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Abstract 
 

Transport models adopt a simplified version of reality to model the movement of people within 

a transport system. This simplification limits the accuracy of any model. This research focuses 

on developing novel techniques that, depending on the application context, try to maximise the 

level of simplification given the minimum result accuracy that is required. To do so, we explore 

both aggregation and decomposition methods. Besides maximising simplification, we also 

investigate the requirements to ensure consistency between models that operate in the same 

spatial domain. In this, so called, multi-scale setting, it is paramount that differences in results 

between models can be attributed to a particular set of simplifying assumptions. To date, hardly 

any efforts have been made to formalise, or assess the conditions that need to be satisfied in 

order to achieve this much desired consistency. The focus of this work is therefore twofold; (i) 

exploit the combination of both model and application characteristics to achieve the best 

possible result with the least amount of computational burden, (ii) develop methodology to 

construct transport model representations in a multi-scale environment following the identified 

conditions that guarantee consistency between various model granularities. 
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Notation 
 

 Indices, variables, and constants are denoted in small caps italic font, e.g. ,a      

 Maximum values of ranges are denoted in capitals and non-italic, e.g. A,  

 Vectors are denoted in non-italic, small caps, and bold, e.g. ,a  

 Matrices are denoted in non-italic, capitals, and bold, e.g. ,A  

o Isolating row/column via subscript , e.g. first row via
1 ,A    

 Functions/operations take parameter lists denoted by ( ) , e.g. ( ),g      

 

 Subscripts denote an entry in a range, e.g. a  is the tha  entry in vector ,α   

 Superscripts denote a flavour, e.g. endt denotes simulation end time 

o when superscript is text; non-italic and small caps 

 

 

General  

 

2   Galois field containing only zero and one 

  Set of real numbers 

   Set of non-negative real numbers 

  Set of natural numbers 

  Set of non-negative natural numbers 

 

 

Indices      Ranges and sets 
 

a   Link A  Number of links  

n   Node N  Number of nodes 

p     Path P  Number of paths 

s   Demand scenario P  Number of disaggregate paths 

z   Zone P  Number of equidelay paths 

z   Zone component S  Number of demand scenarios 

ẑ   Zone component cluster Z  Number of zones 

   Equidelay path Z  Number of disaggregate zones 

   Zone component partition Z  Number of zone components 

   Representation altering rule Ẑ  Number of zone component clusters 

    

     Set of feasible path flow vectors 

 

Constants  
 

mind   Desired minimum demand per zone component cluster    [veh] 
maxe   Zone component can-link maximum allowed dissimilarity   [-] 

,q q


  Relative/absolute flow rate margin threshold     [veh/h] 
max

aq  Maximum flow rate on link a       [veh/h] 
endt   Simulation end time         [h] 



Notation  ix 

min  Volume-capacity ratio threshold for delay links    [-] 
min  Lower bound on centrality factor      [-] 

max
 Zone component missing trip travel time penalty multiplier   [h] 

  Portion of trips accessing zone centre point via ideal quadrant  [-] 
min  Volume-capacity ratio threshold for keep links    [-] 

a  Length of link a         [km] 
max crit,a a   Maximum/critical speed on link a       [km/h] 
max   Maximum travel time allowed between zone components    [h] 

( , )a a   Positive calibration parameter pair for BPR link performance function [-] 

 

 

Variables      
 

zl
G

  Zone component z  relative size factor conditional on clustering G   [-] 

r   Circle radius         [-] 

,  
  Network wide connectoid access/egress cost distortion   [veh.h] 

,z z  
  Connectoid access/egress cost distortion for zone component z   [veh.h] 

mind   Network wide missing trip penalty      [veh.h] 
min min

ˆ
ˆ,d d

z z    Missing trip penalty for zone component ,z  cluster ˆ,z  respectively. [veh.h] 

,I II

z z    Lower bounds I and II for zone component z     [veh.h] 

  Angle in radians        [-] 

 

 

Non-indicator vectors 
 

c  Total link travel times        [h] A 1


 

min delay,c c   Minimum and delay component of link travel time    [h] A 1


 

hypo hyper,c c   Hypocritical/hypercritical delay component of link travel time  [h] A 1


 

, d d  Zone component production/attractions     [veh] 
Z 1

  
ˆ ˆ, d d  Cluster based production/attractions per zone component in cluster  [veh] 

Z 1

  
total missingˆ ˆ,d d   Total/missing number of trips per zone component cluster   [veh]  Ẑ 1

  
sf  Path flows for demand scenario s        [veh/h] P 1


 

f   Disaggregate path flows       [veh/h] 
P 1

  

h   Path travel times        [h] P 1

  
min delay,h h    Minimum and delay component of path travel time    [h] P 1


 

hypo hyper,h h   Hypocritical/hypercritical delay component of path travel time  [h] P 1


 

q   Link flows         [veh/h] A 1


 

q   Disaggregate link flows       [veh/h] A 1


  

ˆ, ,z z zw w w   Node weight conditional on membership zone/zone component/cluster [-] N 1


 

x , y   Node based x and y coordinates      [-] N 1  
max maxˆ,x x   Zone component/zone component cluster  based maximum x coordinates [-] Z 1  
min minˆ,x x   Zone component/zone component cluster  based minimum x coordinates [-] Z 1  
max maxˆ,y y   Zone component/zone component cluster  based maximum y coordinates [-] Z 1  
min minˆ,y y   Zone component/zone component cluster  based minimum y coordinates [-] Z 1  
ˆ,x x  Zone component/zone component cluster based average x coordinate [-] Z 1   



Notation  x 

ˆ,y y  Zone component/zone component cluster based average y coordinate [-] Z 1  

α  Link flow rate reduction factors      [-]         A 1[0,1]   
n

α   Link flow rate reduction factors only related to node n   [-]        A 1[0,1]   
apη   Indicators for links on path p up to but not including link a   [-] A 1

2

  

  

Indicator vectors    

 

,0 1   All-zeros/all-ones vector       [-] context 

β   Delay link indicator vector       [-] A 1

2

  

,
β β  Delay link indicator vector including relative/absolute flow margin  [-] A 1

2

  

 

 

Non-indicator matrices    
 

sD  Original trips between zones for a demand scenario s     [veh] Z Z


 

max min, ,D D D   Maximum/minimum/average trips between zones across demand scenarios[veh] Z Z


 

zz
D   Disaggregate node demand departing/arriving from zone , ,z z respectively [veh] 

Z Z

  

E  Zone component dissimilarity      [-]        
Z Z[0,1] 

  

, F F   Expected trips departing/arriving from zone component connectoids  [veh] 
Z N

  
ˆ ˆ, F F  Expected trips departing/arriving from cluster connectoids   [veh] Ẑ N

  

,H H   Shortest path cost from zone-to-zone/node-to-node    [h] Z Z


 

, H H  Shortest path departure/arrival cost; node-to-zone component connectoid [h] 
Z N

 
ˆ ˆ, H H  Shortest path departure/arrival cost; node-to-cluster connectoid  [h] 

Z N
 

L̂   Laplacian matrix for clustered zone component adjacency   [-] 
Z Z

  
p

Q  Accepted link-to-link turn flows, link to link conditional on path p  [veh/h] A A


 

R  Turn receiving flows conditional      [veh/h] A 1


 

S  Sending turn flows        [veh/h] A A


 

minT  Travel time, zone component to zone component    [h] 
Z Z

  
ˆ,I IX X  Service area scaling factors for zone component/cluster connectoid costs [-] N[0,1]Z  
ˆ,II IIX X  Centrality scaling factors for zone component/cluster connectoid costs [-]    min N[ ,1]Z   

 

 

Indicator matrices  

 

A  Directed links from-node-to-node      [-] N N

2

  

,z z
A A   Directed links from-node-to-node internal to zone z /zone component z  [-] N N

2

  

, A A  Outgoing/incoming links per node      [-] N A

2

  

,z z A A  Outgoing/incoming links per node related to zone z     [-] N N

2

  
ˆ,A A   Adjacency indicators for zone components/within cluster zone components[-] 

Z Z

2


 

G  Zone component clustering indicators     [-] 
Z Z

2


 

I   Identity matrix         [-] ? ?

2

  

J  All-ones matrix        [-] ? ?

2

  

K  Zone component can-link constraints      [-] 
Z Z

2


 

K


 Zone component can-link constraints per for natural partition    [-] 
Z Z

2


 

,
I II
z z 

K K  Zone component z  can-link constraints for bounds /I II

z z     [-] 
Z Z

2


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GK  Cluster-level zone component can-link constraints (non-derived)  [-] 
Z Z

2


 

,K K   Keep network without/with zone component connectoid infrastructure [-] N A

2

  
,delay,p p

M M  Turns for original/delay subnetwork conditional on path p    [-]  A A

2

  

N  Zone to internal node indicators      [-] Z N

2

  
ˆ,N N  Zone component/zone component cluster to internal node indicators [-] 

Z N

2


 

, 
N N  Zone component egress/access connectoid indicators   [-] 

Z N

2


 

ˆ ˆ, 
N N  Cluster based zone component egress/access connectoid indicators  [-] 

Z N

2


 

N      Zone boundary node indicators         [-] Z N

2

  

O  Equidelay paths to original path mapping based on complete overlap [-] P

2

P  
delay,P P  Original/delay path to link indicators      [-] P A

2

  
equidelayP  Equidelay path to link indicators      [-] A

2

P  

, 
P P  Path to departing/arriving zone mapping     [-] Z P

2

  

, P P  Path to departing/arriving disaggregate zone indicators   [-] Z P

2

  

Z  Zone to centroid node mapping      [-] Z N

2

  

  Transitive closure of zone component reachability    [-] 
Z Z

2


 

 

 

Matrix/vector operations 
 

dim( )  Vector space dimension              1
dim : 

    

ker( )  Matrix kernel               1
ker :    

   

merge( )   Recursive merge function on two turn indicator vectors       A 1 A 1 A 1

2 2 2merge :      

rref ( )  Reduced row echelon form of matrix                    rref :    

rk( )  Matrix rank            rk :  

  

T  Transpose of a matrix                       T :      
  

trans( )   Transitive closure of a matrix                 trans :     
  

unique( )  Retain unique rows in matrix               unique :     
  

 

 

Functions 
 

( )   Network loading function                                    : f h  

( )n   Implicit general first order node model formulation for node n           :n n n n  αS R  

( )    Abstract general representation method function, context dependent                     - 

( )   Path choice representation function      : h f  

( )   Abstract error analysis function, context dependent                - 

( )g    Zone component clustering constrained optimisation problem        :g   G
G K K  

( )    Inverse aggregation scaling magnitude function, context dependent                     - 

( )   Lens area of two circles                       :         
 



 

 

Part I  
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1 Introduction 
 

Today’s transport policy makers frequently rely on forecasts of transport models to make their 

decisions, propose new legislation, or approve new infrastructure projects. This however, is 

still a fairly recent trend given that the widespread adoption of transport models only started in 

the middle of the twentieth century. This adoption of transport models went hand in hand with 

rapid technological advances making it possible to design, operate and utilise these complicated 

transport models in a practical setting.  

 

This symbiosis between transport models and available computing power has been a balancing 

act ever since. Often, the adopted level of complexity in a transport model is based on the time 

it takes for the model to run. The maximum amount of time deemed acceptable varies, but 

typically ranges from a few hours up to a number of days. Many practitioners only accept 

models that can be solved within a single overnight run, i.e. the time between leaving work and 

turning up the next day. Even so, contemporary transport models for middle-to-large cities can 

still easily take multiple days to run and this is not likely to change in the near future. To reduce 

these long run times, aggregation and decomposition methods are a popular approach to, at 

least in part, address the ever increasing complexity of our transport models.  

 

A more recent development is the adoption of multiple transport models alongside each other. 

For example, large scale static macroscopic models for transport planning purposes and small 

scale microscopic simulation models for traffic management. Each of these models has its own 

specific application area, with the main differentiator being their level of detail in which travel 

demand, infrastructure supply, and traffic flows are represented. In this specific context, 

aggregation and disaggregation methods are often adopted to facilitate conversions between 

various levels of detail. In such a multi-scale approach, practitioners and researchers are faced 

with new challenges, especially in terms of ensuring consistency between each of the adopted 

modelling scales. 

 

In this thesis we propose novel methodology to alter existing representations of transport 

models used for planning purposes. This includes, but is not limited to, aggregation, 

disaggregation and decomposition methods. The results improve upon current methodology by 

either reducing the computational cost, while having little to no negative effects compared to 

the original model results, and/or are aimed at maintaining consistency in a multi-scale 

environment. The thesis is split in four distinct parts. Part I is a general introduction to the 

subject of transport model representation and proposes a general framework to capture methods 

that fall within this scope. In Part II of this thesis, we solely focus on methodology aimed at 

reducing the computational burden of a particular class of transport models. Part III is 

concerned with the construction of transport model representations at various levels of detail. 

In this part, our aim is not so much on computational efficiency, but instead develop an 

integrated framework and methodology suitable for the construction of transport models in a 

multi-scale environment with a specific focus on consistency. The developed methods allow 

both practitioners and policy makers to make better informed decisions for a range of 

compatible applications. Finally, Part IV constitutes the conclusions chapter. 
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This chapter is outlined as follows; in Section 1.1, a general introduction to transport models, 

and their representation, is discussed. Section 1.2 discusses the main components of a traffic 

assignment model which is a particular type of transport model. Section 1.3 introduces the 

reader to the challenges of traffic assignment representation in a multi-scale environment. 

Then, we discuss the two main methods used to alter model representations in Section 1.4, i.e. 

(dis)aggregation and decomposition. This is followed by Sections 1.5, 1.6 and 1.7 that 

conceptually summarise the ideas and justification for the approaches that are presented Parts 

I, II and III of this thesis. The case studies used throughout this work are briefly introduced in 

Section 1.8. The scope of the considered traffic assignment models is outlined in Section 0, 

followed by a summary of thesis contributions in Section 1.10. The outline of the thesis itself 

is discussed in Section 1.11 followed by some remarks on the adopted notation in this work in 

Section 1.12. 

 

1.1 Context and Background 
 

Our focus is on the construction of appropriate transport model representations. We choose to 

define “appropriate” by assessing two objectives. The transport model representation should 

be both (i) capable, and (ii) minimal. We deliberately choose the term representation at this 

stage to prevent any distinction between model procedures, inputs, or methodologies to achieve 

our objectives.  

 

To quantify how capable a transport model representation is, we measure the amount of 

information loss. Similarly, we quantify how minimal a transport model representation is by 

measuring the magnitude of simplification, which is also referred to as scaling. The term 

information loss refers to how capable a simplified (scaled) model representation is, when it 

comes to approximating or reconstructing the results of its original counterpart and it should, 

for example, not be confused with information loss in physical processes, such as loss of data 

on a computer hard disk. The term scaling is used in various disciplines as well, to prevent any 

confusion, we only refer to scaling in the context of aggregation methods, where it signifies, 

the extent to which model input data (and possibly model procedures) are aggregated, it should 

not be confused with the concept of scale-free methods used in, for example graph theory.  

 

The magnitude of information loss and scaling – in aggregation - are relative measures and 

require a reference point to be meaningful. The original transport model representation serves 

as this reference point in this work. Figure 1.1 shows the schematic relation of a transport 

model’s original representation, its alternative representations, and how to conceptually assess 

the impact of any differences between them. Following this line of reasoning, the magnitude 

scaling is then determined based on the differences between the original model and the 

alternative model representation. When one constructs multiple alternative model 

representation consistency between alternatives is an additional consideration that one needs 

to take into account. One can for example construct two alternative transport model 

representations that are both regarded capable and minimal given their respective applications, 

but this does not necessarily qualify them to be considered alongside each other within the 

same multi-scale environment. In a multi-scale environment, the consistency between the two 

models is an additional constraint that needs to be satisfied, something that is often overlooked 

in practice and can lead to serious complications. An example of such a complication is the 
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situation that different models with different levels of detail adopt identical inputs, but yield 

very different results. When these differences are the result of inconsistencies between the two 

models rather than stemming from the difference in granularity it is no longer possible to 

determine which of the two results can be regarded as more accurate, rendering both model 

outputs effectively useless. 

 

 
Figure 1.1: Measuring impact of alternative (transport model) representations. 

In addition, we argue that, to successfully quantify how capable and minimal an alternative 

model representation is, the application context needs to be taken into account. To illustrate 

this consider the following example, suppose that we would like to develop a transport model 

to determine accurate suburb-to-suburb travel times in Sydney (Australia) for a number of 

different travel demand scenarios. Let our original transport model be the detailed large-scale 

model such as the one depicted in Figure 1.2(a). A possible alternative representation is given 

in Figure 1.2(b).  

 

  

(a)  (b)  

Figure 1.2: Example of traffic model aggregation applied to the Sydney metropolitan area, 

(a) original large-scale traffic model and (b) simplified version. 

Since, our application requires accurate travel times, the measure of information loss should 

account for this. One could for example assess the differences in travel time between the 

Part II

Part III
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Alternative

representation
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- Information loss

- Scaling
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- Scaling
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- Information loss

- Scaling
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original detailed model and the alternative coarser representation. The alternative 

representation in Figure 1.2(b) is greatly simplified and is therefore likely to suffer significant 

information loss compared to the original model (since it is likely to yield very different travel 

times due to oversimplification given its application context). The original model is therefore 

preferred in terms of capability. On the other hand, capability might not be our only objective, 

we also might like a result that we can compute quickly.  Of course, computation is quick when 

the model is more simplified, i.e. minimal. Therefore, from a computational perspective, the 

alternative representation in Figure 1.2(b) is therefore very attractive. In general, we are 

looking for the best possible trade-off between minimising information loss and maximising 

simplification, conditional on the application at hand. 

 

That application context matters becomes even more apparent when we change the underlying 

objective. For example, when our application would measure toll road revenues instead of 

point-to-point travel times, the accuracy of such travel times become of lesser importance. 

Then, the model should instead focus on an accurate representation of the amount of traffic 

around, and on, the toll roads under investigation. This likely would lead to a very different 

optimal representation. Acknowledging the relation between application context and transport 

model representation, by embedding application based assumptions in the proposed 

methodology, is paramount in constructing a capable, yet minimal model. Part II of this thesis 

demonstrates this by showing that an application centric solution can be optimised to an extent 

that is simply not possible by using existing, more general purpose, methods. 

 

The other premise of this thesis is that when designing alternative representations of transport 

models, all relevant aspects should be considered. Traditional methods often focus on a 

particular component of a transport model and optimise its representation in isolation. A classic 

example of this is found in network aggregation, where one aims to simplify the road network 

in a standalone fashion while leaving the rest of the model untouched. This is known to have 

unwanted side effects (see Chapter 5). We therefore propose a more holistic approach. In Part 

III, we do not consider just a single model component, but all major transport model inputs, as 

well as internal components, interactions and underlying (simplifying) assumptions.  

 

In this work we only consider transport models within the well-known traffic assignment 

paradigm. Traffic assignment models are a particular type of transport model and have the 

benefit of being clearly defined and being widely used in practice.   

 

1.2 Traffic assignment models 
 

Traffic assignment models consist of two main components: A demand model and a supply 

model. The demand model is responsible for estimating traffic demand based on some zoning 

system. This results in trips between zones. Trips can be classified in many ways, for example 

by time-of-day, means of transport (mode), reason for travelling (purpose), path followed, or a 

combination of the above. Regardless of the actual classification, all trips need access to the 

physical road infrastructure. The supply model is responsible for providing the level of service 

of this infrastructure. The interaction between supply and demand, i.e. network and trips, 

results in the demand being distributed across eligible paths conditional on the level of service 

of the network. This process is known as traffic assignment or alternatively, demand-supply 
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interaction. The procedure that governs the traffic assignment process typically consists of two 

components; network loading and path choice.  

 

Network loading is part of the supply side, it loads the given path flows onto the transport 

network resulting in generalised costs. Generalised costs describe the impediment or disutility 

a traveller attaches to a path and can contain various types of cost such as travel time, tolls, 

number of traffic lights, or distance. These costs are then used in the path choice model to 

update path flows. The path choice model is considered part of the demand side and determines 

the number of trips assigned to each available path conditional on the generalised costs. Apart 

from path choice, there are many other choices individuals make when it comes to travel 

demand. These choices can be long term, for example where one lives and works (location 

choice, destination choice), but also shorter term, for example, when to leave for work 

(departure time choice) or how to get there (mode choice). In traffic assignment we typically 

limit ourselves to path choice, possibly extended with departure time choice and/or mode 

choice. 

 

The traffic assignment model is considered solved when demand and supply are in equilibrium. 

Conceptually, equilibrium involves finding an/the optimal, preferably unique, point where 

demand and supply are in perfect balance. While one can argue if a state of equilibrium has 

any meaning in real life, or even exists in real transport networks, it is deemed essential for 

transport planning purposes in order to objectively compare current scenarios with future 

scenarios, due to the lack of a better alternative. The results of a traffic assignment model can 

take on many forms, common outputs are for example indicators for travel times, congestion 

levels, toll revenue estimates, accessibility indicators, emission predictions etc.  

 

Figure 1.3 depicts the traffic assignment model, its inputs and its outputs. The demand side 

inputs comprise the traffic demand and the zoning system. The zoning system contains the 

Travel Analysis Zones (TAZs), also referred to as zones. Zones serve both as an origin, i.e. 

departure zone, and destination, i.e. arrival zone, of trips. A zone constitutes a geographical 

area that is constructed to be compliant with a number of characteristics, which often include 

homogeneous land use, homogeneous population characteristics, boundaries based on 

topographic, political, or census based features, and a relatively constant number of trips 

(Martinez et al., 2009; Baass, 1981).  

 

The design of the zoning system is a complex process and it is normally assumed to be 

exogenous and given. The adopted zoning system configuration heavily influences the results 

of traffic assignment, because trip departure location, trip arrival location, as well as the zone-

to-zone demand are all conditional on it. In case the zoning system would be completely 

disaggregate, then it would contain a separate zone for each household, or person even. In a 

practical setting though, a zoning system more often adopts a zone per block, suburb, or even 

village, depending on the granularity or geographical coverage of the model. Trips in a traffic 

assignment model always travel between zones, they depart from an origin zone and arrive at 

a destination zone.  In general, adopting a more detailed zoning system has the potential of less 

information loss (compared to reality), albeit at the cost of a higher computational burden.  
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Figure 1.3: Schematic interaction of traffic assignment components. 

On the supply side, the physical road network is considered to be a fixed input. A typical 

network consists of nodes and links. Links represent a stretch of road where homogeneous 

characteristics are assumed. These characteristics can include, but are not limited to, the 

maximum speed, number of lanes, length, and maximum throughput, i.e. link capacity. Nodes 

represent locations where links intersect, such as junctions, roundabouts, or on-ramps. Paths 

are, in this context, typically defines as a sequence of consecutive links, hence they are 

considered to be supply side entities. Since paths can - potentially - be constructed beforehand, 

they can also be considered as supply side inputs. 

 

Centroids and connectors are part of the interface that allow the demand and supply to interact. 

A centroid represents a zone via a single point which can be considered a special type of node. 

Connectors, also known as connector links, are virtual, non-physical, links between a centroid 

and a regular node. Centroid and connectors allow the traffic demand to enter, or leave, the 

physical road network during the network loading procedure in order to depart from, or arrive 

at, a zone. Unlike other traffic assignment components there is no general consensus on 

whether centroids and connector are demand or supply side entities. They do however play an 

important, but often underestimated, role in traffic assignment models. We consider them to be 

neither demand nor supply side and instead classify them separately. This separate traffic 

assignment model component is referred to as the demand-supply interface. 

 

In reality, trips take time to complete and interactions with other vehicles that occur during 

each trip are both space and time dependent. Consequently, traffic assignment procedures, 

ideally, are dynamic in nature because dynamic network loading procedures explicitly consider 

the time-varying aspect of traffic during the network loading process. Static network loading 

procedures on the other hand do not and instead aim to describe some average steady-state 

situation. As a result, dynamic network loading models have a higher potential to accurately 

reflect traffic conditions than their static counterparts. While dynamic network loading 
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procedures can be more realistic, they are generally much more time consuming to solve and 

lack the attractive mathematical properties of their static siblings. There also exist network 

loading procedures that include both static and dynamic characteristics with the objective to 

reduce computation times (compared to dynamic models), while improving the model accuracy 

(compared to static models). Examples of such models are quasi-dynamic and semi-dynamic 

models. Quasi-dynamic models are in fact static models that aim to produce outcomes that are 

somewhat comparable to dynamic models. Semi-dynamic models do explicitly consider the 

time dimension, but do this by modelling a limited number of (larger) time periods where each 

time period is modelled with a separate static network loading procedure. The model then 

applies some rules to regulate the interaction between periods in order to improve model 

results. We discuss the characteristics of various existing traffic assignment models in more 

detail in Chapters 3 and 6. 

 

1.3 Multi-scale model environment 
 

As mentioned in the introduction, it becomes increasingly common to operate multiple traffic 

assignment models alongside each other, all modelling the same, or parts of, some spatial 

domain. In such a multi-scale environment, the main differentiator between the deployed traffic 

assignment models is found in their level of simplification. In practice, this distinction is often 

tied to the model’s planning horizon. Broadly speaking, three categories of models are 

distinguished, each with different planning horizons. They are known as strategic, tactical and 

operational planning models. Strategic planning models are the coarsest model type and are 

used for long term planning purposes. These models aim to forecast traffic conditions from 

roughly two, up to ten, or more, years into the future. Tactical transport planning models have 

a shorter forecasting time span of a few months up to two years. Such models can be used to 

test the effects of Intelligent Transport System (ITS) measures such as ramp metering effects, 

event management systems, or the impacts of local land use changes and developments. They 

are equally applicable for testing the influence of new residential or commercial developments 

on the local road infrastructure. Finally, there are operational transport models, these models 

support short term decision making. They provide forecasts on the effects of, for example, 

diverting traffic given some scheduled road works, possible incidents, or traffic signal 

optimisation. An increasingly popular application of operational models is to adopt them in an 

online setting where the model predicts the state of the network in the next 10-15 minutes. The 

latter however, is not considered a planning model and therefore falls outside the scope of this 

work.  

 

The owners and operators of each of these three model types have traditionally been located in 

different branches of government. Strategic models were restricted to the planning department 

domain, tactical models were operated by city councils, or the transport department, and 

operational models resided in the domain of the transport management centres and road 

services. As a consequence, there has been little interaction between these models. Over time, 

each model type evolved in a way that suited their respective application niche.  

 

Multi-scale traffic models are the result of the blurring boundaries that traditionally separated 

these three model categories (and levels of government). Ideally, a multi-scale approach is able 

to bring together strategic, tactical and operational models in a way that they operate alongside 
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each other and draw from the same resources, in the hope to reduce cost, increase efficiency 

and improve model outputs. This has revealed practical and theoretical complications. Because 

the original models have been developed separately, their inputs are often inconsistent; they 

use different zoning systems, networks, and their travel demand is estimated and calibrated 

separately as well. To complicate matters, the traffic assignment procedures themselves differ 

as well. Consequently, model results differ significantly even when applied to the exact same 

spatial domain. The obvious question then rises, what model is more accurate, and why? 

 

To answer this question, first, a more precise way to assess the capabilities of each traffic 

assignment model is required.  Qualifications based on a single model aspect, such as the 

planning horizon, do not suffice. To be able to objectively assess model capabilities its 

underlying assumptions should be known and taken into account. Bliemer et al. (2017) propose 

a traffic assignment classification framework based on three main assumption dimensions that 

can be adapted to do exactly this. They propose a spatial, temporal, and behavioural dimension 

with further subcategories to classify existing traffic assignment models in an objective 

manner.  

 

Depending on these spatial, temporal and behavioural assumptions different model 

representations arise. For example, long term strategic models typically adopt more aggressive 

simplifications resulting in a coarser model representation than, let’s say, a typical operational 

model. As shown in Figure 1.4, the amount of information loss suffered (compared to some 

“perfect” base model) in such long term models is therefore often much larger than in short 

term models. 

  

 
Figure 1.4: Impact of assumptions on information loss by planning horizon paradigm. 

It should be noted that the labels less and more in Figure 1.4 do not refer to the number of 

assumptions that are being made, but rather pertain to the crudeness of the assumption 

regarding one and the same modelling aspect across the different models. For example, models 

that simulate each vehicle separately are less crude than models that represent vehicles as an 
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aggregate stream (in terms of average flow rates per hour), which is considered a more crude 

assumption. 

 

Although there seems to be a clear separation between the three types of models, this is in fact 

a too simplified view. While in general it holds that strategic models are coarser than tactical 

models, there is no rule against creating a long term planning model that has the same, or even 

a less compromising, set of assumptions than a tactical model. Knowing what the underlying 

set of assumptions for each model is will result in a better insight in the model’s capabilities 

than relying on ambiguous terminology such as the strategic/tactical/operational paradigm. We 

use this classification framework as a starting point for discussing existing traffic assignment 

models and their capabilities (Chapter 3) and show that it can also be used to verify consistency 

between different traffic assignment procedures in a multi-scale environment (Chapters 7 and 

8). 

 

1.4 Representation altering methods  
 

Changing the representation of an original model and construct an alternative representation 

requires methodology. Aggregation and disaggregation methods are the two most common 

types of representation altering approaches. Aggregation methods simplify the original 

representation while disaggregation methods enhance the level of detail in the model. Both 

methods can be applied to the traffic assignment model inputs, the traffic assignment 

procedure, or both. Rogers et al. (1991) discuss a general framework for disaggregation-

aggregation analysis in the context of optimisation problems, of which an adapted version is 

shown in Figure 1.5. While most contemporary traffic assignment models are no longer 

formulated as optimisation problems, the components in this framework remain relevant. The 

error analysis component for example, relates to the amount of information loss suffered, while 

the scaling magnitude can be regarded as the result of adopting a particular (dis)aggregation 

procedure. 

 

 
Figure 1.5: Traditional (dis)aggregation approach in optimisation (adapted from Rogers et 

al. (1991)). 

In aggregation, individual data points are grouped together and the aggregate result, i.e. group, 

is then considered to be a single data point. The procedure then uses the aggregate data points 

to solve the problem. The reason to aggregate is to either reduce the computational complexity 

and therefore the computational burden, or to improve the reliability of the results when data 

is scarce. The latter however, is not very common in the context of traffic assignment 

procedures. Conversely, disaggregation methods disentangle data points, in the hope to reduce 

aggregation 

analysis

disaggregation 

analysis

error 

analysis

Magnitude of scaling

Magnitude of information loss



Chapter 1: Introduction  11 

the error. Disaggregation comes at the cost of a higher model complexity and therefore 

increased simulation times. Aggregation and disaggregation are not limited to data, but can 

also occur on a procedural level. Again, instead of modelling individual cars in a microscopic 

model, one can take on a more aggregate view in a macroscopic model, where traffic is 

modelled on the basis of average flow rates. This means that at the procedural level, a 

simplifying assumption is applied, resulting in individual data points being aggregated, 

inevitably causing some information loss.  

 

Besides aggregation and disaggregation there also exist decomposition methods. In 

decomposition, an original model procedure is broken up in smaller parts. The idea is that a 

successful decomposition method allows one to solve each part separately where the combined 

cost of the individual parts is less than solving the original problem as a whole, i.e. the 

dimensionality of the problem is reduced. This in contrast to aggregation where the problem is 

still considered as a whole, albeit in aggregate form. Another difference with (dis)aggregation 

methods is that in decomposition, the original input is preserved and not replaced. Finally, in 

decomposition methods, the identified sub-components may partially overlap to exchange 

information, see for example Flötteröd and Osorio (2017), something uncommon in 

(dis)aggregation. Figure 1.6 provides another way of looking at the differences between 

decomposition and (dis)aggregation methods1 : decomposition methods do not change the 

underlying assumptions that are made, but merely focus on changing the procedure to find the 

same, or similar solutions, at a lesser cost. Aggregation methods on the other hand do change 

the underlying assumptions to achieve their objectives and typically suffer from information 

loss as a result. When the decomposition method is perfect there occurs no information loss, 

but this is might not always possible, hence the additional dashed line in Figure 1.6(b).  

 

 
      

(a) 
 

       (b) 

Figure 1.6: (a) Schematic spider chart of assumption impact on realism, and (b) relation 

between information loss and computational cost when adopting different methodologies. 

 

                                                 
1 Figure 1.6 (a) adopts a spider chart to depict the assumptions in each of the three assumption categories (the 
centre represents reality). Figure 1.6(b) depicts the expected effect of decomposition versus (dis)aggregation in 
terms of computational cost, information loss, and changes in underlying assumptions. 

behavioural

temporalspatial

reality

less more

Realism

behavioural

temporalspatial

Information loss

C
o
m

p
ut

a
ti
o
na

l 
co

st

less more

m
o
re

decomposition

aggregation

disaggregation



Chapter 1: Introduction  12 

1.5 Part I: Altering traffic assignment model representations 
 

Part I of this thesis expands on the concepts discussed in the previous sections and utilises them 

to do two things. First the components concerning traffic assignment are formalised. We also 

introduce a high level framework that allows us to formulate any traffic assignment model 

representation altering method on a conceptual level. This framework comprises all elements 

that are (potentially) affected when one alters a traffic assignment model’s original 

representation. Both in Part II and Part III we adopt this framework to introduce the reader to 

the main concepts of the proposed methodologies. Further, the existing traffic assignment 

literature is discussed in order to provide a broad overview of existing methods, how they 

relate, and what potential they have for applying either aggregation or decomposition oriented 

techniques to yield alternative representations that are both capable and minimal in their 

respective application context.  

 

1.6 Part II: Path induced traffic assignment model decomposition 
 

In Part II of this thesis we are not yet concerned with a multi-scale environment. Instead, we 

propose methodology to minimise the computational cost for a particular group of applications. 

We assume the supply, i.e. road network, and zoning system to be given and fixed, while the 

traffic demand may vary across scenarios. By explicitly targeting this application area we are 

able to construct a minimal, yet equally capable model compared to its original representation.  

 

To achieve this, we propose a novel decomposition method. The original network is 

decomposed in a free flow and a delay subnetwork where the latter only includes the topology 

of identified potential bottlenecks. In the free flow network, path travel times are assumed to 

be flow invariant and are based on free flow conditions. This allows us to reuse them across 

demand scenarios. Path travel times in the delay subnetwork do vary with flow and require 

equilibration for each considered demand scenario. However, we only construct a single delay 

subnetwork across all demand scenarios. The constructed delay subnetwork is likely much 

smaller than the original network and therefore significantly easier to solve. On top of the delay 

subnetwork methodology, we also propose a path consolidation method. This method 

constructs the minimal path set while still being able to reconstruct the travel times found in 

the original model representation. This second stage of the method does not yield any 

information loss. The two approaches can be combined to maximise the computational gains. 

However, it cannot be guaranteed that the overall procedures is lossless. That said, any 

information loss that does occur can be detected a-posteriori and compensated for. Finally, we 

also introduce an adaptation of the original approach allowing the user to increase the 

likelihood of obtaining a lossless result directly.  

 

The more demand scenarios are considered in the application, the greater the computational 

gain will be. This is due to the fact that the relative overhead involved in constructing the delay 

subnetwork and consolidated path set reduces which each additional demand scenario. This 

implies that applications that can benefit most from this approach are applications that evaluate 

many different demand scenarios. 
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1.6.1 Applications of path induced traffic assignment model simplifications 
As long as an application has a fixed supply, but considers multiple demand scenarios, it is 

compatible with the proposed methods. However, we wish to highlight three especially suitable 

applications, namely: 

 

 Quick-scan tools,  

 Travel demand matrix calibration procedures, and 

 Travel time unreliability studies 

 

Quick-scan tools are applications that serve as a first step in identifying viable scenarios worthy 

of further, more detailed, investigation. They are often employed to aid for example mobility 

management policies. They typically investigate many demand scenarios based on different 

underlying assumptions about, for example, future demand trends. By reducing the 

computational cost per explored demand scenario, policy makers will be able to either 

investigate more scenarios, or adopt more sophisticated methods, in order to improve the 

quality of their recommendations.  

 

Travel demand matrix calibration procedures are known for their computationally demanding 

nature, they explore hundreds, if not thousands, slightly different demand scenarios in order to 

calibrate a prior demand matrix. By adopting our decomposition method each individual 

demand scenario can be solved quicker, which either improves the final result, or at the very 

least reduces run times. 

 

Travel time unreliability is increasingly considered as one of the main components of the 

generalist cost function. Travel time unreliability can be the result of both demand and supply 

factors, but it is clear that daily varying travel demand is an important factor in travel times 

being unreliable. Probability distributions of travel times can be obtained through Monte Carlo 

simulation in which travel demand matrices are repeatedly varied and assigned to the model 

while its infrastructure remains fixed. 

 

These three types of applications most commonly apply static assignment procedures due to 

their computationally costly nature. We therefore optimised our method to be compatible with 

a class of static traffic assignment procedures. 

 

1.7 Part III: Multi-scale traffic assignment model representation 
 

Part III of this thesis is dedicated to addressing consistency issues between various levels of 

detail in transport models. This makes it especially useful in the context of a multi-scale 

environment. The majority of Part III is dedicated to a novel disaggregation-aggregation based 

framework to construct consistent traffic assignment model inputs at various levels of detail. 

The zoning system, traffic demand, network, as well as the demand-supply interface (centroids, 

connectors) are all constructed automatically, consistently, and in an integrated fashion. To 

make the method generally applicable, no further assumptions are made on the adopted traffic 

assignment procedure itself. Instead, we qualitatively discuss the requirements for traffic 

assignment procedures to qualify for utilising the constructed inputs. This qualitative 
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assessment is based on the assumption driven classification framework of Bliemer et al. (2017) 

which we adopt and extend. 

 

To ensure consistency across demand and supply side inputs we consider them jointly. To avoid 

a complete overhaul of current practice, we propose to apply our method as an intermediate 

step; we take the original demand and supply side inputs, apply our method, and then pass them 

on to the traffic assignment procedure. The objective of the procedure is to ensure consistency 

between demand and supply assumptions, while at the same time construct a representation 

with the desired level of detail. One of the main weaknesses, in our opinion, of current zoning 

system design is their extensive use of, relatively crude, rule based proxies to mimic supply 

side information. For example, to ensure homogeneity across zones, zones are sometimes 

delineated by certain road types, either for historical reasons or based on the idea that roads 

such as freeways yield different travel times than local uncongested roads. In reality though, 

some smaller roads can have serious congestion issues while some larger roads experience little 

congestion, even during peak hours. Instead of using this simplified proxy, an estimate of the 

actual road usage is used. This is especially relevant in traffic assignment models where travel 

times are one of the most important model outputs. 

    

Based on the expected road usage, the representation of the zoning system and travel demand 

distribution is refined. Interestingly, we found that the same metric can be used to identify the 

appropriate level of detail in the network representation, as well as to estimate connector costs. 

Based on our findings, we developed a framework around this concept and provide a reference 

implementation and methods for each of the steps involved. By situating this procedure 

between the original construction of demand and the actual traffic assignment procedure itself, 

it can be readily adopted in any existing traffic assignment model with relatively little effort. 

We would like to stress that even though the proposed method is developed to be used in a 

multi-scale environment, it can also be used to simply create a more justifiable demand-supply 

interface representation. Given that connector costs, in practice, still mostly rely on ad-hoc 

methods or subjective expert opinions, we feel our method, in this respect, can be of direct 

value to standalone traffic assignment models as well. 

 

1.8 Case studies 
 

To demonstrate the results of our findings and justify choices that are made regarding 

parameter calibration, we include a number of case studies. In addition, small hypothetical 

example networks are used throughout this thesis to illustrate basic concepts. The two real-

world networks we use throughout this work are the Amsterdam (the Netherlands) network and 

the Gold Coast (Australia) network.  

 

An impression of the networks is provided in 

Table 1.1. The Amsterdam network takes on of two possible forms, its original strategic 

transport model incarnation, kindly provided by Amsterdam city council, and referred to as 

Amsterdam I. We also use a variant containing the complete network, which not only contains 

the main roads, but all roads accessible to private vehicles. This network is referred to as 

Amsterdam II. The Gold Coast case study is kindly provided by Veitch-Lister consultancy, it 
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covers a larger area than the Amsterdam networks and serves as a demonstration of the possible 

computational gains when adopting the methodology proposed in Part II. 

 

Table 1.1: Networks for real world case studies. 

Network Characteristics Granularity impression 

 

Amsterdam I (Netherlands) 

 

- 279 centroids 

- 3,039 nodes 

- 7,736 links 

- 174,297 routes 

 

 

 

 

Amsterdam II (Netherlands) 

 

-  Centroids not considered 

- 8,098 nodes 

- 22,738 links 

- No routes 

 

 

Gold Coast (Australia) 

 

- 1,067 zones 

- 2,987 nodes 

- 10,016 links 

- 1,221,524 routes  
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1.9 Traffic assignment scope 
 

In this work we are predominantly interested in developing novel methodology to improve the 

current practice of (long term) planning model applications, both in terms of computation times 

(Part II) and consistency between planning models in a multi-scale setting (Part III). Because 

of our focus on strategic and possibly tactical planning models, a number of scope reducing 

choices are made with respect to the considered traffic assignment models. These choices are 

in line with how these models are used in practice and the applications that we target (see 

Section 1.6.1 and 1.7). 

 

1.9.1 Equilibrium 
First, we subscribe to the equilibrium paradigm. The models aiming to find equilibrium are 

sometimes alternatively referred to as within day models because their solution reflects a result 

for, at most, a single day. In planning studies this is still the dominant way of modelling, 

because it allows us to compare different future scenarios in an objective fashion. Also, 

planning models often still adhere to static traffic assignment where the equilibrium solution is 

comparatively easy to find. For short term models on the other hand, one is less interested in 

the rather artificial construct of equilibrium because there is less need for scenario comparisons 

nor describing an equilibrium state. Also, short term models often adopt dynamic traffic 

assignment procedures for which it is notoriously difficult to find equilibrium based solutions 

in the first place. When these short term models describe a trend of changing travel behaviour 

over a period of days they are referred to as day-to-day models. Finally, all non-equilibrium 

models that just performs a single simulation, for let’s say a single morning peak, are termed 

one-shot models. 

 

Second, there exist different types of equilibrium approaches to choose from when adopting 

the within day modelling approach. Each equilibrium type results in a different result 

depending on the definition of what finding the equilibrium solution actually means. In 

planning models, the User Equilibrium (UE) approach is still the most commonly adopted 

approach. In UE, drivers are assumed to behave selfishly by switching paths as long as they 

can improve their absolute, or perceived, generalised costs. This approach, where individuals 

independently try to minimise their costs, under complete or incomplete information, is 

commonly used when trying to model (human) behaviour. Conversely, when drivers behave 

cooperatively or altruistically we refer to it as a System Optimum (SO) approach. In an SO 

approach travellers work together to achieve some network wide objective such as minimising 

the total travel time of the system, minimising emissions, or minimising noise. Such SO 

approaches are sometimes used to obtain a benchmark solution, but are generally not 

considered to describe actual behaviour. In this thesis we only consider UE assignment 

methods as the dominant approach for describing travel behaviour.  

 

1.9.2 Paths and path choice 
Path choices can be modelled on a pre-trip bases and/or when a trip has already commenced. 

The latter is known as en-route path choice. In real life, drivers likely have an initial route in 

mind (pre-trip) but may deviate when special traffic conditions are encountered (en-route). Pre-

trip path choice is consistent with UE in the sense that each individual is assumed to follow 

their own best route. The potential deviations from this route are generally not considered in 
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transport planning studies because strategic applications generally only aim to model habitual 

(commuter) behaviour whereas short term studies more often focus on non-recurrent situations 

that require en-route path choice, e.g. accidents, road closures etc.. Hence, we do not consider 

en-route path choices in this work. 

 

As mentioned, the generalised path cost that drives the path choice can consist of many 

different cost components. Due to our focus on aggregation and decomposition methods for 

traffic assignment rather than path choice itself, we therefore, for simplicity, consider 

generalised cost to consist solely out of travel time. We do emphasize however that our 

proposed methodology can easily be extended to support any other, more sophisticated, 

generalised cost function as well. 

 

Knowing the path choices based on the generalised cost, there exist different ways to track the 

travel demand being loaded onto the network. A simple approach, often adopted in real-time 

models, entails constructing a (fixed) turn fraction for each turn at a node. This fraction 

indicates the percentage of traffic making this specific turn at the intersection. These fractions 

can for example be based on empirical data. While computationally convenient, this approach 

can lead to significant inaccuracies because there is no direct relation between the origins of 

traffic and where it is directed to. An alternative to this approach is to track paths explicitly 

such that the full information of the trip is maintained. This is a costlier approach in terms of 

computation time and memory use. The paths themselves can either be constructed beforehand, 

generated while the model is being solved, or a combination of the two. We choose to adopt a 

path based approach, because it is both a more flexible and more realistic approach compared 

to the fixed turn fraction method. 

 

1.9.3 Demand inelasticity and single user class 
Traffic assignment models that incorporate departure time choice allow travellers to shift their 

departure time to another (modelled) time period. This is also referred to as demand elasticity. 

