum. 78 kDa glucose regulated protein or GRP78 acts a a master regulator during 

endoplasmic stress. The primary respnsibilty of GRP78 protein is to translocate the 

proteins, controlling the folding and assembly of proteins, identification and deletion of 

misfolded proteins (Macias, Williamson et al. 2011). GRP78 protein has the ability to 

bind with PERK, IRE1, and ATF6 and keep them in an inactive form during normal 

physiologic conditions. However, exposure of stress caused detachment of GRP78 

protein from the mentioned transmembrane sensor proteins of endoplasnic reticulum 

and switches on the protective mechanism to avoid cell death (Lee 2007). Since cancer 

cells are continually subjected towards endoplasmic reticulum stress, GRP78 protein 

plays an integral role in survival of cancer cells and promote carcinogenesis. Literature 

suggests that GRP78 protein can also mediate chemotherapy resistance and inhibit 

apoptosis (Wang, Wey et al. 2009).  

Elevated expression of GRP78 protein has been documented in many cancers: liver 

(Shuda, Kondoh et al. 2003), breast (Lee, Nichols et al. 2006), lung (Fu and Lee 2006) 

and prostate (Miyake, Hara et al. 2000, Daneshmand, Quek et al. 2007). In the present 

study, the protein was upregulated following all the treatments in CACO-2 cell line. 

Highest upregulation was evidenced after the treatment with Cur alone by the factor of 
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2.2 whereas Ox alone did upregulation of the protein by 1.61 times. Synergistic 

combined treament of Ox with Cur using bolus administration upregulated GRP78 

protein by a factor of 1.56. However, it was difficult to undeterstand the relationship 

between observed upregulation of GRP78 protein following drug treatments and 

anticancer activity.  

4.6.2.3 Nucleolar phosphoprotein B23  
 

Nucleophosmin (NPM) is a 37 kDa phosphoprotein resided in the nucleolus of a cell 

and acts as a continous shuttle between nucleus and cytoplasm (Borer, Lehner et al. 

1989). It is highly abundant and conserved protein, crucial for maintaining cellular 

homeostasis. Two isoforms of NPM is available in human namely: NPM1 and NPM1.2 

which contain same sequences in their 5´ regions and almost identical in their coding 

region. However, they differ in 35 amino acids in C-terminal chain (Lim and Wang 

2006). NPM serves as a multifunctional protein by transferring preribosomal particles 

for biogenesis of ribosome; maintaining stability of genome; regulating DNA 

transcription and molecular chaperoning activity (Grisendi, Mecucci et al. 2006). NPM 

protein does chaperone like activity for both proteins and nucleic acids and thus 

classified as nuclear chaperone (nucleoplasmin).  

A large body of evidence suggest that NPM plays a key role in cancer pathogenesis. It 

modulates cell proliferation (Okuda, Horn et al. 2000, Colombo, Marine et al. 2002) 

and stimulates survival of cancer cells after damage to the DNA (Wu, Chang et al. 2002, 

Wu, Chang et al. 2002). However, delocalization of tumour suppressor protein p53 and 

ARF in absence of NPM has also been reported (Itahana, Bhat et al. 2003, Colombo, 

Bonetti et al. 2005). The dominancy of prooncogenic or antioncogenic activity depends 

on the level of expression and dosage of NPM. Overexpression of NPM has been 
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revealed in many types of malignancies e.g. colorectal (NOZAWA, VAN BELZEN et 

al. 1996), ovarian (Shields, Gerçel-Taylor et al. 1997), prostate (Subong, Shue et al. 

1999) and gastric carcinoma (Tanaka, Sasaki et al. 1992). The potential mechanism 

through which NPM increases cell proliferation and inhibit apoptosis is given in Figure 

4.6 [ ‘a’ indicates normal cell where complete balance in NPM; ‘b’ indicates cancer cell 

where NPM is overexpressed and cell proliferation is predominant; ‘c’ indicates the 

molecular mechanisms how cell proliferation is enhanced in tumour cell due to 

upregulation of NPM; and ‘d’ indicates the molecular mechanisms how cell death is 

inhibited in cancer cells due to elevated expression of NPM] (Grisendi, Mecucci et al. 

2006). 

 

Figure 4.6: Promotion of tumorigenesis due to over expression of NPM [Adapted 

from Grisendi, Mecucci et al. 2006)]  

In the present study, NPM protein was identified from HT-29 cell line and found to be 

downregulated following all the treatments except for Ox alone. The protein was 

extremely downregulated after the treatments with Col alone and synergistic 

combination of Ox with EGCG using bolus administration. In fact, the protein was 
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disappaered following both of the treatments. Following treatment with EGCG alone 

NPM protein was downregulated by the factor of 1.65 whereas antagonistic 

combination of Ox with Col using 0/4 sequence of administration did not cause 

significant changes in the expression of the protein. However, Ox alone treatment cause 

upregulation of the protein. It can be suggested from this study that NPM act as 

antiapoptic protein and can be targeted further to develop new anticancer agents. An 

earlier study also proposed that downregulation of NPM protein caused increased 

sensitivity of doxorubicin against lymphoma (Hsu, Zhao et al. 2007).   

4.6.3 Metabolic enzymes 
 

These are the proteins which are essential for cellular survival and homeostasis, serve 

diverse range of functions: digestion, respiration, preservation of energy, proteolysis 

and transcription. A variety of proteins have been included in this group such as: 

oxidases, peroxidases, oxygenases, reductases, hydrogenases, dehydrogenases, 

carboxylases, lipooxygenases, transferases and lyases etc. Two proteins were identified 

from this study which fell into the class of metabolic enzymes namely: GSTP1 and 

IDHC. 

4.6.3.1 Glutathione S transferase P1  
 

GSTP1 or Glutathione S transferase P1 belongs to the family of transferases which 

comprises of around 450 enzymes and functions for transferring functional groups from 

one compound to another. Glutathione S transferases (GSTs) catalyze nucleophilic 

attack of reduced glutathione (GSH) on another compounds having an electrophilic C, 

N, or S atom (Hayes, Flanagan et al. 2005). GSTs are categorized into three major 

classes namely: mitochondrial, cytosolic and microsomal. Mitochondrial and cytosolic 

GSTs share some structural similarities but no resemblance with microsomal type 
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(Holm, Morgenstern et al. 2002, Ladner, Parsons et al. 2004). Cytosolic GSTs have 

been futher classified into alpha (A), mu (M), pi (P), sigma (S), theta (T), zeta (Z) and 

omega (O) type (McIlwain, Townsend et al. 2006). GSTP1 is one of the subtypes of pi 

(P) class of GST, acts as a phase II drug-metabolising enzyme by conjugating 

glutathione with many toxic and electrophilic xenobiotics to convert into polar 

derivatives ready for excretion (Sawers, Ferguson et al. 2014). Highest expression of 

GSTP1 protein has been reported to be in brain followed by lung, placenta, kidney and 

pancrea. But expression of the protein in liver is negligible (Singh 2015). Structurally, 

GSTP1 protein is composed of domain 1 (N terminal end), linker and domain 2 (C 

terminal end). Amino domain adopts the resemblance of thioredoxin topology and 

contains 1-80 amino acid sequences (4 beta sheets flanking with 3 alpha helices). C 

terminal end is composed of 5 alpha helices containing residues 87-210. Domain 1 

carries GSH binding site whereas domain 2 carries substrate binding site (Ålin, Jensson 

et al. 1985, Reinemer, Dirr et al. 1991). There are four genetic variants of GSTP1 have 

been discovered in human e.g. GSTP1*A, GSTP1*B, GSTP1*C and GSTP1*D 

(Laborde 2010). 

The role of GSTP1 protein in mediating cancer has been reoprted strongly in scientific 

literature. Expression of GSTP1 was noticed to be associated with several transcription 

factors e.g. SP-1, AP-1, NF-κB and GATA1 (Moffat, McLaren et al. 1996, Duvoix, 

Delhalle et al. 2004). Multiple cell death pathways are also linked with GSTP1 protein 

such as : JNK1, ERK1/ERK2, or tumor necrosis factor receptor-associated factor 2 

(TRAF2) (Ruscoe, Rosario et al. 2001, Wu, Fan et al. 2006). Figure 4.7 depicts the role 

of GSTP1 in tumorigenesis. 
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Figure 4.7: Signalling pathways linked with GSTP1 in mediating cancer  

Upregulation of GSTP1 protein has been observed in many cancers including breast 

brain, colon, lung, oral, pancrea, bladder, rectal, testicular and pharyngeal 

(Schnekenburger, Karius et al. 2014, Singh 2015). In the present study, GSTP1 protein 

was identified from HT-29 cell line where it was upregulated following the treatments 

of Col alone and EGCG alone. However, the protein was downregulated following the 

synergistic combined treatment of Ox with EGCG using bolus administration. There 

was no significant changes observed after treatment with Ox alone and antagonistic 

combined treatment of Ox with Col using 0/4 sequence of administration. Due to 

variation of response in the expression of GSTP1 protein following drug treatments 
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alone and in combinations, the role of GSTP1 in colorectal cancer remained uncertain 

from this study.    