Mode choice is another possible extension sometimes considered within the traffic assignment 

paradigm. When including mode choice, trips can choose between modes substituting a car trip 

with a multi-modal public transport trip for example. Again, for simplicity, we do not consider 

departure time choice nor mode choice in our assignment procedures. Traffic demand may still 

be provided across multiple departure times (and/or modes), but it is assumed its proportions 

are fixed, i.e. it is demand and mode inelastic. Also, we only assign trips that are made by 

private car, and we only consider homogeneous driver behaviour. This is known as a single 

user class approach. It allows us to discuss the relevant traffic assignment concepts while 

remaining focussed on our objective of constructing appropriate representations. Again, the 

proposed methods in this thesis are easily extendable to a multi-modal and/or multi-class 

context and where relevant this is pointed out to the reader. 

 

1.9.4 Scope Overview 
Based on the scope decisions discussed in the previous sections, Table 1.2 reiterates the choices 

made and outlines them specifically for each Part of the thesis where relevant. 
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Table 1.2: High level scope. 

Feature General 

Transport model type Path based traffic assignment   

Traffic assignment type Within day, user equilibrium 

Driver behaviour Single user-class 

Travel choices Pre-trip path choice 

Generalised cost Travel time only 

Modes Private car   

   

 Part II specific Part III specific 

Applications Quick-scan, matrix calibration Traffic assignment models 

Planning  horizon Strategic, tactical No restriction 

Applied methodology Decomposition Disaggregation-aggregation 

Network loading static assignment  No restriction 

  

1.10  Thesis contributions 
 

Here, we summarise the contributions of this thesis. Note that some of the contributions are 

formulated using concepts that have not yet been discussed and as such this listing is merely to 

be considered as a reference at this stage.  

 

In Part II:    

 

1) Methodology to extract a path induced delay subnetwork;  

 

2) Methodology to identify a minimal consolidated path set for delay subnetworks 

 

3) Super-scenario construction and analysis to identify bottleneck infrastructure across 

demand scenarios. 

 

4) Extensive analysis of the proposed two methods on two real-world case studies, in the 

context of static capacity constrained assignment with residual point queues.  

 

In Part III: 

 

5) A qualitative assessment of traffic assignment model requirements in a multi-scale 

environment. 

 

6) A general disaggregation-aggregation framework to construct consistent traffic 

assignment model inputs in an integrated fashion, suitable to be used in a multi-scale 

environment. Within aforementioned framework, we propose; 

  

7) Methodology to construct the supply representation based on expected road usage. 
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8) Methodology to construct the demand-supply interface based on the concept of internal 

travel time stability, following from the found supply representation. 

 

9) Methodology to refine the demand representation by formulating a constrained 

optimisation problem for the construction of the zoning system, following from the 

found demand-supply interface representation. 

 

10) A custom optimal branch-and-bound solution scheme to solve the constrained 

optimisation problem mentioned in 9).  

 

11) Extensive analysis of results as well as parameter calibration based on a real-world case 

study. We compare results to a (subjective) ad-hoc approach as well as a fully 

disaggregate representation. 

 

1.11  Thesis outline 
 

This thesis is organised as follows: It contains four parts, Part I-IV, where Part I and Part IV 

serve as introduction and conclusion, respectively. Parts II and II comprise the core of the 

thesis. 

 

Part I, apart from this Chapter 1 containing the introduction, consists of Chapters 2 and 3. 

Chapter 2 introduces the reader to a high level framework for altering traffic assignment model 

representations. We utilise this framework both in Part II and Part III to discuss the affected 

model components and the general principles underpinning both approaches. . In Chapter 3 we 

discuss the current state of traffic assignment models in the literature, we do so based on the 

modified and extended classification framework originally proposed in Bliemer et al. (2017). 

 

Part II consists of three chapters, i.e. Chapters 4 to 6. In Chapter 4 we discuss the various ways 

that one can capture travel time delay and how this leads to different implications with respect 

to decomposing link level travel times. Chapter 5 adopts a particular travel time decomposition 

approach termed functional travel time decomposition, where we demonstrate we can 

decompose the transport network utilising a path centric travel time decomposition method that 

is compatible with a class of static traffic assignment procedures. Chapter 6 demonstrates the 

effectiveness of this method and calibrates the parameters involved through several case 

studies. 

 

Part III consists of five chapters, i.e. Chapters 7 to 11. In Chapter 7 the current state of 

aggregation methods in traffic assignment is discussed. In Chapter 8 an assessment on the 

requirements for traffic assignment procedures in a multi-scale environment is given, resulting 

in three consistency criteria. Chapter 9 introduces the disaggregation-aggregation framework 

for the construction of consistent traffic assignment model inputs in a multi-scale environment. 

It also formulates methods for each of the steps involved, except for the construction of the 

zoning system. Instead, the construction of the zoning system is captured by formulating a 

constrained optimisation problem in Chapter 10. In addition, Chapter 10 also proposes a cluster 

oriented branch-and-bound solution scheme to solve aforementioned constrained optimisation 

problem. Chapter 11 discusses a number of case studies that are conducted to demonstrate the 
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suitability of the framework as well as the proposed methods within the framework, including 

any parameter calibration where needed.  

 

Conclusions and possible extensions are found in Chapter 12 which constitutes Part IV of this 

work. An alternative outline is shown in Table 1.3, where we outline chapters by content type 

for the reader’s convenience. 

 

Table 1.3: Chapters by content type. 

Type of content Part I/IV Part II Part II 

Background Chapter 1   

Literature review and 

qualitative assessment 

Chapter 3 Chapter 4, Chapter 7, Chapter 8 

Methodology Chapter 2 Chapter 5 Chapter 9, Chapter 10 

Case studies  Chapter 6 Chapter 11 

Solution schemes  Chapter 5 Chapter 10 

Conclusions Chapter 12   

 

1.12  Remarks on notation 
 

Throughout this thesis matrix notation is adopted whenever possible. Especially the 

optimisation problem formulations, their constraints, and clustering procedures benefit from 

this choice, mainly because they can be concisely formulated. Also, the network infrastructure 

as well as travel demand can be formulated elegantly via this approach. To be consistent and 

avoid mixing different types of notation, we choose to adopt this notation throughout this work. 

The trade-off here is that some formulations, for example regarding traffic assignment, might 

seem more complex than usual compared to non-matrix based approaches. This is a side effect 

of preferring consistency over familiarity, something for which we apologise in advance. 

Whenever, we feel this situation occurs, an effort has been made to add examples in text and 

figures, to illustrate the effects of the formulation at hand. 
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2 Traffic assignment representation framework 
 

Chapter 1 provided an introduction to traffic assignment models and the trade-off between 

information loss and computational cost that occurs when deciding on appropriate model 

representation. Given the many components that are involved in constructing a traffic 

assignment model, e.g. the physical road network, centroids, connectors, travel demand, 

network loading, path choice, as well as the fact that there exist different methods to alter the 

representation of each of these components, we propose to capture these aspects in a general 

framework. We then utilise this framework to introduce the reader to the proposed methods 

and their impacts.  

 

The interaction between supply and demand is at the core of any traffic assignment model 

regardless of its representation. We therefore formalise the components involved in this 

interaction first in Section 2.1. Then, in Section 2.2, the traffic assignment representation 

framework is presented. Within this framework the objective of constructing both capable and 

minimal model representations are formulated. To quantify results, the framework caters for 

comparisons between the newly created model representation and the original model. Both Part 

II and Part III utilise this framework to illustrate the impact of the proposed methodology on 

the relevant traffic assignment components. 

 

2.1 Demand-supply interaction 
 

Traffic assignment consists of a demand model and a supply model (Section 1.2), where we 

assume that the number of trips between each origin and destination zone is known and given. 

The responsibility of the model is to distribute this known demand over the available supply, 

i.e. the physical road network, using eligible paths between origins and destinations. 

 

The demand model is defined as function ( )   that maps path costs to path flows. Path costs 

are denoted by generalised path cost vector P 1,

h where ph  denotes the cost of path ,p with 

{1, ,P},p where the total number of paths is given by P. Generalised path costs are 

assumed to only consist of travel time (h), including delay. The output of the demand model is 

given by path flow vector P 1,

f  where pf  denotes the desired flow rate (veh/h) on path .p  

The mapping from cost to flow in the demand model is conditional on travel demand matrix 
Z Z.

D  Travel demand is defined between zones, where each zone is uniquely identified 

through {1, ,Z}.z  Therefore, the demand model captures the path choice behaviour of 

travellers making trips based on the given demand via: 

 

( | ).f h D   (2.1) 

 

Equation (2.1) can easily be extended to support multiples modes and/or time periods by 

making the demand, costs, and flows, mode and/or time (period) dependent. However, as 

discussed in Chapter 1, we refrain from doing so to prevent unnecessary notational complexity 

given our focus on representation altering methodology and not traffic assignment as such. 
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The supply model provides the level of service on the transport network by loading path flows 

onto the infrastructure. This network loading procedure is formalised via supply model function 

( ),   mapping path flows f  to path costs ,h  such that: 

 

( | ),h f A  (2.2) 

 

where N N

2

A represents the transport network through nodes and links. This network is 

modelled via an indicator matrix, also known as incidence matrix, binary matrix, or Boolean 

matrix. An indicator matrix only allows two values, zeros and ones. We adopt the Galois field 

modulo two ( 2 ) notation to model this binary space. Each non-zero entry in A indicates that 

a directional link exists from one node, i.e. row, to another node, i.e. column, with each node 

{1, , N},n  where the total number of nodes in the network is denoted by N.  Directional 

links {1, ,A}a  are constructed implicitly by incrementally numbering ordered node pairs, 

as illustrated in Figure 2.1.  

 

 
Figure 2.1: (a) Road network of nodes and links as a directional graph, (b) the same network 

in matrix notation2. 

 

The interaction between the supply and demand model, conditional on the demand and 

transport network, is depicted in Figure 2.2. The purpose of this interaction is to find an 

equilibrium solution. When this solution is found, the model yields equilibrium path flows and 

path costs that can be considered the final result. We denote these resulting vectors via , , 
f h

respectively.  

 

 
Figure 2.2: Schematic representation of traditional demand-supply interaction model.  

Different solution approaches exist to solve this problem. For example, on the demand side 

path choice can be implemented by adopting a logit model or some other method of distributing 

                                                 
2 Throughout this thesis, examples in text and figures sometimes adopt a subscript notation on variables that 

technically have no subscript and are a value in a range, i.e. 1a  means simply a link a  where 1.a   This, we feel, 

is an intuitive way to refer to specific variable instances in the context of these illustrative examples.    
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flow across the available paths. On the supply side, the network loading (for the utilised paths) 

can be formulated as a single equation in case of a traditional static assignment procedure 

(Beckmann et al., 1956), a fixed point problem formulation in case of a quasi-dynamic 

procedure (Bliemer et al., 2014; Bifulco and Crisalli, 1998), or a more complex dynamic 

system of equations if one chooses to adopt a dynamic network loading procedure. Then, to 

model the interaction between the demand and supply, we can also employ different model 

formulations. These include optimisation problem formulations, fixed point problem 

formulations, or the popular Variational Inequality (VI) approach (Chen, 1999; Friesz et al., 

1993; Dafermos, 1980; Smith, 1979). In Part II we subscribe to a logit based path choice model, 

a fixed point formulation for the network loading, and a VI formulation to solve the demand-

supply interaction. In Part III we prefer to accommodate any such formulation because the 

actual problem formulation has little to do with the underlying assumptions that lead to specific 

model representations. Therefore, for the sake of general applicability, we do not force the 

adoption of a particular model formulation in the proposed framework, but instead focus on 

the formulation of the individual traffic assignment building blocks which together determine 

the traffic assignment representation. 

  

2.1.1 Explicit demand-supply interface and path set considerations 
The traffic assignment model depicted in Figure 2.2 is not considered complete because it does 

not explicitly account for paths. Yet, it implicitly assumes paths are constructed on-the-fly, as 

part of the demand-supply interaction procedure itself. While this is common in a deterministic 

setting, it is less common in models where uncertainty or imperfect information play a role (see 

also Chapter 3). It is therefore very well possible paths are provided a-priori, possibly as a fixed 

input, to the supply model. Alternatively, this pre-constructed path set might be supplemented 

with additional paths during the assignment procedure. To accommodate these alternative 

approaches, the more general procedure depicted in Figure 2.3 is adopted, where the dashed 

line indicates an optional (predefined) path matrix P A

2 .P  Like transport network ,A paths 

are denoted via an indicator matrix, where each row represents a path {1, ,P},p while each 

non-zero column entry denotes that link a  is present on the path. In the absence of cycles, the 

path link order is implicitly determined as are the links. 

 

 
Figure 2.3: Representation of proposed demand-supply interaction model. 

Another aspect that needs addressing is the demand-supply interface. Traditionally, in traffic 

assignment, trips access the transport network via centroids, yet demand D  is provided on a 

zone-to-zone basis. One could replace the zone-to-zone demand with a centroid-to-centroid 

matrix. This however, would unnecessarily restrict the flexibility of our formulation, because 

any relation between the geographical area and the centroid is lost. We therefore choose to do 

the following instead: (i) we retain our zone based formulation and add a dedicated mapping 

from zones, denoted {1, ,Z},z  to centroids via indicator matrix Z N

2 ,Z (ii) our transport 

network A  explicitly incorporates these centroids as a special type of node, (iii) our transport 
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network explicitly incorporates connectors as a special type of link. Hence, the demand model 

function is then altered accordingly: 

 

( | , ).f h D Z  (2.3) 

 

Figure 2.4 shows an example of the how the discussed traffic assignment model inputs relate 

to their matrix based formulation in terms of the zone-to-centroid mapping and path-to-link 

mappings.  

 

 
Figure 2.4: Example network with geographical zones, centroids, connector links and paths. 

 

2.2 General framework 
 

The model formulation and its inputs discussed in the previous section are, from here on 

forward, considered as the original, or reference, representation of the traffic assignment 

model. Clearly, when one or more of these original components are altered, an alternative 

representation emerges. Let us first introduce a shorthand notation M  representing all relevant 

model components via: 

 

 , , , , ( ), ( ) .    A D Z PM  (2.4) 

 

An alternative representation is then denoted  , , , , ( ) , ( ) .          A D Z PM  

Transforming M to M  is the result of applying implicit representation function ( ), M  

where the chosen “rules” governing this transformation are denoted by   such that each choice 

of   yields a particular alternative representation. Hence, we find that: 

 

( ).

  M M  (2.5) 

 

We emphasize that not all components need to be altered necessarily. The formulation merely 

caters for any number of components being changed. When adopting an alternative 

representation instead of the original model the traffic assignment results between the two 

1 2 3 4 5 6

1

2

                      

1 0 0 0 0 0

0 0 0 0 1 0

n n n n n n

z

z

 
  

 
Z

4n2n
3n1n 5n

6n

1a 2a 4a 5a

3a 6a

1ppath 

2ppath 

1zzone 2zzone 

1 2 3 4 5 6

1

2

                      

1 1 0 1 1 0

1 0 1 0 1 1

a a a a a a

p

p

 
  

 
P

5aconnector link 

1ncentroid 



Chapter 2: Traffic assignment representation framework  25 

 

models will likely differ. These differences can either be regarded as an improvement or not. 

To assess any such differences objectively and quantitatively, metrics are required. In Chapter 

1, two overarching objectives were discussed informally: the first objective concerned 

constructing capable model representations, while the second objective was found to be 

constructing minimal model representations. The former is linked to the magnitude of 

information loss, while the latter relates to the magnitude of scaling. The information loss 

objective is formalised via implicit function  , ( ) , M M  which can alternatively be 

interpreted as the error analysis function. We measure the capability objective via the inverse 

magnitude of scaling, via implicit function  , ( ) . M M  We adopt an inverse formulation 

to be able to formulate both objectives as part of the same minimisation based problem 

formulation: 

 

 

, ( )
min

, ( )










 
 
 
 

M M

M M
 (2.6) 

 

Alternatively, a graphical interpretation of this framework is provided in Figure 2.5. It shows 

how each of the model components interacts when comparing the quality of an alternative 

model representation to its original counterpart. 

 

 
Figure 2.5: Schematic impression of representation optimisation framework. 

This framework imposes no restrictions on the adopted formulation, methodology, or 

underlying model assumptions that lead to a change in model representation. It therefore 

supports a broad range of methods and serves as the starting point for the methods proposed in 

both Part II and Part III of this thesis. 
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3 Traffic assignment 
 

In Chapter 2 we introduced a general framework for altering the representation of traffic 

assignment models. To present novel methodology based on this framework, first, an 

understanding of existing traffic assignment procedures is required. In this chapter we provide 

an overview of the literature on traffic assignment.  The concepts and discussed model types 

are relevant to both Part II and Part III of this thesis. 

 

In Section 3.1, we briefly introduce the reader to the three different representations of traffic 

flow that lead into the discussion of the microscopic, mesoscopic, and macroscopic traffic 

assignment paradigms. The fundamental diagram, that describes the relationship between 

essential traffic flow variables, plays a pivotal role in virtually all traffic assignment models 

and is discussed in Section 3.2. In Section 3.3, we look in more detail at the classification of 

traffic assignment models based on spatial, temporal, and behavioural assumptions. We utilise 

this framework to discuss the existing traffic assignment literature in more detail. Section 3.4 

considers the literature from a temporal perspective, while Sections 3.5 and 3.6 discuss the 

spatial and behavioural perspectives, respectively. 

 

3.1 Representations of traffic flow 
 

The network loading procedure responsible for modelling the traffic flow dynamics is the most 

visible component of traffic assignment models. This is perhaps why, in practice, traffic 

assignment models are predominantly categorised by their representation of traffic flow. There 

exist three main categories which are known as; microscopic, mesoscopic, and macroscopic 

traffic assignment. Microscopic models represent the most detailed type of models. In this 

model type, traffic flow is disaggregated, meaning that each individual vehicle is modelled 

separately. On the other end of the spectrum, macroscopic models reside. In macroscopic 

models trips are represented in a more aggregate form, namely, via average flow rates instead 

of individual vehicles. This aggregated approach is less realistic than microscopic approaches, 

but is generally more attractive computationally. Mesoscopic models reside somewhere in 

between macroscopic and microscopic models, they are simplified compared to microscopic 

models, but are more detailed than macroscopic models. Often, but not always, they still 

simulate vehicles individually, but incorporate aggregate modelling features of macroscopic 

approaches to reduce their computational complexity. 

 

Laval and Leclercq (2013) formally discuss the three representations of traffic flow for the 

dynamic context. They demonstrated that each of these representations can be rewritten into 

the other. The distinction between the three model types can informally be stated like the 

following:  

 

- Microscropic:  track location x  of each vehicle at time ,t  

- Mesoscopic:  track time t  each vehicle crosses a location ,x and   

- Macroscopic:  track the cumulative number of vehicles crossing a location x  at time .t   
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The implication of these different representations are further illustrated in Figure 3.1. The 

microscopic model explicitly tracks each vehicle in time and space, as per Figure 3.1(a), The 

mesoscopic approach, in Figure 3.1(b), illustrates a simplification compared to the microscopic 

model, because it allows one to relax the constraint of tracking each vehicle over the entire 

space. Instead, we can choose a limited number of discrete locations, e.g. 1 2, .x x  In a 

macroscopic approach only cumulative vehicle numbers are tracked at discrete locations as 

depicted in Figure 3.1(c).  

 

 
Figure 3.1: Three representations of traffic flow, (a) microscopic, (b) mesoscopic, (c) 

macroscopic dynamic without averaging. 

 

The macroscopic representation of flow in Figure 3.1(c) allows for further simplification 

compared to a mesoscopic approach by replacing the individual vehicles altogether with 

average flow rates (which can be obtained from the difference in total vehicles counted over a 

period of time). This is exemplified in Figure 3.2(a), where we depict two flow rates, i.e. up to 

1t  and after 1,t  both relating to location 1x  in  Figure 3.1(c). 

 

 
Figure 3.2: (a) Macroscopic dynamic approach with time dependent average flow rates 

(black) vs total vehicles (grey), (b) macroscopic static with average flow rates vs total 

vehicles over the entire period. 
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Moving from a dynamic to a static (macroscopic) context, there is one more additional 

simplifying assumption imposed. The simplification concerns the aggregation of time. The 

simulation time period is no longer considered to be continuous, nor is it modelled via multiple 

(discrete) steps, but is condensed into a single result, i.e. only a single average flow rate over 

the entire simulation period is constructed. This leads to the situation depicted in Figure 3.2(b), 

where the piece-wise curve for the flow rate is replaced with a single stationary average flow 

rate during the entire simulation period. 

 

Because microscopic and mesoscopic models offer a relatively high level of detail, they are 

most commonly used for (short term) operational model applications in which multiple lanes, 

multiple vehicle types, random variations, and signalised interactions can be considered with 

relative ease. Macroscopic approaches on the other hand are more suited to strategic models, 

because their level of detail is more in line with the uncertainties encountered when performing 

long term forecasts for planning purposes. Typically, they also exclude any random variations 

making them especially suitable for scenario comparisons. 

 

Table 3.1 roughly illustrates how, in practice, the planning horizon correlates with the adopted 

traffic model paradigms. While these best practices are mostly intuitive, we do point out that 

macroscopic approaches for operational models are somewhat of a mixed bag. On the one hand 

they are rarely adopted in urban applications that include signals. Conversely, macroscopic 

operational models pertaining to motorway related applications are common practice indeed, 

hence our classification of reasonably common for this type of model. 

 

Table 3.1: Best practices in combining planning horizons with traffic flow representation. 

  Traffic flow representation 

  Microscopic Mesoscopic Macroscopic 

Planning 

horizon 

Operational Very common Reasonably common Reasonably common 

Tactical Uncommon Common Reasonably common 

Strategic Very uncommon Uncommon Very common 

 

3.2 Fundamental diagram 
 

Before discussing microscopic, mesoscopic, and macroscopic models in more detail, we look 

at the representations of traffic flow and their relation to the fundamental diagram. The 

fundamental diagram describes the relation between density, speed, and flow, for a stationary 

observer somewhere along the road. Note that the fundamental diagram is sometimes 

alternatively referred to as the fundamental relation, Hamiltonian, or flux function. The 

fundamental diagram was first discussed by Greenshields (1935), who claimed a linear relation 

between speed and density existed, resulting in a quadratic fundamental diagram in the flow-

density, and speed-density plane. Figure 3.3 shows a schematic example of the Greenshields 

fundamental diagram and although this particular shape of the diagram is no longer considered 

to be very realistic, the importance of the fundamental diagram as a concept cannot be 

overstated.  
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The maximum flow that can pass a stationary observer along the road per chosen unit of time 

is referred to as the capacity of that road. The density describes the number of vehicles present 

on a stretch of road (veh/km). The density at capacity is termed critical density, while jam 

density occurs when vehicles come to a complete standstill as a result of congestion. 

Furthermore, as long as the link is below critical density, it is uncongested and considered to 

be in a hypocritical traffic state (Cascetta, 2009). On the other hand, when the link is in a 

hypercritical traffic state, the critical density is exceeded and queues start to form. 

 

  
Figure 3.3: Greenshields fundamental diagram, (a) speed-density, (b) speed-flow, and (c) 

flow-density. 

The fundamental diagram is closely related to the representation of traffic flow, and is the 

foundation upon which each of the three model types is built. This becomes immediately 

apparent when we look at the units of density (veh/km), flow (veh/h), and speed (km/h), which 

comprise the same units underpinning the three representations of traffic flow. It can be shown 

that each macroscopic, microscopic, and mesoscopic model is consistent with a particular 

fundamental diagram. For example, microscopic car following models often adopt time 

headway (h/veh), speed, or acceleration/deceleration (derivative of speed) as their main 

variables. Since time headway is the inverse of flow, and acceleration (where a negative 

acceleration is a deceleration) represents a change in speed, a corresponding speed-flow 

relationship as in Figure 3.2(b) can be determined under the assumption of steady-state 

conditions.  

 

The close relationship between microscopic, mesoscopic and macroscopic models based on the 

fundamental relation has been known for decades (Pipes, 1967). Microscopic model 

formulations for example, have been rewritten into macroscopic model formulations (Rakha 

and Crowther, 2002). Similarly, empirical fundamental diagram data has been used to validate 

and/or justify microscopic and mesoscopic models (Zheng, 2017; Treiber et al., 2000). These 

similarities between traffic flow representations are especially relevant in the context of a 

multi-scale environment that values consistency and is revisited in Part III of this thesis.  
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3.3 Traffic assignment procedure classification 
 

The microscopic/mesoscopic/macroscopic paradigm distinguishes between models based on 

the difference in their representation of traffic flow. However, there are many other model 

features to consider. To discuss the existing literature on traffic assignment procedures in a 

structured manner we look at the capabilities of these models based on their spatial, temporal, 

and behavioural capabilities, respectively. We adopt and extend the classification approach 

introduced in Bliemer et al. (2017) to do so. An important difference compared with the original 

classification is found in the inclusion of microscopic and mesoscopic traffic flow 

representations, which are considered as main model types in the spatial dimension, see Figure 

3.4.  

 

 
Figure 3.4: Model types by assumption dimension, extended based on Bliemer et al. (2017). 

Observe that microscopic and mesoscopic models are assumed to be dynamic in nature, since 

there is little point in vehicle based propagation in a non-dynamic context, hence the greyed 

out areas in the framework regarding the temporal dimension.  

 

Macroscopic models are simplified in terms of their spatial interaction compared to 

microscopic and mesoscopic models. The main distinction being their different representation 

and propagation of traffic flow. The propagation of individual vehicles in microscopic (and 

most mesoscopic) models is replaced by propagation methods governed by the fundamental 

diagram, typically resulting in flow rate based or cumulative vehicle based methods. While 

microscopic and mesoscopic models are by definition dynamic in nature, macroscopic models 

comprise a range of models with different temporal assumptions.  

 

3.4 Traffic assignment from a temporal perspective 
 

In the temporal dimensions, three main model types are distinguished: dynamic models, semi-

dynamic models, and static models. The most capable models from a temporal perspective are 

dynamic models. Dynamic models can explicitly account for the time dimension in both the 
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propagation of traffic flow as well in the representation of demand and route choice. In contrast 

to dynamic models, static models do not consider the time dimension explicitly in the 

propagation of traffic flow. As a result, only a single route choice period is considered and only 

a single average flow rate per link results for the period under consideration. One can look at 

static models in different ways. Traditionally, static models are often thought of as a particular 

period that experiences steady-state flows, where the construction of this steady-state is 

considered exogenous to the considered modelling period itself and does not require “worrying 

about”, it simply exists and remains in place for the period at hand (Payne and Thompson, 

1975; Smith, 1987). While this is one way of looking at it, this perspective poses problems 

when attempting to demonstrate that a static model is consistent with some dynamic 

counterpart, where flows are a direct result of the explicitly modelled period. Therefore, in 

recent years, a philosophical shift in perspective arose, where one might alternatively think of 

static models as a dynamic model where the time period is abstracted out and the path flows 

are propagated instantaneously. This has the benefit that the static flows are the result of the 

modelled period, identical to dynamic models, only the time it takes for them to propagate has 

been abstracted out, which is consistent with the adopted modelling paradigm. From this point 

of view, it has been shown that existing static model formulations are in fact fully consistent 

with their dynamic counterparts by directly deriving them, see for example Bliemer and 

Raadsen (2017).  

 

Early macroscopic dynamic traffic assignment models were mainly extensions to static models. 

They often utilised a capacity restrained approaches and attempted to find analytical solutions 

(Janson, 1991; Carey 1987), but due to their high computational costs, and the fact that 

increased realism often precluded the guarantee of attractive mathematical properties, quickly 

resulted in a shift towards simulation based approaches. Most contemporary macroscopic 

approaches that are used in practice are no longer considered to be extensions of static models. 

Most of these approaches represent different solution schemes (Bliemer and Raadsen, 2018; 

Raadsen and Bliemer, 2018; van der Gun et al., 2017; Raadsen et al., 2016; Himpe et al., 2016; 

Gentile, 2010; Yperman, 2007, Daganzo, 1994) to the same underlying model, namely the 

LWR model (Lighthill and Witham, 1995; Richards, 1956). Similarly, microscopic and 

mesoscopic models are also dominated by simulation based approaches, see also Section 3.5.1. 

 

A small but growing literature exists on bridging the gap between static and dynamic models. 

Semi-dynamic models are more capable than static models because they break up the time 

period under consideration into a small number of intervals. Each interval is then modelled 

statically, but by shortening the period an attempt is made to mitigate the effects of ignoring 

the time dimension within the propagation procedure. An additional mechanism is then used 

to model the interaction between the various smaller periods (Nakayama et al., 2012; Akamatsu 

et al. (in Japanese), 1998), namely by transferring residual traffic on links from one period to 

the other.  

 

Finally, quasi-dynamic models are in fact a type of static model, but one that is considered 

more capable. The distinction is based on the fact that a quasi-dynamic model is often assumed 

to be capacity constrained (and possibly also storage constrained by accounting for spillback) 

and considers queues in some way or form, i.e. some of the instantaneous traffic demand can 

“get stuck” in the network due to capacity restrictions. These queues can originate either inside 
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the bottleneck (Bundschuh et al., 2006; Bifulco and Crisalli, 1998) or in front of the bottleneck 

(Bliemer et al., 2014). In Smith (2013) an explicit location of the queue is lacking because the 

used toy network is agnostic to the actual location of the queue. Either way, the travel time 

function needs to be reconsidered to incorporate the effect of these queues. The term quasi-

dynamic is sometimes confusing and to avoid such confusion these models are classified as 

static models with additional capabilities in the spatial dimension. 

 

3.5 Traffic assignment from a spatial interaction perspective 
 

Our focus within the spatial dimension is predominantly on macroscopic approaches. The 

reason for this is the fact that it is difficult to design effective aggregation methods for 

microscopic and mesoscopic modelling approaches because the applications they are used for 

do not allow much compromise in modelling results. Hence, hardly any aggregation methods 

exist in this context. One could therefore argue that there is little point in including them in this 

discussion. There is however an important argument to do so anyway, namely, the issues 

around consistency in a multi-scale setting. In a multi-scale environment microscopic, 

mesoscopic, and macroscopic models exist alongside each other. To provide insight in the 

requirements of constructing a successful multi-scale environment, where each of these models 

should ideally be consistent in relation to one another, a basic understanding of all three 

modelling paradigms is required. Based on the introductory literature review discussed in this 

chapter, we discuss such requirements (qualitatively) in more detail in Chapter 8.  

 

As can be seen in Figure 3.4, within the macroscopic modelling paradigm, differences in spatial 

assumptions are found in the way road capacity and spillback are modelled. We find that 

models considering both capacity and storage constraints to be among the most capable (i.e., 

can be applied to both uncongested and congested conditions), while capacity unrestrained 

models are among the least capable and are best suited for uncongested conditions only, see 

Section 3.5.2 for more details. However, we start our discussion with the most capable models 

from a spatial perspective; microscopic and mesoscopic models.  

 

3.5.1 Microscopic and mesoscopic traffic flow propagation 
 

Microscopic network loading models propagate individual vehicles through a car following 

model that is responsible for the longitudinal movement of each vehicle. In addition, a lane 

changing model guides the latitudinal movements. Together, they determine the location of 

each vehicle in space and time. The term car following stems from the behaviour of the 

considered vehicle, which is influenced by a lead vehicle.  

 

3.5.1.1 Microscopic car following and lane changing models 

The earliest car following models were of the safety-distance type (Pipes, 1953), although more 

recent examples of this model type also exist (Newell, 2002; Gipps, 1981). The idea behind 

these models is that the space headway to the lead vehicle determines its behaviour. The model 

proposed by Pipes (1953) is essentially identical to the model proposed by Forbes et al. (1958) 

in which space headways are replaced by time headways. To avoid collisions, the model 
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ensures that the time headway between vehicles exceeds the reaction time needed to match the 

speed of the lead vehicle.  

 

Soon, it was found that only using headways to govern car following behaviour is rather 

restrictive. This led to the first stimulus-response models. Here, not only the headway is 

considered, but in addition, the vehicle’s speed as well as the (absolute) difference in speed 

with the lead vehicle is taken into account. Stimulus-response models originated from research 

undertaken at General Motors (GM) and are therefore sometimes referred to as the GM model 

(Chandler et al., 1958). The GHR model later generalised the GM model (Gazis et al., 1961). 

The name stimulus-response originated from the fact that the observed speed difference is 

considered a stimulus, while the vehicle’s acceleration is the response that follows from it. 

 

Over time, more behaviour centric approaches emerged, among which the well-known action-

point models, which are sometimes also classified as psychophysical models (Wiedemann, 

1974; Brackstone and McDonald, 1999), these models recognise that there are certain triggers, 

or action points, that instigate different types of driver behaviour depending on, for example, 

how close a driver is to a lead vehicle. While computationally more costly, they can more 

closely resemble actual driver behaviour (Aghabayk et al., 2015; Brackstone and McDonald, 

1999). There exist more model types than the three broad categories mentioned here, among 

them we find optimal-velocity models, cellular automata models, as well as the popular 

Intelligent Driver Model (IDM) by Treiber et al. (2000). We refer the reader to Wageningen-

Kessels et al. (2014), for a more in depth discussion on this topic. 

 

Car following models are supplemented with lane changing models to allow for mandatory and 

discretionary lateral movements that occur when overtaking or merging. Like car following 

models, early lane changing models were mostly deterministic rule based models (Gipps, 

1986), but since lane changing is inherently linked to making choices, driver behaviour plays 

an important role. Discrete choice model based lane changing models try to take this into 

account. There are also increasingly more machine learning based and probabilistic approaches 

trying to capture the heterogeneity among driver populations, see for example Rahman et al. 

(2013), or Moridpour et al. (2010). 

 

3.5.1.2 Mesoscopic traffic flow propagation 

There is no single definition of what exactly a mesoscopic model is, except that they reside in 

between microscopic and macroscopic models. As a result, some conceptually very different 

approaches exist. The two dominant types of mesoscopic models involve cluster based - also 

known as platooning - approaches, and approaches where individual vehicle arrival times are 

predicted for link boundaries. The platooning approach is for example adopted in 

DYNASMART (Jayakrishnan et al., 1994). In DYNASMART packets of vehicles are 

propagated according to macroscopic principles to reduce computation times. Alternatively, 

one can propagate vehicles individually, but with greatly simplified behaviour, for example, 

by disallowing lane changes while traversing a road section. Examples of this particular 

approach can be found in DTALite (Zhou and Taylor, 2014), MATSIM (Strippgen and Nagel, 

2009), and Mahut (2001). Analogies with gas-kinetic models also exist in the literature, but are 

less common in practice (Hoogendoorn and Bovy, 2001). 
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3.5.1.3 Heterogeneity in microscopic and mesoscopic models 

Although we do not consider multi-modal nor multi-class approaches, it should be noted that 

when modelling individual vehicles, it is relatively easy to support multiple driver classes, 

vehicle types, as well as driving styles and attitudes, for example through modelling differences 

in anticipatory behaviour (Ossen and Hoogendoorn, 2007; Treiber et al., 2006; Lenz et al; 

1999). One can also sample from a pool of driver characteristics and attach them to individual 

vehicles in the simulation, to achieve some desired distribution. Something which is far more 

difficult, if not practically impossible, to achieve in a macroscopic setting. At the same time, 

such potentially realistic approaches contribute to instability in modelling results, because the 

generation of vehicles, as well as the sampling of driver behaviour, is almost necessarily based 

on random processes. The absence of randomness, reduced computation times, and reduced 

calibration effort, are among the main attractors to adopt macroscopic network loading models 

instead of (heterogeneous) microscopic and mesoscopic approaches. 

 

3.5.2 Macroscopic traffic flow propagation 
Macroscopic dynamic models are either first order or higher order. A first order macroscopic 

dynamic model only considers instantaneous changes in speed (speed is the first derivative of 

location over time, hence the name). The LWR model is the most well-known example in this 

branch of models. Second order models on the other hand, do consider the effects of 

acceleration and deceleration. The idea behind higher order models is that they are able to 

capture more intricate behavioural aspects of drivers while still modelling average flow rates. 

This allows these models to include empirically observed effects such as capacity drops and 

stop-and-go-waves. Examples can be found in Aw and Rascle (2000), Messmer and 

Papageorgiou (1990), or Payne (1973). We however argue that such detailed behaviour is better 

suited to be replicated by mesoscopic and/or microscopic models and therefore limit ourselves 

to first order (dynamic) macroscopic models in the remainder of this work. 

 

Within the macroscopic traffic flow propagation paradigm we identify the following four 

spatial model types in increasing order of simplification: capacity and storage constrained, 

capacity constrained, capacity restrained, and capacity unrestrained. 

 

The simplest model type, yielding travel times invariant to link capacities, is termed capacity 

unrestrained.  This typically only occurs when one only considers free flow travel times 

irrespective of the link volume. In practice, this approach is mainly used to initialise more 

capable assignment types, find potential paths, or for initial analysis purposes. 

 

Capacity restrained models do consider link capacities, but only to a certain extent. These 

models still allow the demand, i.e. link volume, to exceed link capacity. As a result, in case of 

oversaturated link, no flow is held back even though it physically does not fit on the link. 

Instead of withholding flow from propagating, these models adopt link performance functions, 

such as the widely used BPR function (Bureau of Public Roads, 1964), or Akçelik function 

(Akçelik, 1991) to deter traffic from using oversaturated links. Hence, the name capacity 

restrained. While results of these approaches are physically infeasible in congested conditions, 

it does cater for strictly convex link cost functions. Also, the path travel times are link additive. 

This results in attractive mathematical properties that can guarantee the existence of a unique 

optimal solution. Because of this, there is still an active literature (Bar-Gera, 2010; Dial, 2006) 
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on solution schemes for capacity restrained approaches and these models are still widely used 

in planning applications, despite their well-known shortcomings. 

 

To avoid the limitations of physically infeasible link volumes, capacity constrained models are 

a more capable alternative. Early capacity constrained approaches, in a static context, 

introduced side constraints where link flow was no longer allowed to exceed link capacity. A 

penalty function or Lagrange multiplier automatically reallocates flows from congested links 

to uncongested links, see (Shahpar et al., 2008; Larsson and Patriksson, 1995; Bell, 1995; Yang 

and Yagar, 1994). In most of these models, the penalties imposed are interpreted as queuing 

delay. However, the queue imposing this delay is not constructed from the demand, it is a 

mathematical construct and might therefore not be necessarily realistic nor feasible. In more 

recent residual queueing models, the queuing delay is derived from an actual (residual) queue, 

which is, arguably, a more natural way to construct the travel time. (Smith, 2013; Smith et al., 

2013; Bifulco and Crisalli, 1998; Smith, 1987; Vickrey, 1969). These queues then drive the 

experienced delay instead of the more traditional link performance functions. Queues can either 

be modelled by letting them occupy physical space, or, alternatively, can be modelled as 

vertical (point) queues. The former is more realistic in general, but if the queues do not grow 

beyond the link length, vertical queues give exactly the same result as queues that are modelled 

physically. Notable is the work of Bliemer et al. (2014), who, for the first time, place the queue 

in front of the bottleneck analogous to dynamic models, whereas all aforementioned models 

place the queue inside the bottleneck. Besides the static vertical point queue models mentioned, 

there also exist dynamic macroscopic vertical point queue models, although these are hardly 

used in practice, for some example see Pang et al. (2012), Huang and Lam (2002), or Smith 

(1993). 

 

In contrast to aforementioned point queue models, in capacity and storage constrained models, 

the impact of a (physical) queue exceeding the length, i.e. storage space, of a link is explicitly 

considered. In such cases, queues spill back upstream into preceding links, as would happen in 

reality. This type of model is therefore considered the most capable spatial model type. In 

practice, most approaches that consider spillback are dynamic (van der Gun et al. 2017; 

Raadsen et al, 2016; Han et al, 2012; Gentile, 2010; Yperman, 2007; Daganzo, 1994), but there 

do exist static and semi-dynamic models that takes storage constraints into account (Bliemer 

and Raadsen, 2017; Smith et al., 2013; Davidson et al., 2011).  

 

3.5.2.1 Link models and Node models 

Capacity restrained models are predominantly formulated on the link level and little attention 

is paid to the interactions that occur at intersections, i.e. nodes. These interactions became a 

topic of interest when capacity constrained models emerged. In capacity constrained models 

the available capacity on links exiting a node needs to be distributed across the competing 

incoming flows. This allocation of available capacity is the responsibility of the node model. 

The first macroscopic node models are applied on highly simplified networks and only dealt 

with either merging flows, i.e. on-ramps, or diverging flows, i.e. off ramps (Daganzo, 1994, 

1995). Later, extensions to general intersections emerged (Smits et al., 2015; Tampère et al., 

2011; Bliemer, 2007). The work by Tampère et al. (2011) is especially notable since it 

formulates a number of conditions to construct a so called general first order node model. 
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Today, in our view, any “proper” macroscopic traffic assignment model should include a node 

model so it can justify its distribution of flows across nodes. 

 

The aforementioned node models are all designed for macroscopic assignment approaches. 

They assume average flow rates, average turn capacities, and consider the intersection to be a 

point, rather than an area. Conversely, in microscopic and mesoscopic models intersections are 

modelled spatially and consider vehicle interactions via, for example, gap acceptance factors 

(unsignalised intersections), or explicit signal phases (signalised intersections), resulting in a 

more capable model representation. However, we limit ourselves to considering only 

macroscopic node models in this work.  

 

3.6 Traffic assignment from a behavioural perspective 
 

On a macroscopic level, the behavioural aspect to traffic assignment is most prominent in how 

path choice is established. Here, we distinguish between All-Or-Nothing (AON) models, one-

shot models and the well-known (user) equilibrium model types.  

 

Within the considered UE paradigm, the static Deterministic User Equilibrium (DUE) 

approach (Wardrop, 1952) is still the most widely used. It assumes perfect knowledge on the 

part of the decision maker, which means we assume the driver knows the exact travel time for 

each path. A solution is found when “no traveller can unilaterally switch routes to improve its 

travel time”. Different approaches exist in the literature to determine the travel time conditional 

on the level of service of the network. Traditionally, link performance functions are used in 

combination with static capacity restrained models. More capable dynamic assignment 

methods are able to compute the delays more accurately by taking queue formation into 

account. This can for example be done by deriving the travel times from cumulative flow curves 

(Szeto and Lo, 2005). 

 

Finding an equilibrium through simulation (when no closed form analytical solution is 

available) typically involves a solution scheme that relies on an iterative procedure. One of the 

reasons DUE is such a popular approach is the simplicity of its solution scheme. In a static 

context one finds the cheapest path - for example using Dijkstra’s algorithm - at the beginning 

of each iteration and shifts a portion of the demand onto the (newly) found path. The optimal 

portion of demand to shift can be determined analytically when the cost function is link additive 

and strictly concave, for example by using the Frank-Wolfe algorithm (Frank and Wolfe, 

1956). In practice through, this shift in demand is often based on heuristics such as the Method 

of Successive Averages (MSA), or one of its many alternatives. The reason to resort to 

heuristics is based on the fact that the cost of finding the optimal step size can become larger 

than the benefits of a, per iteration, improved convergence rate. Downsides of traditional DUE 

solutions is the increasingly slow convergence around equilibrium, although there are 

contemporary methods that show significant improvements on this part (Bar-Gera, 2010, 

Gentile and Noekel, 2009). That said, the rather unrealistic assumption of perfect knowledge 

on the decision maker’s part remains.  
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Stochastic User Equilibrium (SUE) attempts to replace the behavioural assumption of perfect 

knowledge in DUE by proposing to act on imperfect knowledge instead (Fisk, 1980; Daganzo 

and Sheffi, 1977). Imperfect knowledge is modelled through the concept of perceived travel 

times. An error term is added to the path choice model to accommodate different perceptions 

across the decision makers. This results in a probability of choosing a potential path given its 

perceived cost. On an aggregate level this results in a distribution of the demand across the 

available alternative paths, where low probability paths acquire less trips than high probability 

paths. SUE is often paired with logit based path choice models to determine the path 

probabilities (McFadden, 1974; Sheffi, 1984; Train, 2003). The simplest and most widely used 

logit model is the Multinomial Logit Model (MNL), its popularity stems from its low 

computational cost and simple, yet flexible formulation. Its biggest limitation in the context of 

path choice is that it assumes that each alternative path is regarded as an independent choice, 

i.e. no path overlap is assumed. Other (closed form) path choice models such a C-logit (Cascetta 

et al., 1996), path size logit (Bekhor et al., 2002), or paired combinatorial logit (Koppelman 

and Wen, 2000) aim to account for path overlap, but this comes at the cost of compromising 

the computationally friendly nature compared to MNL. 

 

One difficulty with SUE approaches, irrespective of the chosen logit model, lies in the question 

what paths to consider. When using a logit model, every conceivable path will be allocated a 

non-zero probability of being used. Therefore, a selection has to be made on what paths to 

consider within the model; either a “representative” subset of considered paths can be 

constructed a-priori (Fiorenzo-Catalano, 2004), or alternatively, when updating the path set 

while iterating, some threshold needs to be considered where paths are no longer considered 

eligible (Watling and Rasmussen, 2015). Both approaches result in a conditional equilibrium, 

because they require an additional restricting condition on top of the stochastic equilibrium 

assumption. Some examples of various existing (equilibrium) models in the literature and how 

they classify against the spatial and temporal model types can be found in Table 3.2. There also 

exist many natural extensions of DUE and SUE to a dynamic context. However, we point out 

that the proposed methodology in Part II revolves around static traffic assignment procedures 

while Part III is mainly concerned with traffic assignment inputs rather than the actual 

procedures. Hence, while dynamic DUE and SUE traffic assignment models can be used in 

conjunction with the results of Part II of this thesis, the actual (dynamic) traffic assignment 

model specifications or properties are of less concern in this work and need not be discussed 

further. 