4.6.3.2 Isocitrate dehydrogenase [NADP] cytoplasmic  
 

IDHC or Isocitrate dehydrogenase [NADP] cytoplasmic is a protein belongs to 

oxidoreductase enzyme class. These enzymes are responsible for transfering electrons 

from oxidants to reductants which could be oxidases or dehydrogenases. Oxidases 

catalyzes the reactions when molecular oxygen acts as an acceptor of 

hydrogen/electrons.  In contrast, dehydrogenases oxidize a substrate by transferring 

hydrogen to NAD+/NADP+. Isocitrate dehydrogenase (IDH) is an important enzyme 

required for catalyzing the conversion of isocitrate to alpha-ketoglutarate and CO2 

during Krebs cycle of aerobic glycolytic pathway (Cairns, Harris et al. 2011). 

Structurally IDH is a homodimer (46 kDa) consisting of of 416 residues with fourteen 

alpha helices and eighteen beta sheets.  The α-helices are omnipresent in the protein 

structure, however the β-sheets are primarily located in the center of the structure. Three 

types of IDH have been identified in human: IDH1 or IDHC (NADP dependent, located 

in cytoplasm); IDH2 (NADP dependent, located in mitochondia) and IDH3 (NAD 

dependent, located in mitochondria) (Losman and Kaelin 2013). The key role of IDHC 

in normal cells is to faciliate the activity of the numerous cytoplasmic and nuclear 

dioxygenases that require 2-oxo-glutarate as a cosubstrate (Lee, Koh et al. 2002). 

Additionally, IDHC gives production of nonmitochondrial NADPH which is critical in 

lipid biosynthesis and protection of cells from oxidative stress and other injuries (Koh, 

Lee et al. 2004). Possible role of IDHC in lipogenesis and regulating redox homeostasis 

is given in Figure 4.8. Mutation of IDHC is evident in many cancers specially in glioma, 

which cause the enzyme to act in faster rate and more efficiently. However, controversy 
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still exists regarding the role of IDHC in cancer, whether it provides oncogenic effects 

or tumour suppressive effects (Reitman and Yan 2010).  

 

Figure 4.8: Role of IDHC in redox homeostasis and lipogenesis [Adapted from 

(Calvert 2017)] 

In the present study, IDHC protein was identified from CACO-2 cell line. Following 

drug treatments either alone or in combination, the protein displayed uprgulation. Ox 

alone treatment caused the protein to be upregulated by 3 folds whereas Cur alone 

treatment did 1.8 folds upregulation. Synergistic combined treatment of Ox with Cur 

using bolus administration caused highest upregulation of IDHC by a factor of 5.75. It 

can be assumed from this study that IDHC protein might have proapoptotic action. To 

the best of my knowledge, this is the first report showing the changes in expression of 

IDHC protein in colorectal cancer cell following treatments with tumour active 

compounds. However, upregulation of IDHC protein has been documented in lung 
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(Tan, Jiang et al. 2012), breast (Russell Hilt, Wittliff et al. 1973, Xu, Yan et al. 2010) 

and esophageal cancer cells (Qi, Chiu et al. 2005) compared to their noncancerous 

counterparts. A recent study has proved that, elevated expression of IDHC protein leads 

towards aggravation of tumour and therapy resistance in glioblastoma. The author 

suggested that inhibition of IDHC protein could be a promising therapeutic strategy 

against glioblastoma (Calvert 2017).   

4.6.4 Proteasome associated protein 
 

Proteasome is a highly sophisticated protein complex expressed in nucleus and 

cytoplasm of all eukaryotes, which is responsible for selective hydrolysis of client 

proteins with the expenditure of metabolic energy. It works in combination with 

ubiquitin system exploiting cascade of enzymes categorized as E1, E2 and E3 (Adams 

2003). Proteasome comprises of a 20S core subunit (catalytic core particle) which is 

connected with one or two 19S regulatory subunits (proteasome activator). Density-

gradient centrifugation analysis of active proteasome revealed that sedimentation co-

efficient value is 26S. This is why proteasome complex is sometimes referred to 26S 

proteasome as well (Tanaka 2009). Other than proteolysis, proteasome have been 

associated with wide range of functions including: tumour suppresson, regulation of 

cell cycle, modulation of transcription factors and anti-apoptotic proteins (Kisselev and 

Goldberg 2001). One protein namely PSB6, linked with proteasome has been displayed 

significant changes in expression in colorectal cancer model in this study. 

4.6.4.1 Proteasome subunit beta type-6  
 

PSB6 or proteasome subunit beta type-6 is part of 20S catalytic core of the proteasome. 

In regards to the structural conformation, 20S catalytic core looks like a cylinder which 

is composed of two alpha and two beta rings (Groll, Ditzel et al. 1997, Bhaumik and 
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Malik 2008). Each alpha and beta ring of 20S catalytic core consists of seven different 

components, named as alpha-1 to alpha-7 and beta-1 to beta-7 respectively. However, 

only three beta-components in the beta ring are catalytically active namely: 

chymotrypsin-like (beta-5), trypsin-like (beta-2), and caspase-like (beta-1). PSB6 

protein modulates the cell cycle and many other processes through the break down of 

regulatory components and transcription factors (Frankland-Searby and Bhaumik 

2012). Figure 4.9 protrays proteasome-ubiquitin pathway (Crawford, Walker et al. 

2011). In the figure Ub refers to ubiquitin; C-L refers to caspase like; T-L refers to 

trypsin-like and CT-L refers to chymotrypsin-like. 

 

Figure 4.9: Schematic diagram representing ubiquitin-proteasome pathway [Adapted 

from (Crawford, Walker et al. 2011)] 

Upregulation of PSB6 protein has been observed in lung cancer (Lu, Song et al. 2014), 

breast cancer (Canelle, Bousquet et al. 2006), thyroid cancer (Onda, Emi et al. 2004), 
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hypoxia (Wang, Xu et al. 2013) and prostate cancer (Davalieva, Kostovska et al. 2015). 

In a study of HCT-116 colon cancer cell line, elevated expression of the protein also 

detected. In the present study, PSB6 protein was downregulated after the treatment with 

Ox alone in CACO-2 cell line. In contrast, upregulation of the protein was observed 

following the treatment with Cur alone in the same cell line. But PSB6 protein did not 

show significant changes in expression following synergistic combined treatment of  

Ox with Cur using bolus administration in CACO-2 cell line. This might be due to 

counterbalancing effect between Ox and Cur. In accordance to this study, PSB6 protein 

reported to be upregulated following treatment with curcumin in a breast cancer model 

(Fang, Chen et al. 2011). Further study is warranted to target PSB6 protein as anticancer 

drug target. 

4.6.5 Summary of proteomic study 
 

In this study six proteins have identified to show significant changes in expression 

following different drug treatments in HT-29 colorectal cell line. The proteins are NPM, 

ACTB, TBB5, HSP7C, K2CB and GSTP1. Among these proteins, three (ACTB, TBB5 

and K2CB) belong to the functional class of cytoskeletal proteins; two (NPM and 

HSP7C) belong to the functional class of molecular chaperone and one (GSTP1) belong 

to functional class of metabolic enzyme. Two proteins namely NPM and ACTB were 

identified as the antiapoptotic protein in this study. 

Another seven proteins were identified from CACO-2 colorectal cancer cell line which 

displayed significant cahnges in expression following different drug treatments. The 

proteins are K2CB, HSP7C, GRP78, PSB6, COF1, IDHC and K1C18. Among these 

proteins, three (K2CB, COF1 and K1C18) were grouped in cytoplasmic protein class; 

two (HSP7C and GRP78) grouped into molecular chaperone class; one (IDHC) grouped 
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into metabolic enzyme class and one (PSB6) grouped in proteasome associated protein 

class. Two proteins namely K1C18 and IDHC was suggested to act as the proapoptotic 

protein in this study.  
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5 CONCLUSION 
 

Colorectal cancer is one most common causes of death among cancer patients of both 

genders in developed countries. Recent trends show that the incidence of colororectal 

cancer is increasing more rapidly in developing countries than developed nations. 

Chemotherapy is the key to treat advanced level colorectal cancers when tumour cells 

are found to spread into other organs. Platinum drugs (cisplatin, oxaliplatin and 

carboplatin) constitute the frontline chemotherapeutic strategy of treating various 

cancers including colorectal cancer. Combination chemotherapy is now being preferred 

over single drug treatment due to complexity of metastasized colorectal cancer. But 

many such combinations increase the cost of overall treatment and side effects as well. 