 

A one-shot approach is a simplified version of the equilibrium approach. Its name correctly 

suggests that it only conducts a single iteration. Path choice can be either deterministic, 

stochastic, or some other approach. It is most common in operational (microscopic) traffic 

assignment models. It can for example be used to investigate the impact of non-recurrent traffic 

conditions such as accidents, where learning and route updating effects in the short run are 

assumed to be absent. Often an equilibrium result is used as the starting point. Note that even 

though one-shot approaches constitute only a single iteration, they can have multiple pre-trip 

path choice moments, in case the model is dynamic, and have multiple departure time periods. 

Given our focus on planning applications, one-shot approaches are not further considered. 
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Even simpler than a one-shot model, is the AON approach. Based on – often free flow – traffic 

conditions, the single cheapest path between each origin-destination pair is found and all traffic 

demand is loaded onto this single path. It is a fully deterministic approach and is often used as 

a starting point for DUE, bottleneck identification, or gain preliminary insight in the problem 

at hand. 

 

Table 3.2: Some existing models per spatial-temporal model type assumption combination. 

  
 Temporal model types 

 Dynamic Semi-dynamic Static 

Spatial 

model 

types 

Capacity & storage 

constrained 
Microscopic Gipps, 1981 - - 

Capacity & storage 

constrained 
Mesoscopic 

Strippgen and 

Nagel, 2009 
- - 

Capacity & storage 

constrained  
Macroscopic Daganzo, 1994 

Davidson et al., 

2011 

Bliemer and 

Raadsen, 2017 

Capacity constrained Macroscopic 
Friesz et al., 

2013 

Akamatsu et al., 

19983 

Bifulco and 

Crisalli, 1998 

Capacity restrained Macroscopic Janson, 1991 
Nakayama et al., 

2012 
Beckmann, 1956 

Capacity unrestrained Macroscopic - - AON 

 

                                                 
3 In Japanese, classification based on abstract and discussion in other peer-reviewed Japanese journal articles. 



 

 

Part II  
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4 Link travel time decomposition 
 

Travel time delays and their formulation are key in the decomposition method proposed in Part 

II of this thesis. Different types of delay exist, each of them with their unique formulation and 

properties that might or might not be useful to adopt, depending on the chosen application 

context. In this chapter we discuss various types of delay in the context of strategic planning 

models from the perspective of a single link. Because we solely focus on strategic traffic 

assignment models for planning purposes here, we only consider uniform vehicle arrival rates 

and assume that traffic is modelled via average flow rates. The concepts and definitions of 

delay introduced in this chapter are then adopted in Chapter 5 to design and formulate our travel 

time decomposition method which is subsequently extended to the path and network level. 

 

In Section 4.1 we relate the fundamental diagram to the concept of delay, followed by a 

discussion of two different type of link delay decomposition methods in Section 4.2. Then, in 

Section 4.3, we briefly discuss some of the additional complexities involved in modelling delay 

in the presence of signalised intersections. 

 

4.1 The fundamental diagram and delay 
 

To get a better understanding of delay, we first revisit the general concave fundamental diagram 

introduced in Chapter 3. The fundamental diagram typically has two branches, a hypocritical 

branch, i.e. uncongested branch, and a hypercritical branch, i.e. congested branch (Cascetta, 

2009). The hypercritical branch represents congested link states where queues start to form or 

are already present. Furthermore, it embodies the part of the fundamental diagram where flow 

decreases with increasing density, see Figure 4.1(a).  

 

 
Figure 4.1: Schematic impression of the different components of travel time on the link level 

(a) free flow travel time, (b) non-zero hypocritical delay, (c) non-zero hypercritical delay. 
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The hypocritical branch on the other hand, represents all uncongested link states. In 

uncongested link states, flow increases with increasing density. In the absence of any delay, 

the link is by definition in an uncongested (hypocritical) state and vehicles travel at the absolute 

maximum allowed speed on the link, denoted by max .  This then results in an absolute 

minimum link travel time. In the situation of a link being in a hypocritical uncongested state, 

the accompanying vehicle speed   (km/h) must reside between crit max ,    where critical 

speed crit is the steady state speed experienced when flow is at capacity, see Figure 4.1(b). 

When a link is in a congested state vehicle speeds are found to be crit0 ,   as depicted in 

Figure 4.1(c). Clearly, both in uncongested and congested link states, the vehicle speed is most 

likely to be smaller than max and hence some form of delay is experienced by the traveller. 

 

It is important to note that the shape of fundamental diagram has an impact on the magnitude 

of delay and/or the presence of certain types of delay. Newell (1993) for example, proposed a 

triangular shaped fundamental diagram, in such a diagram max crit ,   resulting in an 

uncongested branch where the vehicle speed is invariant to the flow rate as long as the link is 

in a hypocritical state. In other words, there exists no delay on the hypocritical branch of this 

fundamental diagram, see Figure 4.2(a). Daganzo (1994) proposed a trapezoidal fundamental 

diagram, where vehicle speed is also largely invariant to flow up to a point where it slowly 

deteriorates before moving to a congested state. In this case there does exist delay on the 

hypocritical branch, but only when the flow equates to capacity, see Figure 4.2(b). 

 

 
Figure 4.2: (a) Triangular fundamental diagram, (b) trapezoidal fundamental diagram. 

 

4.2 Link travel time in strategic planning models 
 

We discuss two different methods to classify and extract delay from the results of a traffic 

assignment model. Both approaches decompose the link travel time based on certain delay 

characteristics. The first is termed physical link delay decomposition and aims to replicate delay 

as it is experienced in reality by the traveller traversing the link, the second is termed functional 

link travel time decomposition and revolves around a more abstract approach. Both methods 

however yield the exact same total travel time.  

 

4.2.1 Physical link travel time decomposition 
In physical travel time decomposition we explicitly separate travel time based on how it is 

experienced by the traveller. This is useful when applying different behavioural weights to 

these components, similar to generalised cost functions for public transport in which waiting 
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time during transfers leads to more disutility per minute than in-vehicle travel time. Consider 

the example in Figure 4.3, here the available downstream supply is not sufficient based on the 

incoming traffic flow. As a result the cumulative inflow curve, i.e. total number of vehicles 

that passed the upstream link border, and outflow curve, i.e. total number of vehicles that 

passed the downstream link border, are no longer parallel. Based on these two cumulative 

curves, information can be extracted on link travel times, link densities, and flows, for example 

to perform post-simulation analysis (Szeto and Lo, 2005). 

 

For an individual traveller, its total link travel time is determined by the time difference 

between entering and leaving the link, i.e. the horizontal (red) line separating the two 

cumulative curves. In this situation, the traveller experiences uncongested conditions, i.e. free 

flow travel time in a hypocritical state, for part of the link, while at some point it joins the 

backward propagating queue. From this point onward, until departing the link, the traveller 

experiences a congested hypercritical flow state with a lower speed. 

 

 
Figure 4.3: (a) Physical delay link travel time decomposition, (b) example concave 

underlying fundamental diagram 

 

In this approach both link travel time components are flow dependent and the explicit tracking 

of the tail of the queue is required, making it a computationally challenging approach. Once 

the queue reaches the upstream border of the link, the entire link is in a hypercritical state and 

the queue spills back into the preceding link(s). 

 

4.2.2 Functional link travel time decomposition 
In a functional link travel time decomposition there is less of a direct relationship between what 

a traveller experiences and how the various components of the travel time are built up. Instead, 

the approach puts computational convenience on the forefront, resulting in a somewhat more 

abstract decomposition. This approach does not need to explicitly track the tail of the queue 

and is best suited for situations when one is interested in the total travel time only and there is 

no difference in weighting between the experienced hypocritical and hypercritical travel times 

involved. 
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When adopting a general concave fundamental diagram, a functional decomposition of travel 

time comprises three components: (i) minimum link travel time, (ii) functional hypocritical 

delay, and (iii) functional hypercritical delay. An illustrative example if provided in Figure 

4.4(a). The minimum link travel time is constant and based on max as mentioned before, while 

the delay components are flow dependent. The functional hypocritical delay should not to be 

confused with experienced hypocritical delay since it has little to do with how a traveller 

experiences the link state spatially. Functional hypocritical delay merely reflects the additional 

delay one would have experienced on top of the minimum travel time if the entire link were to 

be in an uncongested state (which might or might not be the case). Note that we can always 

add this delay even if part of the link is in a congested state. For example, in Figure 4.4(a), the 

functional hypocritical delay is based on speed hypo  even though the vehicle speed when 

exiting the link is in fact hyper  see Figure 4.4(b). The functional hypocritical delay remains 

constant as long as the flow is constant, something which is not the case for experienced 

hypocritical delay in a congested situation. However, once the inflow rate does change, the 

functional hypocritical delay is also affected, hence it is not invariant to flow. 

 

 
Figure 4.4: (a) Functional link travel time decomposition, (b) example concave underlying 

fundamental diagram. 

The last component, the functional hypercritical delay, is the additional travel time it takes to 

depart from the link beyond the minimum link travel time supplemented with the additional 

hypocritical delay. Observe that this is indeed different to the experienced hypercritical delay 

in Figure 4.3 even though the total travel time in both cases is exactly the same. 

 

In a functional travel time decomposition, when adopting a general concave fundamental 

diagram, the first component is flow invariant, while the two delay components are not. In case 

one adopts a simplified triangular fundamental diagram, then the functional hypocritical delay 

vanishes, leaving only the functional hypercritical delay as a flow dependent delay component, 

see Figure 4.5. Generally, the functional hypocritical delay is dominated by both the minimum 

travel time as well as the hypercritical delay (if any) and therefore adopting a simplified 

triangular fundamental diagram can be an attractive proposition if it allows one to simplify the 

underlying methodology, as we will see in Chapter 5. 
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Figure 4.5: (a) Functional link travel time decomposition, (b) example triangular underlying 

fundamental diagram. 

 

4.3 Delay at signalised intersections 
 

The hypercritical delay discussed so far is due to a lack of capacity at the downstream end of 

the link, this can caused by, for example, a reduction in number of lanes downstream. However, 

in practice, most hypercritical delay is the result of encountering (signalised) intersections that 

require a vehicle to slow down or even stop. At the disaggregate level, i.e. on a per vehicle 

basis, this intersection based delay is decomposed in a number of different types such as 

stopped time delay, approach delay, time-in queue delay, or control delay, see Matthew (2014). 

However, we choose to only discuss the effects of aggregate intersection delays due to our 

focus on planning models.  

 

4.3.1 Overflow delay 
The most common way to take the effects of signalised intersections into account in an 

aggregate setting is to impose some kind of reduction in (turn) capacity based on the available 

average green time, possibly specific to a particular period of time within the simulation. 

Hence, only when the arrival rate of vehicles at the signal exceeds this reduced capacity, a 

queue starts to form. The delay resulting from this queue is termed overflow delay (Webster, 

1958), although we prefer the term persistent delay, because it reflects delay that does not 

dissolve under the given travel demand pattern, but persists instead, see Figure 4.6(a) for an 

example. From an intersection perspective one is only interested in the discrepancy between 

arriving at the intersection, i.e. arriving at the downstream link border, and traversing the 

intersection, i.e. departing from the downstream link border. We therefore use a specific 

cumulative plot, named Input/Output (I/O) diagram. In an I/O diagram both curves reflect the 

downstream end of the link, one denoting the Input (I), i.e. arrivals, while the other depicts the 

Output (O), i.e. departures. As can be seen in Figure 4.6(b), in the presence of persistent delay 

the surface area resulting from a lack of (average) green time only increases. In general, to 

obtain the average delay per vehicle, one needs to compute the total surface area of persistent 

delay and divide it by the number of vehicles that traversed the link. Finally, we also see that 

the persistent delay as it is used here corresponds 1:1 with the functional hypercritical delay as 

discussed in the previous section.  
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   (a)       (b) 

Figure 4.6: (a) persistent delay in cumulative plot, (b) alternative I/O plot of the same delay. 

If an intersection is unsignalised, but adheres to a set of rules such as give way or all-stop, one 

can also approximate average capacity reductions based on some rules (Bovy 1991; Akçelik 

and Troutbeck, 1991), many such rules have been standardised through the Highway Capacity 

Manual (HCM, 2000). 

 

4.3.2 Uniform delay 
In addition to persistent delay, one might be interested to consider uniform delay as well for 

signalised intersections. Uniform delay is delay that occurs when one has to wait for a traffic 

signal in an undersaturated situation. In planning models where signal phases are not modelled 

explicitly, uniform delay cannot be captured within the assignment process itself, simply 

because in undersaturated conditions, travel demand never experiences a queue since the 

average capacity that is available suffices. However, if one were to model the phases explicitly, 

inevitably some portion of the arriving downstream vehicles experiences a red signal and 

accrues some uniform delay, as is depicted in Figure 4.7(a).  

 

 
   (a)      (b) 

Figure 4.7: Uniform, i.e. non-persistent delay, under explicit signal phases for (a) 

undersaturated condition, (b) oversaturated condition. 
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The reason this delay is termed uniform is because it assumes a uniform arrival of vehicles. 

Clearly, this uniformity of arrival has nothing to do with the actual type of delay, we therefore 

prefer to use the term non-persistent delay instead, to reflect the fact that this delay is dissolved 

within a single cycle of the signal. When the arrival rate increases to the point that it exceeds 

the available (exit)capacity, non-persistent delay is supplemented with persistent delay, an 

example of which is provided in Figure 4.7(b). If one wishes to incorporate non-persistent delay 

in planning models that do not explicitly model signal phases (which is almost always the case), 

one typically supplements the travel times with an estimate of the non-persistent delay in a 

post-processing step. This delay can be calculated based on the arrival rate, effective green 

times, cycle time of the signal, and capacity or saturation flow of the link through the well-

known formula of Webster (1958). As mentioned, we only consider persistent delay in this 

work, due to exit-link capacity restrictions rather than restrictions caused by traffic signals. 

Yet, it is clear that including traffic signal based capacity restrictions, would be a trivial 

extension to make. 
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5 Extracting delay subnetworks under varying 

demand and fixed supply 
 

In Chapter 1 it was argued that any methodology aimed at altering the representation of traffic 

assignment should consider the application context it is applied for. Only then, its 

representation can be optimised to yield both a capable and minimal outcome. Here, we choose 

our application area of interest to be applications with a fixed supply side, i.e. physical road 

network, while demand may vary. As mentioned, the best known applications that comply with 

this restriction are quick-scan methods, matrix calibration methods, analysis of travel time 

variability due to varying demand, but also bi-level optimisation methods fall under this 

category, where the lower level consists of a traffic assignment model and the upper level, for 

example, constitutes the testing of different control strategies. A common characteristic of all 

these applications is their computationally costly nature. As a result, this application domain is 

still dominated by static traffic assignment methods because more sophisticated approaches are 

considered to be computationally infeasible. However, even when using static traffic 

assignment, not all the desired scenarios can be investigated due to time constraints. Our aim 

therefore is to develop methodology that results in an equally capable static traffic assignment 

representation, but one that is truly minimal, i.e. we focus on minimizing the computational 

burden with the least possible sacrifice in information loss.  

 

Quick-scan applications are not concerned with highly detailed outputs, but instead use more 

aggregate indicators such as general accessibility measures that are predominantly obtained 

through (total) travel times. Matrix calibration procedures use a combination of data sources to 

adjust the demand, among which are measured link volumes and trajectory travel times. 

Analysing travel time variability typically means simulating many different travel demand 

scenarios and computing resulting travel times. Similarly, in applications where assignment is 

used as a lower level, often only costs, i.e. total travel times, are fed back to the upper level. 

Given the central role that travel time plays in these applications we focus on minimising the 

information loss with respect to the original travel times.  

 

We propose a decomposition based approach. One of the main distinctions between 

aggregation and decomposition, as argued in Chapter 1, is found in the fact that decomposition 

methods do not necessarily require additional simplifying assumptions to reduce the 

computational burden. Instead, they rely on procedural/functional changes to achieve their 

goal. This in contrast to aggregation methods which group individual data points, i.e. links, 

nodes, zones, paths, to reduce the computational effort, which inevitably lead to a degradation 

in result accuracy. We therefore focus on a decomposition based approach because they, 

potentially, allow for a lossless representation altering method while still being able to reduce 

the computational cost. 

 

The remainder of this chapter proposes a novel decomposition procedure based on the concept 

of a delay subnetwork. We construct this delay subnetwork by decomposing path travel times 

into a minimum travel time part and a delay part and use this decomposition to extract the 

related subnetworks. In addition, we propose a procedure to consolidate paths in the delay 
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subnetwork to further reduce the computational cost. Applicability of this procedure is 

demonstrated via hypothetical examples for both traditional capacity restrained static 

assignment and static capacity constrained assignment with point queues based on the model 

by Bliemer et al. (2014). Discussion of real world case is found in Chapter 6.  

 

For completeness, we explicitly state the assumptions relevant to this chapter: (i) The transport 

network is assumed given and fixed across all demand scenarios, (ii) traffic assignment is path 

based, (iii) the path set is generated a-priori and fixed across demand scenarios, (iv) the 

conditional4 stochastic user equilibrium (SUE) approach is adopted. (v) Path choice is based 

on deploying the multinomial logit model (MNL), (vii) generalised costs are based on total 

path travel time only, (vii) spillback effects, i.e. physical queues are not considered, and (viii) 

only a single user class in the form of private vehicles is considered. The last assumption is not 

strictly necessary as our method can also be applied to multi-class assignment, but it simplifies 

exposition of our method. The same holds for the adoption of MNL as our path choice model. 

The usefulness of adopting the SUE approach in combination with the a-priori path set is 

discussed in further detail in Section 5.3. 

 

We first discuss our decomposition method in relation to the general framework (Chapter 2) 

and utilise the concepts discussed in Chapter 4 to introduce the reader to, and formalise the 

concept of, a travel time decomposition method impacting on the traffic assignment 

representation as a whole, in Section 5.1. In Section 5.2 we introduce notation pertaining to the 

network infrastructure followed by the demand side formulation of the model in Section 5.3. 

The computational gain that can be achieved, as well as the magnitude of information loss 

suffered when applying our method is highly dependent on the adopted traffic assignment 

procedure, to highlight this, we briefly reiterate the traditional static capacity restrained model 

in Section 5.4. Then, in Section 5.5, we discuss the capacity constrained residual point queue 

model by Bliemer et al. (2014). It is shown that the underlying assumptions of the two models 

– which are substantially different - dictate how delay is measured and how it drives their 

suitability for the travel time decomposition method. The model by Bliemer et al. is a 

demonstrably better fit and is therefore used in the subsequent case studies. The decomposition 

method itself is then further formalised in Sections 5.6 and 5.7. In Section 5.8 we discuss the 

extension to multiple demand scenarios and how to construct a single representative delay 

subnetwork based on the available demand scenarios. This is followed by some final remarks 

on the subject in Section 5.9. 

 

5.1 Travel time decomposition 
 

To extend and formalise the concept of travel time decomposition following Chapter 4 we first 

consider only a single demand scenario5. Further, the proposed travel time decomposition is 

functional in nature based on the discussion in Chapter 4). There are a number of compelling 

reasons to prefer this type of decomposition over a physical travel time decomposition. First, 

our objective is to maximise the reduction in computational cost to solve the model. As 

discussed, a physical travel time decomposition is computationally more complex as none of 

                                                 
4 The SUE is conditional since it adopts a fixed path set to which the SUE is limited to. 
5 The extension to multiple demand scenarios is postponed until Section 5.8. 
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the decomposed components are flow invariant. Second, the adopted application context only 

considers total travel time to drive the path choice, hence weighting of the experienced travel 

time components is absent and we can adopt the more abstract functional decomposition 

without any “behavioural” penalty. Third, we do not consider spillback, so there is little benefit 

in the explicit tracking of the tail of the queue as one does in a physical decomposition.  

 

5.1.1 Path travel time decomposition 
Let us now extend and formalise the decomposition of a functional link travel time 

decomposition to the path (and network level). To do so we follow the general structure of our 

traffic assignment representation framework proposed in Chapter 2. On the link level, 

functional travel time decomposition distinguishes between the minimum travel time and 

additional delay, where the latter consists of functional hypocritical delay and functional 

hypercritical delay. We do the same on the path level. For each path ,p  its path cost 
ph  is a 

combination of minimum travel time 
min

ph  and (functional) delay 
delay ,ph where the functional 

delay consists of both hypocritical delay 
hypo

ph and hypercritical delay 
hyper .ph  In general, we 

adopt a vector based notation where: 

 
min delay , h h h   (5.1) 

 

with: 

 
delay hypo hyper , h h h   (5.2) 

 

where min delay hypo hyper P 1, , , , ,

h h h h h respectively. We can then reformulate network loading 

function ( )   like the following: 

 
min delay ( | , ), h h f A P   (5.3) 

 

where network A  is an input, as well as paths .P  The latter are considered input because of 

our assumption regarding the construction of an a-priori path set. Because we can decompose 

the resulting path travel times, we now attempt to decompose the network loading procedure 

as well, based on the same premise, where we know that the minimum path travel time is by 

definition invariant to flow rate ,f yielding: 

 
min delay( , ) ( | , ) ( | , ),  A P f A P f A P   (5.4) 

 

such that min min( , )h A P  and delay delay ( | , ).h f A P  Substituting Equation (5.4) into path 

choice function ( )   yields: 

 

    min delay min delay( , ) ( | , ) | ( , ) ( | , , ) .      f A P f A P D A P f A P D  (5.5) 

 

Because the minimum path travel time is invariant to demand ,D  it can be excluded from the 

interdependency between path choice and network loading. The delay of course does remain 
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conditional on demand, i.e. flow rates, and still needs equilibrating. Hence, this formulation, 

while correct, does not yet yield any computational gain; the same network, path set, and 

interaction between demand and supply is considered to find a solution. That said, there is 

potential to significantly reduce computation times based on the following two observations. 

First, in general networks, only a minority of the links is typically saturated while causing the 

majority of the delay. If we somehow can identify this subset of locations and use this, much 

smaller, delay subnetwork to solve delay ( ),  the equilibration process would be simplified 

considerably. Second, when not considering just a single demand scenario, but a great many 

demand scenarios, the majority of the bottlenecks causing path delays can be assumed to 

remain the same. This is especially true given our application context of matrix calibration, 

travel time variability, and quick-scan applications that consider many, but only slightly 

varying demands. Since each demand scenario can be assumed to only differ marginally, the 

identification of a relatively modest superset of delay infrastructure comprising all potential 

bottlenecks across demand scenarios is deemed feasible. Therefore, we aim to construct a 

single, comparatively small, delay subnetwork delay N N

2

A , that is able to capture the original 

path travel time delays across all demand scenarios considered. This reduced delay subnetwork 

representation utilises a simplified path representation delay P A

2 .P  Simplified paths result in 

computational gains since the computational cost of path based network loading (in static 

traffic assignment) is in fact driven by its path complexity6. We rewrite Equation (5.5) to reflect 

this approach: 

 

 min delay delay delay( , ) ( | , , ) , {1, ,S},s s s s   f A P f A P D  (5.6) 

 

where the number of demand scenarios is denoted by S.We emphasize that we formulated 

Equation (5.6) such that we reuse the same delay subnetwork across all demand scenarios .s  

Clearly, the challenge here lies in the identification of the minimal delay subnetwork that is 

capable of reproducing the original delay that would have resulted when adopting the original 

network and original path set for each demand scenario. 

 

The number of paths in delayP is equal to the number of paths in ,P only the number of links in 

a path might have decreased as a result of the reduced delay subnetwork delay.A  As we will see 

in Section 5.7, due to this reduced representation, the overlap between paths increases 

significantly. A further reduction in computational cost can therefore be achieved by exploiting 

this increased path overlap. Consequently, we propose a novel path consolidation procedure, 

resulting in a minimal path set representation. The paths in this minimal path set are termed 

equidelay paths, denoted by equidelay A

2 ,P
P again referring to Section 5.7 for details. Adopting 

this alternative path set does introduce a complication within the traffic assignment procedure 

itself. On the one hand, path choice operates on the original path set, but is now provided with 

path travel times for the consolidated path set. On the other hand, the network loading 

procedure receives path flows for the original path set, while it adopts the consolidated path set 

to perform the network loading. To correctly map original paths to consolidated paths and vice 

versa, the path choice procedure and network loading procedure for the delay subnetwork need 

                                                 
6 When network loading is path based, flows are loaded on link on a per path basis, see for example Bliemer et al. 
(2014), hence the number of paths as well as the number of links per path determine the computational effort 
required to carry out the network loading, see also the results presented in Chapter 6. 
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to be altered accordingly. For now we assume this is possible by adopting an altered path choice 

function equidelay ( )  and network loading function equidelay ( ),   respectively, yielding: 

 

 equidelay min equidelay delay equidelay( , ) ( | , , ) , {1, ,S}.s s s s   f A P f A P D   (5.7) 

 

Equation (5.7) can be considered as a special case of our general framework, discussed in 

Chapter 2. To do so we slightly modify our shorthand notation for the traffic assignment 

components ( )M  to make it suitable for a multiple demand scenario setting such that: 

 

  , , , ( ), ( ) | | {1, ,S} .s s     A Z P DM  (5.8) 

 

Further, in the original framework, the representation optimisation problem considers all 

possible “rules” governing a change in representation (Equation 2.6). In this case however, we 

formulate a single fixed procedure yielding just one “rule” denoted equidelay.  Furthermore, 

because the procedure is fixed and assumed to be lossless, there is no error function ( )   to 

consider. This then, leaves only a single instance of the inverse scaling function to consider, 

i.e. equidelay( , ( )).


 M M  The rule specific representation function equidelay ( )


 M
delay equidelay equidelay min equidelay( , , ( ), ( ), ( ))     A P  and given that we are only interested in the 

resulting traffic assignment components we can reduce equidelay( , ( ))


 M M  even further, such 

that our entire decomposition method can simply be denoted by: 

  

equidelay ( ).


 M  (5.9) 

 

Before we proceed with formalising the decomposition method itself, we introduce the reader 

to the network infrastructure, the two considered traffic assignment procedures considered, and 

the impact of each procedure on the effectiveness of the proposed decomposition method. 

 

5.2 Network infrastructure 
 

Recall transport network matrix N N

2 ,A where each non-zero cell denotes a link between 

two nodes. We construct this matrix via: 

 
T( ) , A A A  (5.10) 

 

with the mapping from nodes to their incoming links via indicator matrix N A

2 , A while 

outgoing links are mapped similarly via N A

2 . A  The transpose of a matrix is denoted by T.  

Each link a  in the network has a length a  (km), maximum speed max

a  (km/h) and capacity 
max

aq  (veh/h). Recall that each path {1, ,P}p  is mapped to the network via P A

2 .P

Mappings between a path and its departing, arriving zone {1, ,Z}z are given by indicator 

matrices Z P

2, ,  P P respectively. A turn between link a  and a  is denoted by link pair 

( , ),a a which, on the network level, is formalised by link–to-link turn indicator matrix 
A A

2 ,M where we can construct M  via: 
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T( ) . M A A  (5.11) 

 

The path specific turn mapping is denoted by A A

2 ,p M this mapping only includes non-zero 

indicators if part of path p, where necessarily: 

 
1 2 P-1 P|| || || || ,M M M M M  (5.12) 

 

where operator || denotes the logical or operator. Logical operators can be employed on 

indicator matrices because they are Boolean matrices at the same time. An example on the turn 

based formulation is provided in Figure 5.1. 

 
Figure 5.1: Example of turn mapping and path departure/arrival zone mapping. 

 

5.3 Path choice and SUE 
 

We adopt an SUE approach where the path set is generated a-priori. The combination of SUE 

and the adoption of a fixed path set is quite common in a planning context, because SUE yields 

non-zero flows on all paths considered. Enumerating all possible paths in assignment is 

infeasible for any but the smallest networks. It is argued one should therefore only consider 

relevant paths (Bliemer and Bovy, 2008). A large body of literature exists on path set 

generation, see for example Watling et al. (2015) or Fiorenzo-Catalano (2004). For now, we 

assume relevant paths have been identified adopting some path choice set generation 

procedure. We return to this topic in Section 5.8 because the construction of the relevant path 

set is important in identifying our, single, delay subnetwork. To determine path choice 

proportions the MNL model is adopted. Other logit models are equally compatible with our 

methodology, but since our focus is not on path choice as such, we choose to adopt a basic yet 

widely used approach. In MNL, path flows pf  are determined via: 
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P

1

exp( )
, : 1 with , {1, , Z},

exp( )

p

p zz zp z p

zp z p p

p

h
f D p P P z z

P P h





 

 

 

   



 
 
     
 

 
 


 (5.13) 

 

where 1zp z pP P 

   merely selects the departing and arriving zone of path p  such that it is 

consistent with the alternative paths considered in the denominator. Scale parameter   denotes 

the magnitude of the perception error for each traveller, with 0 resulting in a random choice 

and   yielding a fully deterministic choice. The equilibrium path flow demand vector f can 

be found by solving the following variational inequality problem (Chen, 1999): 

 

  
P

1

1

P

1

( ) ln 0, ,

s.t.

0, {1, ,P},

, , {1, , Z}.
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zz zp z p p

p

h f f f
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f f

 

(5.14) 

 

 

 

 

 

with ( )ph 
f denoting the absolute equilibrium path cost, while 

1( ) lnp ph f  f  denotes the 

perceived equilibrium path cost consistent with MNL. The set of feasible non-negative path 

flow vectors f is given by , where a path flow vector is considered feasible when it satisfies 

the demand given by .D   

 

5.3.1 Accepted turn and link flow 
Path flows f are loaded onto the network, which, depending on the adopted method, results in 

accepted link and/or turn flows. It is important to realise that accepted flows can differ from 

desired flows. This difference can for example be caused by insufficient available supply in 

the form of capacity constraints, reducing the desired flows and resulting in smaller accepted 

flows. In case the desired flows are reduced this is reflected in the formation of queues, see 

Section 5.5, ensuring that the conservation of vehicles is not violated. The Accepted turn flows, 

denoted A A

Q , are based on accepted path turn flows , A Ap 

Q  such that:  

 
P

1

.p

p

Q Q  (5.15) 

 

The accepted turn path flows only contain non-zero entries when it concerns turns that are 

traversed by path .p  the Link level flow rates, denoted A 1,

q can then also be obtained via: 

 
P

1

T

, if  is the initial link on path ,

, otherwise.

p

pa

a

f a p
q 






 





1 Q

 (5.16) 
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Observe that 
aq is simply the sum of accepted turn flow rates towards link ,a  found by 

multiplying column vector aQ (consisting of values in row a in matrix Q) with transposed all-

ones vector T.1  The dimensionality of 1  is assumed to be implicitly determined by its context. 

Initial path links receive the sum of the desired path flows since there are no inflow restrictions 

and spillback is not considered. A simple illustrative example for a merge node with some 

reduction of accepted flow on turn 3 4( , ),a a of this path and turn based formulation, is provided 

in Figure 5.2. Let us now discuss how to construct ,pQ depending on which assignment method 

is chosen. 

 

 
Figure 5.2: Example of accepted turn and link flows based on some given .p

Q  

 

5.4 Traditional capacity restrained static assignment  
 

In traditional capacity restrained static assignment, there exists no distinction between desired 

path flows and accepted path flows, because flow is not restricted to the link capacity. As a 

result it generally holds that: 

 

.p p

pfQ M  (5.17) 

 

We assume that in this assignment model path costs are link additive. In addition, a strictly 

concave link performance function is chosen. This is in line with how this model is typically 

used in practice. There exist many link performance functions. Here, we choose the BPR 

function (Bureau of Public Roads, 1964) given by:  

 

max max
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 (5.18) 

 

resulting in a vector of link costs A 1,

c  where ,a ,a are positive parameters that require 

estimation, preferably based on empirical data. Path costs are then found via: 
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.h Pc  (5.19) 

 

Following the functional travel time decomposition as discussed in the previous chapter, we 

can decompose Equation (5.19) into a minimum link travel time component and a delay 

component via: 

 

min

max
,a

a

a

c


  (5.20) 

delay

max max
,

a

a a a
a

a a

q
c

q







 
  

 
 (5.21) 

 

such that min delay ,a a ac c c   which translates to vectors min delay A 1, ,c c  respectively. Because 

path costs are link additive in this model, we can construct the minimum path travel times and 

the additional path delay travel times simply via:  

 
min min ,h Pc   (5.22) 

delay delay ,h Pc   (5.23) 

 

respectively, where we recall that the total path travel times are the sum of the two components, 

i.e. min delay. h h h Since a link performance function only captures situations where the 

density increases with increasing flow, it necessarily only captures the hypocritical branch of 

the fundamental diagram, see also Figure 5.3 in the next section. Hence, Equation (5.21) cannot 

be decomposed any further into a hypocritical and hypercritical component, since the latter is 

non-existent (or zero, depending on one’s perspective).  

 

5.5 Capacity constrained model with point queues 
 

As discussed in Chapter 3, traditional capacity restrained models make strong assumptions in 

favour of attractive mathematical properties resulting in: (i) congestion being modelled inside 

bottlenecks rather than in front of them, (ii) flows can exceed capacities resulting in implicit 

queues, rather than actual physical queues, (iii) path travel times are obtained through link 

performance functions which are known to be inconsistent with congested traffic conditions 

and require (additional) calibration. With this in mind, and the fact that the application context 

considered here requires the model to produce as accurate travel times as possible within the 

static modelling paradigm, more than warrants the consideration of an alternative assignment 

model. We therefore consider the recent residual point queue model of Bliemer et al. (2014) 

for the following reasons. First, unlike most static models, it includes a first order node model 

compliant with the requirements formulated in Tampère et al. (2011). This allows the model to 

formulate a path travel time function that incorporates hypercritical delays resulting from 

explicit residual queues imposed by the node model rather than implicit queuing delays through 

link performance functions. Second, all residual point queues are placed in front of the 

bottleneck instead of in the bottleneck. This is important, because if delay is modelled inside 

the bottleneck, delay is imposed in the wrong location and only paths traversing the bottleneck 
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experience the delay. However, in reality, other paths also might experience delay imposed by 

this bottleneck without actually traversing it. For example, paths that do not enter the bottleneck 

itself, but enter an alternative exit link of the node which is not the bottleneck link. By placing 

the queue in front of the bottleneck, delay is also affecting these paths, as one would expect. 

Observe that this is accomplished without considering spillback effects. Lastly, as shown in 

Bliemer and Raadsen (2017), this model can be directly derived from the dynamic first order 

network loading model originally proposed by Gentile (2010), which makes it, arguably, more 

realistic than its traditional static counterparts. Comparing this model with traditional static 

assignment shows that the obtained path travel times under a congested regime are found to be 

closer to what one would expect to see in reality, especially under varying demand scenarios, 

as is demonstrated in Section 5.5.3.  

 

This capacity constrained model is compatible with any fundamental diagram with a concave 

uncongested branch. Since we aim to demonstrate that this model is preferable over the 

traditional capacity restrained approach using BPR, we, for now, adopt a fundamental diagram 

with an uncongested branch identical to the BPR function, such that the hypocritical delay of 

the uncongested branch, becomes a capacity constrained version of Equation (5.23): 

 

hypo max

max max
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a

a a a
a a a

a a

q
c q q

q







 
  

 
 (5.24) 

 

where hypo hypo.h Pc The difference between the two models, on the link level, can be 

illustrated graphically through the fundamental diagram, Figure 5.3(a) depicts a BPR function, 

converted to its fundamental diagram form in the flow-density plane, while Figure 5.3(b) shows 

the fundamental diagram consistent with the model in Bliemer et al. (2014).  

 

 
Figure 5.3: Schematic fundamental diagram comparison between (a) BPR function and 

Bliemer et al. (2014). 

Observe that the BPR function is not consistent with the available link capacity whereas the 

capacity constrained model does limit the flow to capacity. Although the model in Bliemer et 

al. (2014) is capacity constrained, it is not storage constrained. If it would be, queues would 

propagate backwards with a non-zero hypercritical wave speed equal to the tangent of the 

hypercritical fundamental diagram branch. In Bliemer et al. (2014) the hypercritical wave 

speed is instead assumed to be zero across all hypercritical flow states, making sure queues do 

not spillback, hereby not considering storage constraints. Hence, our depiction of the dashed 

hypercritical branch with an assumed horizontal tangent. To construct the hypercritical delay 
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hyperh - which in a capacity constrained context can be non-zero - we first discuss how queues 

form in this model, namely, via its node model. 

 

5.5.1 Node model inputs and outputs 
The accepted turn flows ,Q in Bliemer et al. (2014), are the results of desired path flows f and 

the restrictions imposed by the node model. These node model supply restrictions are not only 

based on the given, and fixed, available exit link capacities governed by the fundamental 

diagram. They also depend on the offered incoming flow rates, also known as sending flows or 

desired outflows. In general networks, sending flows on the downstream end of a link are in 

fact the accepted flows entering the link at the upstream end. Hence, node model outcomes 

depend on sending flow rates, while sending flow rates depend on the (preceding) node model 

outcomes. To be able to find a solution, Bliemer et al. (2014) cast the network loading problem 

as a fixed point problem where the node model is assumed to be any first order node model 

compliant with the conditions outlined in Tampère et al. (2011). We denote this general node 

model, for each node  ,n  via implicit function ( ).n   This model has two inputs; sending flow 

rates and receiving flow rates. In both cases we construct these flow rates on the network level 

and leave it to the node model function ( )n  to extract the relevant information pertaining to 

node .n  The sending turn flow rates are denoted A A ,

S  which we obtain through: 
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S  (5.25) 

 

where, in the initial case, the initial turn flow rate from connector link a  to link a  comprises 

the sum of all path travel demands utilising that particular turn. The second case simply collects 

all accepted path turn flows p

a aQ   into link a  and following path ,p  conditional on that path 

utilising the turn ( , )a a  under consideration. In other words, the sending flow on turn ( , )a a

is all the flow that is/can be offered to this turn after taking the upstream encountered capacity 

restrictions (if any), affecting the desired path flow 
pf  into account via .p

Q   

 

To clearly illustrate the distinction between accepted and sending flow rates, we revisit the 

example of Figure 5.2, only now explicitly showing the sending flow rates in addition to the 

assumed accepted path flow rates .p
Q  Clearly, the sending flow rates (200) offered to turn 

3 4( , ),a a were somehow reduced to the accepted flow rates (40), as the result of some node 

model restriction. Also observe that the sending flow is simply the sum of the accepted 

preceding turn flows into link 3 ,a see Figure 5.4. 

 

The second input of the node model consists of the node’s available supply, also known as 

receiving flow. Because spillback is not considered and neither are traffic signals (which could 

potentially impose turn dependent capacities), the available supply always equates to the 

outgoing link’s capacity. As such it is denoted by A 1

R  and defined via: 

 
max qR  (5.26) 
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Figure 5.4: Difference between sending flow and accepted flow. 

The node model then yields flow acceptance factors for each incoming link of node n  through 
A 1(0,1] .n α  The flow acceptance factor dictates the portion of the link’s sending flow that is 

allowed to pass through the node (via its turns). When the acceptance factor is one, it indicates 

all sending flow is accepted. Conversely, when the acceptance factor is smaller than one, a 

queue forms, resulting in hypercritical delay. Therefore, the flow acceptance factors implicitly 

define the residual point queues on each link, reflecting the vehicles unable to leave the link in 

the time period under consideration. The general (implicit) node model formulation is defined 

via: 

 

( , ).n n α S R  (5.27) 

 

Consider the basic example of a node n  with a single incoming link a  and a single outgoing 

link ,a the flow acceptance factor for link a  is then defined as min{1, }.n

a a aa   R S  Note that 
n

α  is a vector with all ones except for incoming links to node ,n  which might be smaller or 

equal to one. In order to create a network wide acceptance factor vector we construct 
A 1(0,1] α  via: 

 
1 2 N-1 N  ,α α α α α   (5.28) 

 

where operator denotes the element-wise multiplication of vectors/matrices, commonly 

referred to as the Hadamard product. Since a link can only be an incoming link of a single node 

in the network, it can only be smaller than one once, hence the Hadamard product automatically 

identifies the acceptance factors across the nodes. 
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Let us illustrate how this is applied on a corridor network as depicted in Figure 5.5(a). The 

network has a single path with a travel demand of 1 3000f   (veh/h), for a period of one hour. 

The sending flows, accepted flows, and flow acceptance factors are shown in Figure 5.5(b). 

Applying the node model on the turn from link 3 to link 4 yields a link flow acceptance factor 

of 3 2000 3000 2 3.   This is because the sending flow from link 3 to link 4 exceeds the 

available outgoing supply and is scaled back accordingly. The residual point queue on link 3 

can be made explicit via 3 3(1 ) 1000.q   The flow on subsequent link 4 is therefore reduced 

to 2000, in line with the available capacity. Note that the supply on link 5 also does not suffice 

given the incoming flow, leading to 1
4 2

1000 2000 ,    reducing the flow even further. The 

remaining links have enough supply to accommodate the remaining flow. For these links, the 

acceptance factors are equal to 1. 

 

 
Figure 5.5: Example corridor network denoting (a) the infrastructure and (b) results for the 

residual queuing model. 

For examples on how to determine the accepted flow rates for more complex nodes, we refer 

the reader to Tampère et al. (2011). As Figure 5.5 highlights, the accepted turn path flows in 

this model are no longer by definition equal to the desired path flows, as is the case in capacity 

restrained models. Intuitively, we can see that the accepted flow on a turn is given by the 

sending flow multiplied by the acceptance factor such that 
aa a aaQ   S for all turns ( , ).a a  

Therefore, the capacity constrained formulation of 
p

Q cannot be obtained as easily as defined 

in Equation (5.17), which does not consider any capacity restrictions. Instead, the path based 

accepted turn flows are the result of all the upstream encountered acceptance factors from the 

moment the path departed from its origin (with its original travel demand ).pf  Hence, for the 

residual queuing model, accepted flows are found via: 
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(5.29) 

 

 

where indicator vector A 1

2

ap η  identifies the links that path p encountered up to, but not 

including link .a  In the first case, we utilise apη  to selectively apply the acceptance factors 

such that we only utilise them when it relates to a link already traversed by path .p  If this is 

not the case, the acceptance factor is ignored because it reverts to one. As a result the original 

travel demand 
pf  is multiplied with all relevant acceptance factor up to the turn under 

consideration. Further, if turn ( , )a a  is not part of path p  in the first place, it, by definition, 

carries no demand and we revert to zero flow via the second case.  

 

5.5.2 Path travel time formulation 
In the residual point queue model, the cost function as a whole and the hypercritical path delay 

in particular are not link additive. It is dependent on earlier encountered residual queues on the 

path. The delay corresponding with these queues represent the model’s hypercritical delay and 

is obtained via:  

 
1end A

hyper

1

( ) 1 ,
2

a p
a

p a
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t
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  (5.30) 

 

where endt is the simulation end time (h) and a  is the last link on path .p  A derivation of this 

function, albeit in a set based formulation, can be found in Bliemer et al. (2014) or Bliemer and 

Raadsen (2017). Intuitively, this function can be interpreted as follows. The reciprocal of the 

multiplication of encountered acceptance factors can be considered as a special path demand 

to path capacity ratio which reverts to exactly 1 in case no excess demand exists on the path. 

In the corridor example discussed earlier (which has excess demand) this delay yields 
12 1

3 2
( ) 3.   Since the available capacity is of course utilised as well, the path’s residual queue 

to capacity ratio is obtained by decrementing the found value by one, i.e 3-1=2. In the example 

this amounts to a 1000 (veh/h) supply versus 3000 (veh/h) demand, hence a 2000 (veh/h) queue, 

leading to a queue to capacity ratio of 2. Observe that this ratio equates to the delay experienced 

by the “final” vehicle on the path assuming the simulation runs exactly one hour. However, we 

are only interested in the average path delay over the simulation period considered. To obtain 

this average delay, we take the average of the delay of the first vehicle – no delay- and the last 

vehicle – final delay. The last vehicle’s delay is obtained by taking the actual simulation 

duration into account, which leads to the hourly delay being multiplied by a factor end( 0) 2.t   

Figure 5.6 gives an impression of how various path queue to path capacity ratios across 

different simulation end times result in changing hypercritical delays in this particular model. 

Note that the resulting surface is linear in both directions.  

 

Recall that unlike the hypercritical delay, hypocritical delay and minimum travel time remain 

link additive and identical to the capacity restrained model as long as the flow does not reach 

capacity (Equations (5.22) and (5.24)). When the flow exceeds capacity, the capacity 

constrained model yields a non-zero hypercritical delay as defined above, while the capacity 

restrained model allows an ever increasing (hypocritical) delay when flows exceed capacity. 
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Figure 5.6: Hypercritical average path delay as a function of residual queues and simulation 

time. 

5.5.3 Path travel time under varying demand 
The two discussed assignment methods are both compatible with the proposed decomposition 

method; they are compliant with Equation (5.1) and do not consider spillback. However, we 

argue that the capacity constrained residual point queue model is the better choice. We illustrate 

this by returning to the simple corridor example introduced in the previous section and 

investigate results for both models under varying demand scenarios. We consider two demand 

scenarios, 1 21500, 3000.D D   Let us consider the situation on link 4 in the first scenario. 

In reality, the demand of 1500 vehicles results in the last vehicle spending an additional half 

hour in the queue, before it can exit the link 1
2

((1500 1000) 1000 ),   while the first vehicle 

experiences no queuing delay at all, so the average delay, under uniform arrival rates, is 

expected to be 1
4

 (h). Similarly, we expect an average queueing delay of 1 hour for 2.D  Let us 

now consider the capacity restrained model where we must first calibrate the BPR function 

parameters ( , )   which we choose to do based on our most congested link. We find values of 

0.9 and 4.1 respectively7. These values are then applied to all links in the network given their 

similar characteristics. Results of both traditional static assignment, with the calibrated BPR, 

and the residual queuing model are provided in Table 5.1. We would like to mention that this 

particular example is an extreme case, constructed to highlight issues when adopting the BPR 

function, so while representative, in general networks, these differences are typically somewhat 

less pronounced. 

 

We find that due to the lack of hard capacity constraints, the traditional static capacity 

restrained model overestimates the true travel times on the path level, despite our link level 

calibration efforts. This is mainly because links 6 and 7 do not experience any congestion in 

reality, something that cannot be reflected in a capacity restrained setting. The residual queuing 

model on the other hand computes the hypercritical delay correctly based on the expected 

                                                 
7 We calibrated the parameters to link 5 in order to match the expected real delay in the first demand scenario. 
Clearly, there are other ways to do this, but regardless of how one calibrates, the results would reflect the same 
issues when adopting traditional static assignment under varying demand scenarios. 
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average delay due to capacity constraints. Since its hypercritical delay is not link additive, we 

only show the final delay on the path for each scenario. 

 

Table 5.1: Path and link travel time comparison under varying demand. 

  Travel time [h] per link  

  1 2 3 4 5 6 7 :Path 
min

c   Eqn. (5.20)  0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.35 

1 1500D   

delayBPR c  Eqn.(5.21)  49 10   49 10  49 10  0.015 0.25 0.25 0.25 0.77 
hypoRes. queue c  Eqn.(5.24)  49 10  49 10  49 10  0.015 0.05 0.05 0.05 0.16 

hyper

1Res. queue h Eqn. (5.30) - - - 0.25 - - - 0.25 

Flow acceptance factor a  1 1 1 2 3  1 1 1  

          

2 3000D   

delayBPR c  Eqn. (5.21)   0.015 0.015 0.015 0.25 4.29 4.29 4.29 13.17 
hypoRes. queue c  Eqn. (5.24)  0.015 0.015 0.015 0.05 0.05 0.05 0.05 0.24 

hyper

1Res. queue h Eqn. (5.30) - - 1.00 - - - 1.00 

Flow acceptance factor a  1 1 2 3  1 2  1 1 1  

 

One could of course argue that we could have calibrated the BPR function against path travel 

times instead of link travel times, but in such a case the link travel times would have been 

underestimated, also this is problematic if links do not have the same characteristics. Further, 

once demand starts to vary, also a path based calibration would yield poor estimates across 

demand scenarios due to the model simply being inconsistent with how traffic behaves in an 

oversaturated situation. Either way, problems arise and since the calibration parameters in the 

BPR function only can approximate hypercritical delay and incorporate this result in the 

hypocritical uncongested branch rather than properly model the fundamental diagram’s 

hypercritical branch, we find that the travel time is compromised in any case. 

 

5.5.4 The impact of the location of congestion 
Let us now consider the impact of congestion, through another example, depicted in Figure 

5.7(a), it is identical to the earlier example in Figure 5.5(a), except for additional path 2p  that 

diverges upstream of link 4. A (virtual) traveller on this additional path would, in reality, also 

experience queueing delay in case the demand on the original path 
1pf exceeds 2000 (veh/h). 

This is due to the fact that they would be hindered by vehicles following path 1p trying to enter 

link 4. Only models that take capacity constraints into account by modelling queuing delays in 

front of the bottleneck, are able to capture this effect. Here, the residual queuing model, see 

Figure 5.7(b), would yield an average queuing delay of 0.25 (h) for path 2 ,p while traditional 

static assignment would not impose any hypercritical delay on this path.  
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Figure 5.7: Corridor example with one additional path diverging (a) before initial bottleneck 

and its (b) residual queue result. 

 

The inverse situation occurs when we assume 
1 2

1500,p pf f   but move the bottleneck link 

in front of the diverge node as depicted in Figure 5.8(a). Then, both paths traverse the exact 

same bottleneck links (4 and 5), which should result in equal hypercritical delay. Yet, in 

traditional static assignment, recall Table 5.1, the accrued delay on path 1 yields 
delay

1 3 0.015 0.25 4.29 2 0.25 5.09h         (h) while for the second path we find 
delay delay delay delay delay

2 1 6 7 9 4.84h h c c c      (h). The reason for this difference is; path 1 includes 

one more link that is falsely assessed as being oversaturated. The residual queuing model on 

the other hand computes the delay correctly and finds delay delay

1 2 1h h  (h), see Figure 5.8(c).  
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Figure 5.8: (a) Corridor example with one additional path diverging after last bottleneck, (b) 

traditional static assignment link level flows, (c) residual queueing turn level flows and 

residual queues. 

5.6 Minimum travel time and delay subnetworks 
 

As discussed in Section 5.1 the original network loading procedure ( )   can be functionally 

decomposed into, min ( , ), A P and delay delay delay( | , , ), f A P D respectively. Here, we now 

formalise the methodology to construct each of the altered model components involved; 
min delay delay( ), ( ), ,    A and most importantly, delay.P  In addition, we argue why the proposed 

method is most effective when hypocritical delay is not considered in the underlying 

assignment model such that the path delay equates to the hypercritical delay. 

 

5.6.1 Network loading and travel time: minimum travel time subnetwork 
The minimum travel time subnetwork loading procedure min ( )  is identical to the original 

network loading procedure ( ),   albeit that it is flow invariant. The only real difference is to 

be found in the construction of the minimum path travel times min
h that only require the basic 

link characteristics of the traversed paths, see Equation (5.22). Since the paths remain the same, 

the original network and path set are adopted as well. It is however important to note that this 

minimum travel time vector only needs to be computed once, can be stored, and is reusable 

across any demand scenario to supplement the scenario specific delay. In case of our corridor 

example in Figure 5.5(a), we would compute and retain the total minimum travel time of 
min

1 0.35,h  see Table 5.1. This of course only remains a valid approach as long as both the 

network and path set remain fixed. 

 

5.6.2 Lossless versus lossy decomposition 
To reconstruct the total path travel times, any additional path delay that is incurred needs to be 

identified and added to the minimum path travel times. Since delay varies with flow it requires 

equilibration for each demand scenario considered. To maximise computational gains, we aim 

to construct a single delay subnetwork to capture the delay component of the path travel times. 
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As discussed, a functional decomposition of delay includes both hypocritical and hypercritical 

delay. We first discuss the impact of including hypocritical delay in this decomposition method. 

 

So far, the capacity restrained static traffic assignment procedure as well as the residual queuing 

model adopted an uncongested branch of the fundamental diagram that yields positive 

hypocritical delay whenever a link has non-zero flow. Hence, all links in the original network 

that carry positive demand in any of the demand scenarios contribute to one or more path’s 

delay. Therefore, the original path travel time delays can only be reconstructed in a delay 

subnetwork when the entire (used) original network is retained. Clearly, this can never amount 

to any computational gain, because the network cannot be simplified without losing 

information in the form of missed delay. 

 

There are a number of possible approaches to get around this issue. First, one can accept the 

decomposition method becomes lossy rather than lossless. If a lossy approach is deemed 

acceptable, the next choice pertains to at what point a link can be removed and when to retain 

it. For traditional static assignment for example, we could impose a minimum volume-capacity 

(v/c) ratio threshold and only when this threshold is exceeded we retain the link, where retained 

links are referred to as critical-delay links, while all other links are classified as non-critical-

delay links. As an example consider the corridor network in Figure 5.9, where  we assumed a 

volume-capacity threshold of 1 as an example, leading to a delay subnetwork smaller than the 

original network, containing only links 4-7.  

 

 
Figure 5.9: Lossy delay subnetwork under BPR function with minimum v/c ratio threshold of 

one. 

Do note that the hypocritical delay of links 1-3 can no longer be captured when they are 

removed, because the delay is flow dependent. Hence, adopting traditional static assignment 

with a BPR like travel time function, by definition leads to information loss under this 

decomposition method. Similar information loss would occur when we adopt the residual 

queuing model with the fundamental diagram as originally proposed in Figure 5.3. 

 

As an alternative to imposing a v/c ratio threshold, we could also change the assumptions on 

the underlying assignment model instead. When we for example adopt Newell’s popular 

triangular fundamental diagram (Newell, 1993), the hypocritical delay vanishes because 
max crit ,  see Figure 5.10. This means the decomposition method would not suffer from any 

hypocritical delay related information loss with respected to the original travel times because 

there simply isn’t any. It does mean the underlying assignment model is somewhat simplified. 

Given that it is well known that the hypocritical delay in reality is generally relatively small 

compared to both the minimum travel time and especially any hypercritical delay, such a 
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simplification is deemed preferable over the aforementioned threshold based approach. This 

method can potentially also be adopted for a traditional static assignment method, for example 

by linearizing the uncongested branch by fixing the speed to crit .  

 

 
Figure 5.10: Fundamental diagram comparison with linear uncongested branches for (a) 

BPR like link performance function and (b) Newell’s triangular fundamental diagram for 

Bliemer et al. (2014). 

From here on we choose to adopt a linear uncongested branch to allow for our decomposition 

method to remain lossless. Hence, hypocritical delay is absent in the underlying assignment, 

i.e. hypo 0,h and therefore delay hyper.h h  

 

5.6.3 Delay subnetwork: capacity constrained versus capacity restrained  
Based on our findings in the previous section we know that our delay subnetwork only needs 

to reflect the functional hypercritical delay component of path travel time in order to be able to 

replicate the original path travel times. Recall that hypercritical delay follows from supply 

restricted infrastructure, i.e. bottlenecks. Since the number of bottlenecks in a general network 

only constitutes a relatively small part of the total infrastructure, this delay subnetwork is also 

small compared to the original network8. The delays obtained from the delay subnetwork only 

match the original delay perfectly when it contains the original bottlenecks without exception. 

If this is not the case, the method again becomes lossy rather than lossless. The delay 

subnetwork should therefore be constructed as the union over all identified bottlenecks across 

all considered demand scenarios. We first discuss how to obtain the delay subnetwork under a 

single demand scenario. This does not yet yield any computational gains, but demonstrates the 

concept. We postpone the discussion of identifying the delay subnetwork under varying 

demand scenarios to Section 5.8.  

 

The contents of the delay subnetwork also depend on the adopted assignment method. We first 

consider the case of constructing the delay subnetwork in combination with the residual 

queuing model. In this model, turns affected by links with residual point queues need to be 

retained in order to reconstruct the original path delay. Under a single demand scenario, one 

can find these turns by equilibrating the original model and retaining the turns on links with a 

residual queue. Observe that, again for a single demand scenario, this by definition allows for 

a lossless, yet not computationally more attractive, approach. To illustrate this, we, again, 

consider the corridor network example of Figure 5.5 under 3000.D   The critical-delay links 

                                                 
8 We base this statement on our observations testing this method on real-world large scale applications, see the 

results presented in Chapter 6. 
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to retain are 3, 4 and 5, as depicted in Figure 5.11. Note that while link 5 does not have a 

residual queue on the link itself, it is still needed to reconstruct the delay implicitly defined 

through 4. This is because, in the residual queuing model, delay follows from the node model. 

The node model requires the inflow rates of link 4 as well as the available outgoing supply, i.e. 

receiving flow, of link 5 to determine the flow acceptance factor. Therefore, the node’s 

topology needs to be retained in full whenever any of the incoming links hold a residual queue. 

 

 
Figure 5.11: Delay subnetwork for residual queuing model on corridor network. 

From Figure 5.11 we can also observe that bottlenecks serve as a filter for the propagation of 

excess flows in case of the residual queuing model, limiting the number of downstream links 

that are considered oversaturated. This in contrast to capacity restrained models. In capacity 

restrained models flows are not withheld and continue to (potentially impose hypercritical 

delays on downstream links. In our decomposition method this is especially undesirable since 

it results in more links to be included in the delay subnetwork reducing the potential for 

computational gains. In this particular example, we would find hypercritical delay on links 4-

7 (not on link 3 since delay is wrongly imposed within the bottleneck instead of in front of it). 

 

Finally, since spillback is not considered in either model, queues/delays remains local and do 

not physically propagate upstream. The number of links exhibiting hypercritical delay, 

compared to models that do consider spillback, is therefore relatively small, reducing the size 

of the delay subnetwork that needs to be considered and increasing the potential computational 

gain.  

 

5.6.4 Network loading and travel time: the delay subnetwork 
We now formalise the, so far informally discussed, construction of the delay subnetwork for 

general networks. All links to be retained in the delay subnetwork are marked as such in link 

indicator vector A 1

2 .β  The construction of this vector is conditional on the assignment 

method, but once this classification is in place, the remainder of the procedure is agnostic to 

the underlying model.  

 

5.6.4.1 Critical-delay link classification 

For traditional static capacity restrained assignment adopting a BPR like function with a linear 

uncongested branch we obtain β via: 

 

min

max
1, if ,

0, otherwise,

a

aa

q

q







 



 (5.31) 
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Where min  denotes the minimum v/c ratio threshold for a link to be considered delay critical. 

In the absence of modelling hypocritical delay, min 1  by definition. Clearly, one could also 

adopt the original BPR function and choose min 1   to retain more links, albeit at the cost of 

missing some of the original hypocritical delay. However, as mentioned before we focus on a 

lossless decomposition and as such do not explore this latter scenario any further. 

 

For the residual queuing model (with a triangular fundamental diagram), the situation is slightly 

more complicated. Clearly, links with a flow acceptance factor 1a   should be included in 

the delay subnetwork. However, when this occurs, the node’s supply restrictions, i.e. outgoing 

links, also need to be retained as discussed in the previous section. Hence, the critical-delay 

link classification for this particular assignment model is given by: 

 

|| , if ( , ) : 1 or ( , ) : 1,

0, otherwise,

na n a a na a n a

a

A A a n A a n A 


   

     
      

 


 (5.32) 

 

where link a  is retained whenever any of the links a  of its upstream or downstream node 

, ,n n respectively, holds a residual queue and exhibits hypercritical delay. So, either link a  

itself holds a residual queue, i.e. ,a a or the link is needed to reconstruct the queue by 

providing the sending or receiving flows as input to the node model ( ).n   

 

5.6.4.2 Dual representation of networks 

The formulation of our decomposition method benefits from adopting a dual representation of 

the network. Such a representation is not new, it has been used before in graph based networks, 

see for example Eichler et al. (2013), or Aǹez et al. (1996). In a dual representation, each link 

is modelled as a vertex, while the edges represent turns between links. An example of an 

original network representation and its dual representation is provided in Figure 5.12. 

 

 
 (a)      (b)   

Figure 5.12: (a) Example Manhattan type network with four centroids. (b) Dual 

representation of the network shown in (a). 

This dual representation should not be confused with a dual graph, which is something else 

entirely, this dual representation of the transport network instead equates to the medial graph 

in a graph theoretical sense.  The extraction of the delay subnetwork - conditional on the link 

classification in the previous section – revolves around contracting relevant turns. In the 
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original network, a turn comprises two links, while in dual representation a turn is depicted by 

a single edge making it more suitable to illustrate the contraction process.  

 

5.6.4.3 Path based turn contraction  

Constructing the delay subnetwork based on link classification vector β  is a two-step process. 

In the first step, path specific delay subnetworks, one per path {1, ,P},p are constructed. 

Each of these (partial) delay subnetworks represents the infrastructure required to reproduce 

the hypercritical delay for a single path, termed the critical-delay path. A critical-delay path 

only contains critical-delay links, hence, constructing these paths requires merging subsequent 

path links on the path that are classified as non-critical. Since the minimum travel time of this 

link is already captured in the minimum travel time subnetwork, it is safe to do so, without 

incurring any information loss. By merging path links instead of removing them, path 

connectivity is maintained while still reducing the number of links per path. The second step 

involves the construction of the actual delay subnetwork based on the critical-delay paths. 

 

Merging subsequent path links can, arguably, be formulated more elegantly from a turn based 

perspective. Merging occurs in the upstream direction; whenever a non-critical-delay link is 

encountered it is merged with its directly adjacent upstream link on the path’s turn, where we 

recall that path turns are denoted via matrix pM  originally defined in Equation (5.12). An 

example for a single merge is illustrated in Figure 5.13, utilising our dual representation 

introduced in the previous section.  

 

 
Figure 5.13: Schematic example of (upstream) merging of a single non-critical link in dual 

network representation.  

The function merge( )  takes two turns, comprising three consecutive links, and connects the 

initial and final link while eliminating the intermediate (non-critical-delay) link. In case 

multiple consecutive non-critical-delay links are present, the procedure should be repeated 

recursively up to the point when either the next critical-delay link is encountered or the path 

terminates. While this is conceptually straightforward, formalising such recursiveness is often 

somewhat less intuitive. Yet, we still do so in order to provide the required rigour to our 

method. Also, it obviates the need to provide a separate algorithm since the formulation in 

Equation (5.33) already suffices. 
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with {1, ,A}.a In this function, turns are merged recursively – via the first case - as long 

as the next turn’s downstream link remains non-critical. If this no longer holds, the function 

terminates in one of two possible ways: if it terminates via the second case, it means the path 

has not ended yet and the upstream link of the initial recursion is connected with the 

downstream critical-delay link encountered in the last recursion (by taking on its row values 

via p

aM ). Otherwise, there no longer exists a next turn, i.e. the path ends, and the initial 

upstream link becomes the last link on the path, i.e. setting the row to all zero vector .0   

 

To obtain the entire critical-delay path subnetwork ,delay A A

2 ,p M  the merge procedure is 

selectively applied to eligible turns ( , )a a  of the original path pM  via: 

 

,delay

merge( , ), if        : 1 and 0,

, else if : 1 and 1,  

, otherwise,

p p p

a a a aa a

p p p

a a a aa a

a M

a M

 

 

   

  

   


   



M M

M M

0

 (5.34) 

 

with {1, ,A}.a  As can be seen a recursive merge is only invoked when the path transitions 

from a critical-delay link to a non-critical-delay link ( : 1 and 0).p

a aa aa M  
    

Alternatively, when a turn is found between two critical delay links 

( : 1 and 1),p

a aa aa M  
    the original turn is retained. Whenever a turn’s incoming link a  

is classified non-critical the turn can be removed, because it will be replaced by the result of 

the recursive merge. An example of constructing a critical-delay path, is depicted in Figure 

5.14. 

 

 
Figure 5.14: Example extraction of path delay subnetwork using dual representation (dashed 

lines between matrices indicate merge function is invoked). 
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5.6.4.4 Constructing the network wide delay subnetwork  

The extension to the network level to obtain the overall delay subnetwork, denoted 
delay A A

2 ,M is straightforward: a turn is included in the delay subnetwork if there exists a 

critical-delay path where the turn is included as well such that:  

 
delay 1,delay 2,delay P-1,delay P,delay|| ||   || || .aa aa aa aa aaM M M M M      (5.35) 

 

It is left to the reader to observe that the provided turn based formulation can be converted to 

the more common node and link based form yielding delay delay, ,A P respectively. To illustrate 

the effect of the procedure on the network level, consider the network, in dual representation, 

as depicted in Figure 5.15(a). A hypothetical classification of the original links is readily 

provided, allowing the construction of the delay subnetwork, by applying Equations (5.35), as 

shown in Figure 5.15(b).  

 

 
Figure 5.15: Dual representation; (a) link classification of original network, (b) extracted 

delay subnetwork. Original representation; (c) extracted delay subnetwork with area of 

distortion, (d) alternative representation. 

We included Figure 5.15(c) to illustrate what the delay subnetwork in non-dual representation 

looks like. Observe how the node shown in grey is the result of the merging of turns (3,4), 

(4,1) and (11,9), (9,7), (7,1), respectively. Furthermore, by letting the retained links and 

nodes of the original network reside in their original locations, one or more areas of spatial 

distortion are created in the delay network. The dashed part of each link in this spatially 

distorted area has no length, nor travel time cost, because it solely exists to maintain 

connectivity. Alternatively, if one wishes to have a network with spatially correct link 

lengths, one could consider altering the positions of the originally retained network nodes as 

shown in Figure 5.15(d), although in general networks, this is usually not possible. This 
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approach is discouraged because it requires displacing nodes and links. From our experience, 

the link length distorted network is preferred, because it allows for a meaningful 

interpretation of bottleneck locations. 

 

5.7 Critical-delay path consolidation 
 

The proposed delay subnetwork method discussed in the previous section reduces the 

computational burden by limiting the number of links on each path. That said, the total number 

of paths remains unaffected. We propose to extend the method presented in the previous section 

by consolidating critical-delay path set delay.P This consolidation procedure exploits the fact 

that the likelihood of complete path overlap in the delay subnetwork has significantly increased 

compared to the original network. Replacing completely overlapping critical-delay paths with 

a single representative path allows for a significant reduction in the number of paths that need 

to be considered in network loading. It is demonstrated that the majority of the computational 

gain is the result of applying this consolidation method on top of the delay subnetwork 

extraction.   

 

Let us illustrate the concept of path consolidation with the example presented in Figure 5.16. 

Initially, none of the four original paths overlap completely, as can be seen in Figure 5.16(a). 

Figure 5.16 (b) shows the assumed link classification such that we obtain the delay subnetwork, 

in Figure 5.16(c).  

 

 
Figure 5.16: Original network, with four paths, (b) dual representation of the same network, 

including link classification, (c) delay subnetwork induced from critical-delay paths, (d) path 

consolidation based on equidelay paths.  

In the delay subnetwork, the first two paths and last two paths now overlap fully and can 

therefore be consolidated, reducing the number of paths. The two resulting paths are termed 
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equidelay paths because they represent one or more critical-delay paths - traversing the same 

turns in the delay subnetwork - having equal delay. Equidelay paths are denoted by

{1, , }, P  where by definition it holds that P.P  

 

The equidelay path indicator matrix equidelay A

2

P
P can be constructed in different ways. We 

choose to define implicit function unique :      that removes duplicate rows in 
delayP  such that:  

 
equidelay delayunique( ),P P  (5.36) 

 

where the number of unique rows in delayP  becomes the number of equidelay paths P.  In 
equidelay ,P  the number of remaining paths that needs to be considered during network loading is 

reduced significantly. However, we can only use equidelayP when we know the demand on each 

equidelay path .  Yet, this demand is conditional on the path choice that is being applied to 

the original paths. We also emphasize that fully overlapping critical-delay paths do not 

necessarily belong to the same origin-destination pair. Since only bottlenecks are retained, 

paths having different origins and/or destinations can just as well be represented by the same 

equidelay path, such as 1  in our example. We therefore maintain a dedicated mapping 

between original (critical-delay) paths and their equidelay counterpart denoted by P

2 .O P  In 

this mapping 
pO takes on a value of 1 when critical-delay path p  and equidelay path   

overlap completely and otherwise it is 0. More formally:  

 
equidelay delay1, if ,

0, otherwise.

p

p




 
 

 


P P
O  (5.37) 

 

The equidelay path flows used in network loading can then be constructed via: 

 
P

1

,p p

p

f f 


O  (5.38) 

 

where we note that the original path flow 
pf  is the result of the path choice model discussed 

in Section 5.3, which in turn is conditional on all alternative original paths and their path costs 

for the relevant od-pair. The original path cost formulation however, no longer suffices either 

because 
delay

ph   is no longer available. Instead, we only have delay obtained from equidelay 

paths, i.e. 
delayh . We therefore replace Equation (5.1) – on a per path basis - by the following:  

 

 

 

(5.39) 

 

 

 

where the minimum path travel time is obtained via the minimum travel time subnetwork, while 

the delay is collected from the delay subnetwork by mapping the equidelay path delay to its 

original path counterpart(s).  The path choice procedure equidelay  then, reflects the adoption of 

min delay

1

,p p ph h h 
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Equation (5.39) to construct the path flows conditional on the costs obtained from 
min equidelay, ,  respectively, resulting in the decomposition as originally formulated in Equation 

(5.7), albeit for a single demand scenario only.  

 

5.8 Varying demand scenarios and the super scenario 
 

So far, we only considered a single demand scenario .s  Let us now extend this to multiple 

demand scenarios. First, recall that the proposed decomposition method only remains lossless 

as long as all critical-delay links across all considered demand scenarios are included in the 

delay subnetwork. Which links are critical-delay links for a given demand scenario depends on 

that demand scenario’s equilibrium solution. This poses a challenge, because the purpose of 

this method is to speed up the traffic assignment procedure and finding each scenario’s 

equilibrium solution does not contribute in achieving this goal. To circumvent this issue, we 

aim to construct delay subnetwork delayA  by equilibrating a single demand super-scenario s . 

We then, in addition, apply our path consolidation method to identify equidelay paths equidelay.P  

The delay subnetwork delayA and consolidated paths equidelayP are then used to equilibrate each 

actual demand scenario s  at a fraction of the time it would cost if we would have used the 

original network and paths.  

 

For this approach to work, the initial paths P  - which are fixed across all demand scenarios - 

need to contain the relevant paths for all demand scenarios. We point out that this requires 

generating a somewhat broader path choice set compared to set that one would use for a single 

demand scenario. However, we expect it does not differ significantly given our considered 

application context; for both quick-scan applications and matrix calibration procedures many, 

but relatively small, variations in demand are explored. Also, stochastic path choice set 

generators typically already perturb expected link costs with a user-specified amount of 

variance to (partially) account for this type of uncertainty, see for example Fiorenzo-Catalano 

et al. (2004). 

 

5.8.1 Alternative super-scenario approaches 
The second challenge is creating the single demand matrix *sD  for super-scenario s  such that 

it contains all bottlenecks across all scenarios .s  While it is always possible to verify if any 

information loss occurred a-posteriori, we cannot guarantee a lossless result a-priori without 

performing costly assignment. Intuitively, one might assume that, in attempting to avoid 

additional assignments, we can capture all critical-delay links across demand scenarios by 

taking the maximum demand for each od-pair across the various demand scenarios via: 

 
max

{1, , }
max { },s

zz zz
s S

D D 


  (5.40) 

 

where we then subsequently set * max .s D D  Even though this will likely be a good approach in 

many cases, it cannot guarantee that all critical-delay links are being captured. To demonstrate 

this, we provide an example of such a situation in the hypothetical network depicted in Figure 

5.17(a). It contains 4 paths, 1p to 4 ,p of which 1p and 2p are alternatives for the same origin-

destination-pair.  
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Figure 5.17: (a) Base network with a single bottleneck at link 2a (b) same network under 

increased demand on path 3p  with a new bottleneck appearing on link 1a  and one bottleneck 

disappearing at link 2.a  

 

Let us consider two different demand scenarios; 1s and 2.s For initial demand scenario 1s we 

assume that 
1 2

s sh h  such that the majority of the demand is assigned to path 1p under SUE 

conditions. Link 1a is close to, but not exceeding, capacity while link 2a only just exceeds 

capacity under 1,s due to the combined path flows of 1p and 4.p  Let us now consider demand 

scenario 2 ,s  which is identical to 1s except for an increase in demand on the origin-destination 

pair represented by path 3.p  This leads to link 1a  becoming a bottleneck. Some of the flow on 

path 1p will be diverted to 2p because of its increased cost. As a result, the flow on link 2a

decreases, which no longer makes it a bottleneck, see Figure 5.17(b). This demonstrates that 

even with just two different demand scenarios applied on the same network, taking the 

maximum demand might not only yield additional bottlenecks, but can also remove 

bottlenecks. Hence, maxD does not guarantee that all critical-delay links are captured. The 

example in Figure 5.17 is specifically tailored to highlight this issue, it therefore remains to be 

seen how often bottlenecks actually disappear with increasing demand in a more practical 

setting. This is investigated further in Chapter 6. 

 

Perhaps, adopting an average demand across all available demand scenarios s might be able to 

capture more of the bottlenecks than a maximum demand approach, especially if the number 

of bottlenecks that disappears with increasing demand exceeds the number of additional 

bottlenecks. Conversely, if more bottlenecks appear than disappear with increasing demand, 

adopting the maximum demand approach will yield the better result. By also exploring this 

alternative we ensure that either possibility is captured. The average demand approach is 

formulated as follows: 
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1p 2p

3p

4p

1a

2a

1p 2p

3p

4p

1a

2a

 







( )a ( )b



Chapter 5: Extracting delay subnetworks under varying demand and fixed supply  76 

 

5.8.2 Incorporating flow margins in the super-scenario 
Given that we cannot guarantee a lossless a-priori construction of the super-scenario, we also 

investigate alternative ways to reduce the likelihood of missing critical-delay links. One way 

to do this is to include more links in the delay subnetwork, by introducing a flow rate based 

margin as part of the original critical-delay links classifications in Equations (5.31) and (5.32), 

respectively. This margin can be defined either in absolute or relative terms. The link 

classification vector 
A 1

2

 β   under an absolute flow margin, denoted ,q


 is then given by:  

 

min

max
1, if ,

0, otherwise,

a

a a

q q

q

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
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
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(5.42) 

 

 

when adopting the traditional static capacity restrained model, or:  
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(5.43) 

 

 

in case of the residual queueing model. Observe in the latter case that we now also retain the 

entire node topology in case any outgoing link exceeds capacity under the assumed margin via 
max( ) .na a aA q q q



     Similarly, when adopting a relative flow margin, denoted ,q we find 

link classification vector A 1

2

 β  through: 
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 (5.44) 

 

when adopting the traditional static capacity restrained model, or:  

 

max|| , if ( , ) : 1 or ( , ) : (1 ) ,

0, otherwise,

na n a a na n a a a

a

A A a n A a n A q q q


    

       
       

 


 (5.45) 

 

in case of the residual queueing model. When revisiting the example in Figure 5.17, adopting 

a sufficiently large flow margin would have caused the super-scenario to also include “almost” 

bottleneck link 2a  and subsequently would yield a lossless result when choosing * max .s D D  

 

Adopting a “sufficient” flow margin ensures we obtain a lossless aggregation result across our 

demand scenarios, but we still do not know (a-priori ) what this “sufficient” margin is to 

achieve this, unless we again equilibrate all demand scenarios. To avoid this, we aim to 

investigate if we can quantify the value of a “sufficient” margin in a number of case studies 

presented in the next chapter. 
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5.9  Synthesis and discussion 
 

In this chapter we proposed a novel decomposition method for static traffic assignment 

procedures and showed its potential in the case of an advanced capacity constrained model. 

This method is tailored towards applications that have a fixed supply while allowing the 

demand to vary. The proposed method consists of two stages. The first stage constructs a 

minimum travel time and delay subnetwork, while the second stage consolidates the path set. 

The delay subnetwork is typically smaller than the original network and can be constructed by 

equilibrating a single super-scenario demand matrix. The resulting delay subnetwork yields 

potentially lossless results when adopting the residual queuing model of Bliemer et al. (2014). 

The decomposition method is equally compatible with other traffic assignment models, such 

as traditional capacity restrained models, albeit that they result in information loss when they 

incorporate hypocritical delay in their (path) travel time function. 

 

To reduce the likelihood of failing to capture some of the critical-delay links in the final delay 

subnetwork, we proposed various approaches among which two different ways of constructing 

the super-scenario: via a maximum demand and average demand approach. In addition, we 

proposed to consider either an absolute or relative flow margin in order to include more links 

in the delay subnetwork, even when these links do not exhibit any hypercritical delay in the 

super-scenario (but are comparatively close to doing so).  

 

The next chapter aims to investigate the effects of these different approaches in order to provide 

recommendations on the parameter settings such that a-priori lossless results become more 

likely. 
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6 Case studies in delay subnetwork construction and 

calibration 
 

In this chapter we present a number of case studies based on the decomposition method 

introduced in Chapter 5. We mainly focus on the calibration and choice of parameters involved 

in constructing a delay subnetwork that exhibits no information loss under the demand 

scenarios considered. The results presented in this chapter suggest that it is possible to adopt 

parameter settings such that we can ensure a lossless result at a relatively small performance 

penalty compared to not taking any precautionary measures.  

 

The purpose of the case studies is twofold. First, in Section 6.1, we investigate how to best 

construct super-scenario s and absolute/relative flow margins , ,q q
  respectively. This in 

order to construct the minimal delay subnetwork containing all bottlenecks across all 

considered demand scenarios. We use a strategic planning network of the (inner) city of 

Amsterdam (Amsterdam I) for this purpose. Our second case study, in Section 6.2 demonstrates 

the capability of the proposed method to reconstruct the original travel times when all 

bottlenecks are present in the delay subnetwork. In this case study we apply the model to the 

large scale network of Gold Coast (Australia). Here, we also assess the potential computational 

gains by comparing the cost of reaching equilibrium on the original network, to the cost of 

reaching equilibrium on the decomposed free-flow and delay subnetwork, with and without the 

path consolidation method. A summary of the results is provided in Section 6.3. 

 

All case studies adopt the residual queueing model of Bliemer et al. (2014), introduced in 

Section 5.5, combined with the node model originally proposed in Tampère et al. (2011).  We 

do so for the following reasons: (i) this model is more realistic than a capacity restrained 

assignment model, due to its capacity constrained nature, (ii) it places queues in its correct 

location, i.e. in front of bottlenecks rather than in the bottlenecks, (iii) it filters flow beyond a 

bottleneck such that the delay subnetwork only captures true bottlenecks and, more 

importantly, there are less of such bottlenecks compared to a capacity restrained approach 

leading to higher computational gains. This model is therefore both a better fit with respect to 

the decomposition method, as well as being more capable in general.  

 

The decomposition and path consolidation methods proposed in Chapter 5 have been 

implemented in C++, as prototypes, within the StreamLine traffic assignment framework. This 

framework is part of the OmniTRANS transport planning software suite, kindly provided by 

DAT.Mobility (The Netherlands). 

 

6.1  Super-scenario calibration: Amsterdam case study 
 

This first case study is performed on the Amsterdam I network, see Figure 6.1. It contains 

major roads, but leaves out most local streets. We first investigate the effect of the two different 

approaches - the maximum demand and average demand approach - in constructing the trip 

matrices for super-scenario .s  
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Infrastructure: 

 centroids  279 

 nodes    3,039 

 directional links 7,736 

 

Paths: 

 pre-generated  174,279  

 

Route choice: 

 multinomial logit 

 scale parameter 5   

 

Equilibrium solution scheme: 

 iterative smoothing through MSA 

 

Base scenario demand (1h): 

   183,000 

Figure 6.1: Amsterdam I network and its characteristics. Also depicting the four areas where 

demand variations are carried out according to different scenario types. 

We explore a total of four different ways to vary demand across scenarios to cover a wide range 

of possible applications and interactions: (i) Uniform demand variations across all zones, (ii) 

varying trip attractions, i.e. trips towards zones, for a subset of zones in a specific area, (iii) 

varying trip productions, i.e. trips departing from zones, for a subset of zones in a specific area, 

and (iv) varying both productions and attractions for a subset of zones in a specific area. The 

considered areas relating to these scenarios are shown in Figure 6.1 and are selected because 

they represent areas in Amsterdam that have seen rapid development. The number of zones and 

demand per considered region varies: Scenario (ii) holds 15 zones with a base attraction of 

6,861 trips, Scenario (iii) holds 11 zones with a base production of 2,065 trips, while the 

combined production/attraction scenario (iv) holds 31 zones with identical base attraction to 

scenario (ii) and a base production of 2,800 trips. The base scenario, i.e. 0% demand 

increase, holds a synthetic peak demand matrix for a hypothetical base year with according 

(relatively heavy) congestion. Since all scenarios vary demand by upscaling demand compared 

to the base case baseD , it therefore holds that base , {1, , }.s s S  D D  

 

The variation in demand across the considered scenarios is chosen to be in the range of 0-20% 

for the uniform approach of (i), versus 0-40% in the local scenarios, i.e. approaches (ii), (iii) 

and (iv), respectively. The idea behind having larger variations for the smaller regions is to 

compensate for their smaller absolute number of base trips. Results are obtained for each of the 

four different approaches for both types of super-scenario construction; the maximum demand 

approach via Equation (5.40) and the average demand approach of Equation (5.41). All 

simulation runs comprised 30 iterations9 in order to approximate a stochastic user equilibrium, 

where the MSA procedure is adopted to smooth iteration results, adopting a smoothing factor 

2 3,   in line with Polyak (1990). To illustrate the level of convergence under this 

                                                 
9 Given the large amount of different scenarios we tested, we chose a fixed number of iterations that yielded results 
relatively close to what can be considered equilibrium flows while at the same time minimising the computation 
times across all test scenarios. 

(ii)

(iii)

(iv)

(i)
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configuration we provide the gap value for each iteration in Figure 6.2, demonstrating we 

achieve a decent gap of +- 0.0001 for such a limited number of iterations. This gap is computed 

via the following well-known gap function: 

 

 

Z Z P

1 1 1

Z Z P

1 1 1

( )

GAP , with min | 1; , {1, , Z}, {1, ,P} ,
zp z p p p p

z z p

zp z p p p

z z p

P P f h h

p p zp z p p
P P f h

h h P P h z z p

 


  

 


  



 




    


 

 

(6.1) 

 

where one compares the difference in cost of each path to the minimum cost path of the od pair 

weighed by each path’s assigned path flow rate. 

 

 
Figure 6.2: Gap for base scenario convergence over first 30 iterations.All other scenarios 

demonstrated to show similar gaps. 

 

To determine how well the super-scenario performed, we determine the number of missing 

critical-delay links compared to a lossless result including all required infrastructure. The 

lossless result is found by equilibrating each demand scenario separately and taking the union 

of the critical-delay links across all demand scenarios. 

 

6.1.1 Super-scenario results without flow margin 
Let us first discuss to what extent the two super-scenarios miss any critical-delay infrastructure 

without imposing any flow bandwidth margins, i.e. 0.q q
    Results under uniform 

demand scaling, referred to as scenario (i) in the previous section are depicted in Figure 6.3. 

The horizontal axis displays the various levels of demand increase, while the two vertical axis 

denote the absolute number of critical-delay links (left) and percentage of missing links found 

(right). Results are presented incrementally, meaning that in, for example, the +8% demand 

entry in Figure 6.3 we counted all unique critical-delay links found in demand scenarios +1%, 

+2%, up to and including +8%. A critical-delay-link is considered missing when it is present 

in any of the equilibrated stand-alone demand scenarios (up to the current demand increase 

percentage), but is absent in the delay subnetwork identified by the super-scenario. 

 

When adopting the maximum demand based super-scenario, we see that it captures virtually 

all bottlenecks and misses <1% of the critical-delay links across all considered demand 

scenarios. This <1% represents a total of 4 links across 2 nodes. On the other hand, adopting 

an average demand super-scenario performs poorly, with an increasingly large number of 
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critical-delay links missing as is clear from Figure 6.3(b). This stems from the fact that the 

average yields too low a demand to capture the newly emerging bottlenecks.  

 

 
           (a)     (b) 

Figure 6.3: Total critical-delay links versus missing critical-delay links, as a percentage of 

total critical-delay links, under uniform demand scaling (i) for super-scenarios under (a) 

maximum demand, (b) average demand. 

Let us now consider the other three application scenarios, where demand is being varied more 

locally. Results are depicted in Figure 6.4. Under local variations of demand, the maximum 

demand based super-scenario is again outperforming the average demand approach. Compared 

to uniform variations, local demand variations do increase the number of missing critical-delay 

links. In the super-scenario under maximum demand, we find a maximum of 2.9% missing 

bottlenecks, equating to 10 critical-delay links. This occurs in both the attraction and combined 

production/attraction scenarios, see Figure 6.4(a), and (e). The only scenario type which would 

so far yield a lossless result is the local production scenario under the maximum demand 

approach, Figure 6.4(c). This is likely due to the fact that this scenario has the fewest zones 

and smallest base demand, so more significant changes in demand are needed to trigger missing 

bottlenecks. 

 

 
         (a)        (b) 
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        (c)        (d) 

 
        (e)        (f) 

Figure 6.4: Local attraction scenario (ii) compared to super-scenarios with, (a) max demand, 

(b) average demand. Local production scenario (iii) compared to super-scenarios, with (c) 

max demand, (d) average demand. Local production/attraction scenario (iv) compared to 

super-scenario with (e) max demand, (f) average demand. 

 

6.1.2 Super-scenario results with bandwidth margin 
Let us now investigate what values of ,q or q


 would lead to a lossless result across the entire 

range of scenarios discussed in the previous section. Further, we discard the average demand 

approach for constructing the super-scenario, due to its significantly poorer performance across 

all considered application scenarios.  

 

To determine the absolute and relative flow margins, we assessed, for each of the identified 

missing critical-delay links, the difference between the measured flow rates and the link’s 

capacity. This was done on a per demand scenario basis. The result for uniform demand 

scenario (i) is provided in Figure 6.5. Note that on the x-axis, we only plot the demand scenarios 

where missing critical-delay links are detected and therefore omit demand increase percentages 

below 12%. 
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   (a)       (b) 

Figure 6.5: Uniform demand scenario (i) results for; (a) absolute, and (b) relative difference 

between measured flow and capacity. 

Both the absolute and relative measured flow margins are depicted in Figure 6.5, on a per most 

constrained missing link basis. The most constrained missing link is defined as the outgoing 

link that is the most restricting bottleneck of its node at the considered demand level. For 

example, in the uniform scenario, four links in total were missing, but they relate to only two 

nodes. So, there exist exactly two most constrained missing links; one per node.  

 

Observe that for the demand levels with a scaling between 12 and 18%, only the first of the 

two identified most constrained missing links was absent, while the other most constrained 

missing link only surfaced for the 19%-20% demand levels. The results for the demand 

scenario types (ii) and (iv) are provided in Figure 6.6. No missing links were detected for 

demand scenario type (iii), when using the maximum demand approach, and hence no further 

results are shown for this scenario. 

 

The most extreme flow margins for the most constrained missing links are found in the uniform 

scenario setting. Overall, the smallest and largest maximum absolute flow margins are 26.1, 

70.2 (veh/h), respectively. Similarly, the smallest and largest maximum relative margins were 

found to be 0.985%, 1.19%, respectively. Imposing these margins results in including all 

originally missing critical-delay links, in turn yielding a lossless result. Observe from Figure 

6.6(a) and (b) that the maximum relative margin does not relate to the link with the maximum 

absolute margin, indicating this missing link has a relatively low capacity. A similar situation 

occurs in Figure 6.6(c) and (d). 
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   (a)          (b) 

 
   (c)          (d) 

Figure 6.6: Attraction demand scenario (ii), with (a) absolute and (b) relative difference 

between measured flow and capacity. Production/Attraction scenario (iv), with (c) absolute 

and (d) relative difference between measured flow and capacity. 

Imposing any type of flow margin in the procedure inevitably results in false positives, yielding 

a delay subnetwork that includes more links than strictly needed. Obviously, we seek to 

minimise the number of false positives because they contribute negatively to the potential 

computational gain. Let us therefore compare the absolute margin and relative margin 

approaches by investigating how many false positives they yield and therefore inadvertently 

increase the size of the retained delay subnetwork. Results are shown in Figure 6.7.  

 

As can be seen, in all cases, adopting a relative margin – instead of an absolute margin - results 

in a smaller delay subnetwork. This can be attributed to the fact that, among the dominant 

missing links found at each demand level, there is always at least one higher capacity (arterial) 

link. These arterials exhibit relatively high absolute flow margins, capturing a larger share of 

false positives among local streets. This effect is mitigated when one adopts a relative margin 
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instead. We therefore propose to adopt a relative flow margin approach. Recall from the flow 

margin based results that with 1.19%q   a lossless result is achieved. Hence, we propose to 

use this relative flow margin as a general lower bound such that we choose 1.19%q  . The 

penalty for this approach appears to be a significant amount of false positives which, in case of 

the uniform scenario, leads to a near 50% increase in infrastructure retained in the delay 

subnetwork. This number, however, needs to be put in perspective because the computational 

gain that can be achieved is relative to the size of the original network and not the delay 

subnetwork under 0.q   When we compare to the original number of links in the network 

(3,868), to the delay subnetworks without and with the relative flow margin, we find the more 

representative absolute percentage increase of 4.4% (from 11.6%, to 16% of the original 

network). 

 

   
      (a)     (b)        (c) 

Figure 6.7: Total critical-delay links including false positives under the minimum absolute 

and relative margins found that yield a lossless result for (a) uniform demand scenario type 

(i), and (b) attraction demand scenario type (ii), and (c) combined production/attraction 

demand scenario type (iv). 