Phytochemicals are one of the major sources of bioactive compounds having the 

potentiality to be used against cancer. In this study four such phytochemicals (curcumin, 

colchicine, EGCG and taxol) were selected for investigation in combination with 

platinum drugs (cisplatin and oxaliplatin) against four colororectal cancer cell lines 

(HT-29, CACO-2, LIM-1215 and LIM-2405). Mechanistic studies including DNA 

damage, cellular accumulation of platinums and platinumDNA binding were carried 

out to investigate the reason behind the observed combined drug actions. Lastly, 

proteomic study was conducted to identify the proteins associated with the cytotoxic 

mechanisms of the drugs treated alone or in combination against colorectal cancer cell 

lines. 

When the cell killing effects of the compounds were tested alone against colorectal 

cancer cell lines, colchicine was found to be the most active compound compared to 

other compounds including clinical standards. The second most active compound was 

taxol followed by oxaliplatin. 6-gingerol was found to be least active compound against 
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the tested cell lines and was not considered for combination studies. Based on the IC50 

values obtained from MTT reduction assay, drugs were combined in binary mode at 

different concentrations (ED50, ED75 and ED90) and sequence of administrations (bolus, 

0/4 h and 4/0 h). During combination studies against HT-29 cell line, combinations of 

cisplatin with colchine and cisplatin with EGCG produced synergism at ED50 levels at 

all added sequence of administrations. While other phychemicals (curcumin and taxol) 

in combination with cisplatin displayed antagonism at lower added concentrations 

irrespective of sequences of administrations against HT-29 cell lines. In contrast, 

oxaliplatin in combination with curcumin and EGCG showed synergism at ED50 levels 

at all added sequences of administrations in HT-29 cell line.  

In CACO-2 cell line, at ED50 level only colchicine in combination with cisplatin 

produced synergism when administered using 0/4 and 4/0 sequence. No other 

phytochemicals in combination with cisplatin exhibited synergism in CACO-2 cell line 

at ED50 level. However, both curcumin and EGCG in combination with oxaliplatin 

displayed synergism irrespective of sequences in CACO-2 cell line at ED50 level. In 

LIM-1215 cell line, only curcumin in combination with cisplatin manifested synergism 

at all added sequnces of administrations at ED50 level. Intesrestingly, all 

phytochemicals in combination with oxaliplatin displayed synergism at all sequences 

of administrations in LIM-1215 cell line at ED50 level. Among all of these combinations 

treated in LIM-1215 cell line, highest degree of synergism was shown by curcumin with 

oxaliplatin at bolus administration. In LIM-2405 cell line, both curcumin and EGCG in 

combination with cisplatin displayed synergism at all sequences of administration at 

ED50 level. In contrast, only EGCG in combination with oxaliplatin exhibited 

synergism at all sequences of administrations at ED50 level in LIM-2405 cell line.  All 



 210 

other phytochemicals in combination with oxaliplatin showed antagonism at the same 

concentration and same cell line. 

From cellular accumulation study in HT-29 and CACO-2 cell line, it was observed that 

synergistic combinations displayed greater extent of platinum accumulation than that 

found from cisplatin alone treatment indicating the positive correlation between 

synergism and platinum accumulation. However no specific trend was found from the 

study when phytochemicals were combined with oxaliplatin.  

PlatinumDNA binding study in both HT-29 and CACO-2 cell lines proved that 

synergism observed from drug combinations was due to increased platinum-DNA 

binding. The results were confirmed from the both combined treatments: cisplatin with 

phytochemicals and oxaliplatin with phytochemicals. Synergistic combinations 

displayed higher binding and antagonistic combinations presented lower binding. 

In DNA-damage study using HT-29 cell line, it was evident that Ox with Cur (4/0) was 

the most damaging towards DNA than any aother treated combinations. The least 

damaging was antagonistic combination of Ox with Tax (4/0). When the study was 

conducted in CACO-2 cell line, the highest damage was caused by Cis with Cur (4/0) 

followed by Ox with Cur (4/0 h). Among the combinations, the least damaging was 

again antagonistic combination of Ox with Tax (4/0 h). The study revealed that higher 

DNA damage might be an indication of increased cell killing but not to be necessarily 

true in all cases. 

Eleven proteins were identified from this study which underwent significant changes in 

expression after different drug treatments. The proteins were NPM, ACTB, TBB5, 

HSP7C, K2CB, GSTP1, GRP78, PSB6, COF1, IDHC and K1C18. All of the identified 

proteins were found to be either directly or indirectly related to cell cycle, cell 

proliferation and cell death pathways. Two of those proteins namely: NPM and ACTB 
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were suggested to be antiapoptotic protein from this study. Another two proteins 

namely: IDHC and K1C18 were considered to be proapoptotic protein from this study. 