6.2  Potential computational gains: Gold Coast case study 
 

In this section, the delay network decomposition and path consolidation method are applied to 

the large-scale network of Gold Coast (Queensland, Australia) depicted in Figure 6.8(a). The 

purpose of this case study is to demonstrate the potential computational gains that are possible 

when adopting our proposed method. In addition, we verify that the obtained hypercritical 

delay is indeed identical to the original network’s delay. To be able to assess the maximum 

computational gain possible for this case study, we consider only a single demand scenario. In 

such a case there is no need for applying a flow margin either, hence false positives are absent. 

This allows for a direct comparison of the delay subnetwork assignment to the original network 

assignment. Note that we do not consider the cost of creating the delay subnetwork here, 

because it is difficult to objectively incorporate such a fixed cost in the context of an unknown 

number of varying demand scenarios. 
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Infrastructure: 

 zones    1,076 

 nodes     2,987 

 directional links 10,016 

 

Paths: 

 pre-generated 1,221,446 

 

Route choice: 

 multinomial logit 

 scale parameter 5   

 

Equilibrium solution scheme: 

 iterative smoothing through MSA 

 

Base scenario demand (1h): 

 120,000   

Figure 6.8: Gold Coast network and its main characteristics. 

After equilibrating the single demand (base) scenario, the network delay decomposition 

method is applied, yielding the delay subnetwork as shown in Figure 6.9(a). We do not depict 

the links within the areas of distortion so we can focus on the portion of the original network 

that is retained and exhibits delays.  

 

 
  (a) 

 

 
    (b) 

Figure 6.9: (a) Gold Coast delay subnetwork, (b) comparing equilibrium link flow 

acceptance factors between original network and delay subnetwork. 

To illustrate that the equilibrated aggregate network yields the same result as the original 

network, the assignment results of the original network and the delay subnetwork are 

compared. Recall that path delay is conditional on the encountered flow acceptance factors .α  
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Therefore, as long as the flow acceptance factors in the original network and delay subnetwork 

are identical, the path delay is also identical. A graphical comparison of the found flow 

acceptance factors is provided in Figure 6.9(b) through a 45-degree plot. We additionally 

capture the compliance of the delay subnetwork’s flow acceptance factors with the original 

results via the following Root Mean Squared Error (RMSE) measure: 

 

A
delay 2

1

( )

RMSE ,
A

a a

a

 







 

 

(6.2) 

 

where we found the RMSE to be 53.66 10 .  The reason the result is not exactly zero is expected 

to be due to computational ordering effects, resulting from the two different ways the travel 

time computation is executed, which over many iterations inevitably causes very small, but 

measurable, differences on the link level flow acceptance factors. However, these differences 

are sufficiently small their impact on the hypercritical path delay was found to be negligible. 

 

The results regarding the computational gains are outlined in Table 6.1. Note that we fixed the 

number of iterations to 80 to be able to provide an exact comparison between simulation runs. 

For each of the 80 iteration runs the resulting gap (see Equation (6.1)), was found to be 410 ,

which is generally considered sufficient to approximate an equilibrium solution. The 

computational cost was found to be reduced by 96% to 4% of the original network loading 

times. If the path consolidation method is not applied and we only consider the delay 

subnetwork decomposition, network loading times are halved instead. This can be attributed to 

the reduced number of links per path (10.6 vs 45.7 links on average). Clearly, the combined 

procedure yields the best results and the path consolidation procedure contributes most in 

reducing computational cost. This is because the consolidated equidelay path set contains less 

than 10% of the original paths (<100,000 vs 1,221,446). With 88.62 seconds over 80 iterations, 

it now only takes 1.1 seconds to perform network loading per iteration compared to 27.2 

seconds in the original network. 

 

Table 6.1: Effects of delay decomposition and path consolidation on network loading and 

topology (80 iterations). 

Network Links Paths 
Total path 

links 

Total network 

loading time (s) 

Original 5,076 1,221,446 55,852,786 2,178.48 

Delay-decomposition + 

Original path set 
836 1,221,446 12,919,862 902.57   (-59%) 

Delay-decomposition + 

Path set aggregation 
836 99,528 1,142,338 88.62     (-96%) 

 

Recalling the applications this method is targeting, i.e. quick-scan methods and matrix 

calibration procedures (among others), we observe that this reduction in network loading can 

be used to either explore more demand scenarios, run a more elaborate matrix calibration 

procedure, or allow one to switch from traditional assignment methods, such as the capacity 

restraint static assignment procedure, to a more capable one, without the penalty of increased 
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computation times. There are however still three limiting factors that affect the computational 

reductions outlined in Table 6.1. First, there is a fixed computational overhead to pay for the 

initial construction of the delay subnetwork and consolidated path set. This cost also 

necessarily includes the equilibration of the super-scenario, plus a small penalty for storing the 

minimum path travel time costs, persisting the delay decomposed subnetwork, and extracting 

the consolidated path set. In our experience this fixed cost roughly equates to the –by far - most 

costly component in this process, the equilibration of the super-scenario. 

 

Also note that the cost for performing path choice remains roughly the same because path 

choice occurs on the level of original paths, regardless whether or not the consolidated path set 

is used during network loading. Lastly, if the modeller desires a lossless result, a non-zero flow 

margin must likely be adopted, which in turn increases the size of the delay subnetwork 

somewhat. Therefore, the 96% computational reduction is an upper bound and the actual 

computational gain will be somewhat less depending on the application context.  

 

However, it is clear from Table 6.1 that the fixed overhead costs can quickly be “earned back”. 

For this case study, two demand scenarios suffice to compensate for the cost of constructing 

and equilibrating the delay subnetwork and equidelay path set10. Clearly, when hundreds or 

even thousands of demand scenarios need to be explored, this fixed overhead becomes 

increasingly less significant. 

 

6.3  Synthesis and discussion 
 

In this chapter we explored a number of case studies to investigate and calibrate the parameters 

involved in aiding the user to construct a lossless delay subnetwork using a single super-

scenario demand matrix. The case studies demonstrate that, while the proposed method is 

potentially lossless, such a result cannot be guaranteed a-priori. To minimise information loss, 

choosing an appropriate relative flow margin threshold q  is investigated. This margin 

includes additional links in the delay subnetwork and increases the likelihood of capturing all 

bottleneck infrastructure in the super-scenario. In the Amsterdam case study we investigated 

the minimum required values for .q  It was found that adopting a relative flow margin of 

1.19%q   resulted a lossless results for this particular study, which means including the node 

infrastructure of outgoing links with flows at 98.81% of capacity. 

 

We also explored the potential computational gain of adopting this method on the large scale 

network of Gold Coast, Australia. It was found that by applying delay subnetwork 

decomposition, network loading times were reduced by 59% compared to the original network 

loading cost. When supplementing this procedure with the path consolidation procedure, a 96% 

computation time reduction is achievable. 

 

 

 

                                                 
10 This is under the assumption that the path choice procedure takes less time than the original network loading 

procedure, something which is typically the case when adopting a fixed path set approach.  



 

 

Part III  
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7 Aggregation methods 
 

Part II of this thesis illustrated how to reduce the computational burden by exploiting specific 

characteristics of a traffic assignment procedure in the context of its application domain. Now, 

in Part III, instead of investigating the optimisation of a single traffic assignment model, we 

turn our attention to a multi-scale environment, where multiple traffic assignment models are 

operated alongside each other within the same spatial domain, but at different levels of 

granularity. We propose novel methodology to automatically generate traffic assignment 

model inputs at the desired level of detail. We employ both disaggregation and aggregation 

methods to do so. In this chapter we discuss the (dis)aggregation literature in the context of 

traffic assignment models. The concepts introduced in this chapter are then fused with the 

traffic assignment literature discussed in Chapter 3 leading to the newly proposed 

(dis)aggregation methods discussed in Chapter 9 and Chapter 10. 

 

The existing (dis)aggregation literature - relevant to traffic assignment models - is both limited 

and broad at the same time. It is broad because the used techniques are not necessarily specific 

to transport, they are applied across a multitude of research areas. Yet, it is limited because the 

majority of research on traffic assignment methodology revolves around extending and 

proposing novel assignment models, often resulting in increased procedural complexity. 

Methods concerning the simplification of procedures or its inputs is far less common. A brief 

exception to this trend occurred in the 1980s, when computers became more widely available, 

yet their computation power was still limited. Today, the research that does focus on the 

representation of traffic assignment models is mostly driven by the objective of computational 

gains, rather than achieving inter-model consistency. 

 

We first discuss the existing types of (dis)aggregation in Section 7.1. Existing (dis)aggregation 

methods in the context of traffic assignment are the focus of Section 7.2. This is followed by 

aggregation and representation methods for each of the traffic assignment model inputs, 

namely, zonal aggregation (Section 7.3), connector and centroid representation (Section 7.4) 

and network aggregation (Section 7.5). Techniques used to implement aggregation methods, 

such as clustering are discussed in Section 7.6, followed by how this relates to a multi-scale 

environment in Section 7.7. A brief summary and discussion is provided in Section 7.8.  

 

7.1 Types of (dis)aggregation 
 

The earliest aggregation methods in transport mainly focussed on removing links in a network. 

Goldman (1966), for example, removed links from a network based on the criteria of 

unchanged shortest paths. This process of object removal is referred to as extraction. In contrast 

to extraction methods, abstraction methods not only remove parts of an original representation, 

but replace them with a proxy, mimicking the original behaviour as much as possible. 

Abstraction based methods are generally thought of as the more desirable approach, see for 

example Chan (1976), and are therefore considered to be more capable. A well-known 

abstraction method in traffic assignment models is the replacement of local roads in a zone 

with connector links. 
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Chan (1976) also differentiated between uniform aggregation methods and non-uniform 

aggregation methods (or ‘focal’ aggregation as the author refers to it). Uniform aggregation 

methods apply to the entire network while non-uniform methods only impact on part(s) of the 

network. In this thesis we do not consider non-uniform methods because we adhere to an 

integrated solution method. This, in our view, means considering the network as a whole, i.e. 

uniformly, resulting in the desired outcome without having to focus on sub-areas as a post-

processing step. In other words, it might be possible that some parts of the network become 

coarser than others, but this is due to the method being capable of incorporating spatial 

differences or constraints, instead of having to apply different methods in succession on 

different parts of the network. 

 

While it is common for aggregation methods to aggregate data (model inputs), aggregation can 

also be applied to procedures. This does not mean it groups procedures, but rather changes its 

underlying assumptions. For example, when replacing a microscopic model with a macroscopic 

approach, the underlying assumption that vehicles require individual modelling is replaced by 

assuming that traffic can be modelled on a more aggregate level through average flow rates. 

Figure 0.1 depicts the taxonomy of the aforementioned (dis)aggregation methods. This does 

not reflect an ordering, it merely demonstrates a way to categorise existing methods by 

traversing the tree from the root to a leaf. 

 

  
Figure 0.1: General taxonomy for traffic assignment (dis)aggregation methods.  

The opposite of abstraction is termed expansion, while we propose the term insertion to reflect 

the opposite of an extraction process, both of which are types of disaggregation methods. Based 

on the above classification, the following general definitions are proposed to describe 

aggregation, disaggregation, respectively in the context of traffic assignment models: 

 

Definition 7.1: Traffic assignment model aggregation 

The process of decreasing the complexity of a traffic assignment model by aggregating 

its data, procedures, or both, either uniformly or not, by: (i) extracting original 

components, (ii) abstracting original components, or (iii) a combination of (i) and (ii). 
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Definition 7.2: Traffic assignment model disaggregation 

The process of increasing the complexity of a traffic assignment model by disaggregating 

its data, procedures, or both, either uniformly or not, by: (i) expanding original 

components, (ii) inserting new components, or (iii) a combination of (i) and (ii). 

 

7.2 Aggregation methods in traffic assignment 
 

Most existing representation altering methods in the traffic assignment literature are 

aggregation methods pertaining to model inputs. A clear distinction is made between zonal 

aggregation and network aggregation.  

 

Zonal aggregation scales the zoning system, i.e. the geographical areas. This means that given 

some original representation existing zones are grouped (or split up in case of disaggregation). 

In Openshaw and Taylor (1979) this is referred to as the scaling effect of zoning. Traditionally, 

zonal aggregation methods in traffic assignment only consider scaling effects based on a single 

original zoning system. Besides scaling effects there also exist zoning effects. Zoning effects 

refer to changes in model results when one adopts different representations at the same level 

of scaling. Zoning effects provide insight in inconsistencies that can arise between different 

model representations. We find that the term zonal aggregation is used rather loosely in the 

traffic assignment context because it can refer to the aggregation of centroids as well as zones. 

This is unfortunate since centroids do not equate to zones. However, to be consistent with the 

existing literature we concede to discuss both zones and centroids in the context of zonal 

aggregation.  

 

Network aggregation is concerned with the grouping links, nodes, and sometimes connectors 

in the physical network. Connector representation is discussed separately because it has a 

number of distinct features relating to cost and placement that differ significantly from ordinary 

links. Therefore, we also refrain from using the term aggregation here, because connectors are 

not the result of a simple grouping of data points; they represent a portion of the network that 

is abstracted into a virtual link.  

 

7.3 Zonal (dis)aggregation 
 

Zonal (dis)aggregation methods originally emerged as a natural extension to statistical methods 

with a spatial component. It involves spatial data that needs to be pooled for a variety of 

possible reasons, for example to ensure the privacy of individuals, guarantee statistical 

significance, or a lack of resources to deal with the data in a disaggregate manner. Aggregating 

such data points can have unexpected and undesirable side effects. The first person to notice 

that the choice of geographic area used to aggregate data points had an impact on the aggregate 

results was Dr. Henry Sheldon in 1931 (cited in Gehlke and Biehl, 1934). Gehlke and Biehl 

(1934) confirmed this by showing that the correlation coefficients between geographic areas 

changed depending on the chosen size. Over the years this effect has been reconfirmed in many 

different areas and approaches (Kwigizile and Teng, 2009; Openshaw and Rao; 1995; 

Openshaw, 1977), and has since been referred to as the Modifiable Area Unit Problem 

(MAUP).  
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7.3.1 Modifiable area unit problem and zoning effects 
In general, there are an infinite number of possibilities to construct the shapes of geographical 

zones. Typically, each geographical area is constructed based on the location of individual data 

points within this area. The number of combinations of grouping these data points is of course 

not infinite, but while this number is finite, it is typically still extremely large. Therefore, it is 

notoriously difficult to find an acceptable (base) zoning structure without spending excessive 

amounts of time. It is also important to realise that, unless each household is modelled 

separately, any traffic assignment model remains conditional on the chosen zoning system and 

is therefore affected by the MAUP (Weeks, 2004). Knowing that the zoning system is always 

just one possible representation out of the many possible options, traffic assignment results will 

also just reflect one of many possible outcomes, as also pointed out by Páez and Scot (2004).  

 

Addressing the MAUP has traditionally been a statistical exercise more than anything else 

(Wong, 2001). However, in the last three decades Geographical Information Systems (GIS) 

have become increasingly popular. Today, they supplement, or even replace, traditional 

methods when analysing and constructing zoning systems. This seems especially the case in 

transport related applications. So far, this has resulted in a list of somewhat pragmatic criteria 

that a zoning system should comply with. These criteria are based on qualitative and 

quantitative analyses (Ding, 1998; O’Neill, 1991; Baass, 1981) and have also found their way 

to practice, where they are frequently mentioned as part of, for example, industry guidelines, 

government recommendations and textbooks (Aecom, 2007; Ortuzar and Willumsun, 2002). 

Some argue that GIS based approaches are not only a step forward, but can also be regarded as 

a step backwards, mainly due to a lack of knowledge on the part of the practitioners using the, 

sometimes, complex software tools required to implement GIS solutions. An interesting 

discussion on this topic can be found in Fotheringham (2000). Nevertheless, the impact of GIS 

inspired methods cannot be ignored. An overview of the most commonly referred to criteria 

when constructing zones is given in Table 0.1. 

 

Table 0.1: Commonly adopted zoning design criteria. 

Criteria Type Rationale 

Within zone data homogeneity Quantitative 
Low data variance means little error in 

aggregate form 

Between zone data homogeneity Quantitative Comparable errors between zones 

Minimise intrazonal trips Quantitative Maximise modelled travel demand 

Adopt census boundaries Quantitative 
Data availability is mostly tied to this spatial 

unit 

Adopt physical, political and 

historical boundaries when sensible 
Qualitative 

Implicit information is assumed to be contained 

within these boundaries 

Convex area shape, i.e. no “holes” Quantitative Convex shape attributes to spatial homogeneity  

Within zone connectivity Quantitative If disconnected travel time homogeneity suffers 

 

There exist more criteria than listed here, and some of the criteria conflict with each other as 

well, indicating the difficulty to verify the correctness, or adoption, of such rules. In Martinèz 
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et al. (2009) the authors also highlight this issue and instead propose to construct a zoning 

system that is not based on the available census boundaries, but instead utilise a collected 

dataset of smoothed geocoded travel demand (converted into a density surface) and base their 

zoning system on this data source. This seems a natural approach, because when the underlying 

assignment method relies on travel demand, why not construct the zones based on this same 

metric? Similarly, in Openshaw and Rao (1995) it was argued that census boundaries are not 

ideal. Instead, data should be released at a highly detailed level (or should be disaggregated as 

such) and modellers should then construct an appropriate zoning system specific to their 

application, instead of relying on rigid census boundaries provided by governments.  

 

We agree with the line of reasoning in Openshaw and Rao (1995) and therefore either assume 

to have access to a very fine zoning system at a high level of detail, or construct such a zoning 

system ourselves by disaggregating large zones into smaller zones, to subsequently provide 

methodology to scale it to the appropriate (lower) level of detail. 

 

7.3.2 Zonal scaling 
Typically, zonal aggregation is used to reduce computational cost. An exception to this is 

proposed by Daganzo (1980a), he proposes a disaggregation method, increasing the number of 

zones in order to improve the accuracy of results. Daganzo argued that the edges of the original 

zones are misrepresented by a coarse zoning structure, leading to a “spatial aggregation 

problem”. The method is shown to work in conjunction with the Frank and Wolfe algorithm 

(1956) solving a traditional static assignment. Daganzo also points out that, in general, there is 

a lack of well understood rules on how to construct zoning systems and more specifically, 

where to locate, and how to connect centroids to the physical road network. He also points out 

there is a lack of understanding in what elements of the road network should be included or 

excluded. So, even though Daganzo only focussed on the representation of centroids, he was 

already aware of the fact that all spatial components play a role in choosing an appropriate 

granularity for the traffic assignment model representation.  

 

Instead of only disaggregation, one can also opt for a combined aggregation-disaggregation 

approach. Ruddel and Raith (2013) for example propose a method to reduce computational 

costs by obtaining a better initial solution. This initial solution is based on an aggregated zoning 

system and then feeds the result back into the original (disaggregate) problem.  

 

Zonal aggregation methods only consider scaling a reference zoning system downward. Bovy 

and Jansen (1983) provide an early example of this approach where the authors first employ a 

network aggregation scheme to simplify the road network and based on these results aggregate 

the zoning system which, in their case, is represented by centroids, see also Jeon et al. (2012) 

for a similar approach. Based on their results, Bovy and Jansen concluded that: (i) Outcomes 

of traffic assignment are significantly influenced by the level of detail available in the network, 

(ii) increasing the level of detail in the zoning system and network representation improves 

traffic assignment results, and (iii) this effect becomes marginal beyond a certain level. These 

findings are in line with Daganzo’s earlier observations. 

 

A recent, more sophisticated approach is proposed by Hagen-Zanker and Jin (2015) who 

propose an adaptive zoning scheme where, dependent on the interaction between two zones, a 
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choice is made on the granularity of the departure and arrival zone being modelled within the 

assignment, where there exist multiple levels of detail for each zone (see also van Steijn, 2016). 

Results show a marked improvement in accuracy for a given computational budget. Observe 

that this implicitly also affects the original network representation since coarser zones bypass 

some of the road network. 

 

7.4 Connector representation and centroid placement 
 

Once the zoning system in place, the interface to the underlying road network needs to be 

established. This involves choosing the location of the centroids, choosing the number and/or 

location of connectors, and estimating the cost and/or demand distribution across the 

connectors. The representation of this interface can have significant consequences for the 

modelling results. Also note that this is a special type of aggregation because they do not 

necessarily scale the original input in the traditional sense. 

 

There are various approaches as to where “best” place centroids, these approaches are listed in 

in Table 0.2, in increasing order given their reliance on data availability. Note that there has 

been very little attention in the literature on this topic and even the two sources cited here only 

mention these approaches informally and as side notes to the actual research topic. Also, often, 

the centroid location is simply assumed given. 

 

Table 0.2: Centroid placement approaches. 

Centroid placement Required data Assumption Mentioned in 

Geometric centre Zone shape 
Uniform distribution of 

trips 

Friedrich and Galster 

(2009), Khatib et al. 

(2001) 

Centre of gravity of 

weighted network nodes 

Internal zone 

topology 

Distribution of trips 

unknown 

Friedrich and Galster 

(2009) 

City location City locations 
Population density is 

representative for trips 
Khatib et al. (2001) 

Node with highest 

accessibility becomes 

centroid 

Internal zone 

topology and node 

accessibility 

indices 

Accessibility is 

representative for trips 

Friedrich and Galster 

(2009) 

Population-weighted 

centre of gravity 

Spatial population 

density 

Population density is 

representative for trips 
Khatib et al. (2001) 

Household-weighted 

density 

households 

locations 

household density is 

representative for trips 
Khatib et al. (2001) 

Centre of gravity of 

disaggregate trips 

Trip origins and 

destinations 

Actual trips  

representative for trips 

Friedrich and Galster 

(2009) 

 

The placement and construction of connector costs have received slightly more attention. A 

good introduction to issues regarding connector costs and their respective placement is given 

in Friedrich and Galster (2009), they investigated five different schemes for the cost and 
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placement of connector links. They compare results from a (more) detailed model to some of 

their simplified approaches, where local roads are replaced by connectors. However, as the 

authors point out, they only consider travel times and not link volumes. Also, their zoning 

system is assumed fixed and given. They found that within the tested approaches there was no 

definitive best solution, suggesting they did not consider enough methods, metrics, or there are 

simply multiple ways of designing connectors in an acceptable fashion. We also would like to 

refer the reader to much earlier, but conceptually still interesting, work by Daganzo (1980b) 

where a method for estimating connector costs (termed access costs) is embedded in a 

traditional static traffic assignment procedure. It is based on an approach where demand in 

zones is modelled as a continuum, inspired by earlier work in Newell (1980).  

 

A more pragmatic approach to connector placement is proposed by Mann (2002). In this work, 

existing connector end nodes are upgraded to a sub-centroid, termed B-node. Each B-node is 

then assigned a fixed portion of the total demand in order to improve accuracy. This approach 

is used in practice as well, for example in the Aimsun traffic simulation software. Downsides 

to this approach are the increased computational cost, reliance on pre-existing connector 

placement decisions, and the difficulty of constructing a justifiable distribution of demand 

across the sub-centroids.  

 

Both Jafari et al. (2015) and Qian et al. (2012) confirm that not only the zoning system, but 

also the choice of connectors can severely impact traffic assignment results. In Qian et al. 

(2012) the authors add/remove connectors and identify how this impacts results based on 

reference link volumes. Jafari et al.  (2015) not only investigate the effect of connectors, but 

also propose a method they call bi-level selection. They argue that when network detail is added 

to an original network, the original connectors might bypass this added detail which is deemed 

undesirable. They argue network detail should match the zoning as well as the supply-demand 

interface and propose a bi-level connector design with additional connectors close to the 

centroid. They then distribute demand across the two levels. Although the number of added 

connectors, as well as the choice for two levels is rather arbitrary, the observation of matching 

the level of detail between supply, demand and supply-demand interface is interesting and 

intuitive. 

 

All these approaches determine connector costs and/or demand distribution deterministically. 

Benezech (2011) approaches the problem from a more probabilistic perspective. His approach 

can be considered as a more general method compared to Jafari et al. (2015). Instead of two 

levels, four anchor points (connectors) are defined around each zone and a logit model is 

adopted to estimate the distribution of demand across these points. The utilities in the logit 

model are obtained from an underlying - more detailed - network that is used to determine the 

travel times to the various anchor points. As the author also points out, the number of four is 

arbitrary. Similar to the work of Mann (2002) and Jafari et al. (2015), the results do not lead to 

a connector cost, but effectively split each centroid/zone in four parts. 

 

All in all, existing literature on connector cost and placement is limited. While there exists 

agreement on the fact that connector placement and costs are important and significantly impact 

results, existing methods often lack justification for the choices that are being made. As we can 

observe from Table 0.3, connector placement and the number of connectors is virtually always 
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chosen arbitrarily or based on an assumption that is not verified. Also, centroid design is hardly 

ever considered in conjunction with connector design even though connector costs rely on the 

location of the centroid. Yet, the validity of the adopted centroid placement is never questioned.  

 

Table 0.3: Overview of approaches regarding centroid and connector placement. Colours: 

orange - arbitrary, light orange- assumed given, green – justified. 

Approach Connector 

placement 

Connector cost Number of 

connectors 

Centroid design Authors 

Deterministic 

disaggregation 

Assumed 

given 
Assumed given 

Assumed 

given 

Disaggregate to 

connector nodes 
Mann (2002) 

Single closest 

node 

closest node 

to centroid  
Zero cost 1  Assumed given 

Friedrich 

and Galster 

(2009) 

Single 

concentric 

sectors 

closest node 

to sector 

centroid  

Zero cost 
1  

(per sector)  
Assumed given 

Jafari et al. 

(2015) 

Advanced single 

concentric 

sectors 

closest node 

to sector 

centroid 

regression analysis 

data (land use/traffic 

states) 

1  

(per sector)  
Assumed given 

Friedrich 

and Galster 

(2009) 

Double 

concentric 

sectors 

closest node 

to sector 

centroid 

Zero cost 
1  

(per sector)  

Bi-level 

centroid 

disaggregation  

Jafari et al. 

(2015) 

Equal travel 

time isochrones 

Equal travel 

time to 

centroid  

Average travel time, 

potentially based on 

simulation 

Topology 

dependent 
Assumed given 

Friedrich 

and Galster 

(2009) 

Stochastic 

disaggregation 

“variety of 

directions”  

Stochastic, 

distribution based 

estimation 

4  
Disaggregate to 

“anchor” points 

Benezech 

(2011) 

 

7.5 Network aggregation 
 

On the supply-side of traffic assignment, network aggregation emerged as a popular method to 

reduce computational complexity of a model. Early approaches (Bovy and Jansen, 1983; Long 

and Stover, 1967; Goldman, 1966) mainly considered network extraction methods. There are 

some more recent examples of network extraction as well, see for example Jeon et al. (2012) 

or Cui (2016). Early on, it was quickly established that extraction methods are undesirable 

(Chan et al., 1968) for a number of reasons. It causes (i) reduced capacity on the network, (ii) 

unrealistic diversion of traffic to remaining arcs, and (iii) reduction, or absence, of network 

connectivity. While this has been known for decades, practitioners still use ad-hoc 

extraction/insertion methods to match network detail to their choice of traffic assignment 

model, highlighting one of the key problems in the current state of practice. This observation 

is not at all new, Friesz (1985) already pointed out the need for novel methodology to change 

the perspective on the use of network aggregation, an observation that arguably still rings true 

today.  
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Early network abstraction methods are found in for example Chan (1976) and Zipkin (1980), 

where original links, or nodes, are replaced by a simplified proxy. In Chan (1976) this results 

in three types of proxies: bypass links, interzonal links and intrazonal links. Error analyses 

demonstrated that total travel time remained unaffected under this scheme. Other more recent 

network abstraction methods are found in for example Connors and Watling (2015, 2008), or 

Jafari and Boyles (2016). A downside of these more recent approaches, apart from solely 

considering network representation, is that they are tied to a particular traditional static traffic 

assignment formulation, or that they adopt highly simplified cost functions that limit their use 

in a practical context. 

 

Aforementioned methods are uniform, i.e. applied to the entire network. Some aggregation 

methods however are non-uniform, sub-area aggregation methods for example only simplify 

parts of the network. Examples of such local aggregation methods can be found in Jafari et al. 

(2016), Boyles (2012), or Zhou et al. (2006). As mentioned earlier, we do not consider non-

uniform methods in this thesis.  

 

7.5.1 Macroscopic fundamental diagrams 
The Macroscopic Fundamental Diagram (MFD), also known as the Network Fundamental 

Diagram (NFD) is an attempt to uniquely capture the relationship between the number of 

vehicles in an area, referred to as accumulation, and the trip completion rate, i.e. vehicles 

leaving the network, within this area (Daganzo, 2007). Originally discussed in Godfrey (1969), 

this concept gained renewed attention in recent years, mainly in the context of control and 

Intelligent Transport Systems (ITS). The first control oriented applications aimed to regulate 

the number of vehicles entering an area via perimeter control (Geroliminis and Sun, 2011; 

Daganzo and Geroliminis, 2008; Geroliminis and Daganzo, 2008). The last few years have 

seen alternative uses, from taxi dispatch control strategies (Ramezani and Nourinejad, 2017) 

to MFD based assignment procedures (Knoop et al., 2016; Zhang et al., 2015; Knoop and 

Hoogendoorn, 2013). In the latter case, MFDs are used to abstract out – part of - the road 

network and replace it with a single functional relationship that treats the MFD area as a 

“reservoir” like entity. In this sense, the MFD acts as a network aggregation method. 

 

Challenges with this approach are the fact that the functional relationship is very much 

topology dependent. Thus, it cannot be extracted without reverting to simulation or empirical 

data analysis (if at all). Knoop et al. (2015) also noticed that a homogenous layout reduces the 

scatter on the MFD, this means it only works reliably when the infrastructure characteristics, 

as well as the traffic states within the area, are relatively homogeneous. Also, the level of 

abstraction is such that it can only approximate the true interactions of travel flows to a limited 

extent making it, arguably, unattractive for planning purposes. Given our focus on methods 

that exhibit minimal information loss and guarantee consistency across different levels of 

detail, MFDs are not (yet) considered suitable. 

 

7.6 Clustering 
 

Aggregation methods can in many ways be thought of as a specific type of clustering. 

Clustering methods, like aggregation methods, group data points. Typically, a clustering 

procedure is either unsupervised, semi-supervised, or supervised. Supervised methods are 

sometimes, for example in machine learning, also referred to as classification based clustering. 
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Most of the discussed aggregation methods in transport are in fact classification based 

clustering methods.   

 

Classification based approaches rely on prior knowledge to assign components into known 

classes. For example, using road types to dictate which links are removed, or abstracted out 

(Jeon et al., 2012; Chan, 1976; Goldman, 1966). Similar classification based methods are used 

to place or (dis)aggregate centroids (Chang et al., 2002; Mann, 2002; Khatib et al., 2001; Bovy 

and Jansen, 1983), or where and how many connectors should be included (Jafari et al., 2015; 

Benezech, 2011; Friedrich and Galster, 2009). These methods are considered to be supervised 

because the criteria for clustering are known a-priori, so the clustering procedure operates 

under supervision of these criteria. This in contrast to semi-supervised and unsupervised 

learning (Manning and Schütze, 1999) where only some, or even no, prior knowledge is used.  

 

While the distinction between the types of clustering is agreed upon, no single definition of 

what clustering exactly stands for exists. Here, we adopt the formulation in Pfitzner et al. 

(2009), who state that clustering is: “simply a process in which the members of a data set are 

divided into groups such that the members of each cluster, i.e. group, are sufficiently similar 

to infer they are of the same type and the members of the separate clusters are sufficiently 

different to infer they are of different types”. The similarity between cluster members can refer 

to anything that relates to the application context. Figure 0.2 shows an example where two 

different similarity measures result in two different clusterings on the same dataset. 

 

 
(a)    (b) 

Figure 0.2: Example clustering based on: (a) shape size classification, (b) shape type 

classification. 

 

The chosen similarity measure drives the clustering result. When using a categorical scale, as 

shown in Figure 0.2(b), solutions are generally easier to obtain and can be considered 

classification based. Finding appropriate clusterings when the measure of similarity is 

continuous, possibly dependent on multiple variables, and/or multiple data points, significantly 

complicates matters. In those circumstances clustering techniques beyond simple classification 

come into play. 

 

7.6.1 Hierarchical and partitional clustering 
Given that even comprehensive reviews on clustering techniques only succeed in discussing a 

small subset of the vast literature on the subject (Jain et al., 1999), we only introduce the reader 

to some of the core concepts of (non-classification based) clustering and, whenever possible, 

directly relate them to the transport domain. 

 

A clustering technique is either hierarchical or it is not. Hierarchical clustering methods have 

a nested structure where each level closer to the root, i.e. cluster with all data points, merges 

( )a ( )b
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the clusters of the previous level until only a single partition containing all data points remains 

(Ward, 1963). In non-hierarchical methods such a tree like structure is absent and only a single 

level of partitioning results, hence the name partitional clustering. Only a few examples of 

(partial) hierarchical clustering in a traffic assignment context exist, such as the adaptive zoning 

approach in Hagen-Zanker and Jin (2015), or van Steijn (2016). This is likely due to the fact 

that in traffic assignment, traditionally, only a single zoning system or network is considered. 

One could argue that a hierarchical approach in constructing consistent representations in a 

multi-scale environment would be a natural fit because the relation between disaggregate zones 

and more aggregate zones is for example clearly defined. On the other hand, it imposes a rigid 

structure where original zone boundaries always remain. Based on our earlier discussion on 

MAUP we know that it is unlikely that, at a different level of detail, these boundaries remain 

the best choice. So, while a hierarchical zoning systems might have some benefits in a multi-

scale context, we choose to focus on partitional clustering techniques to retain maximum 

flexibility. To maintain consistency between different granularities we utilise hard and soft 

constraints instead of a hierarchical zoning system.  

 

A special type of partitional clustering worth mentioning is spectral partitioning (Alpert and 

Yao, 1995). Spectral partitioning is a graph based clustering technique that uses eigenvalues 

and eigenvectors to partition data points. It is considered attractive because it allows for a 

concise mathematical formulation. Also, it seems to be reasonably efficient in terms of 

computational cost which has led to a small literature on the subject in the transport domain, 

see for example, Ruddell and Raith (2013), or Bell et al. (2017). We do not consider this type 

of clustering in this work, although there are, in places, some similarities, which are pointed 

out when relevant. 

 

7.6.2 Unsupervised Clustering techniques overview 
Most traditional unsupervised partitional clustering techniques rely on heuristics. A heuristic 

implies that there exists an underlying objective that one tries to satisfy, which indeed is the 

case in these approaches, although it is not always explicitly formulated. Also, heuristic based 

procedures, by definition, cannot guarantee an optimal solution to this underlying objective. 

The best known example of a heuristic clustering technique (without an explicitly formulated 

objective) is the k-means algorithm (MacQueen, 1967). In k-means, a dataset is partitioned in 

k sets of arbitrary size. It requires an initial location for each of the k clusters, the algorithm 

then assigns each data point to the closest cluster. After each iteration, the average location of 

each cluster is updated based on the locations of its assigned data points until convergence is 

reached. It is an elegant and simple approach, but has two major drawbacks. First, results are 

strongly dependent on the initial locations. Second, the number of clusters needs to be specified 

beforehand and is fixed. The k-means algorithm is an example of hard clustering, where each 

data point is assigned to exactly one cluster. There also exist clustering algorithms that do not 

necessarily assign data points fully to one cluster, but utilise a membership probability instead. 

This partial membership approach is known as fuzzy clustering. A well-known example is 

found in the Expectation Maximisation (EM) algorithm which can be considered as the fuzzy 

equivalent of k-means (Kearns et al., 1997). We restrict ourselves to hard clustering techniques 

only, because fuzzy partitioning is generally incompatible with how traffic assignment methods 

operate. For a comprehensive overview of unsupervised hard partitioning clustering algorithms 

– among other things – we refer the reader to Gan et al. (2007).  
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7.6.3 Semi-supervised clustering techniques 
Semi-supervised clustering techniques are a hybrid form of their unsupervised and supervised 

counterparts. This branch of methods differs from traditional unsupervised clustering 

techniques by incorporating some background knowledge into the method. This background 

knowledge can be included via different types of constraints, or additional distance based 

metrics (Basu et al., 2004). This is particularly useful in case contextual information is 

available, but this information is not sufficient to revert to a classification based approach. In 

these situations, one can construct an objective function subject to these constraints, in turn 

providing the opportunity to formulate the problem as a constrained optimisation problem. This 

is attractive because there exist many tools and methods to solve problems that are formulated 

in this particular way. 

 

Wagstaff et al. (2001) were the first to introduce background knowledge into the k-means 

algorithm by proposing two types of constraints, a must-link constraint and a cannot-link 

constraint. Both constraints impose a limitation on the relation between two data points and are 

therefore known as pair-wise constraints, or instance-level constraints. Observe that, because 

of their pair-wise nature, these constraints can be constructed a-priori and serve as additional 

input to the clustering algorithm. Wagstaff et al. (2001) use their method for lane identification 

based on GPS data. Some adaptations of clustering methods using instance-level constraints 

can be found in for example Ruiz et al. (2009), or Klein et al. (2002).  

 

In addition to instance-level constraints there also exist constraints that act upon a cluster rather 

than on two individual data points. In Joshi et al. (2012) this type of constraint is termed cluster-

level constraint. The first to incorporate this type of constraint, as far as the author is aware, are 

Davidson and Ravi (2005), who impose a so called minimum-separation-constraint where they 

ensure that all data points in the cluster can no further be apart from any other data point in the 

cluster than a predefined value. Clearly, the restrictions on cluster-level constraints can be 

constructed a-priori. Instead, compliance with these constraints requires the construction of a 

cluster, which makes this type of constraint more complex (and computationally costly) 

compared to instance-level constraints. Figure 0.3 depicts the main categories of clustering 

techniques, constraint types that are associated with them, and if we consider them or not in 

this work. 

 

 
Figure 0.3: Clustering techniques and constraint type overview. 
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Spatial (semi-supervised) clustering is a specific type of clustering where data points are 

clustered based on geographical characteristics. One of the most well-known algorithms in this 

area is DBSCAN (Ester et al, 1996). It proposes to cluster points based on density and requires 

just one parameter which acts as the constraint to delineate clusters. A benefit of this approach 

is that it does not require a predetermined number of clusters, like k-means. Extensions to 

DBSCAN also exist, including versions that incorporate must-link and can(not)link constraints 

(Lelis and Sander, 2009; Ruiz et al., 2009). From a transport perspective however, considering 

only the density of (spatial) data points is somewhat limited. When clustering zones, we would 

like to consider multiple characteristics, for example, achieving both high intrazonal 

connectivity and a more or less equal number of trips across zones. Such a combination of 

objectives restricted by a number of constraints is therefore likely the best way to formulate 

our zoning problem. 

 

7.6.4 Clustering and optimization 
Solving constrained optimization problems either results in an optimal solution or not. The 

most basic optimal solution algorithms adopt brute-force and search the entire solution space 

to guarantee the best solution is found. A commonly adopted, and more sophisticated, method 

is found in branch-and-bound (Morrison et al., 2016), where the solution space is dynamically 

reduced by bounding it. Branch-and-bound approaches can be optimal or non-optimal 

depending on their design. Branch-and-bound algorithms are also suitable for cluster based 

problems, see Koontz et al. (1975) for an early example.  

 

Most real world clustering applications deal with a solution space that is simply too large to 

solve optimally. This is where heuristic approaches are used, to provide a solution that is of 

acceptable quality, i.e. close to optimality. Numerous heuristic approaches exist and new 

approaches still emerge frequently. Besides simple greedy heuristics, the, arguably, most 

popular type of heuristic algorithms are metaheuristics. Metaheuristics propose a high-level 

solution approach that can be applied to a wide variety of optimisation problems. This is 

possible because they are so generally defined that they require little to no knowledge on the 

underlying problem that is being solved. For an introduction on metaheuristics see for example 

Voß (2000). To increase the effectiveness of metaheuristics in a particular application context, 

they are often adapted or combined (Puchinger and Raidl, 2005). Some well-known examples 

of metaheuristics are Genetic and evolutionary algorithms (Hruschka et al., 2009), simulated 

annealing (Aarts et al.,2005), tabu search (Gendreau and Potvin, 2005), or swarm intelligence 

approaches such as ant-colony optimisation (Dorigo et al., 2006).  

 

In traffic assignment metaheuristics are mostly used to construct zoning systems, since these 

are highly non-linear complex combinatorial problems in their own right. Constructing zoning 

systems (instead of aggregating existing ones) typically adopt a land use perspective. Zoning 

systems in the context of land use sometimes drop the term TAZ or zone and refer to regions 

instead. For example, in Li et al. (2014) the so called p-compact regions problem is specified 

where the authors aim to create p regions out of a given number of smaller polygonal units. 

The resulting regions are then used in urban economic models which in turn incorporate a 

traffic assignment model. The authors define an objective function with multiple criteria and 

constraints. They use metaheuristics to find a near optimal solution. Analogous to other demand 

driven models in the literature, they consider socio-economic indicators in addition to shape 



Chapter 7: Aggregation methods  103 

constraints (compactness measures) to determine their regions. Some other examples of 

(meta)heuristics employed to construct zoning systems can be found in Kim et al. (2016), 

Schockaert et al. (2011), Wei and Chai (2004), or Taillard (2003). We do emphasize however 

that, as long as it is possible to solve a problem optimally, one should try and avoid using 

heuristics because it is difficult to assess their solution quality. 

 

7.7 Traffic assignment in a multi-scale environment 
 

We make a distinction between multi-scale traffic assignment procedures and multi-scale 

traffic assignment models. The former allows for different granularities within a single 

assignment, i.e. network loading procedure. This means that some parts, i.e. spatial areas, of 

the simulation run at a different levels of detail than others. This type of simulation is 

sometimes also referred to as hybrid traffic assignment (Burghout et al., 2005; Casas et al., 

2011). In such approaches it is possible to have “pockets” of microscopic simulation that are 

supplemented with coarser mesoscopic and/or macroscopic modelling techniques. This can 

alternatively be classified as a non-uniform aggregation approach.  

 

Multi-scale traffic assignment models on the other hand, are models that operate separately 

from one another, having different networks, zoning systems, network loading and path choice 

components. The reference to multi-scale in this context mainly alludes to the fact that these 

models operate on overlapping spatial areas, are supposed to be able to exchange information, 

and somehow should yield comparable results. Our interest is focussed on this latter category, 

but literature on this topic is scarce. The few references that mention multi-scale modelling, 

either only consider multi-scale visualisation, where the underlying model is the same (Cheng 

et al., 2010), or provide a software design capable of hosting multiple models alongside each 

other (Chaker et al., 2010), but are lacking any consideration on how to ensure consistency 

between the different levels of granularity. Hence, as far as we are aware there exists no 

literature that either qualitatively or quantitatively investigates requirements for the successful 

design and/or operation of multiple traffic assignment models in a multi-scale setting. 

 

7.8 Summary and Discussion 
 

We can draw a number of conclusions from the existing literature on methods impacting on 

the representation of traffic assignment models and their inputs. First, the research is scattered 

across different fields (land use modelling, traffic assignment, operations research, GIS, 

machine learning) resulting in different terminology and more importantly, often only 

considering a subset of the data, components, or information that eventually is relevant to the 

final application. At the same time, research suggests that altering the representation of traffic 

assignment components should in fact be considered in an integrated fashion, mainly because 

choices regarding the granularity of one component impact on the remaining components.  

 

Second, most existing (dis)aggregation methods in traffic assignment focus on a single 

component such as zoning, or network, or connectors. There exists research on connector costs 

without considering the zoning system, research on centroid placement without considering 

network design, or research on network design without considering the zoning, connectors, nor 
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centroids. These isolated approaches could well be the result from the traditional split between 

demand and supply side, both in research as well as in practice. 

 

Third, there is a gap in the literature regarding the justification on the placement and number 

of connectors for a given zoning system, while at the same time it has been recognised that 

connectors (and their costs) significantly impact traffic assignment results.  

 

Fourth, the literature on zoning systems and trip matrices considers socio-economic data, 

statistical information such as census boundaries and household travel survey results. This is 

demand side information. The literature does not seem to consider supply side information 

(travel times, congestion levels, path flows) in this context. This seems odd given the fact that 

the level of service of a network impacts travel choices and could - and arguably should - be 

considered when constructing these long term zoning systems and their related trip matrices.  

 

Fifth, the last two decades gave rise to an increased interest in clustering methods. The 

similarities between aggregation and clustering provide opportunities to exploit these 

developments and bring them into the transport domain. Currently, in the context of traffic 

assignment, only a relatively small literature touches on this topic, mainly related to 

constructing zoning systems. In most cases, these approaches aim to cater for high level 

economic models rather than traffic assignment specifically. Therefore, there is room for 

improvement with respect to designing integrated approaches that considers supply side 

characteristics.  

 

Based on these observations, we fill the existing gap in the literature by proposing novel 

methodology to address the identified issues of consistency and lack of integrated approaches 

when constructing traffic assignment model representations. As briefly mentioned in Chapter 

1, we propose to incorporate supply side information, in the form of expected road usage, to 

not only improve the zoning system (and its demand), but at the same time use it to construct 

the network, the connector representation, estimate connector cost, and decide on centroid 

placement at the same time. We think that such a holistic approach is more natural than 

following the existing isolated methods. We claim our method is consistent based on the fact 

that all components are considered in unison and are constructed based on the same set of 

metrics.  