Potential future directions 

The instinctive way of research is continuous and ongoing journey. The more we go 

forward the more avenues create and instigate us to proceed further. Since this 

preliminary in vitro model study revelas the potentiality of phytochemicals to be used 

in combination with platinum drugs against colorectal cancer, it could be taken further 

using suitable animal model for evaluation of activity in vivo and toxicity profile. We 

propose that the combination of oxaliplatin with curcumin, cisplatin with colchicine 

and oxaliplatin with EGCG are the most suitable candidates for future animal model 

study. The proteomic study could also be extended to identify all proteins which showed 

significant changes in expression following different treatments from both HT-29 and 

CACO-2 cell lines. Bioinformatics analysis of the identified proteins can also be done 

using various pathways e.g. Ingenuity pathway, KEGG pathway and so on. 
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Appendix II: Detail of the proteins identified from HT-29 cell line 

 

Spot 

No. 

     

 

Protein name 

(Protein ID) 

Alternative names Primary cellular 

location 

Genes Molecular function 

HT18 NPM (PO6748) Nucleophosmin, 

Nucleolar 

phosphoprotein 

B23, 

Nucleolar protein 

NO38 and 

Numatrin 

 

Nucleus, 

cytoskeleton 

NPM1 

 

Involved in diverse cellular processes such as ribosome 

biogenesis, centrosome duplication, protein 

chaperoning, histone assembly, cell proliferation, and 

regulation of tumor suppressors p53/TP53 and ARF. 

Binds ribosome presumably to drive ribosome nuclear 

export. Associated with nucleolar ribonucleoprotein 

structures and bind single-stranded nucleic acids. Acts 

as a chaperonin for the core histones H3, H2B and H4. 

Stimulates APEX1 endonuclease activity on 

apurinic/apyrimidinic (AP) double-stranded DNA but 

inhibits APEX1 endonuclease activity on AP single-

stranded RNA. May exert a control of APEX1 

endonuclease activity within nucleoli devoted to repair 

AP on rDNA and the removal of oxidized rRNA 

molecules. In concert with BRCA2, regulates 

centrosome duplication. Regulates centriole 

duplication: phosphorylation by PLK2 is able to trigger 

centriole replication. Negatively regulates the 

activation of EIF2AK2/PKR and suppresses apoptosis 

through inhibition of EIF2AK2/PKR 

autophosphorylation. Antagonizes the inhibitory effect 

of ATF5 on cell proliferation and relieves ATF5-

induced G2/M blockade. In complex with MYC 

enhances the transcription of MYC target genes 



 1 

HT22 ACTB (P60709) Actin cytoplasmic 

1 protein, 

 

Cytoskeleton ACTB Actins are highly conserved proteins that are involved 

in various types of cell motility and are ubiquitously 

expressed in all eukaryotic cells. 

HT31 TBB5 (P07437) Tubulin beta chain 

protein, 

Tubulin beta-5 

chain 

Cytoskeleton TUBB Tubulin is the major constituent of microtubules. It 

binds two moles of GTP, one at an exchangeable site 

on the beta chain and one at a non-exchangeable site on 

the alpha chain. 

HT39 HSP7C 

(P11142) 