 

In a multi-scale context, it is not only consistency on the model inputs that matters. The adopted 

traffic assignment procedures applied to the different granularities of model inputs need to be 

consistent as well. We therefore first assess the requirements for consistent traffic assignment 

procedures (Chapter 8) before constructing their inputs (Chapter 9, 10). 
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8 On traffic assignment consistency in a multi-scale 

environment 
 

A traffic assignment model is always constructed in a way that is deemed “correct” by its 

operators. For example, the methodology proposed in Part II of this thesis can be considered 

correct in the context of quick-scan methods. However, when placing this same model in a 

multi-scale environment without any further consideration and together with other traffic 

assignment models, problems may arise. These problems mostly stem from inconsistencies in 

the underlying assumptions across the different models. By itself, adopting different 

assumptions need not be problematic, but in a multi-scale environment, where outputs of these 

different models can and will be compared, such inconsistencies are no longer acceptable 

because it compromises the credibility of the model results because it is no longer clear which 

model results can be trusted and which cannot.  

 

Another practical issue that arises when setting up a multi-scale environment are conversions 

between different model types. Any new traffic assignment model within this environment is 

bound to adopt a different level of detail than already available models. Given that they operate 

on the same, or at least a similar, spatial area, the following situation frequently occurs; 

components, or even an entire model, that already exists is taken as a starting point. This model, 

or some of its components, are then copied and somehow modified to the required level of 

detail of the new model. More often than not, this process is driven by ad-hoc decisions, 

remains undocumented, and hardly ever involves standardised (automated) procedures. Even 

if a certain protocol is followed, this approach is often abandoned when a subsequent new 

model granularity needs to be constructed. Therefore, in addition to inconsistencies in the 

assumptions, all kinds of additional inconsistencies, in the process leading up to the final model 

representation, are introduced. Hence, the result accuracy in the newly constructed models can 

be compromised severely. Especially problematic is that the modeller, due to lack of 

information, is unable to pinpoint the cause of any discrepancies that he/she finds when 

comparing model results. In general, we should therefore be careful to adopt results obtained 

from such “derived” models.  

 

In this chapter, we discuss how to choose traffic assignment procedure such that it is consistent 

with other traffic assignment procedures and formulate a number of (qualitative) criteria to 

ensure this. Methodology for the construction of appropriate traffic assignment model inputs 

is postponed to Chapters 9 and 10.  

 

We first discuss some aspects of traffic assignment model conversions in Section 8.1. In 

Section 8.2 we classify traffic assignment procedures, by exposing all of their underlying 

simplifying assumptions and rank them accordingly based on their relative capability. We 

argue that only when all assumptions are made explicit, we can verify the consistency between 

traffic assignment procedures. In Section 8.3, we then propose three consistency criteria to 

perform this verification process. This is followed by a brief summary of the chapter in Section 

8.4 
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8.1 Traffic assignment conversions in a multi-scale environment 
 

Traditionally, strategic planning models cover large surface areas while adopting a relatively 

coarse level of detail. In practice they are therefore often used as a feeder model for more 

detailed, shorter term, and more localised planning models. This conversion from a coarse 

model to a more detailed model is a significant challenge. It is not uncommon that the majority 

of project budgets for these tactical and operational models is spent on resolving issues that 

stem from this conversion. Among the most notable challenges are the conversion of aggregate, 

and often static, demand matrices to more disaggregate and time varying versions, as well as 

constructing disaggregated zoning systems and their demand-supply interface. Similarly, there 

needs to be consensus on what type of network detail is to be added, where it is added, and 

why. One of the reasons this is difficult to execute is because the original simplifications that 

led to the original strategic planning model are no longer known and the original disaggregate 

data is no longer available either. This then, results in the situation depicted in Figure 8.1(a): 

two models both with different assumptions, different inputs, and different procedures, yet 

applied in the same multi-scale environment. As a result there is little that can be said about 

the comparative modelling power of the “derived” model and sometimes even on the original 

model, let alone any insight on the level of consistency between the models.  

 

 
(a) 

 
(b) 

Figure 8.1: Model conversion under (a) implicit assumptions, (b) explicit assumptions. 

Our first step in avoiding this situation relies on making all relevant modelling assumptions 

explicit. We do so based on the spatial, temporal, and behavioural assumption dimensions 

discussed in Chapter 3. When we know what changes in assumptions led to the derived 

modelling procedure, we can at least assess the relative modelling power of the “derived” 

model in Figure 8.1(b). In this example, we would find out that the alternative model is more 

capable in two dimensions (less simplifying assumptions made), while it is considered less 

capable in one dimension (more simplifying assumptions made). Once we list the possible 

model assumptions explicitly, we use them to objectively assess the procedural consistency 

between models in Section 8.3. 
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8.2 Traffic assignment assumptions revisited 
 

In Chapter 3 we discussed the traffic assignment literature by assessing the different model 

types per assumption dimension. We now refine each dimension by splitting it in subcategories, 

to the point that all assumptions become explicit. To prevent discussing a complete taxonomy 

of traffic assignment models, we only describe the subcategories and model features in terms 

of their relative capabilities. More general and in-depth discussions can be found in the 

excellent review by Wageningen-Kessels et al.(2014), regarding microscopic and mesoscopic 

model characteristics, or Bliemer et al. (2017), regarding macroscopic characteristics. 

 

8.2.1 Spatial assumption subcategories and capabilities 
On the link level, vehicle based traffic flow interactions are considered the most capable, see 

Figure 8.2. Microscopic and mesoscopic models fall in this category. Fundamental diagram 

based approaches, i.e. macroscopic models based on average flow rates, are less capable due 

to their more aggregate nature. 

 

 
Figure 8.2: Spatial assumptions in traffic assignment by subcategory, in decreasing order of 

capability. 

Within the vehicle based approaches, the assumptions regarding longitudinal interaction (car 

following) and lateral interaction (lane changing) determine the relative model capability. In 

the case of flow based interactions, the shape of the adopted fundamental diagram drives the 

model capability. We distinguish between the shape for the hypocritical and hypercritical 

regime. The most capable approach here is when both the hypo and hypercritical regimes can 

be modelled through any concave function. On the other hand, when adopting for example a 

BPR link performance function, one makes the simplifying assumptions that the link is nor 

capacity constrained, nor storage constrained, and there exists no hypercritical regime on the 

fundamental diagram. This then leads to a significantly less capable model from a spatial 

perspective. Link capacity constraints in reality are enforced across the entire road section, 

there do however exist models that only impose a capacity constraint at the upstream, or 
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downstream border, or neither of the two in case of the BPR function. We therefore explicitly 

allow for this by considering the location where capacity constraints are enforced (if any). 

 

Finally, spatial interactions on intersections lead to the potential inclusion of a node model. 

This node model can for example be point based such as the class of first order node models 

described in Tampère et al. (2011), or it relates to some other model type. Micro and meso 

approaches typically model node interactions spatially, instead of abstracting it out to an 

analytical point model and are therefore considered more capable.  

 

8.2.2 Temporal assumption subcategories and capabilities 
Temporal assumptions leading to the static, semi-dynamic, and dynamic models discussed in 

Chapter 3, are in fact the result of a combinations of assumptions. The assumptions relate to 

the propagation speeds of traffic states, travel demand propagation, and residual traffic 

transfer11.An overview of each temporal subcategory is provided in Figure 8.3, ordered by their 

relative capability.  

 

 
Figure 8.3: Temporal assumptions in traffic assignment by subcategory, in decreasing order 

of capability. 

In saturated conditions, traffic states determine the speed with which queues build up (if any), 

while in unsaturated conditions they dictate how upstream conditions propagate downstream. 

Travel demand propagation determines the speed of the vehicles themselves, which is in 

general different to the speed with which traffic states propagate. Finally, assumptions 

regarding residual traffic transfer determine if traffic, still in the network at the end of the 

simulation, is either assumed to disappear, or is retained in case of subsequent modelling 

periods. Again, vehicle based approaches are considered most capable because traffic state and 

demand propagation is by definition consistent since the former implicitly follows from the 

latter. Macroscopic dynamic first order approaches that are fully compliant with kinematic 

wave theory can be considered most capable within the limitations of aggregate traffic flow 

                                                 
11 In Bliemer et al. (2017) only macroscopic approaches were considered. We therefore extended and altered 

original definitions. Traffic state propagation speed was originally termed wave speed, while travel demand 

propagation speed originally was referred to as vehicle propagation speed. 
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modelling. Some macroscopic approaches however are less capable than others, especially so 

when they do not comply with kinematic wave theory. This occurs when they propagate queues 

upstream too fast (infinite speed), keep them in one place (zero speed, resulting in vertical 

queues), or do not model them at all (not available), leading to a much simplified hypercritical 

traffic state propagation. Similarly, from a hypocritical perspective, some models base their 

traffic state propagation on vehicular speeds that are inconsistent with the underlying 

fundamental diagram and therefore their capability is compromised as well (e.g., such models 

cannot describe fanning effects that occur when flow increases). 

 

8.2.3 Behavioural assumption subcategories and capabilities 
The different behavioural model types mainly emerge from assumptions that relate to how 

travel time is constructed and interpreted by travellers. The decision making process can be 

broken down in full rational approaches, or boundedly rational (Di and Liu, 2016). The latter 

is considered more capable yet harder to model. SUE and DUE are examples of fully rational 

approaches, where SUE is considered more capable because there is support for imperfect 

information on the side of the decision maker, while DUE approaches only consider perfect 

information. The actual travel times can be constructed based on experience (most capable), to 

predictive, or simply instantaneous. The latter is least capable because it the decision maker 

simplifies its behaviour by assuming the current travel time is in fact the true travel time. The 

classification for the behavioural assumption dimension from a capability perspective is 

provided in Figure 8.4 and follows the original classification as described in Bliemer et al. 

(2017). 

 

 
Figure 8.4: Behavioural assumptions in traffic assignment by subcategory, in decreasing 

order of capability. 

8.3 Traffic assignment consistency in a multi-scale environment 
 

We utilise the explicit and capability based classification of the previous sections to objectively 

assess differences between (existing) traffic assignment model procedures, from these 

differences we draw conclusions on how consistent these models are and if they are suitable to 

be adopted within the same multi-scale environment.  
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Recall that we postpone the construction of consistent model inputs to Chapters 9 and 10. 

However, we do have to discuss the properties that can ensure this consistency in the same way 

as we do for model procedures. As shown in Figure 8.5, all traffic assignment model inputs 

can be considered spatial in nature. Then, naturally, aggregating model inputs leads to less 

capable models, while disaggregating model inputs leads to more capable models. The question 

that needs to be answered is, what underlying assumptions leading to this (dis)aggregation are 

acceptable such that we maintain consistency between these different model granularities. 

 

 
Figure 8.5: Categorisation tree for representation methods and their assumption dimension. 

We argue that the following requirements need to be satisfied in order to guarantee inter-model 

consistency: (i) directional consistency, (ii) source consistency, and (iii) abstraction 

consistency. 

 

First, let us discuss directional consistency. Consider the earlier example of Figure 8.1(b) again, 

a less capable model was found with respect to one assumption dimension, while the other 

assumptions led to increased model capability. We argue that consistency between models can 

only be achieved when all changes in assumptions that are imposed affect the model capability 

in the same direction. The underlying rationale here is that, at the very least, it must be clear if 

differences in model results are in fact an improvement over the original results or not. We can 

only do this when each of the altered assumptions results in a more capable model (or all yield 

a less capable model depending on the perspective). If not, then it is no longer certain to what 

extent the changes are in fact compromising or enhancing results compared to the original 

model. Following this line of reasoning, the example in Figure 8.1(b) is in fact not an acceptable 

model conversion because it is not directionally consistent. 

 

Second, we impose a condition of source consistency. We argue that a single point of reference 

should be adopted. Also, this reference source model, in our view, should be the most capable 

traffic assignment model that one would consider within the multi-scale setting. From a 

procedural point of view, this means that we relate everything to the single most capable model 

under consideration. For traffic assignment model inputs this is slightly more challenging. In 

practice, the data collection and spatial granularity of a network are often already tailored to 

the desired level of detail of the new traffic assignment model. In case of a strategic planning 

model, this means that most data is collected at a coarse spatial aggregation level. This becomes 

a problem when trying to construct a more detailed model based on this aggregate model; 

additional detail is “invented” from the aggregate sources. This problem is amplified when 
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multiple disaggregate models are derived from the aggregate base model, due to lack of 

methodology, resulting in aforementioned inconsistencies. To avoid this, all model inputs 

should be created from the same data source(s) as much as possible. In other words, a strategic 

model remains coarser than a tactical model, but its original data sources should be retained 

and collected at a disaggregate level as much as possible. This data can then be reused for any 

other model that is constructed within the same multi-scale environment. That way, the same 

(automated) methodology driven aggregation procedure, one of which is discussed in Chapters 

9 and 10, can be applied on the inputs such that it is always possible to construct consistent 

traffic assignment model representations at any level of detail. Conceptually, this results in the 

situation depicted in Figure 8.6. This approach does require a fundamental change in how 

traffic assignment models are created. The conversion oriented paradigm is abandoned in 

favour of a source model design principle.  

 

 
Figure 8.6: Model construction in a multiscale environment under explicit, consistent 

simplifying assumptions utilising a single point of origin. 

Finally, the third condition that needs to be considered is termed abstraction consistency. 

Whenever simplifying assumptions in model procedures lead to abandoning particular model 

features altogether, there is no issue with consistency because the capability of the model has 

changed in a single direction (less capable). This can be regarded as the procedural equivalent 

of extraction (see Section 7.1). Yet, some simplifying assumptions result in a more complex 

change in model capability. For example, let’s assume two identical models except for their 

spatial interaction assumptions; one is a macroscopic model and the other a microscopic model. 

However, as discussed in Section 3.2, car following models can be converted into a 

macroscopic representation by adopting the fundamental diagram consistent with the car 

following behaviour, under steady state conditions. As a result, it is possible to convert a model 

from a microscopic to a macroscopic representation in a consistent fashion. Such a change in 

assumptions, from a procedural perspective, should be regarded as an abstraction method rather 

than an extraction method because the macroscopic behaviour replaces the individual car 

following behaviour. In this case, abstraction consistency is satisfied as long as the fundamental 

diagram corresponds to the steady state car following model of the microscopic model (or a 

less capable version of it). Similar considerations apply, for example, when replacing spatial 

node models with point based alternatives. 
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8.4 Summary 
 

In this chapter we classified traffic assignment models based on the capabilities of their 

underlying assumptions. We adapted the framework of Bliemer et al. (2017) to do so. The 

spatial categories of the original framework, extended with the microscopic and mesoscopic 

modelling paradigm, led to a capability based classification of the subsequent 

subcategorization of modelling features and assumptions. This assessment led to three novel 

qualitative conditions that, we argue, need to be satisfied in order to guarantee consistency 

between traffic assignment models residing in the same multi-scale environment. These 

conditions are referred to as: (i) source model consistency, (ii) directional consistency, and (iii) 

abstraction consistency. When any of the conditions are violated, the differences between 

model outputs are compromised in the sense that it becomes difficult to justify which result is 

better. 

 

As long as the underlying assumptions of traffic assignment procedures are known, verification 

of the above conditions for existing traffic assignment models is relatively straightforward. The 

difficulty lies in obtaining or constructing appropriately disaggregate model inputs that can be 

used as the source model in a multi-scale setting. Moreover, methodology is required to scale 

these source model inputs holistically, i.e. in an integrated manner, and consistently, following 

the reasoning in Chapter 7 and complying with the conditions laid out in this chapter. These 

two observations are the focal point for Chapters 9 and 10. 
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9 Methodology for consistent traffic assignment 

model inputs 
 

In Chapter 8 the procedural side of achieving consistency between traffic assignment models 

in a multi-scale environment is discussed. In this chapter we explore the same topic, only from 

the perspective of the traffic assignment model inputs. When combining the methodology 

presented in this chapter with the conditions and classification regarding traffic assignment 

procedures, a fully integrated approach results, allowing practitioners to achieve consistency 

across traffic assignment model representations. 

  

The proposed methodology is compliant with the conditions specified in the previous chapter, 

meaning that we construct our model inputs such that we adhere to: directional consistency, 

source consistency, and abstraction consistency. To do so, we first discuss how our 

methodology fits the general representation framework in Section 9.1. Then, a general 

disaggregation-aggregation framework, specific to constructing consistent traffic assignment 

model inputs in a multi-scale setting is proposed in Section 9.2. This is followed by 

methodology for four of the five steps proposed within this framework. These steps include: 

(i) construction of the source model inputs in Section 9.3, (ii) source model assignment 

procedure in Section 9.4, (iii) supply input representation in Section 9.5, (iv) and demand-

supply interface representation in Section 9.6. The last step in the framework, the demand input 

representation, is discussed in a separate chapter, namely Chapter 10. We conclude with a 

summary of this chapter in Section 9.7.  

 

9.1 Traffic assignment model input representation 
 

The focus of this chapter is solely on traffic assignment model inputs. We make no assumptions 

on the adopted traffic assignment procedure once the inputs are made available. We do however 

encourage that this procedure is selected based on the reasoning and conditions discussed in 

Chapter 8.  

 

Recall that in Chapter 2 we introduced implicit (rule based) representation function ( ).   

Since we only consider traffic assignment model inputs here, Equations (2.4) and (2.5) simplify 

to: 

 

   ( ), with , ,  and , ,

       A D Z A D ZM M M M  (9.1) 

 

Path choice ( )   and network loading ( )  are not considered, neither is a predefined path set 

.P  We are only concerned with altering the physical road network, centroids, and connectors 

via ,A  the trip demand through ,D and the zoning structure .Z  The overall problem of 

Equation (2.6) can therefore be written as: 
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We explicitly relate the information loss function ( )   and magnitude of scaling function ( ) 

to our proposed objectives when discussing the zonal representation in Chapter 10. 

 

9.2 Framework for consistent traffic assignment model input 
design  

 

In Chapter 7 we concluded that constructing a zoning system, regardless of its level of 

sophistication, will always remain just one of an infinite number of possible representations. 

We also found that existing methodology in this context is mainly driven by demand side 

considerations; meaning that the supply side, as well as demand-supply interactions, in the 

construction of the zoning system are largely ignored. This omission does not by definition 

mean supply side information should be considered. It is of course entirely possible that it is 

unnecessary to do so. However, we do not subscribe to this view. Moreover, existing methods 

regarding the construction of zoning systems implicitly acknowledge the importance of supply 

side characteristics by incorporating - rather crude – measures trying to capture the effects of 

this interaction. They do so, for example, by delineating zones based on road types, or, even 

more indirectly; zone delineation by bodies of water, or other natural structures. These proxies, 

among other things, aim to minimise the variance in travel times within a zone without 

estimating its actual effect. Given that travel time is one of the most important outputs of a 

(strategic) traffic assignment model, ideally, the zoning structure should not compromise its 

design by settling for these proxy based solutions. 

 

Of course, when supply side information would be embedded in the construction of the zoning 

system, the zoning system becomes conditional on the results of traffic assignment. Yet, the 

results of traffic assignment are also conditional on the zoning system. This would therefore 

introduce a mutual dependency and requires some kind of iterative procedure that terminates 

upon convergence, see Figure 9.1. 

 

 
Figure 9.1: Zoning system and traffic assignments’ mutual dependency. 
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objective is to provide methodology that is of demonstrable practical use, we explicitly choose 

to only explore a non-iterative approach instead. This has three benefits compensating for the 

lack of a “convergence based” representation procedure. First, any of the methods proposed 

can be directly embedded in existing modelling processes as a supplementary procedure. 

Second, it obviates the need to make a choice on what existing zoning method we choose to 

embed our method in. Therefore, differences compared to the original zoning can be 

objectively assessed and are not compromised by the effect of other, existing – and possibly 

conflicting or unknown – metrics stemming from the combination of the various methods. 

Third, it always remains a possibility to introduce a feedback loop afterwards if one so desires.  

 

9.2.1 Travel time variance through expected road usage 
To incorporate supply side information, let us consider a zone that, in terms of its demand side 

data, has been constructed in a perfectly homogeneous way. Traditionally, the following 

happens; the zone is accepted and replaced with a centroid, the local roads (based on road type) 

are replaced with “representative” connectors and assignment is performed. Now consider the 

situation that we have additional information that shows that some paths from within the zone 

to a particular edge of the zone exhibit travel times that are severely affected by congested local 

roads, while the other local roads experience no congestion. Also note that all these local roads 

are no longer present in the accepted zone due to being abstracted out for connectors with a 

fixed – low – cost. In this situation, travel time accuracy is compromised by aggregating out 

the high level of travel time variance in reaching the physical road network. We therefore argue 

that in addition to demand side considerations that lead to a “homogenous” zone, also the 

internal travel time stability, i.e. low intrazonal travel time variance, of a zone should explicitly 

be taken into account. Low variance in disaggregate travel times within zones can only be 

achieved when we can guarantee that roads being replaced by connectors are in fact 

uncongested roads. Consequently, this information, in absence of empirical data, can only be 

obtained by performing some kind of traffic assignment procedure, yielding information on the 

level of expected road usage. This metric allows us to distinguish between uncongested and 

potentially congested roads, subsequently leading to the identification of areas with low 

variance in travel times. We refer to these areas as zone components, we discuss zone 

components in more detail in Section 9.6.1. Zone components serve as the foundation for 

constructing the final zoning system. 

 

9.2.2 Integrated approach 
Besides the zoning system, we also consider the other traffic assignment model inputs. Earlier, 

we found that while there exists literature on the placement of centroids (Friedrich and Galster, 

2009; Chang et al, 2002; Bovy and Jansen, 1983), the construction of connectors (Jafari et al., 

2015; Qian and Zhang, 2012; Benezech, 2011) and the granularity of the transport network 

(Jafari and Boyles, 2016; Bovy and Jansen, 1983), they often consider these components in 

isolation. Following the conclusions in Chapter 7, we propose to consider the creation of the 

zoning system, centroids, connectors and the (aggregate) network in an integrated fashion. 

Interestingly, the notion of expected road usage turns out to be equally suitable in driving the 

desired granularity of the aggregate network, which in turn allows for a consistent, accurate, 

and justifiable estimation of connector costs and their placement. We also argue that there is 

no need for - a spatial location of - centroids anymore because we remove the dependency 

between the cost of a connector and the location of this manufactured construct that is a 
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centroid. An important practical benefit of considering all traffic assignment model inputs in 

unison is that the construction of the interface between demand and supply becomes more 

natural, is consistent, seamless and reproducible. This in contrast to current practice where, all 

too often, one still relies on ad-hoc decisions by the modeller at hand.  

 

9.2.3 Conceptual Framework 
We assume that the following inputs are available and given: the original travel demand and 

zoning, i.e. statistical areas and trip matrices, as well as the complete disaggregate road 

infrastructure supply (e.g. extracted from OpenStreetMaps, networks underpinning route 

navigation systems, or obtained from governmental bodies). The methods acting on these 

inputs are implemented as part of a general framework for the construction of traffic 

assignment model inputs under supply side constraints. This framework is depicted in Figure 

9.2. 

 

 
Figure 9.2: Disaggregation-aggregation framework for holistic approach to supply side 

zone, centroid, connector and network representation. 

The framework comprises five components described by five implicit functions 

1 2 5( ), ( ), , ( ).  f f f  First, the original zoning and its travel demand is disaggregated as 

performed by function 
1( ).f  The result can be considered the starting point for constructing the 

appropriate granularity of the traffic assignment model inputs. Note that this disaggregation 

step is only necessary as long as complete individual or household trip data is unavailable. In 

present day, this is nearly always the case, but maybe in the future this might be different. 

Clearly, once this data becomes available this first step can and should be skipped. The inputs 

available after completing 1( )f  represent the source model inputs as discussed in Chapter 8. 

We explicitly account for this step within the framework itself because, while it is typically 

possible to obtain a network at its finest level of detail, this is much harder when it comes to 

demand side data. The reasons this data is so hard to obtain can be explained by the sheer 

volume of data that is involved, as well as other factors such as privacy related issues. Next, 

function 2 ( )f  applies - some form of – a disaggregate assignment resulting in information 

regarding the level of expected road usage. This result is then used in 3( )f  to decide which 
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network elements can be abstracted out and which ones should be kept. Special care should be 

taken to ensure network connectivity is guaranteed. In 
4 ( )f  the links that are marked to be 

abstracted out serve as the foundation for the new zoning structure, as well as the starting point 

for an accurate estimation for connector costs and their placement. In 
5 ( )f  the final zoning 

system is constructed utilising clustering methodology that groups the basic zoning 

components to the extent deemed desirable by the modeller utilising a constrained optimisation 

problem formulation. 

 

To demonstrate the suitability of this framework, we illustrate each of the steps with a particular 

implementation. We acknowledge that each of the steps’ proposed implementations is just one 

of many possible approaches. For each of the methods adopted in the various steps, we opted 

for approaches that require little calibration in order to make them generally applicable. Also, 

while the methodology itself is novel, we, in places, adopt well known modelling paradigms to 

highlight that good results can be achieved not only in an academic setting, but that our methods 

can directly be adopted in practice if one so desires. 

 

Similar to Part II of this thesis, the steps 
1 4 ( ) f  are discussed and formulated such that there is 

no need to specify a separate algorithm, one can simply follow the formalised versions of each 

step, discussed in the remainder of this chapter, to achieve the desired results. The zonal 

representation in 
5 ( )f  however, is formulated as an optimisation problem and does require an 

explicit solution scheme. As mentioned, we postpone both the formulation of this step, as well 

as the accompanying solution scheme, to Chapter 10. 

 

9.2.4 Consistency revisited  
In Chapter 8 we argued that constructing traffic assignment models in a multi-scale 

environment requires (i) directional consistency, (ii) source consistency, and (iii) abstraction 

consistency. We argue that the framework in the previous section is compliant with these 

requirements.  

 

(i) Source consistency: After the completion of 
1( )f , we consider the disaggregate 

model inputs as the source model inputs. The subsequent aggregation procedures 

therefore rely on the exact same source data guaranteeing the source consistency 

condition. 

 

(ii) Directional consistency: All model inputs, from the perspective of the source 

model, are subject only to aggregation. Hence, all modifications are in the same 

direction, namely spatially aggregated, satisfying the directional consistency 

condition. 

 

(iii) Abstraction consistency: The assumption that drives the aggregation procedure(s) 

is that we can identify areas of stable internal travel times and utilise them as the 

building blocks for zones in the aggregate representation. Abstraction only takes 

place when replacing the infrastructure, within the area with stable internal travel 

times, with connectors with a fixed cost. The construction of these costs, like the 

zones, and like the network, all rely on the exact same metric of expected road 
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usage. Therefore the process of abstraction is argued to be consistent across the 

considered components. 

 

9.2.5 Notational conventions 
Formalising the steps in the disaggregation-aggregation framework requires denoting the same 

types of data at varying levels of detail. We start with the original model inputs, which are 

disaggregated to source model inputs, then we construct the data that serves as the starting 

point for the zonal clustering (via so called zone components), followed by aggregated 

clustering results. To prevent an excessive amount of notation, we “flavour” existing notation 

by their granularity, an example – with respect to zones {1, ,Z}z - is outlined in Table 9.1. 

This table only serves as an illustration of the notation, the related concepts are discussed at a 

later stage in this chapter. 

 

Table 9.1: Different notational flavours depending on the granularity of the data. 

Variable Meaning Properties 

Z   Original number of zones {1, ,Z}.z    

Z  Disaggregate number of zones, with {1, , Z}.z  Z Z  

Z  Number of zone components with {1, ,Z}.z  Z Z Z   

Ẑ  Number of zone component clusters with ˆˆ {1, ,Z}.z  ˆZ Z Z   

Z  Number of final zones with {1, ,Z }.z   Z Z Z   

 

9.3 Step 1: Constructing the source model 
 

To construct the source model we adopt a link centric approach where we assume that all trip 

demand originates from the physical links in the network. To formalise the underlying 

disaggregation method, we first discuss the relation between the original zoning system and its 

underlying infrastructure, followed by the construction of the disaggregate demand based on 

this infrastructure. 

 

9.3.1 Original zoning system and its infrastructure 
Each physical link in the network is attributed to exactly one zone. Initially, we are provided 

with the original zones {1, , },z Z  all of which represent a geographical area. We denote the 

relation between physical links and their respective zones via membership indicator matrix 
N N

2 .z A  Note that we exclude connector links in this respect because they are not physical 

links. An example is provided in Figure 9.3. Observe that both link 3 ,a i.e. node pair 2 3( , ),n n  

and link 4 ,a  i.e node pair 3 2( , ),n n cross a zone boundary, in such cases the link is attributed to 

the zone containing the majority of the link infrastructure, here, this means both links belong 

to zone 2.z   
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Figure 9.3: Links attributed to zones based on location. 

Outgoing and incoming links of nodes can be partitioned similarly through 
N A N A

2 2, ,z z    A A respectively, with:  

 

T( ) .z z z A A A  (9.3) 

 

From this link-to-zone mapping, we also extract the relation between nodes and the original 

zones in a similar fashion. Typically, a node n  is either internal or external to an original zone 

z  via: 

 

1, if  1, 

0, otherwise,

z

n

zn

A
N 

 
 


1
  (9.4) 

 

with Z N

2

N where 1znN   means that node n  has one or more incoming or outgoing links 

attributed to zone ,z  hence it is considered internal to .z  Otherwise, it is considered external, 

see Figure 9.4 for an example 

 
Figure 9.4: Node and link membership of original zones. 

Observe that node 2n  is in fact internal to both 1z  and 2.z Such nodes are referred to as 

boundary nodes because they allow for a transition from one original zone to the other via its 

connected links. We formalise boundary nodes through Z N

2 ,N where: 

 

, if >1,

0, otherwise.

zn n

zn

N
N


 


N 1
  (9.5) 
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Because boundary nodes represent the physical transition point from one (original) zone to the 

other, they play an important role in the construction of the – to be created - refined zoning 

system, hence our explicit identification of these locations, see also Section 9.6.1.  

 

9.3.2 Constructing the source model demand 
Observe that by placing the demand on the links, we redistribute existing zonal demand to their 

internal links, therefore, based on the terminology discussed in Chapter 7, this disaggregation 

step is classified as an expansion method - the inverse of abstraction - rather than an insertion 

method.  

 

Because travellers live on streets represented by links in the model, the origins and destinations 

of trips reside on links as well. To simplify, we assume that trips go from the upstream node of 

their origin link to the upstream node of their destination link. Hence, the more outgoing links 

a node has (i.e. the more streets it represents), the higher the demand is likely to be. To 

accommodate any type of such node weighting based on this “bundling” of link demand, we 

propose a generic node weight, or priority, based on said node characteristics, which we capture 

via weight vector N 1.z 

w  This weight vector is zone specific, such that only nodes residing 

within zone z can have non-zero weights.  

 

Consider the example in Figure 9.3 again, where, if we base our weight on the number of 

outgoing links on each node within the respective zone, we would find that 1 [1,1,0,0]w   and 
2 [0,1,2,0].w   Observe that for boundary node 2n  we should only consider the outgoing links 

attributed to the zone in question, so both zones receive a weight of 1 for this node. Because 

boundary nodes have non-zero weights in multiple zones, we must take measures to prevent 

losing any information when constructing the disaggregate node-to-node demand matrix 
N N.

D We do so by constructing od-pair specific disaggregate node-to-node demand 

matrices first, denoted 
N N ,zz 

D via: 

 

T T
, , {1, , N},

z z
zz n n
nn zzz z

w w
D D n n


 
 

 
   

 1 w 1 w
 (9.6) 

 

where the appropriate node weight is applied for the point of departure (from zone z )  as well 

as the point of arrival (from zone z ), relative to the total weight of the departing, arriving zone, 

respectively. The combined weight ratio is then multiplied with the original zone demand to 

yield the disaggregate node based trip demand. The final disaggregate interzonal demand 

matrix is then simply obtained by summing over all od-pair based disaggregate node-to-node 

matrices: 

 
Z Z

1 1

zz

nn nn

z z

D D


 

 

  (9.7) 

 

In case there exists intrazonal demand in the original zoning, this is automatically distributed 

across the nodes internal to the zone via their weights. We have not taken any precaution 
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against having non-zero intrazonal demand for disaggregate node pair ( , )n n , but one of course 

can do so if desired.  

 

As a numerical example, consider the network in Figure 9.3 again and let us assume an original 

demand between 1z  and 2z  of 
1,2 100.D   Zone 1z  has a total weight of 2 since there are two 

nodes with a single outgoing link within 1.z For node 1, we find that 

   1,2 1,21 1 2 1 2 1
1,2 1,32 3 3 2 3 3

100 16 , 100 33 ,D D      and  1,2 01
1,4 2 3

100 0.D     Since, the boundary 

node portion residing in 1z  has the same weight as node 1, it also gains the same number of 

trips as node 1, with sums up to the total demand of 100. The number of disaggregate zones is 

denoted by Z, which equates to the number of nodes in the original network i.e. Z=N.  

 

9.3.3 Constructing node weights 
Constructing node weights zw can be done in many ways. In the previous section we provided 

an example that assumed a weight based on the number of outgoing links of each node. Clearly, 

many other possibilities exist. The simplest being applying a uniform weight across all nodes. 

Ideally however, one would like to consider more sophisticated approaches considering the 

variation in population density in zones, specific land use characteristics etc. Any such 

approaches are compatible with this proposed generic weighting and it depends on the 

application or case study what weighting is considered appropriate.  

 

9.4 Step 2: Source model assignment 
 

In our pursuit of refining the original zones such that they exhibit low travel time variance as 

well as determining which links to retain based on the desired granularity, information on the 

network’s expected road usage is needed. The only way to get this insight on a network wide 

scale (in the absence of empirical data) is to perform some form of traffic assignment.  

 

  
 

Figure 9.5: (a) Hypothetical 5 zone network, (b) example link flows after disaggregate node-

to-node AON assignment. 

While we could try to obtain very accurate estimates of densities, flows, and speeds, we argue 

this is not necessary. Instead we only make a distinction between roads without (virtually) any 

delay and roads with some or significant delay, based on our chosen metric of expected road 

usage. We argue this suffices because once we establish a link exhibits delay, it can no longer 
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be trusted to not exhibit significant travel time variance, especially if demand starts to vary. In 

that case it should not be considered as a candidate to abstract out. Further, it is far easier to 

identify links that have potential for exhibiting delay than determine their actual delay, since 

the former allows one to adopt an (expected) lower bound rather than trying to get an exact 

number. Following this line of reasoning we choose to apply All-Or-Nothing (AON) 

assignment, where we utilise Dijkstra’s shortest path algorithm to find the single shortest paths 

between each disaggregate node pair. We denote the cost of the node-to-node shortest paths 

via 
N N.

H  The related disaggregate paths are denoted by 
P A

2 ,P with {1, ,P}.p  

Analogous to outgoing and incoming links of a node, we define disaggregate paths 

departing/arriving from a disaggregate zone via 
Z P Z P

2 2, ,    P P respectively. The 

disaggregate path flow vector 
P 1

f  is then found via: 

 

T(( ) ) , f P DP 1   (9.8) 

 

or, if a non-matrix based notation is preferred, can alternatively be acquired via:  

 
Z Z

1 1

, {1, ,P}.p pz pz z z

z z

f P P D p 



 

    (9.9) 

 

Assigning the disaggregate path flows f  to the network yields disaggregate link flow vector 
A 1

q  via: 

 
T .q P f   (9.10) 

 

Note that we do not concern ourselves with the interpretation of congested path or link costs, 

because we do not equilibrate this assignment. The link flow rates obtained via Equation (9.10) 

are used as an indicator for the link classification that drives the supply input representation, 

see also Figure 9.5(b).   

 

Of course, adopting AON puts a limitation on the accuracy of the result and, if one would 

consider equilibrating the disaggregate assignment, a more accurate estimate of the actual road 

usage can be obtained. In its current form two types of error might occur that are not accounted 

for: (i) links that labelled as “high variance” in AON are in fact not high variance in an 

equilibrium result, (ii) links that are not labelled as high variance, are in fact congested in an 

equilibrium result. Both errors are the result of the lack of redistribution effects based on the 

traveller’s experience on its path. That said, even under this crudest of approaches, results 

indicate a notable improvement over the original result (see Chapter 10), suggesting that when 

one would have the computational power to adopt a more sophisticated approach (and above 

mentioned errors are likely to be reduced if they existed in the first place) an even better result 

is possible. It is left for future research to compare our current AON approach with an 

alternative equilibrium assignment. The reason for this is mainly a pragmatic one; when the 

number of disaggregate zones Z becomes high, the number of paths that one needs to consider 

grows exponentially, even when one considers only a single path per zone pair, i.e. P=Z (Z-1).  

For example, the extremely small hypothetical network in Figure 9.5(a), already has 1980 

disaggregate single paths resulting from 45 disaggregate zones. So, for most real world 
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networks, an AON approach is likely the only realistic approach to obtain this estimate 

considering the computational constraints involved.  

 

It should be noted that although we create a single shortest path between all nodes, this is not 

related nor directly compatible with the well-known concept of betweenness centrality often 

used in graph theory, which counts the number of shortest paths passing through a node. In our 

case, each path still carries a weight, based on its flow, so counting the number of paths is not 

that meaningful when identifying high variance links/nodes. If such a measure were to be 

adopted, one should take this into account when disaggregating the demand into, let’s say, 

single trips, only then such a measure would be representative. It could be of interest to explore 

such an alternative scheme, but again, this is left for future research. 

 

9.5 Step 3: Supply input representation 
 

In Part II we found that the computational cost of assignment is mostly determined by the 

number of paths, which in turn is dictated by the number of zones in the network. We also 

found that having an aggregated, or simplified, network also reduces computational cost, but 

this has not nearly as much impact as aggregating the zonal structure. Hence, in determining 

the granularity of the network it is always, in our view, more important to be able to capture 

spatial traffic flow interactions than to maximise network aggregation, simply because there is 

less to gain in the latter than there is to lose in the former. We apply this same principle when 

deciding on what links to retain and what links to abstract out. We only abstract out links that 

we consider to be truly local roads that are virtually guaranteed to exhibit no delay. These roads 

therefore exhibit stable travel times under all circumstances. All other links are considered as 

keep links. To identify the keep links, we specify keep link v/c ratio threshold min ,  reflecting 

the minimum road usage required for a link to be retained. Conversely, links that drop below 

this threshold are expected to remain undelayed. Any node with at least a single keep link 

adjacent to it, regardless of its direction is also retained and is termed keep node. The retained 

keep infrastructure is denoted by node-to-link indicator matrix N A

2

K such that: 

 

min

max
A || A , if ,

0, otherwise.

a
na na

ana

q

q
 


 



K  (9.11) 

 

The observant reader might have noticed that Equation (9.11) is similar to the delay link 

classification in Part II, but in contrast to Part I, min min   because we require a high level 

of certainty regarding a link being a truly uncongested road. Figure 9.6 illustrates the concept 

of constructing a keep network following our binary link/node classification given our earlier 

hypothetical network and some given min .   

 

In the extreme case all infrastructure in an original zone is marked to be kept, i.e. all links are 

above the threshold, an infeasible situation occurs since there is no mechanism to redistribute 

this demand to other original zones. However, this, in our experience, only occurs due to errors 

in the modelling of the base model’s infrastructure. Typically, this only happens in CBD/inner 

city areas, and the modeller has not included all exits and entrances of (underground) parking. 
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By including these dominant sources of trips in such areas, the above described situation is not 

only avoided, but the method automatically places these trips in the correct locations. Hence, 

we emphasize that it is critical to include all infrastructure, including (mass) parking facilities, 

in the construction of the base model. 

 

  
Figure 9.6: Binary link classification based on some expected road usage threshold min . 

9.5.1 Network and zonal connectivity of paths 
If we were to apply a traditional extraction method and remove all non-keep links from the 

original network, the situation depicted in Figure 9.7 results. It highlights why Chan (1976) 

classified extraction approaches as undesirable; in this particular case it leads to loss of network 

and path connectivity.  

 

 
Figure 9.7: Connectivity violations under network extraction. 

To avoid loss of connectivity we propose an approach where we rely on paths being 

decomposed into three separate sections: a departure section, an arrival section, and a main 

section. This split is similar to the three-way path split proposed in Benezech (2011), but 

improves upon this method in a number of ways. Benezech predefined a number of so called 

anchor points (Leurent et al., 2011). These anchor points are specific to each original zone and 

are used to mark a transition between path sections. In our approach, we do not force path 

sections to comply with the underlying original zoning system, which makes it more flexible. 

Second, we do not require a predefined number nor any predefined locations of anchor points. 
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Instead of relying on such rather arbitrary choices, our demarcation automatically follows from 

the expected road usage obtained earlier. Third, Benezech used these anchor points mainly to 

search for paths - in almost identical fashion as originally proposed by Raadsen et al. (2009). 

These paths were then used to estimate connector costs, while we use path sections to guarantee 

network connectivity instead.  

 

Consider the path traversing the links depicted in Figure 9.8(a). The original link classification 

would break path connectivity if we were to remove the non-keep links. We avoid this by first 

identifying the three aforementioned path sections. The departure section starts at the path’s 

origin and ends at, but does not include, the first keep link that is encountered. Similarly, the 

arrival section starts at, but does not include, the last keep link that is encountered on the path 

and ends at the path’s destination. The main section comprises all links in between the departure 

and arrival section. Any non-keep links on a path’s main section cannot be considered as truly 

local roads, because they are now used for “through” traffic. Roads are argued to be only truly 

local when they are solely utilised to access the physical road network for the “main” part of 

the trip (or egress after the main section). Hence, the underutilised links on main sections of 

trips should therefore be retained as well, see Figure 9.8(b). These additionally retained links 

are referred to as connectivity-keep links because they guarantee path connectivity.  

 

 
Figure 9.8: Example path under link extraction, (b) the same path utilising connectivity keep 

approach. 

It is of course possible that the first/last link of a path is already marked as a keep link, then the 

departure/arrival path section is simply skipped. The inclusion of connectivity-keep links in 

our keep network formulation requires us to modify Equation (9.11) and replace it with: 

 

min

max

min min

max max

A || A , if ,

A || A , else if ( , , ) : =1 ;  and ,

0 otherwise,
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


K  
(9.12) 

 

with , , {1, ,A}, {1, N},a a a n   and {1, ,P}.p  This can be interpreted as follows; link 

a  is a connectivity keep link as long as there exists a disaggregate path p  passing through ,a

with an upstream and downstream link , ,a a   respectively, and both these links are marked as 

keep link (via 1,  and 1ap a p

a a  

   ). Applying this approach to the earlier example in Figure 

9.6, we obtain the supply representation as depicted in Figure 9.9. 
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The connectivity keep links ensure path connectivity on their main sections, i.e. on the physical 

network, but they do not solve the issue of path connectivity on the departure and arrival 

sections. This problem, of guaranteeing a path’s access to its departing and arriving zone, is 

part of the demand-supply interface representation discussed in Section 9.6, because it involves 

the way paths, and therefore trip demand, enters or leaves the network. 

 

 
Figure 9.9: Additional connectivity-keep links for example path under given link 

classification. 

9.5.2 Impact of road usage on disaggregate demand 
Depending on how the initial node demand weights zw  were established, their might be some 

additional insight available based on the link classification that allows us to improve upon our 

initial weights. Clearly, if the node weights are already based on detailed land use information 

or even disaggregate household trip data (unlikely today, but maybe in the future) we retain 

these weights. However, in case the original weighting adopted a relatively basic approach, 

such as for example, a uniform distribution, or the number of outgoing links of the node their 

might be some benefit in considering the following adaptation. 

  

The link classification identifies what links are more prone to being congested. Often – but not 

always - such links include main arterials, motorways and other “road only” infrastructure that 

neither produces nor attracts travel demand and only serves as a thoroughfare. Clearly, it would 

be better to exclude these roads from carrying any demand. Also, smaller roads that are 

classified as keep links might require some reconsideration regarding their original demand 

weight. We argue that such potentially congested roads are more likely to not allow on-street 

parking and at the same time are less favourable as a residential location. The exception to this 

would be big apartment buildings or businesses with dedicated parking. Hence, the original 

basic weighting could benefit by setting the node weights of keep nodes to zero. Note that in 

order to gain the most from this adaptation, it is important to explicitly account for the inclusion 

of public parking garages, and possibly the location of underground parking facilities in major 

residential apartment buildings and/or businesses/shopping malls. This leads to the altered, and 

final, node weights * N 1z 

w  via: 
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*
0, if  1,

, otherwise.

nz

n z

n

w
w

 
 


1K
 (9.13) 

 

These weights then also lead to an updated formulation for the disaggregate demand estimates 

as well with: 

 

T T
, , {1, , N},

z z
zz n n

nn zzz z

w w
D D n n

 
 
  

 
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 (9.14) 

 

and: 

 
Z Z

1 1

zz

nn nn

z z

D D
 

 

 

  (9.15) 

 

with 
N N. 