Heat shock cognate 

71 kDa protein 

Cell membrane 

Nucleus 

nucleolus 

Cytoplasm 

Melanosome 

HSPA8 Molecular chaperone implicated in a wide variety of 

cellular processes, including protection of the proteome 

from stress, folding and transport of newly synthesized 

polypeptides, activation of proteolysis of misfolded 

proteins and the formation and dissociation of protein 

complexes. Plays a pivotal role in the protein quality 

control system, ensuring the correct folding of proteins, 

the re-folding of misfolded proteins and controlling the 

targeting of proteins for subsequent degradation. This 

is achieved through cycles of ATP binding, ATP 

hydrolysis and ADP release, mediated by co-

chaperones. The co-chaperones have been shown to not 

only regulate different steps of the ATPase cycle of 

HSP70, but they also have an individual specificity 

such that one co-chaperone may promote folding of a 

substrate while another may promote degradation. The 

affinity of HSP70 for polypeptides is regulated by its 

nucleotide bound state. In the ATP-bound form, it has 

a low affinity for substrate proteins. However, upon 

hydrolysis of the ATP to ADP, it undergoes a 

conformational change that increases its affinity for 

substrate proteins. HSP70 goes through repeated cycles 



 2 

of ATP hydrolysis and nucleotide exchange, which 

permits cycles of substrate binding and release. The 

HSP70-associated co-chaperones are of three types: J-

domain co-chaperones HSP40s (stimulate ATPase 

hydrolysis by HSP70), the nucleotide exchange factors 

(NEF) such as BAG1/2/3 (facilitate conversion of 

HSP70 from the ADP-bound to the ATP-bound state 

thereby promoting substrate release), and the TPR 

domain chaperones such as HOPX and STUB1. Acts 

as a repressor of transcriptional activation. Inhibits the 

transcriptional coactivator activity of CITED1 on 

Smad-mediated transcription. Component of the 

PRP19-CDC5L complex that forms an integral part of 

the spliceosome and is required for activating pre-

mRNA splicing. May have a scaffolding role in the 

spliceosome assembly as it contacts all other 

components of the core complex. Binds bacterial 

lipopolysaccharide (LPS) and mediates LPS-induced 

inflammatory response, including TNF secretion by 

monocytes. Participates in the ER-associated 

degradation (ERAD) quality control pathway in 

conjunction with J domain-containing co-chaperones 

and the E3 ligase STUB1. 

HT55 K2CB (P04259) Keratin, type II 

cytoskeletal 6B, 

Cytokeratin-6B, 

Keratin-6B, 

Type-II keratin 

Kb10 

Cytoskeleton 

Keratin Filament 

Cytosol 

Reactome 

Extracellular region 

or Secreted 

KRT6B There are at least six isoforms of human type II 

keratin-6 (K6). 

There are two types of cytoskeletal and microfibrillar 

keratin, I (acidic) and II (neutral to basic) (40-55 and 

56-70 kDa, respectively). 



 3 

Extracellular 

Exosome 

HT134 GSTP1 

(P09211) 

Glutathione S-

transferase P, 

GST class-pi, 

GSTP1-1 

Mitochondrion 

Nucleus 

Cytoplasm 

GSTP1 Conjugation of reduced glutathione to a wide number 

of exogenous and endogenous hydrophobic 

electrophiles. Regulates negatively CDK5 activity via 

p25/p35 translocation to prevent neurodegeneration. 
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Appendix III: Detail of the protein identified from CACO-2 cell line 

 

Spot 

No. 

     

 

Protein name 

(Protein ID) 

Alternative names Primary cellular 

location 

Genes Molecular function 

CA35 K2CB (P 

P04259) 

Keratin, type II 

cytoskeletal 6B, 

Cytokeratin-6B, 

Keratin-6B, 

Type-II keratin 

Kb10 

Cytoskeleton 

Keratin Filament 

Cytosol 

Reactome 

Extracellular region 

or Secreted 

Extracellular 

Exosome 

KRT6B There are at least six isoforms of human type II 

keratin-6 (K6). 

There are two types of cytoskeletal and microfibrillar 

keratin, I (acidic) and II (neutral to basic) (40-55 and 

56-70 kDa, respectively). 

CA37 HSP7C 

(P11142) 

Heat shock cognate 

71 kDa protein 

Cell membrane 

Nucleus 

nucleolus 

Cytoplasm 

Melanosome 

HSPA8 Molecular chaperone implicated in a wide variety of 

cellular processes, including protection of the proteome 

from stress, folding and transport of newly synthesized 

polypeptides, activation of proteolysis of misfolded 

proteins and the formation and dissociation of protein 

complexes. Plays a pivotal role in the protein quality 

control system, ensuring the correct folding of proteins, 

the re-folding of misfolded proteins and controlling the 

targeting of proteins for subsequent degradation. This 

is achieved through cycles of ATP binding, ATP 

hydrolysis and ADP release, mediated by co-

chaperones. The co-chaperones have been shown to not 

only regulate different steps of the ATPase cycle of 

HSP70, but they also have an individual specificity 

such that one co-chaperone may promote folding of a 

substrate while another may promote degradation. The 

affinity of HSP70 for polypeptides is regulated by its 
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nucleotide bound state. In the ATP-bound form, it has 