D  Of course, updated disaggregate demands would lead to changes in the 

assignment results in Step 2, which in turn would lead to a (slightly) different link classification 

and therefore, again, different weights * .z
w  Therefore, when we would choose to set D D  

and revert back to Step 2 an iterative procedure follows that continues as long as .D D  This 

however, becomes a very time consuming procedure given the current disaggregate state of the 

model. Also, a preliminary investigation into such an iterative scheme suggested that the 

changes in keep network K  caused by performing additional iterations are small, at least 

beyond the initial construction of .D  We therefore, update the weights (and disaggregate 

demand) only once and do not pursue further updates via subsequent iterations.  

 

9.6 Step 4: Demand-supply interface representation 
 

The construction of the demand-supply interface, i.e. connectors and centroids is closely related 

to the zoning structure. Both the zoning system, as well as the demand-supply interface draw 

from the same basic building blocks to determine their final representation. These building 

blocks are referred to as zone components. They are the smallest non-divisible geographic 

entity that is used to construct the new zoning system. 

 

9.6.1 Zone components 
We construct the zone components based on both the link classification obtained in the 

previous steps as well as the boundary nodes that delineated the original zones. Together they 

determine the infrastructure that is attributed to each zone component. Informally, a zone 

component is the largest subnetwork that can be constructed without including any keep links, 

nor crossing a boundary node. Figure 9.10(b) shows the zone components that are present in 

the example network given our earlier hypothetical link classification of Figure 9.10(a). The 

purpose of boundary nodes is to delineate zone components at the original zone boundaries. 

These boundaries represent differences in land use, socio-demographics, and other useful 

demand side information that should not be ignored. Note that boundary nodes that are also 

keep nodes already delineate zone components based on their keep node status. Therefore, only 

the boundary nodes that are classified as non-keep nodes actively contribute to incorporating 

the original demand side delineation result. This then results in subdividing the original zoning 
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structure in smaller areas that are delineated by keep links or infrastructure based 

disconnectivity within the original zone. In this particular example, it has for example led to 

the subdivision of original zone 2z  in two zone components 2z  and 3 ,z  respectively. 

 

 
     (a) 

 
     (b)  

Figure 9.10: (a) link classification and (non-keep) boundary nodes, (b) zone components 

delineated by original zoning system and keep network. 

We choose zone components as our basic building block for two reasons. The first reason is 

because it guarantees internal travel time stability for each zone component, i.e. a high level of 

certainty that all links internal to the zone component are uncongested under the adopted 

demand scheme. The second reason is because it takes the original zoning structure into 

account, hereby implicitly accounting for any possible – demand side – dissimilarities between 

original zones that might be overlooked when only considering travel times. A typical example 

of demand side dissimilarities that need to be taken into account would be the situation when 

a residential zone borders on a commercial zone. In the morning peak commuters would travel 

from the residential zone to the commercial zone. It is undesirable to merge the two zones 

because it results in a significant shift from interzonal to intrazonal trips, compromising the 

modelling power of the final outcome.  

 

Identifying all zone components is straightforward and closely relates to the identification of 

connected components in a graph. A connected component, in graph theory, is a subgraph 

where any two vertices within the connected component can be connected via a path, while at 

the same time, replacing any of these vertices with a vertex not part of the subgraph does not 
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allow for a connection via a path. As discussed in Hopcroft and Tarjan (1973), connected 

components can be found through a simple depth-first search where one takes any edge as a 

starting point. Then adjacent edges are recursively added until no more adjacent edges can be 

found. The resulting subgraph is a connected component. The subgraph’s edges are then 

removed from the original graph and the procedure is repeated, starting with any of the 

remaining edges in the reduced original graph.  

 

We employ a slightly adapted version of this algorithm to make it suitable for identifying zone 

components. Two modifications are required: (i) the only adjacent edges accessible from 

boundary nodes are edges that are attributed to the same original zone as the current edge. (ii) 

Edges that are marked as keep link are not considered. Figure 9.11 shows the view on the 

example network on which the proposed algorithm operates, we leave it to the reader to observe 

that this leads to the seven zone components depicted in Figure 9.10(b). 

 

 
Figure 9.11: Identifying connected components in modified view on example network. 

The number of zone components found by utilising this algorithm is denoted by Z, with each 

zone component denoted z {1, ,Z}.  We point out that Z Z  due to the inclusion of 

boundary node based delineation. Analogous to the original zoning system, we denote links 

internal to a zone component by 
N N

2 ,z A and nodes internal to zone components by 
Z N

2 ,N which we obtain via: 

 

1, if  1, 

0, otherwise.

z

n
znN 

 
 


A
  (9.16) 

 

with z {1, ,Z}, {1, , N}.n  The found zone components represent the most disaggregate 

zoning system our method is capable of constructing. It depends on the coarseness of the 

original zoning system, as well as on the original travel demand what this zonal representation 

looks like. Because the (private) travel demand is ever changing, due to new residential 

developments, changing infrastructure, or public transport services, it also highlights an 

important benefit of automating the process of constructing zoning systems and the 

incorporation of supply side information within this process. By adopting an automated method 

it becomes much easier to update the zoning system once an update on the travel demand 

(non-keep) boundary node

(keep) boundary node

non-keep node

keep node
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becomes available. All too often, in current practice, one only changes the trip matrices, but 

retains the underlying zoning system, even though it no longer might be appropriate. 

 

We discuss the construction of our zoning system based on the identified zone components in 

Chapter 10, but first discuss how zone components are used to construct the demand-supply 

interface representation. 

 

9.6.2 Traditional connector and centroid design 
The following aspects are typically considered when constructing a traditional demand-supply 

interface, see also Chapter 5: 

 

 Centroid placement 

 Number of connectors 

 Connector placement 

 Connector cost 

 

The assumptions leading to the placement of centroids is mainly driven by the desire to 

represent the “average” trip departure/arrival location. This location is then utilised to achieve 

the actual underlying objective of finding representative - average - costs for the zone’s trips 

to access or egress from the physical road network, modelled via connectors. Therefore, it is 

not the centroid nor the connector that matters. What matters is to have a mechanism that can 

reflect this representative access/egress cost. Yet, existing approaches all too often cling to the 

centroid/connector paradigm without being fully aware of this underlying objective. We choose 

to first focus on estimating representative access/egress costs and only then determine how this 

relates to the existing paradigm of centroid and connectors.  

 

9.6.3 Connectoids 
Our first premise in the construction of the costs to access/egress from a zone (component) is 

that, because centroids are a virtual construct, this cost should ideally not be related to a 

centroid’s location. Instead, it should follow from the zone’s internal trip travel times to and 

from its boundaries. A zone boundary is a point where its internal non-keep infrastructure 

interacts with the physical road network. Our second premise in constructing connector costs 

is that it is difficult to assess which points of interaction with the physical road network are 

“better” than others. Hence, the choice for a limited number of modelled connections, as far as 

we can see, remains rather arbitrary. The only way to avoid this, is to accept all points of 

interaction as valid. It might well be that some of these points are used more than others, but 

given that the computational cost of a traffic assignment model is influenced more by the 

number of paths and zones than the complexity of the network, this is not considered to be a 

problem. In fact, as long as the estimated access/egress costs remain representative, this 

approach more closely resembles reality than an arbitrary limited number of points. We refer 

to these points of interaction as connectoids; they are a node based interface to the zone’s 

demand, without the need for an explicit centroid location nor connector link.  

 

Note that in case of traditional virtual connectors it is often discouraged to directly link them 

to intersections because they do not represent physical roads. With connectoids this problem 

no longer exists because connectoids reside one link away from the keep network, so that only 
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true physical roads are available to get to a connectoid. Figure 9.12(a) depicts connectoid 

locations based on this rationale for our example network. Since connectoids should interface 

with the keep network, the link separating the connectoid from the keep network must be added 

to the keep network as well, as is shown in Figure 9.12(b). We do emphasize that this added 

keep link is a physical link, with its own travel time cost, and is therefore not part of the, to be 

estimated, connectoid cost.  

 

 
    (a) 

 

 
    (b) 

Figure 9.12: (a) Basic connectoid placement, one link away from keep network, (b) extending 

keep link network to guarantee connectoid connectivity. 

The identified connectoids are formalised on a per zone component basis. We differentiate 

between departure connectoids, denoted by indicator matrix 
Z N

2 , N and arrival 

connectoids, denoted 
Z N

2 . N  This does not mean they are physically different nodes, but 

each connectoid can take on different roles. This allows for the separate estimation of departure 

and arrival connector costs which is particularly useful in the presence of one-way streets. The 

aforementioned additional keep links that let connectoids interface with the physical road 

network are formalised through ,K which extends the original formulation of K  through: 

 
 + 1, if ( , , ) : 1 and (  ||  ) 1,

, otherwise,

n zn n a na zn n a na

na

na

z a n N A A N A A    

  
   

 


1K
K

K
 (9.17) 

 

with {1, ,Z}, {1, ,A}, and {1, , N}.z a n    The first case in Equation (9.17) marks 

link a  as an additional keep link, when link a  is an incoming or outgoing link of connectoid 

,n  and its respective upstream/downstream node n  is marked as a keep node already. 

 

connectoid
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9.6.3.1 Disconnected zone components 

In most cases zone components will have direct access to the keep network and therefore have 

connectoids available to them. It is however possible that a zone component ends up without 

connectoids given the formulation presented in the previous section. In our example network 

this is the case for zone components 4z  and 2 ,z  see Figure 9.13.  

 

 
Figure 9.13: Zone components with and without connectoids. 

Since a zone component might become an actual zone, access to the retained physical road 

network needs to be provided for. One could allow trips from 4z  and 2z  to access through other 

zone’s their existing connectoids, but this would result in a rather convoluted demand-supply 

interface and additional complexity in estimating the connectoid costs. Instead, we prefer to 

create a situation where each zone gains its own dedicated connectoids that are also guaranteed 

to be directly connected to the final keep network. Furthermore, disconnected zone components 

4z  and 2z  might or might not be grouped with other zone components when constructing the 

final zoning system. Zone component 4z  could for example be merged with 7 .z  However, if 

this is not the case, any trips between 4z  and 7z  need to be modelled explicitly and physical 

infrastructure between the two zone components is required. In reality, these trips likely 

traverse the boundary node separating the two zone components. The boundary node is 

therefore chosen to become a physical node in this situation. When this happens, by definition, 

connectoids are then constructed around the, now physical and retained boundary node, as 

shown in Figure 9.14.  

  

 
Figure 9.14: Boundary nodes and their tentative connectoids. 
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This ensures the connectivity of disconnected zone components to the physical road network 

as well. We only apply this procedure once the final zoning system is in place and only in case 

a zone (component) is still disconnected from the physical road network. Hence, the 

connectoids around the non-keep boundary nodes are – at this stage - tentative. Depending on 

the outcome of the zonal clustering in Step 5, tentative connectoids become permanent or not. 

When a final zone is disconnected its tentative connectoids and boundary node(s) are retained, 

otherwise they are disposed of. Given that at this stage we do not know which of the two occurs, 

we treat tentative connectoids as regular connectoids and include them in , , 
N N respectively.  

 

9.6.4 Final network representation 
When we choose to retain the boundary nodes of disconnected zone components 4z  and 2z  (in 

Figure 9.14) in the final network representation, connectivity to the keep network must be 

satisfied. We therefore identify the shortest path from each non-keep boundary node to the keep 

network. Whenever it is decided to retain the boundary node due to zonal disconnectivity, the 

links on this shortest path are included in the keep network. Let us consider this for our example 

network under the assumption that 1z  and 2z  are grouped, but all other zone components 

remained unclustered. We then find that zone component 4z  remains disconnected and 

requires its boundary node to be retained, its tentative connectoids to be made final, and 

connectivity to the keep network must be ensured by including all links on the shortest path to 

the keep network to be part of the final keep network as well. This is illustrated in Figure 9.15. 

 

 
Figure 9.15: Example of retained and discarded boundary nodes based on assumed final 

zoning where only 1z  and 2z are merged. 

To avoid postponing the formulation of constructing the final network representation 
N A

2

 K  until we discussed the zonal clustering method, let us, for now, assume we know 

which boundary nodes are to be retained given some final clustering (and resulting 

disconnectivity of the final zones). These retained boundary nodes are denoted via * Z N

2 ,
N

with final zones {1, ,Z }.z   We refer the reader to Chapter 10 regarding details on how to 

construct *
N as well as on how to construct the final zoning system. Given the retained 

boundary nodes, the final keep link network K  is then constructed by supplementing keep 

link network K  with the links surrounding retained boundary nodes, as well as the links on 

the shortest path from a retained boundary node to the keep network via: 
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 (9.18) 

 

with {1, ,P},p and , {1, , N}.n n   The first case adds link ,a adjacent to node ,n  

conditional on node n  being a retained boundary node, to the keep network. The second case 

marks link a  on path p as a keep node, conditional on path p departing from retained 

boundary node n  and terminating at a keep node n such that no cheaper path exists departing 

from the same boundary node and terminating at any (other) keep node .n  The final network 

representation A  is subsequently be obtained via: 

 

T( )( ) .    A A AK K  (9.19) 

 

Effectively, A  is the original network where non-keep topology is filtered out based on .K

Filtering is applied via element-wise multiplication. Figure 9.16 depicts the final network 

representation A  for our example network based on the assumed retained boundary node in 

Figure 9.15. This concludes the supply side component of our method. In the remainder of this 

chapter we focus on the estimation of the connectoid cost and construction of the final zoning 

system. 

 

 
Figure 9.16: Example final network representation conditional on assumed zonal system. 

9.6.5 Connectoid cost 
Unlike existing methods, we do not determine the cost to access or egress a zone (component) 

based on a centroid location. In fact, there is no need for centroids to have a physical location 

at all. Instead, connectoid costs are estimated based on the abstracted out underlying non-keep 

network. Recall from Section 9.6.1 that the internal infrastructure of each zone component is 

expected to have stable internal travel times, therefore we can estimate disaggregate travel 

times from nodes internal to the zone component, to the zone component’s connectoids with a 

comparatively high level of accuracy. Then, these travel times need to be aggregated to obtain 

a representative average connectoid cost. This cost is then attached to the connectoid node 

obviating the need for a separate virtual connector link, with a cost based on some virtual link 

length, virtual link speed, and virtual location of a virtual centroid. Instead, connectoids can 

be thought of as a boom gate to access any location in the zone directly, while the access/egress 

cost to utilise the connectoid resembles a (travel time) toll that must be paid to do so. This 

connectoid

keep node

keep link
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concept is illustrated in Figure 9.17. Of course, for assignment purposes, it might still be 

convenient to have centroids and connectors. If so, we suggest to attach the connectoid cost 

onto a (zero length) connector link that does not contain any physical link characteristics. 

Hence, a connector should not have a length, nor a speed, nor a capacity, reflecting that it truly 

is a virtual connection. Similarly, the accompanying centroid has no meaningful coordinates 

and because it is no longer representative as a zone’s centre, the term zonoid would, for 

example, be more appropriate. 

 

In the remainder of Step 4, we propose three different methods to estimate connectoid cost: a 

base method and two additional methods that propose an additional scaling factor on top of the 

base method to improve the initial estimate. All three methods require the following data:  

 

 Zone component topology (see Section 9.6.1) 

 Disaggregate node-to-node demand (see Section 9.5.2) 

 Connectoids (see Section  9.6.3) 

 

We formulate the estimation of connectoid costs on the level of zone components. Of course, 

when clustering zone components in Step 5, connectoid costs are affected because they 

suddenly reside in a cluster rather than a zone component. However, this discussion is 

postponed until we discuss the clustering process itself (Chapter 10). 

 

 
Figure 9.17: Conceptual illustration of zones as centroids and connectoid (egress) cost as 

independent fixed node cost.  

9.6.6 Connectoid cost: base method 
In this base method, we simply determine a connectoids’ access/egress cost by taking the 

average travel time from each node internal to the zone component of the connectoid to the 

respective connectoid itself. This travel time is node weighted based on the - original zone 

based - node weight vector * .z
w  We formulate these – zone component – weights, denoted 

N 1,z 

w  via: 
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In other words, each node retains its original weight, but the relation is based on the node and 

its zone component rather than the original zone. As an example, let us estimate the egress cost 

of connectoid node 1n  in Figure 9.18.  

 

 
Figure 9.18: Close-up of zone component 6z  and its egress cost estimation for connectoid 

1,n  under uniform connectoid usage, hypothetical node weighting ,z
w  and hypothetical 

node-to-node shortest path cost .H  Some links are one-way only.  

 

Observe that the cost to travel from 1n to itself is zero by definition. Also, since connectoids 

are internal to the zone, they do carry demand and therefore both 1n  and 4n  contribute to the 

average travel time to utilise 1,n as do regular internal nodes. Hence, the egress cost to use 

connectoid 1n is then simply found to be (2 0 3 0.01 1 0.02 2 0.04) / 8 0.01625         (h). We 

denote the connectoid egress costs via Z N , H which in turn is obtained via: 
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with {1, , }, {1, , N}.z Z n  Observe that non-connectoid entries n  for zone component z  

are filtered out and default to a zero result due to .znN 
We define the connectoid access costs 

in a similar fashion: 
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This approach is straightforward to use and, at first glance, makes intuitive sense. However, it 

may lead to inaccuracies in certain situations. For example, trips originating far from one 

connectoid and close to another connectoid, are not likely to utilise both connectoids equally. 

It is expected that there will be a bias towards using the connectoid that is closest, because in 

general, keep network infrastructure consists of main roads with higher speeds and therefore 

comparatively lower travel times. Also, in some situations, double counting can occur between 

the connectoid cost and the path cost leading up to the connectoid. Based on these two 

observations, we propose two extensions to the original base estimates that are able to scale the 

originally estimated costs to mitigate these potential issues. These scaling methods are 

complementary and yield a, per connectoid, multiplication factor denoted via Z N, ,I II X X

respectively. They are formulated on a zone component basis so the scaling is easily applied 

by element-wise matrix multiplication, for example via ,I IIH X X and ,I IIH X X

respectively. Alternatively, they can be applied only as a post-processing step after the 

clustering procedure in Step 5 completes. 
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9.6.7 Connectoid cost: service area scaling method 
The first scaling method is based on the premise that the originally estimated cost is, in most 

cases, an overestimation of the true connectoid cost. We argue this is in fact the case whenever 

there resides more than a single connectoid on the zone component, since having more 

connectoid options, in reality, only reduces free flow path travel times. Hence, the more 

connectoids the more local the geographical area that the connectoid services.  

 

This method aims to compensate for the expected reduction of the connectoid’s service area. 

This is a deliberately basic method to find out if we can achieve improvements in our estimates 

with a minimal amount of computational effort. Hence, we first make a number of simplifying 

assumptions: (i) each zone component is represented by a unit circle, i.e. radius 1,r  (ii) 

connectoids are assumed to reside on the edges of a zone component, (iii) connectoids are 

assumed to be uniformly distributed across the zone component edge, (iv) origins and 

destinations of trips are uniformly and continuously distributed in space, (v) trips are modelled 

as-the-crow-flies between points (origin-connectoid, connectoid-destination, etc.), 

 

As an example, consider the zone component with four connectoids in Figure 9.19(a). We can 

then draw the average cost contour around the connectoid. This contour should be thought of 

like the following: if we were to draw an infinite number of lines between the connectoid and 

all locations on the zone’s edge, and then for each line determine its middle point; this middle 

point is the average cost of all origins/destinations on this line based on our assumptions. Then, 

if we would only draw these middle points, we obtain the shown average cost contour. We then 

find four overlapping areas that reflect locations where the average cost of trips utilising the 

connectoid is larger than the travel time from the contour to the closest connectoid. We now 

make two additional assumptions; (vi) all origins and destinations in the zone are projected 

onto this average cost contour, (vii) trips desire to use the connectoid that is closest to them. In 

this situation, the trips on the overlapping contour areas are in fact attributed to a suboptimal 

connectoid.  

 

 
       (a)           (b)     (c) 

Figure 9.19: (a) Stylised zone and its average cost service area per connectoid, (b) same 

service area approximated by unit circles, (c) reduced service area based on estimated 

service area scaling factor. 

 

We use this observation to determine our service area scaling factor, where the area of the 

contour is considered to be the service area. For simplicity, we first replace the “true” contour 

average cost contour, and its service area

1r 

1r  0.78r 

overlap area with average cost 

exceeding travel time to nearest connectoid

zone as a unit circle



Chapter 9: Methodology for consistent traffic assignment model inputs      138 

 

by unit circle proxies as depicted in Figure 9.19(b). The radius of this proxy unit circle, denoted 

by r  and initially 1,r   can be through of as the original unscaled connectoid cost estimate. 

We then argue that we should minimise the number of trips (projected onto the contour) that 

exhibit an average cost higher than the cost to access the closest connectoid. In other words, 

overlap between contours should be minimised while still servicing as much of the zone as 

possible. We do so by scaling back the connectoid’s service area to the point that the combined 

service areas of all connectoids match the total surface area of the zone component, see Figure 

9.19(c). This desired situation is formulated as follows:  

 
N

2

1

( , , ) ( || ), {1, , Z},r

zn znr
n

r r r N N z 

  



      (9.23) 

 

with on the left hand side the surface area of stylised zone component z  with radius 1,r   and 

on the right hand side function ( , , ),r

r
r r 

   which yields the surface covered by each 

connectoid service area (due to symmetry they are all the same). This area is then multiplied 

by the number of connectoids available in z . The connectoid service area, obtained via ( ),  is 

a lens; a shared area between two intersecting circles with radii , ,r r  respectively, where the 

latter represents the radius of the circle around the connectoid. The area of this lens, besides 

the two radii, is also conditional on the distance between the two circle centres, denoted .r

r


An impression is provided in Figure 9.20(a). 

 

 
(a)        (b)  

Figure 9.20: (a) Lens area of two circles in general, (b) assuming second circle resides on 

initial circles edge.  

We compute lens area ( )   like the following (Weisstein, n.d.):  
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  (9.24) 

 

In this particular case, Equation (9.24) can be simplified because connectoids reside on the 

edge of the zone, i.e. 1,r

r
  yielding:  
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Furthermore, the zone itself is also a unit circle, so 1.r   This then yields: 
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Knowing that the original connectoid cost estimate is assumed to be 1,r   then, choosing r

such that Equation (9.23) is satisfied means that r  also reflects our desired service area 

scaling factor, which we generally denote via Z N.I X We therefore rewrite Equation (9.23) 

to solve for r  directly, as well as setting non-connectoid nodes to zero, yielding the,  zone 

component ,z connectoid n specific, service area scaling factor 
I

znX  via: 
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with {1, ,Z}, {1, ,N},z n  and the inverse of the original lens area function, denoted 1( ).   

Note that if the number of connectoids is less than two, the method actually yields a scaling 

factor >1, therefore the minimum clause in Equation (9.27) caps the factor at the original cost 

estimate. Table 9.1 shows some of the different scaling factors obtained, conditional on the 

number of connectoids in the zone component.  

 

Table 9.2: Service area scaling factors depending on number of zone component connectoids. 

Number of connectoids Service area scaling factor 

2               1.00 (capped) 

3 0.91 

4 0.78 

5 0.69 

6 0.62 

7 0.57 

8 0.53 

 

This approach is attractive because it is simple, justifiable, does not require calibration, and can 

improve modelling results, as our case study in Chapter 11 reveals. It does suffer from the 

drawback that it at least requires 3 connectoids before an actual reduction in cost can be 

modelled. We also found that because the method assumes all connectoids reside on a zone’s 

edge, it cannot account for any travel time double counting effects that occur when a connectoid 

is more centrally located. Therefore, a second complementary scaling method is proposed, in 

addition to the service area scaling factor. 
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9.6.8 Connectoid cost: centrality scaling method 
The original connectoid cost estimates only consider the internal topology of the zone 

component. No information on path travel times leading up to the use of a connectoid are 

accounted for. This can lead to unwanted side effects. This is best illustrated with an example. 

Consider the situation that all inbound paths into a zone component arrive from a single 

direction, as per Figure 9.21(a).  

 

 
Figure 9.21: Path travel time overestimation through connectoid cost double counting, under 

demand arriving from East: (a) correct average cost estimate, (b) incorrect overestimated 

connectoid cost. Demand arriving from West: (c) correct cost estimate, (d) incorrect 

overestimated connectoid cost, (e) correct overestimated connectoid cost. 

Initially, a single connectoid 1n  exists and the base method yields an accurate average cost 

estimate because the combination of external path travel time plus the travel time from the 

connectoid to each destination yield the actual total shortest path travel time. Therefore, the 

base connectoid cost estimate is correct. However, when another connectoid is introduced by 

the likes of 3 ,n  we observe that the base estimate connectoid cost of 3n is compromised, 

because some of the destinations reached via 3n  require to first travel into the zone and then 

partly backtrack again, i.e. implicit double counting of travel time occurs. In that case, the 

overall path travel time to reach destinations 1n and 2n  is overestimated, see Figure 9.21(b). As 

a result, the average connectoid cost for 3n  is overestimated, which leads to an unused 

connectoid in the actual assignment, even though destinations 4n and 5n are reachable at 

minimum cost via 3.n  Conversely, when assuming all demand enters from the opposite 

direction and assuming another connectoid in 5 ,n  only the connectoid cost of 5n  is correct, see 

Figure 9.21(c), while connectoids 1 3 and n n become overestimated. This overestimation in 

itself need not to be problematic given that none of the destinations reachable from 1n  are 

viable shortest paths (Figure 9.21(e)), then the double counting effect in 1n  is, arguably, an 

effective way of modelling its unattractiveness. However, again, connectoid 3n  has viable 

destinations in Figure 9.21(d), is assigned an overestimated average cost, and will – incorrectly 

so - not be utilised in assignment. 
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We argue that the more central a connectoid is located within a zone, the more likely it is that 

it suffers from travel time double counting effects, where some of its destinations are 

unrealistically unattractive, where others are not, causing the average connectoid cost to be 

compromised making it unrealistically unattractive compared to its edge located peers. Edge 

located connectoids do not suffer from this effect because their cost estimate results in the 

desired self-selection of trip demand that one would expect conditional on the arrival direction 

of the paths. 

 

One might reason that this is not a problem, because paths will simply avoid internal 

connectoids. This however also means that paths bypass the maximum amount of physical 

infrastructure possible, leading to reduced accuracy of link loads in assignment. It would be 

better if we can compensate for this effect, yield better overall travel time estimates for internal 

connectoids, and get better utilisation of the internal zone infrastructure. To do so, we propose 

a method that estimates a centrality scaling factor for connectoid costs based on the expected 

magnitude of travel time double counting. Since edges of a zone component are not negatively 

affected by travel time double counting, their scaling factor should revert to one, i.e. the original 

cost remains. Conversely, the scaling factor in the centre of the zone, denoted by min ,  

experiences the full magnitude of travel time double counting and serves as a lower bound on 

the connectoids centrality scaling factor. This results in a centrality scaling factor matrix 
min Z N[ ,1] .II  X  We point out that we adopted the term centrality to indicate that the scaling 

relates to the location relative to the centre, it has no relation with, for example, the concept of 

centrality in graphs, which has a completely different meaning altogether. 

 

We estimate min in a general fashion in Section 9.6.8.2, independent of zone specific 

characteristics. Then, min  is partially applied through linear interpolation, depending on the 

location of connectoid ,n  within zone ,z  captured via [0,1].zn   This results in the 

connectoid specific centrality factor II
zn  via: 

 
min min(1 ), if || 1,

0, otherwise,

II zn zn zn
zn

N N  


     
 


  (9.28) 

 

The remainder of this section is dedicated to formalising zn  and estimating min , respectively. 

 

9.6.8.1 Location based scaling 

The portion zn   of the centre point centrality factor min  attributed to a connectoid n  within a 

zone component ,z  is determined based on its location relative to the zone centre and zone 

extremities, as depicted in Figure 9.22. 

 

A Cartesian coordinate system is assumed and the four extreme points of each zone component, 

are captured by vectors; 
max max min max Z 1, , , ,

x y x y  respectively. Similarly, we define the 

virtual centre point vectors through 
Z 1, , ,

x y  respectively. The centre point location 

( , )z zx y  for each zone component z  is simply determined via: 

 

max min1
2
( ), {1, ,Z},z z zx x x z     (9.29) 

max min1
2
( ), {1, ,Z}.z z zy y y z    (9.30) 
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Figure 9.22: Schematic impression of location dependent factors influencing the scaling of a 

connectoid centrality factor.  

We obtain Z N[0,1] X by taking a distance weighted ratio per coordinate dimension on how 

close connectoid ( , )n nx y  is to the centre, compared to the zone’s extremity such that: 

 

max max

max max

max max

max max

( ) ( )
( ) ( )

( ) ( )

.
( ) ( )

n z n z

z z z z

z z z z
zn

z z z z

n z n z

z z z z

x x y y
x x y y

x x y y

x x y y

x x y y

x x y y

 

 
    

 


  

  


  

  (9.31) 

 

The weighting that we include is needed to, at least partially, accommodate for the zone shape. 

Observe that when ( , ) ( , ),n n z zx y x y  then 0zn    and we apply the full centrality factor 
min ,  as per Equation (9.28). Conversely, when max max( , ) ( , ),n n z zx y x y  then 1,zn   and hence 

the centrality scaling factor II
zn  is also 1. Finally, note that 1,zn   for all relevant connectoids 

because max max( , ) ( , )z z n nx y x y for each connectoid n  in zone component .z   

 

9.6.8.2 Centre point centrality scaling factor 

Let us now estimate the double counting of path costs that occurs for the virtual centre point. 

Our method is symmetric in the sense that it makes no distinction between departing or arriving 

trips when estimating min . For simplicity, we therefore only discuss the method from the 

perspective of arriving trips. 

 

First, we make the following simplifying assumptions: (i) each centre point’s original 

connectoid cost is represented by a unit circle with radius 1,r  (ii) all destinations are 

projected uniformly on the contour of this circle, (iii) paths with a destination in the zone 

component can utilise two  virtual  roads to enter the zone; a North-South road and an East-

West road, (iv) destinations on the contour can be reached by traversing the contour, which can 

be accessed from the intersection points with the two roads, or, alternatively, by travelling to 

the connectoid and “paying” the original connectoid cost. 

max

zx

min

zx

max

zy

( , )z zx y

min

zy

( , )n nx y

n zx x

n zy y

max min

z z z zx x x x  

max min

z z z zy y y y  

z
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The underlying idea of this approach is the following: by letting paths reach a destination by 

using the original path plus connectoid cost, but also consider a potentially – but not necessarily 

- shorter path using the contour, we can compare the difference between the two approaches. 

Whenever a shorter path is found by using the contour, the original cost has likely been 

overestimated (in the actual zone and infrastructure) and double counting occurred. Based on 

these differences we obtain a rough, but justifiable estimate of the amount of double counting 

in our original estimate. Note, that by uniformly distributing destinations across the contour, 

only some of the destinations will be more attractive to reach via this contour.  

 

Let us consider the extreme example depicted in Figure 9.23(a), where the shortest path cost 

ph to an example destination at the intersection of the contour with the road is shown. This 

reflects the “true” path cost. However, when we utilise the centre connectoid to reach this 

destination, first additional travel time is required to reach the connectoid itself, and on top of 

that, the connectoid cost – in the reverse direction – must be “paid” as well, see Figure 9.24(b). 

To avoid this double counting effect and obtain the true path travel time while still using the 

centre connectoid, we must solve 
min ,p ph r r h    see Figure 9.25(c), where the centrality 

scaling factor min  is utilised to alter the cost such that it reflects the true path cost to the 

destination. Note that min  can only be applied to the connectoid cost estimate, so the first r  

to reach the connectoid cannot be scaled. Solving this results in min 1,r
r

    which negates 

the unjust double counting that resulted from the original cost estimate. Also note that it is 

therefore possible that a connectoid cost might indeed become negative in order to reflect the 

correct path travel time. 

 

 
(a)              (b)     (c) 

Figure 9.25: Example of travel time double counting under simplifying assumptions. 

Let us now formalise this approach for all destinations. In practice, a path’s point of access into 

a zone depends on its destination but also on its origin. In general there will be a bias towards 

a convenient point of access, but due to external effects less optimal access points will also be 

utilised. In our stylised approach, we consider four principal points of access. For now, let us 

assume that all paths arrive only via the optimal point of access given their destination on the 

contour. This means that each main direction covers exactly 2 4  (radians) of the contour, 

with each “slice” intersected by one of the two roads, in turn splitting the slice in two identical 

sub-slices of 4  each, see Figure 9.26(a). Observe that all destinations in a slice are cheapest 

to reach via the contour. When we know the angle (in radians) of a destination, denoted , we 

can determine the cost of traversing the contour from the point of intersection with the regular 

road section via: 

 

2 .
2

r
r r

r


 


    (9.32) 

ph

1r 

ph r r 
ph

minr

r
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Observe that the further the destination resides from the intersection point, the costlier the 

contour based alternative path becomes and at some point, the original cost estimate becomes 

favourable.  

 

 
(a)     (b)   

Figure 9.26: (a) Impression of destination “slice” serviced by ideal point of access, (b) all 

destinations serviced by each point of access.  

In general, the “true” cost consists of the contour cost r  to reach the destination, but requires 

subtracting the double counting for first reaching the connectoid, i.e. .r  The (single 

destination) scaling factor is then given by the ratio between the “true” cost and current 

connectoid cost via: 

 

1.
r r

r




 
    (9.33) 

 

At the intersection point of the road with the contour, we find 0,r  resulting in the 

aforementioned connectoid cost of .r  Given the assumption of a uniform distribution of 

destinations across the contour, we can compute the average scaling factor by integrating over 

the interval [0, 4]  via: 

 

4 2 24

0 0

4 4 4 4
( 1) 1 61%.

2 32 4 8
d

 

   
  

   

 
          

 
   

(9.34) 

 

Hence, under the given assumptions, the centrality scaling factor accounting for path travel 

time double counting, becomes negative. Of course, not all paths do arrive from their ideal 

access point. To be able to account for this, we also estimate a second scaling factor, under the 

assumption that paths arrive uniformly across access points. We can estimate this cost by 

assuming all destinations are serviced (from a single point of access), leading to two symmetric 

slices of exactly ,  as depicted in Figure 9.26(b). For each slice, it is cheapest to traverse the 

contour as long as 2.r   After that, accessing the destination via the connectoid is preferred 

(it is cheaper) at the originally estimated and fixed cost of 2.r r   The average cost across 

destinations with 2,r  given 1,r  is again found via integration through: 

 
22 2

0 0

1 1 1 4
1 2 0.

2 2 2 2 2
d


  

 
       

 
   (9.35) 
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The destination weighted average scaling factor for the full slice, assuming all destinations are 

serviced, is then given by: 

 

2 0 ( 2) 1 2
36%.

 

 

    
    (9.36) 

 

We can therefore expect the final centrality factor to be bounded by these two cases such that 
min( 8) 1 ( 2) ,        where the actual centrality scaling factor for the centre point is 

defined by assigning a portion   to each of the two approaches via:  

 

min 2
1 (1 ) , 0 1,

8

 
   



   
        

   
  (9.37) 

 

where we postpone the discussion on estimating   to Section 8.5.3, where we utilise a real 

world case study to do so. This concludes Step 4 of our multi-scale representation framework. 

The final step of the disaggregation-aggregation framework is discussed in a separate chapter 

due to its slightly different nature in being formulated as a (separate) constrained optimisation 

problem. 

 

9.7 Synthesis and discussion 
 

In this chapter we proposed an integrated approach to the design and representation of traffic 

assignment model inputs suitable for a multi-scale environment. A generic five step 

disaggregation-aggregation framework is introduced to accommodate the construction of the 

relevant supply side and demand side inputs to traffic assignment. In this chapter, the first four 

steps of this framework are formalised, leading to a concrete step-by-step procedure to 

construct a representative supply input representation, as well as a justifiable demand-supply 

interface via the concept of connectoids and their estimated costs. We fully acknowledge that 

our interpretation of each of the framework’s steps represents just one of many possible 

approaches. 

 

First and foremost, we attempted to achieve consistency in our proposed methodology. We 

argue that we succeeded by explicitly considering the notion of expected road usage to 

construct the supply side representation as well as adopting this metric to construct zone 

components with stable internal travel times which, in turn, serve as the foundation for 

constructing the desired granularity of the final zoning system. The main novelty however, lies 

in our representation (and estimation) of the demand-supply interface where the traditional 

centroid/connector paradigm is refined and replaced by the concept of connectoids. The cost 

of entering, or departing, the physical road network from, or to, a zone is no longer arbitrary in 

our approach. It does not rely on unverified assumptions, virtual link lengths, virtual speeds, 

and virtual centroid locations. Instead, costs are estimated based on the underlying complete 

network and the identified zone components with expected stable internal travel times. 

Additional scaling methods have been developed to further enhance the connectoid cost 

estimates. 
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9.7.1 Model limitations 
The first steps in the framework that disaggregate the demand and perform subsequent 

disaggregate assignment are implemented relatively crudely, by adopting an AON based 

assignment approach. This approach does have a number of notable drawbacks, most of which 

we already discussed in Part I of this thesis. In the context of estimating expected road usage, 

the most notable drawbacks are found in that flows are not restricted to the physical road 

capacity leading to an overestimation of congested links. The fact that spillback is not catered 

for, so physical queues do not materialise, leads to an underestimation of congested links. 

Finally, due to the single iteration approach, congestion is not taken into account which can 

lead to inaccurate path choices. We partially account for these issues by imposing a 

conservative flow threshold 
min ,  but one should be aware of these limitations when analysing 

results under this modelling scheme.  
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10 Zonal representation: problem formulation and 

solution scheme 
 

In this chapter we solely focus on step five of the proposed disaggregation-aggregation 

framework where we construct the new zoning system. There are two aspects to this step. First, 

the formulation of a cluster based constrained optimisation problem is discussed. This 

formulation determines the objectives and constraints involved in constructing the final zoning 

system, but does not specify how this is achieved. Second, based on the posed problem 

formulation, we are able to choose from a wide range of methods to design and implement 

solution schemes. We are primarily interested in demonstrating the potential of our method and 

therefore prefer a solution scheme that guarantees an optimal solution. We propose a 

customised branch-and-bound algorithm to achieve this. We specifically designed this 

algorithm to be suitable for spatial clustering procedures. In addition, we propose and 

incorporate multiple bounds in order to reduce the search space and increase the effectiveness 

of this solution scheme. 

 

In Sections 10.1 and 10.2 we discuss the overall problem formulation and the underlying 

concepts. In Section 10.3, the objective function is discussed in more detail. The relationship 

between the criteria of constructing a “valid” zoning system and our imposed constraints is the 

topic of interest in Section 10.4. This is followed by Sections 10.5 and 10.6, where we discuss 

the two types of constraints adopted in our problem formulation. Issues around solving 

combinatorial problems - such as ours - are discussed in Section 10.7. We then propose our 

branch-and-bound solution scheme (Section 10.8), including the constraints (Sections 10.9 and 

10.10) and partitioning method (Section 10.11). The final traffic assignment representation 

based on the final zoning system is discussed in Section 10.12. Lastly, we conclude with a 

summary and discussion in Section 10.13.  

 

10.1  Problem formulation 
 

To construct the final zoning system, we aggregate the zone components {1, ,Z}z  

identified in Section 9.6.1. This aggregation process considers to two (conflicting) objectives 

and a number of constraints, all of which are discussed and formalised in the following sections. 

The result of this procedure yields the final zones and their demand via * Z Z * Z N

2, ,
   

 D Z  

respectively. Each final zone {1, ,Z }z  consists of one or more grouped zone components, 

with the number of final zones denoted by Z , where Z .Z Z     

 

There are two explicitly considered objectives when constructing the zoning system: (i) 

minimise the total network distortion in terms of connectoid access cost ,   and connectoid 

egress cost    (veh.h), and (ii) minimise the penalty 
mind (veh.h) imposed by the number of 

trips missing in the final zones. Missing trips should be interpreted as follows: to approximate 

the desired zonal granularity, we set a user-defined target number of trips denoted by mind  

(veh). When constructing the zones we try to let each final zone contain exactly this target 

number of trips. Whenever a zone does not meet this number of trips, the resulting difference 

is considered to be “missing” and for each missing trip a penalty is imposed. 
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The first objective measures the information loss, i.e. it represents ( )   in the context of the 

representation framework of Chapter 2. The second objective serves as a way to achieve a 

particular granularity. It therefore controls the magnitude of scaling, i.e. it represents ( )   in 

the context of the representation framework in Chapter 2. We propose to achieve these two 

objectives by formulating the zone design as a cluster based constrained optimisation problem.  

 

Each zone component is considered a data point in the clustering procedure that follows from 

our problem formulation. The zone component characteristics are used as background 

information to support the clustering process. Following the terminology discussed in Chapter 

7, we then develop a semi-supervised clustering approach, by introducing both instance-level 

and cluster-level constraints. The clusters that result from solving this problem describe the 

zone component partitioning that is the final zoning system. 

 

Let us now discuss the final problem formulation and its constraints. Each component involved 

in this formulation is discussed in one of the subsequent sections. Note that all inequality 

constraints are defined to be element-wise inequalities on matrices, for example ,G I is 

identical to , ( , ) {1, ,Z}.zz zzG I z z 
   The constrained optimisation problem itself is 

provided, as a reference, in Equation (10.1). 

 
min

T

minimise(  )    (Section 10.3)

s.t.

,                                (Section 10.2)

,                                (Section 10.2)

,                                (can-link constraints -

d    







G I

G G

K G  Section 10.5)

.                                (cluster-level constraints  - Section 10.6)GK G

  

(10.1) 

 

10.2  Clustering zone components 
 

Before discussing the objective function or instance-level and cluster-level constraints, we 

introduce some prerequisites in order to formalise our clustering based procedures. Clustering, 

interchangeably referred to as grouping in this context, is applied to zone components. We 

denote a clustering of zone components via grouping matrix 
Z Z

2 .G  This grouping matrix 

is symmetric because whenever 1z  is grouped with 2 ,z then 2z must also be grouped with 1,z

i.e. T.G G  A zone component is, also by definition, always grouped with itself, i.e. 1.zzG 

Finally, a hard partitioning scheme is adopted, meaning that each zone component can only be 

a member of a single cluster. Before the clustering procedure starts and no zone components 

have been grouped, it holds that ,G I with I  being the identify matrix, with dimensions 

implicitly determined by its context. Therefore, in general, we can state that, regardless of the 

chosen grouping, it holds that .G I  This constraint ensures that each zone component belongs 

to at least one group. 

 

Other useful properties of G are the fact that the reduced row echelon form of ,G denoted 

rref ( ),G  has a meaningful interpretation. Given G  is an indicator matrix, the fact that 
T ,G G and all zone components are attributed to a single cluster; rref ( )G can be used to 

elegantly extract and identify the clustered zones. In the example of Figure 10.1, rref ( )G is 
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obtained by subtracting the first row from the second and the third row from the fourth, and 

then swapping the second and third row. By definition, reduced row echelon form results in a 

matrix where zero rows are placed below non-zero rows, each non-zero row leads with a 1 ,and 

the leading entry of a row is in a column that is more to the right than in the preceding row. In 

this case, this results in two non-zero rows that by definition are linearly independent and 

denote the two resulting clusters of zone components. The number of clusters conveniently 

corresponds with the rank, denoted rk( ), of the original grouping matrix, i.e rk( ) 2.G In other 

words, the number of clusters of zone components Ẑ conditional on grouping G is obtained via 

Ẑ rk( ). G  

 

 
Figure 10.1: Identifying nodes internal to a cluster based on zone components and grouping.  

 

10.3  Zonal clustering objective function 
 

As mentioned, we consider two explicit objectives. The first minimises the total network 

distortion in connectoid access/egress costs via , ,   respectively. The second objective aims 

to satisfy a minimum number of trips in order to achieve a particular zonal granularity. These 

two objectives are contradictory since the former is optimal when not clustering at all, while 

the latter likely must cluster zone components to meet the minimum trip requirements. 

 

The minimum demand objective could alternatively have been modelled as a hard constraint. 

However, this is not possible for the following reasons: the desired zone demand cannot be 

expected to be met exactly for every zone. As a result the constraint has to be formulated as an 

inequality. In a setting where a zone’s travel demand is forced to be less or equal than the 

desired demand there is no more incentive to create clusters, due to the connectoid cost 

distortion objective. Conversely, adopting a greater than relation, causes situations where no 

solution can be found, because, as we will see, some zone components are not allowed to 

cluster. In such cases, the entire problem becomes infeasible. Hence, the desired demand is 

modelled as a soft constraint by including it in the objective function.  

 

10.3.1 Cluster based connectoid cost 
Using the changes in connectoid costs as a measure for information loss is not perfect. It does 

for example not allow to account for any interaction effects between zones. Yet, 

computationally, it is simply infeasible to consider such interactions comprehensively without 

consuming an exorbitant amount of computation time, because it would involve performing 

assignments for each of the tested cluster combinations. We therefore rely on a simplified, but 
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in our view representative, proxy by considering the connectoid cost distortion (or lack thereof) 

that arises from adopting a particular clustering.  