a low affinity for substrate proteins. However, upon 

hydrolysis of the ATP to ADP, it undergoes a 

conformational change that increases its affinity for 

substrate proteins. HSP70 goes through repeated cycles 

of ATP hydrolysis and nucleotide exchange, which 

permits cycles of substrate binding and release. The 

HSP70-associated co-chaperones are of three types: J-

domain co-chaperones HSP40s (stimulate ATPase 

hydrolysis by HSP70), the nucleotide exchange factors 

(NEF) such as BAG1/2/3 (facilitate conversion of 

HSP70 from the ADP-bound to the ATP-bound state 

thereby promoting substrate release), and the TPR 

domain chaperones such as HOPX and STUB1. Acts 

as a repressor of transcriptional activation. Inhibits the 

transcriptional coactivator activity of CITED1 on 

Smad-mediated transcription. Component of the 

PRP19-CDC5L complex that forms an integral part of 

the spliceosome and is required for activating pre-

mRNA splicing. May have a scaffolding role in the 

spliceosome assembly as it contacts all other 

components of the core complex. Binds bacterial 

lipopolysaccharide (LPS) and mediates LPS-induced 

inflammatory response, including TNF secretion by 

monocytes. Participates in the ER-associated 

degradation (ERAD) quality control pathway in 

conjunction with J domain-containing co-chaperones 

and the E3 ligase STUB1. 

CA39 GRP78 

(P11021) 

78 kDa glucose-

regulated protein, 

Endoplasmic 

reticulum 

GRP78 Plays a role in facilitating the assembly of multimeric 

protein complexes inside the endoplasmic reticulum. 
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Endoplasmic 

reticulum lumenal 

Ca(2+)-binding 

protein grp78, 

Heat shock 70 kDa 

protein 5, 

Immunoglobulin 

heavy chain-

binding protein 

Melanosome 

Cytoplasm 

Involved in the correct folding of proteins and 

degradation of misfolded proteins via its interaction 

with DNAJC10, probably to facilitate the release of 

DNAJC10 from its substrate. 

CA53 PSB6 

(B8BZW7) 

Proteasome subunit 

beta type-6 

Nucleus 

Cytoplasm 

PSB6 Component of the 20S core proteasome complex 

involved in the proteolytic degradation of most 

intracellular proteins. This complex plays numerous 

essential roles within the cell by associating with 

different regulatory particles. Associated with two 19S 

regulatory particles, forms the 26S proteasome and 

thus participates in the ATP-dependent degradation of 

ubiquitinated proteins. The 26S proteasome plays a key 

role in the maintenance of protein homeostasis by 

removing misfolded or damaged proteins that could 

impair cellular functions, and by removing proteins 

whose functions are no longer required. Associated 

with the PA200 or PA28, the 20S proteasome mediates 

ubiquitin-independent protein degradation. This type of 

proteolysis is required in several pathways including 

spermatogenesis (20S-PA200 complex) or generation 

of a subset of MHC class I-presented antigenic 

peptides (20S-PA28 complex). Within the 20S core 

complex, PSMB6 displays a peptidylglutamyl-

hydrolizing activity also termed postacidic or caspase-
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like activity, meaning that the peptides bond hydrolysis 

occurs directly after acidic residues. 

CA85 COF1 (P23528) Cofilin-1, 

18 kDa 

phosphoprotein, 

Cofilin, non-

muscle isoform 

Plasma membrane 

Cytoskeleton 

Nucleus 

CFL1, 

CFL 

Binds to F-actin and exhibits pH-sensitive F-actin 

depolymerizing activity. Regulates actin cytoskeleton 

dynamics. Important for normal progress through 

mitosis and normal cytokinesis. Plays a role in the 

regulation of cell morphology and cytoskeletal 

organization. Required for the up-regulation of atypical 

chemokine receptor ACKR2 from endosomal 

compartment to cell membrane, increasing its 

efficiency in chemokine uptake and degradation. 

CA125 IDHC (O75874) Isocitrate 

dehydrogenase 

[NADP] 

cytoplasmic, 

Cytosolic NADP-

isocitrate 

dehydrogenase, 

NADP(+)-specific 

ICDH, 

Oxalosuccinate 

decarboxylase 

Peroxisome 

Cytoplasm 

IDH1 IDHC enzymes are include three enzymes IDH1, IDH2 

and IDH3. IDH1 and IDH2 converts isocitrate to 2-

ketoglutarate and as a result of NADPH is produces. 

This NADPH produced from isocitrate dehydrogenase 

1 is involved in the breakdown of fats for energy, and 

it also protects cells from ROS (potentially harmful 

molecules called reactive oxygen species). 

CA166 K1C18 Cytokeratin-18 , 

Keratin-18, 

Cell proliferation-

inducing gene 46 

protein 

Nucleus 

Perinuclear region 

KRT18 Involved in the uptake of thrombin-antithrombin 

complexes by hepatic cells (By similarity). When 

phosphorylated, plays a role in filament reorganization. 

Involved in the delivery of mutated CFTR to the 

plasma membrane. Together with KRT8, is involved in 

interleukin-6 (IL-6)-mediated barrier protection. 
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