 

The original connectoid costs are computed based on the premise that only nodes internal to its 

zone component are considered. However, when the zone expands due to clustering, the 

connectoid’s catchment increases; all nodes internal to the cluster become eligible to utilise the 

connectoid. This distorts its original cost estimate. This distorted cost is argued to be less 

accurate due to the larger area and the lesser likelihood of stable internal travel times. While 

this is unfortunate, it also provides the opportunity to quantify the magnitude of information 

loss suffered. Consider the same example as before (Figure 10.1) where four zone components 

are clustered. In this clustering, nodes 1 4n  are internal to cluster 1̂,z where node 2n  is a 

boundary node between 1z  and 2.z  Let us assume all links have a travel time cost of 1 and we 

have weights of 1 21 1
2 2

[1, ,0,0,0,0,0,0], [0, ,1,1,0,0,0,0].
z z
 w w In that case connectoid 1,n  in 

the absence of any clustering, holds a connectoid egress cost of 
1 1

2 1 1
3 2 3
(1 0 1) .z nH        

However, under clustering ,G  nodes 3 4,n n become eligible internal nodes as well. Adopting 

the same node to node demands, but considering all node weights of zone components within 

the same cluster via 1ˆ [1,1,1,1,0,0,0,0],z w where we observe that the previously separate 

boundary node weights have been merged because they now reside in the same cluster. The 

cluster based connectoid egress cost for 1n  is then found in an identical fashion as before, only 

now based on cluster weights such that 
1 1

1 1
4 2

ˆ (0 1 1 1 2 1 3 1) 1 .z nH           Since the total 

weight of the cluster increases compared to the original zone component, clustering zone 

components impacts on the resulting connectoid cost, as is to be expected. 

 

Let us now formalise the construction of the cluster based connectoid costs Z Nˆ ˆ, , ,  H H

respectively, following the exact same reasoning as discussed when constructing their zone 

component counterparts in Equations (9.21) and (9.22), resulting in:  
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where we replace the zone component based weights z
w  with the cluster based counterpart 

denoted N 1ˆ z 
w and which are constructed like the following:  

 
Z

1

ˆ .z z
n zz n

z

w G w






  (10.4) 

 

Note that deliberately choose to place the connectoid costs on their original zone component 

in ˆ ˆ, , H H so that we can make quick comparisons between the original zone component results 

and the newly obtained cluster results, see Figure 10.2 for an illustrative example. 
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Figure 10.2: Example of connectoid cost affected by clustering 

 

10.3.2 Measuring connectoid cost distortion 
The distortion of the connectoid cost is defined by a measure of difference between the original 

zone component connectoid costs and their cluster based counterparts. In its simplest form this 

could be an unweighted absolute difference measure, simply comparing ˆ| |, ( , ).zn znH H z n  

However, we choose to avoid comparing absolute connectoid cost differences because the 

number of trips using a connectoid greatly impacts on the significance of the found (absolute) 

cost difference. A small distortion experienced by many trips might be more problematic than 

a high distortion experienced by few trips. Also, we cannot assume that the usage of a 

connectoid remains identical once it has been clustered. When empirical or other data sources 

are available they can also be used to estimate this usage directly.  

 

Let us denote the expected egress/access connectoid usage for zone components – in terms of 

demand (veh) – via 
Z N, ,  

F F respectively. If we then also construct this same expected 

usage conditional on some clustering ,G  and denoted via 
Z Nˆ ˆ, ,  

F F respectively, the 

weighted connectoid egress cost distortion z


(veh.h) for zone component z  can be 

formulated as follows: 

 
N

1

ˆ ˆ| ( ) ( ) |,z zn zn zn zn

n

H F H F     



   (10.5) 

 

where zn znH F 
 is only non-zero when n  is a connectoid in zone component z  and its value 

represents the total weighted contribution of this zone component’s egress cost. This is then 

compared, by taking the absolute difference, to this same connectoids weighted contribution 

under a given clustering .G  The summation across all connectoids in the zone component then 

yields the zone component’s total egress cost distortion. We obtain the access cost distortion 

z


in a similar fashion via: 

 
N

1

ˆ ˆ| ( ) ( ) |,z zn zn zn zn

n

H F H F     


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which then translates to the network wide respective connectoid distortions , ,    (veh.h) via: 
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10.3.3 Expected connectoid usage 
So far, we have not yet formalised how to obtain the expected connectoid usage for the zone 

components nor for the clusters. To do so, we settle for the assumption of a uniform distribution 

of trips across the available connectoids - in either the zone component or the cluster. We adopt 

this fairly basic approach because we mainly want to demonstrate suitability of the method 

itself.  

 

Regarding the zone component based construction of , , F F we simply take a zone 

component’s production/attraction and divide it by the number of connectoids in the zone 

component. The result is then attributed to each connectoid in this zone component via:  
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with 
Z 1,  

d d holding the total production/attraction of each zone component ,z  such that: 
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where the zone component specific node demand matrix zz
D is the result of  a simple 

transferral of the disaggregate node demand matrix, given that the departure/arrival node under 

consideration resides in both the original origin/destination zone as well as in the zone 

component origin/destination, respectively, or, more formally: 

 
Z Z

*

1 1

,zz zz
nn zn z n zn z n nn

z z

D N N N N
 
     

 

   D   (10.13) 

  

We now continue with formulating the cluster based expected connectoid usage ˆ ˆ, . 
F F  This 

requires some additional bookkeeping, because one first needs to identify which nodes and 

connectoids are internal to each cluster. The nodes internal to each cluster are denoted by 
Z N

2
ˆ N and formalised via: 
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1, if : ,ˆ
0, otherwise,

zz zn
zn

z G N
N 

 
 


  (10.14) 

 

with {1, ,Z}.z  This approach is graphically illustrated in Figure 10.3. Observe that, again, 

internal cluster nodes remain defined on a per zone component basis, so we can compare the 

original pre-clustering situation, with the impact of the chosen clustering later on.  

 

 
Figure 10.3: Identifying internal nodes to clusters based on original zone components. 

The egress / access connectoid membership matrices, denoted 
Z N

2
ˆ ˆ, ,  N N respectively, are 

obtained similarly, like the following: 
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Although it is not needed when comparing costs, we do point out that if one takes the reduced 

row echelon form of each of these matrices, such as for example ˆrref ( ),N the node (and 

connectoid) memberships of each cluster ˆˆ {1, , Z}z are obtained.  

 

Knowing the nodes and connectoids internal to each cluster, we can formalise the assumed 

cluster based connectoid usage ˆ ˆ, , F F respectively. This is done in an identical albeit cluster 

based fashion compared to Equations (10.5) and (10.6), yielding: 
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with 
Z 1ˆ ˆ,  

d d  holding the total production/attraction of the cluster that each zone 

component z  resides in, such that: 
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This concludes the construction of the connectoid cost distortion portion of the objective 

function and the formulation of the components involved. We now proceed with the second 

part of the objective function, the penalty imposed for clustered zone components that do not 

meet the minimum number of trips.  

 

10.3.4   Missing demand penalty 
The second component of the objective function drives the granularity of the resulting zoning 

system. Recall that the desired number of trips for each to be constructed zone is assumed to 

be user defined and given by min .d  Whenever a zone, due to some constraints, cannot meet this 

desired number of trips, i.e. the final zone remains too disaggregate compared to the expected 

level of detail, a penalty is imposed. The severity of this penalty depends on: (i) the choice of 
min ,d  (ii) the found number of missing trips per cluster, denoted 

ˆmissing Z 1ˆ 

d (veh), (iii) the, to 

be estimated, per trip penalty max (h) for not meeting the desired zonal demand under the given 

clustering. Once this information is available, the penalty 
min

ˆ
ˆd

z for cluster ẑ is determined as 

follows:  

 
min max missing

ˆ ˆ
ˆˆ ˆˆ, {1, ,Z},d

z zd z      (10.21) 

 

where one can think of max  as the “worst case” zonal access/egress travel time attributed to 

each trip less than mind  in the cluster under consideration. Equation (10.21) therefore serves as 

a surrogate connectoid cost to “complete” the connectoid cost distortion estimate for zones 

with too little trips. Let us also define a per zone component version of 
min

ˆ
ˆ ,d

z denoted 
min

.d

z  

This is only done to aid the formulation of the solution algorithm and bounds discussed in 

Section 10.8 and is given by:   
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where each zone component in ẑ  is assigned an equal share of the 
min

ˆ
ˆ .d

z  The network wide 

penalty is then obtained by the sum over all zone components: 
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min min
Z
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z
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Let us now construct the number of missing trips missingˆ ,d which depends on threshold min .d  We 

deliberately only penalise missing trips because whenever a zone meets min ,d  the penalty of 

adding more zone components is already captured by the increased distortion of connectoid 

costs. When we would, in addition, also penalise the excess demand, it becomes relatively too 

attractive to not meet min ,d defying the purpose of our exercise. To obtain missingˆ ,d  we first 

collect the total number of zonal trips 
total Z 1ˆ ,

d conditional on clustering G  via: 

 
total

ˆ ˆ
ˆ ˆ ˆ= , : rref ( ) 1.z z z zzd d d z   G   (10.24) 

 

where we take the sum of the cluster’s production and attraction. We accept a slight 

inconsistency in notation here, but because cluster based productions/attractions are duplicated 

across its zone components, they are indeed compatible with the cluster based total on the left 

hand side of this formulation. The number of missing trips for each cluster ẑ  is then simply 

obtained via: 

 
missing min total

ˆ ˆ
ˆ ˆ ˆˆmax{0, - }, {1, ,Z}.z zd d d z    (10.25) 

 

Finally, the value of per trip penalty max  in Equation (10.21) requires estimation. We postpone 

the discussion on how one can estimate max to Section 10.10 (it is relies on the not yet 

discussed branch-and-bound solution scheme). At this stage it suffices to say that max needs 

to be high enough such that it is attractive to form clusters that meet the minimum demand 
min ,d but at the same time max must be low enough to avoid accepting unreasonable zone 

clusterings just to meet the minimum demand objective. 

 

10.4  Zoning system criteria and constraints 
 

The objective function of our optimisation problem considers the supply side cost aspect by 

minimising its distortion while aggregating zone components. It also matches the zoning 

system to the desired level of detail. What it does not do, is guarantee that these objectives are 

in line with the traditional demand side criteria for zonal design as discussed in Chapter 7. 

Because we disaggregated the original zoning system we must be careful to not ignore the 

original effort and information captured in this original zoning structure. Table 10.1 outlines 

the demand side criteria as we originally discussed them. Here, we relate them to the constraints 

imposed in our optimisation problem formulation in order to be able to satisfy these criteria as 

much as deemed necessary when refining the original zoning. 

 

As can be observed from Table 10.1, some demand side criteria have already been addressed, 

either when constructing the zone components, when we delineated them through boundary 

nodes, by considering connectoid cost in our objective function, or by imposing a minimum 

demand. The proposed constraints discussed in the upcoming sections serve to address the 

following remaining criteria: within zone homogeneity, minimising intrazonal trips, and 

yielding sensible zonal area (shapes). They also serve the practical purpose of reducing the 
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solution space and in turn increasing the likelihood of finding solutions in a reasonable amount 

of time. 

 

Table 10.1: Zoning system design criteria in relation to proposed methodology 

Criteria Conceptually  Practically Constraint Section 

Within zone data 

homogeneity 

Land use and socio-

economic similarity 

Similarity 

measure 
Hard constraint Section 10.5.2 

Between zone data 

homogeneity 

Create zones with 

similar trip numbers 
Minimum demand Soft constraint Section 10.3.4 

Minimise intrazonal trips 

Maximise land use 

differences between 

clusters 

Similarity 

measure 
Hard constraint Section 10.5.2 

Adopt census boundaries 
Captured in original 

zone areas 

Zone component 

delineation  
- Section 9.6.1 

Adopt physical, political 

and historical boundaries 

when sensible 

Captured in original 

zone areas 

Zone component 

delineation  
- Section 9.6.1 

Convex area shape,  

i.e. no “holes” 
Verify cluster shape 

Contiguity check,  

Connectoid cost  

Hard constraint 

- 

Section 10.6, 

Section 10.3.1 

Within zone connectivity 
Internal travel time 

stability constraint 

Zone component 

delineation, 

Connectoid cost  

- 

 

- 

Section 9.6.1, 

 

Section 10.3.1 

 

10.5  Instance-level constraints 
 

Instance-level constraints are defined between two zone components. These constraints are 

easy to verify and can be constructed beforehand, independent of the chosen clustering. Recall 

from Chapter 7 that the most common instance-level constraints are must-link and can-link 

constraints. We only consider can-link constraints because the must-link condition has been 

dealt with already; each zone component holds the nodes and links that were considered must-

link. We denote pair-wise can-link options via indicator matrix 
Z Z

2 .K Can-link options 

embed two constraints; the first concerns a between component closeness constraint, while the 

second one imposes a similarity measure. 

 

10.5.1 Between component travel time constraint 
While the objective function makes it unattractive to cluster zone components that reside far 

apart via the distortion of connectoid costs, it does not forbid it. As a result the solution space, 

without additional constraints, becomes too large to explore efficiently. By imposing a hard 

constraint on the maximum - between zone component - travel time, denoted by max (h), 

unlikely clustering candidates can be removed from the search space altogether. 

 

The travel time between two components is captured by 
min Z Z.

T  this travel time is found 

by taking the minimum over all shortest paths between any two connectoids of the zone 

component pair. We indicate two zone components to be can-link options of each other as long 

as 
min max , {1, ,Z},zz z T otherwise they are marked as cannot-link. Note that this constraint 
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has no impact on the final result as long as max is chosen such that it does not preclude sensible 

clusterings.  

 

10.5.2   Between component similarity constraint 
The second constraint incorporated in the can-link matrix relates to the aforementioned 

demand-side criteria, namely the criterion of homogeneous land use and the minimisation of 

intrazonal trips. To minimise intrazonal trips, as many trips between zone components should 

remain interzonal after clustering. Similarly, homogeneous land use implies a bias towards 

particular types of trips in that area, for example residential areas mainly have trip productions 

in morning peak, while commercial areas predominantly contain trip attractions in this same 

time period. By not clustering them, we indirectly minimise intrazonal trips since one can 

expect most trips to occur between areas with different production/attraction patterns. Socio-

economic data is a driver for the estimation for the number of trips and where they go. This is 

therefore already mostly captured in the original trip matrix. 

 

We aim to comply with these demand side criteria by formulating a similarity constraint, where 

similarity is defined in terms of trip similarity (rather than demand side data similarity). We 

argue this is a reasonable proxy since the original demand side criteria, whatever they may 

have been, culminated in the creation of the original trip demand matrix. Zones with similar 

trip patterns are considered more attractive, or at least less unattractive, to be clustered because 

they are more likely to minimise intrazonal trips, exhibit homogeneous land use, as well as 

socio-economic characteristics, which all come down to the same objective of minimising the 

variance in the underlying data, making the aggregate results relatively more representative.  

 

Trip productions and attractions across an entire day are virtually always the same on a per 

zone basis, i.e. people who leave for work, return to home as well. That said, for a more limited 

time period, such as the morning or evening peak period, trip productions and attractions are 

asymmetric and are a decent proxy for the similarity of travel patterns across (neighbouring) 

zones. We therefore choose to measure trip similarity by identifying differences across the zone 

component’s productions and attractions (assuming our demand is peak period based). The 

result of this metric is captured by a ratio and is stored in similarity matrix Z Z[0,1] .S  This 

allows for quick verification, while still picking up (aggregate) differences in trip patterns. 

More sophisticated similarity measures are of course possible, but are left for future research.  

 

The (dis)similarity between two zone component’s productions and attractions has nothing to 

do with absolute differences in trips, only the pattern matters, not the magnitude. Hence, 

similarity is captured by comparing relative differences in productions and attractions. Note 

that we cannot take a simple ratio of the two values because this does not yield a value that 

changes linearly. Instead we define the ratio vector Z 1[0,1] d via: 
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Where the inner part ranges from [ 1,1], with -1 representing only attractions and +1 only 

productions. We translate to non-negative values, i.e. [0,2], and then normalise to yield values 
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in the range [0,1]. We denote the (dis)similarity between two zone components via 
Z Z ,

E

where two zone components ,z z are considered equivalent when 0.zzE   In general we define 

zzE   via: 

 

, , {1, , Z}.zz z zE d d z z 

 
    (10.27) 

 

A threshold on the maximum acceptable dissimilarity is then required to determine if zone 

components can-link or not, which we denote by max .e  Assuming we somehow estimated max ,e  

we can construct the can-link matrix (including the maximum travel time constraint as well), 

via: 

 
min max max1, if  and ,

0, otherwise,

zz zz
zz

E e
K

 


  
 


T
 (10.28) 

 

with , {1, ,Z}.z z A schematic example of zone components, hypothetical between-zone 

component travel times, and productions/attractions is given in Figure 10.4. Depending on the 

thresholds we obtain different can-link matrices. Observe that if we would choose max 3, 

then 6z has no can-link options anymore. Similarly, when we choose max 0.2e   zone 

component 5z  is too dissimilar to be allowed to cluster with any other zone component. 

 

 
Figure 10.4: Example of how instance-level zone component characteristics influence can-

link options. 

10.6  Cluster-level constraints 
 

Cluster-level can-link constraints are costlier to verify than instance-level constraints because 

verification requires information on the cluster, information that is only available during the 

clustering procedure itself. We found that we can differentiate between two types of cluster-

level constraints, which we term, for the lack of an established terminology as: derived cluster-

level constraints and non-derived cluster-level constraints. 
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Derived cluster-level constraints follow directly from instance-level constraints. They are 

based on the premise that every pair-wise combination of zone components within the cluster 

must be marked can-link for the cluster to be regarded as valid. The constraint is termed 

“derived” because it can be constructed based on instance-level constraints. We formulate two 

derived cluster-level constraints by promoting both the similarity and closeness measure, 

captured in can-link matrix ,K to the cluster-level. This means that all zone components within 

the cluster must be able to reach each other within max ,  as well as being sufficiently similar 

to all other zone components in the cluster. The derived cluster-level constraints are elegantly 

enforced via ,K G i.e. every zone component that is in the same cluster with another zone 

component must be marked as can-link. 

 

Non-derived cluster-level constraints are slightly more complicated, because they cannot be 

constructed from pair-wise constraints. In our case, there is only one such constraint, namely a 

contiguity constraint. It relates to the demand side criteria to construct “logical” shapes and 

ensure connectivity within zones. A cluster that satisfies the contiguity constraint is said to be 

contiguous. In a contiguous cluster, any zone component within the cluster can reach any other 

zone component in the same cluster by only moving from one neighbouring zone component 

(in the cluster) to the next, assuming the point of departure is itself.  Observe that we cannot 

capture this constraint in a pair-wise can-link constraint, because it depends on the cluster what 

other zone components must be reachable. To formalise the contiguity constraint further, we 

first need a definition of what it means to be a neighbour. 

 

10.6.1   Neighbours 
Being a neighbour is captured by zone component adjacency matrix 

Z Z

2 ,A which is defined 

to be symmetric such that 
T.A A  Given our supply side perspective, we utilise the keep link 

network to establish what constitutes a neighbour, which we define in two steps: 

 

Definition 10.1: Direct adjacency 

Let z  be a zone component. Then, zone component z  is directly adjacent to z  when z  

has a connectoid adjacent to a keep node ,n  such that a path through the keep network can 

be constructed between a connectoid of z  and keep node ,n  without this path traversing 

any other keep nodes being adjacent to a zone component other than z 12. 

 

The definition of direct adjacency does not yet ensure symmetry. Consider Figure 10.5, zone 

component 6z is directly adjacent to 1z and 5 ,z  but at the same time 1z and 5z are only directly 

adjacent to each other. By making all adjacency relationships bi-directional (Definition 7.2), 

we guarantee the symmetry one expects when being classified as a neighbour. 

 

Definition 10.2: Zone component neighbour 

Let ,z z be zone components. When z  is directly adjacent to ,z and/or when z  is 

directly adjacent to ,z then ,z z  are considered neighbours. 

                                                 
12 A node based algorithm is employed to identify direct adjacencies, where each connectoid’s closest keep node 

acts as a starting point, i.e. marked current. If other zone components are adjacent to the current node, they are 

marked as directly adjacent and the search stops, otherwise the current node’s adjacent keep nodes are marked as 

current and the search continues. 



Chapter 10: Zonal representation: problem formulation and solution scheme 160 

 

So far, adjacency matrix A  is defined without considering clustering. At the same time, only 

neighbours internal to a cluster are of interest when verifying contiguity (within the cluster). 

Therefore, we make A  conditional on clustering G by constructing 
Z Z

2
ˆ A via: 

 

ˆ , GA A   (10.29) 

 

where Â  only retains neighbours within the same cluster. 

 

 
Figure 10.5: Zone component neighbours and how to ensure symmetry. 

 

These cluster internal neighbours are referred to as cluster-neighbours. See Figure 10.6, for an 

impression of the different graphs that arise when identifying neighbours, and cluster 

neighbours, respectively. 

 

 
Figure 10.6: Example of difference between neighbours and cluster neighbours conditional 

on clustering .G   
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10.6.2   Laplacian matrix and the number of connected components 
To verify if a cluster is contiguous we make use of the Laplacian matrix, denoted 

Z Zˆ .L  

The Laplacian matrix holds an alternative representation of ˆ ,A  by negating its values and, on 

the diagonal, place the degree (sum) of the cluster-neighbours of each zone component such 

that the sums of each row amount to exactly zero: 

 

ˆ , if ,

ˆ , otherwise.

z

zz

zz

z z





 
 



1
L

A

A
  (10.30) 

 

The Laplacian of our example network is included in Figure 10.6. The Laplacian has many 

uses and is often adopted in conjunction with clustering related procedures. For example, in 

spectral analysis the Laplacian can be used to partition networks, see for example Bell et al. 

(2017), where the eigenvector related to the second smallest eigenvalue of L̂  is used to split a 

network in two disjoint clusters. Our objective however is not to partition a network, but instead 

verify if the existing clusters are contiguous. For this, the Laplacian also offers another useful 

and well known property; the nullity. A Laplacian’s nullity reveals the number of connected 

components in its matrix.  

 

The nullity is obtained by establishing the dimensionality of the kernel of the Laplacian, 

denoted as ˆdim(ker( )),L  where dim( ) denotes the dimensionality function and ker( ) denotes 

the function obtaining a basis of the kernel. When we know the number of connected 

components, we can demonstrate that this information can be used to verify if a cluster is 

contiguous.  

 

To determine ˆdim(ker( )),L  we first “solve” the Laplacian as if it were a system of equations 

such that through ˆ 0,vL where 
Z 1v is any vector yielding the zero vector when multiplied 

with L̂.  For our example network, we solve ˆ 0,vL  by first rewriting the Laplacian to its 

reduced row echelon form, i.e. ˆrref( ) 0,vL  see Figure 10.7.   

 

If we then write out the system of equations we find that cluster-neighbours are represented by 

dependencies that are transitively interlocked in the resulting equations. For example, 1z  is a 

cluster-neighbour of 2z and 2z is a cluster-neighbour of 4 ,z when solving ˆrref( ) 0,vL we 

therefore find; 1 2 2 4, ,z z z z  hence 1 2 4 ,z z z   asserting interdependency which we can 

interpret as being neighbour reachable and therefore forming a contiguous cluster. 

Alternatively, if a zone component has no cluster-neighbours, for example 5 ,z  its column is a 

zero vector. Then a stand-alone “contiguous” cluster of just the one zone component results. 

As can be seen in Figure 10.7, each contiguous group of zone components results in a unique 

(non-zero) solution vector that solves ˆ 0.vL  These vectors are known as a basis of the kernel 

of ˆ,L  denoted ˆker( ).L  Of course 0.v  is by definition a solution, but it holds no information 

regarding contiguity and is therefore not considered. In the example, following this method, 

we find three contiguous groups of zone components because the cardinality of the kernel basis, 

i.e. the number of non-zero solution vectors, is three. This cardinality equates to the dimension 

of the kernel basis, denoted ˆdim(ker( )),L and is referred to as the nullity.  
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Figure 10.7: Basis of the kernel of the neighbour Laplacian conditional on clustering .G   

Knowing the nullity, we now formulate our contiguity constraint: given that each cluster in G

must be contiguous, each such cluster should yield exactly one contiguous connected 

component. Hence, the number of connected components in L̂  should exactly match the 

number of clusters in .G  Therefore our contiguity constraint is formulated as follows:  

 

ˆdim(ker( )) rk( ). GL  (10.31) 

 

In case not all zone components in a cluster are contiguous, more than a single connected 

component is found for at least one cluster. In that case ˆdim(ker( )) rk( ), GL violating the 

constraint. For example, if we would exclude the direct neighbour relation between 1z  and 2 ,z

while maintaining the same clustering, we would find ˆdim(ker( )) 4,L while rk( ) 3.G  

Hence, the contiguity constraint would be violated and G is no longer a valid clustering.  

 

In our optimisation problem we formulate non-derived cluster-level constraints in a more 

general fashion via .G
K G  We therefore slightly rewrite Equation (10.31) to be compatible, 

although this change is only cosmetic: 

 

ˆ, if dim(ker( )) rk( ),

, otherwise,
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 


G J G
K

I

L
 (10.32) 

 

where J  represents an all-ones matrix with context dependent dimensions. Observe that 

Equation (10.32) guarantees that G
K G  holds as long as ˆdim(ker( )) rk( ), GL while 

otherwise it is violated. This concludes the constrained optimisation problem formulation. 
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10.7  Solving combinatorial problems  
 

We proceed with solving our optimisation problem formulation by proposing a particular 

solution scheme. Clustering procedures effectively solve an underlying combinatorial problem 

and to get some insight in the issues around combinatorial problems, and clustering in 

particular, we first provide some relevant background information on this topic before 

proceeding to discuss our branch-and-bound solution scheme. 

 

10.7.1  On clustering complexity 
Due to the combinatorial nature of clustering problems, they are generally computationally 

costly problems to solve. For example, the underlying problem of the well-known k-means 

algorithm; finding a partitioning such that the sum of distances to the virtual k cluster centres 

is minimised, is proven to be NP-hard (Garey et al., 1982). Our underlying objective when 

constructing the zoning system is even more complex to solve. First, similar to k-means, our 

objective is measured in relation to individual data points, i.e. zone components, as well. Recall 

that we measure the connectoid cost distortion, which represents at least one, but often multiple 

values per zone component. Second, unlike k-means, we do not know the number of final 

clusters k beforehand, making our problem harder to solve from a combinatorial point of view.  

 

In general, we can construct the number of possible combinations of partitioning b numbers in  

j  partitions via a binomial tree ,bB  as depicted in Figure 10.8 in a recursive manner. The depth 

j  of this tree determines how many edges one has traversed, while b  is referred to as the order 

of the tree. A single possible partition, or cluster, is formed by grouping all vertex numbers 

encountered while traversing a path from the root of the tree to a particular depth. The number 

of unique paths, given some order b  and depth ,j reveals all possible clusters, ignoring 

permutations. Observe that with 2j   and 3b   we find {2,1},{3,1},{3,2}, respectively. 

 

 
Figure 10.8: Binomial tree and unique single cluster solution space. 

 

Binomial trees can be made compatible with our binary clustering matrix 
Z Z

2

G  by 

replacing vertex numbers, i.e. the order, with an indicator vector, where the only non-zero entry 

is at the index equal to the order of the vertex. The cluster is found by summing the individual 

vertex vectors up to the desired depth, see Figure 10.9 for an example. 
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Figure 10.9: Binary version of binomial tree, compatible with clustering .G  

 

As can be seen, the number of possible paths, for even a single cluster, quickly expands when 

the order of the tree grows. In general, the solution space, i.e. number of possible combinations, 

to partition Z  zone components in j  (non-empty) subsets is given by the Stirling number of 

the second kind (Graham et al, 1994) via: 
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However, in our case, j is not predetermined. In that case, the possible number of combinations 

is the summation of Stirling numbers across all values of ,j  better known as the Bell number, 

denoted (Z)B and obtained via: 
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    (10.34) 

 

To give an impression on how quickly this number grows, some of the first few Bell numbers 

are given by (1)=1; (4)=15; (8)=4,14 1,382,958,5450; (1 = .5)B B B B Clearly, for general 

networks with hundreds of zone components, it is computationally infeasible to explore the 

entire solution space, even if we can remove all redundancies in the search tree (Fränti et al., 

2002). 

 

10.8  Branch-and-bound solution scheme 
 

The most common way to deal with combinatorial problems that are too large to solve with 

brute-force, is to revert to a heuristic. As discussed in Chapter 7, metaheuristics, and 

evolutionary algorithms in particular, are popular approaches in this situation because they 

yield reasonably good solutions in an acceptable amount of time while still providing some 

level of sophistication in their search procedure. The downside of heuristics is their lack of 

guaranteeing optimality, making it hard to assess the true potential of what it means to solve 

the underlying problem. We therefore opt not to adopt a heuristic as our main solution 

algorithm, but instead propose a custom branch-and-bound algorithm. Branch-and-bound 

algorithms exist both in heuristic and non-heuristic form. Here, a non-heuristic cluster based 

branch-and-bound algorithm is formulated.  
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A typical branch-and-bound algorithm aims to minimise (or maximise) some given objective 

function. The possible solutions are explored by traversing a tree-like structure, for example as 

depicted earlier in Figure 10.9. The algorithm then explores branches of the tree, starting at the 

root. Each branch partitions the search space by making a particular choice, which also 

constitutes a partial potential solution. Exploring all branches in the tree reverts to an 

exhaustive search of the entire solution space. To improve on this, bounds are used to remove 

branches, but only do so when the branch is guaranteed to not contain the optimal solution. For 

example, let us assume we have access to a partial solution constructed by reaching some vertex 

of the branching tree, the best overall solution found so far, and some candidate branches to 

continue our search. We then only explore branches with the potential to yield a better solution 

than the current best solution. This potential is determined by the theoretically best possible 

solution that can be found by exploring all candidates in the branch. This theoretical best 

solution across the branch is the lower bound of the branch. The tighter the lower bound, the 

more branches can be removed and the faster the optimal solution is found. 

 

To formulate a branch-and-bound algorithm tailored to our optimisation problem, we first cast 

our optimisation problem of Equation (10.1), in an alternative form by casting the result of the 

objective function for a single clustering in functional form, denoted by ( )g  via: 

 
min T, if , , , ,

( , , )
, otherwise,

d

g
         

 


G
G G I G G K G K G

G K K  (10.35) 

 

The optimisation problem as a whole can then alternatively be formulated as:  

 

 min ( , , ) .g G

G
G K K  (10.36) 

 

We utilise the aforementioned alternative form of our problem when constructing the bounds 

in the next section. The branch-and-bound solution scheme utilising these bounds is provided 

in Algorithm 1. It described a depth-first - cluster enabled - branch-and-bound algorithm under 

can-link constraints adopting a binary branching approach.  

 

During the search for a solution we must maintain track of three vectors: 
current Z 1

2
ˆ z  to track 

the current cluster we are constructing incrementally out of eligible zone components, 
excluded Z 1

2
ˆ z  to track the zone components that have been denied inclusion in the current 

cluster based on the partitioning of the solution space, and 
processed Z 1

2

z  which tracks the zone 

components that have been attributed to clusters already part of the partial solution leading up 

to the current cluster under consideration.  

 

The main difference in Algorithm 1 compared to a more conventional branch-and-bound 

approach is that the verification of the lower bound cannot occur at every vertex. We only 

verify if a (partial) solution is still valid whenever each cluster is completed. This is needed 

because our objective function is dependent on the cluster as a whole (recall Section 10.3). 

Further, the algorithm adopts a binary branching approach by splitting the solution space in 

two at every vertex. We do so by either including the zone component candidate in the cluster, 
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or by excluding the zone component from the cluster. Lastly, the functions referred to within 

Algorithm 1 are directly discussed after the algorithm formulation below. 

 

Algorithm 1: Depth-first branch-and-bound semi-supervised clustering algorithm. 

Start: 
bestg = findInitialSolution()  // reference solution to compare against 

currentˆ z 0     // construct new empty cluster 
current Z 1

2
ˆ z  

processed z 0     // processed zone components  
processed Z 1

2

z  
excludedˆ z 0     // temporary excluded zone components 

excluded Z 1

2
ˆ z  

 

branchFromVertex ( current excluded processedˆ ˆ, ,z z z ) 

 

Recursive Function: branchFromVertex ( current excluded processedˆ ˆ, ,z z z ) 

// find candidate compliant with constraints 

z  = findCandidateFor( current excluded processedˆ ˆ, ,z z z ) 

 

if ( 0z  )     // continue with current cluster 

  currentˆ 1zz         // branch (i): include candidate in cluster 

  branchFromVertex( current excluded processedˆ ˆ, ,z z z ) 

  currentˆ 0zz       // branch (ii): exclude candidate from cluster… 

  excludedˆ 1zz       // … (temporary) excluded until cluster is final 

  branchFromVertex( current excluded processedˆ ˆ, ,z z z ) 

else      // finalise current cluster 

    currentˆ
z G z      // update total clustering 

    processedz = processedz + currentẑ    // update processed zone components 

  partial bounds( , )g g =computePartialSolution( processedz ) 

  if ( partial bounds bestg g g )   // only proceed if potential for better solution 

    if ( processed excluded: 0, 0z zz z z   )  // eligible unprocessed zone components? 

      nextˆ z 0      // start new cluster 

      excludedˆ z 0     // reset excluded elements on current cluster 

      branchFromVertex ( current excluded processedˆ ˆ, ,z z z ) 

    else 

      best partial boundsg g g   

    end 

  end 

end 

 

findInitialSolution: To obtain a reference best solution best ,g we take the very first feasible 

solution found by branchFromVertex(). 

 

findCandidateFor: Eligible candidates are identified via the imposed constraints. An eligible 

candidate must be able to: (i) can-link based on contiguity (Section 10.6), (ii) can-link based 

on reachability (Section 10.5.1), (iii) can-link based on similarity (Section 10.5.2). While we 

formulated the constraints based on the full clustering ,G  we are able to verify eligibility on 

partially completed clusterings as well. One way of implementing these criteria is to create a 
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partial clustering, denoted 
current Z Z

2 ,G  and verify the constraints in Equation (10.35) based 

on current,G instead of .G  We can construct this partial clustering like the following: 

 

current current current

1, if  ,

ˆ ˆ, else if  1,

0, otherwise.

zz z z

z z

z z 




 



G  (10.37) 

 

where we include the potential candidate in the cluster under investigation by temporarily 

including it in currentˆ .z  When multiple eligible candidates are found, the one with the smallest 

demand is chosen. The rationale being that low demand components are more attractive to be 

clustered because they likely contribute the least to the objective function in terms of 

connectoid cost distortion, while not clustering might cause a high penalty for not meeting the 

desired minimum demand when they end up as stand-alone clusters.  

 

computePartialSolution: Determines the contribution of the (partial) clustering G  to the 

objective function, denoted partialg via  

 

min
Z

partial processed

1

( ),d

z z z z

z

g z    



    (10.38) 

 

where 
min

, , ,d

z z z    respectively, are readily available per zone component via Equations 

(10.5), (10.6), and (10.22). Then, the bounds boundsg of the remaining solution space are also 

determined; it constitutes summing the individual lower bounds of the unprocessed zone 

components 
bound, {1, ,Z},zg z via 

 

Z
bounds processed bound

1

(1 ) ,z z

z

g z g


   
(10.39) 

 

 

where bound

zg  needs to be estimated. How to do so is discussed in detail in the next section. 

Observe that once all zone components have been processed 
minpartial bounds ,dg g       

matching original function ( ),g  as one would expect. 

 

Finally, the recursion continues as long as there are unprocessed zone components and the 

lower bound of a branch potentially holds a solution better than the current best solution. 

However, to prevent infinite recursion, the condition to start a new cluster must take into 

account the fact that the remaining unclustered zone components have not been excluded from 

the current cluster (otherwise we simply keep excluding zone components infinitely), hence 

the condition processed excluded: 0, 0.z zz z z    

 

10.9  Spatial cluster bounds 
 

The effectiveness of branch-and-bound-algorithms is predominantly determined by the 

tightness of the bounds. In our case we have information both in terms of constraints, as well 

as insight in how the connectoid cost distortion is likely to change, depending on how zone 
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components are clustered spatially. We utilise these insights to construct bounds that are as 

tight as possible.   

 

We propose to apply a spatially aware partitioned Russian doll approach. In traditional Russian 

doll, the constrained optimisation problem is solved multiple times where in each successive 

round an increasing subset of constraints is imposed on the data points. Once a subset is solved, 

the results of the previous Russian doll are incorporated as a bound (Verfaille et al., 1996). This 

means that while the (unbounded) solution space increases with each larger subset, the bounds 

available to solve the problem also become tighter, see Figure 10.10(a) for a schematic 

impression. An alternative to Russian doll, as originally presented by Koontz et al. (1975), can 

be found in partitioning data points into a number of smaller disjoint subsets. Each subset is 

solved via a branch-and-bound algorithm and the results are used as bounds when solving the 

problem as a whole, see Figure 10.10(b). However, in general, the larger the number of data 

points and the more partitions one creates, the less tight these bounds become.  

 

 
Figure 10.10: (a) Traditional Russian doll, (b) Koontz et al (1975), (c) spatial two-step 

Russian doll (initial data point for Russian doll in red). 

Our method is a combination of the two aforementioned approaches. We argue that in general, 

zone components on one extreme of the network are unlikely to influence the zoning at the 

other extreme. The reason for this is that, due to the underlying land use patterns and network 

topology, natural barriers occur throughout the network that, for the most part, limit 

interdependencies of spatially distant zone components. Hence, we can obtain relatively tight 

bounds by exploring the direct neighbourhood of zone components. Therefore, a traditional 

Russian doll approach is only effective in the first few steps, assuming that we consider 

spatially close variables at each step. Following the same reasoning we argue that the 

partitioning approach of Figure 10.10(b) is most effective for spatially (compact) partitions. 

We therefore propose to first partition and solve the problem per individual zone component, 

to obtain initial bounds. Then subsequently extend the area around each zone component to 

tighten the bounds further by imposing constraints on the zone’s reachable zone components, 

( )c

bound propagation

constrained sub-problem
full problem

Partition 1

Partition 2

Partition 2 Partition 3 Partition 4

Partition 1

( )b

( )a
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i.e. its can-link options. This leads to solving multiple overlapping problems, similar to Russian 

doll, but also adheres to an initial partitioning of zone components, similar to Koontz et al. 

 

10.9.1   Single zone component bound 
This initial step performs Z   branch-and-bound runs based on Algorithm 1, where we have no 

bounds yet, i.e. bounds 0.g   The objective is to obtain the optimal cluster for each zone 

component without considering any other constraints on any other zone component. The result 

is used to construct a zone component’s initial bound, denoted via .I

z  Conveniently, we can 

use Algorithm 1 to quickly find this bound by removing all can-link options of zone 

components lacking a can-link option to the zone component under consideration (while 

retaining the can-link option to themselves). This reduces the solution space to a fraction of the 

original solution space. We denote this reduced can-link matrix via Z Z

2 , {1, ,Z},
I
z z  K  

which is defined via: 

 

, if  or  or ,

0, otherwise.

I
z z z

z z

K z z z z z z
K

  

 

     
 


 (10.40) 

 

Note that the optimal cluster under the original objective function ( , , )
I
zg
 G

G K K  could be a 

cluster where the contribution of z  is higher than in some other less optimal cluster. This is 

because in the original objective function only the total connectoid distortion matters, an 

example of which is depicted in Figure 10.11.  

 

 
Figure 10.11: Optimal cluster based on original objective function with incorrect lower 

bound for zone component 2z  (assuming mind is satisfied). 

Therefore, the original objective function is not valid to find the true lower bound. To make 

sure we obtain the actual component based lower bound, we must only take into account the 

current zone component’s contribution to the objective function. Hence, we introduce an 

alternative to ( )g  via: 

 
min T, if , , , ,

( , , )
, otherwise.

I
z

I I
z z

d

z z zg


           
 



G
G G I G G K G K G

G K K  (10.41) 

 

We then obtain the, per zone component, bound I

z  by solving:  

 

min( ( , , )), {1, , Z}.
I I
z zI

z g z    G

G
G K K  (10.42) 
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z
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z z
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g

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We can now, for the first time, utilise a non-zero bound in our algorithm and replace bound g 0

by the following: 

 

bound , {1, ,Z}.I

z zg z    (10.43) 

 

This reduces the search space already. However, we aim to improve on this bound, by finding 

an even tighter bound. Much in the spirit of a Russian doll based approach, we utilise our new 

bound to find our second bound. Since it is more costly to find this second bound, we utilise 

our first bound to make this search more efficient. 

 

10.9.2   Zone component reachability bound 
For this bound we again, perform Z  branch-and-bound runs via Algorithm 1, only now 

adopting the bound in Equation (10.43). The objective of each run is still to obtain the optimal 

cluster for each zone component {1, ,Z},z but we now expand the imposed constraints 

from only ,z to all the can-link options of z  as well. This bound, as argued before, and denoted 

,II

z  is much tighter. To enforce exploring the search space related to this bound we construct 
Z Z

2 , {1, ,Z}.
II
z z  K Now, only zone components unrelated to any can-link option of ,z

are marked cannot-link (except to themselves). Since these zone components are marked 

cannot-link they are not considered in the clustering, and as we will see, nor in the objective 

function. This reduces the search to exactly z  and its can-link options: 

 

, if ( || ) 1 or ,

0, otherwise.

II
z z z zz zz

z z

K K K z z
K

    

 

  
 


 (10.44) 

 

We utilise 
II
zK to replace the original can-link matrix and solve the problem under these 

relaxed conditions. We, again, cannot utilise the original objective function for the same reason 

when obtaining the initial bound. On the other hand, we cannot use ( )
I
zg


 either because it will 

yield the same solution as before, i.e. it only considers z  instead of including its can-link 

options. Instead, we include the contribution of all zone components, conditional on being part 

of the cluster z  resides in, via: 

 

min
Z

T( ), if , , , ,
( , , )

, otherwise.

I
z

II I
z z

d

zz z z z

zg



     

   




      

 


 G

G G G I G G K G K G
G K K  (10.45) 

 

This then, yields the optimal cluster wide result for zone component z when considering all 

valid cluster combinations this zone component can take part in. Based on this we formulate 
II

z  by extracting the zone component contribution to the optimal cluster value via: 

 

 
min

,  conditional on min ( , , ) , {1, , Z}.
II II
z zII d

z z z z g z
     

      G

G
G K K  (10.46) 
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When we now consider the example in Figure 10.11 again, we would find the optimal cluster 

because 4<6, hereby setting 
2

2,II

z   which is indeed a tighter bound (2>1). In general, it holds 

that 
Z Z

1 1
min( ( , , )).I II

z zz z
g 

 
  

G

G
G K K  There is however a catch to this bound. 

 

10.9.3   Hybrid bounds 
Based on the results of the previous section, we prefer to only utilise .II

z  However, this tighter 

bound is a bound we cannot always use; II

z  is only valid as long as we can still construct the 

cluster that the bound is based on, something which might not necessarily the case. For 

example, if 4z  in Figure 10.11 has already been clustered, then it is longer available to form 

the cluster yielding 
2

2.II

z   In such a situation, a suboptimal result, from the perspective of 

2 ,z follows. For this suboptimal result, the contribution of 2z (by itself) might in fact be less 

than 
2

II

z (see Figure 10.11), which means that 
2

II

z  is no longer the lower bound. To still be able 

to use our tighter bound we propose a hybrid bound that determines the tightest bound available 

given the current (partial) clustering via: 

 

processed

bound
, if :  and 1,  with =argmin( ( , , )),

, otherwise,

II II
z zI

z z zz

z
II

z

z z z z g
g

 





 


       
 


G

G

G G G K K

 

(10.47) 

with {1, ,Z}.z  In this hybrid bound, we adopt tight bound II

z  only when the cluster it is 

sourced from can still be constructed. This is verified via the first case in Equation (10.47); the 

optimal cluster that yielded II

z  is obtained via ,z
G if any of the zone components in that 

cluster are already clustered, i.e. processed: 1,z zzz z  
  G  we can no longer construct ,z

G  so we 

revert to less tight bound .I

z  When solving the overall problem via Algorithm 1, we adopt 

Equation (10.47) for determining the bounds. 

 

Observe that this process of partitioning and Russian doll steps can be repeated as many times 

as desired by iteratively extending the hybrid approach by expanding the considered zone 

components exposed to the can-link constraints. However, verifying the availability of the 

multi-cluster optimal solutions becomes more and more costly while the gains in bound 

tightness are expected to become less significant. We therefore opt to only consider these two 

bounds and a single hybrid step. 

 

10.10 Soft constraint multiplier estimation 
 

The reader might have noticed that in estimating our bounds we included the demand violation 

penalty component 
min

.d  As discussed in Section 10.3.4 however, we can only do so when we 

know the per missing trip penalty max , which requires estimation. Therefore, in order to 

estimate the bounds, this estimation must be conducted as a preliminary step to the bound 

estimation. We now utilise Algorithm 1 to formulate this preliminary step. Instead of relying 

on empirical data, we integrate the estimation of max as part of our general solution procedure. 

As a result there is no need for the user to perform any additional tasks and max simply follows 

automatically from the earlier constructed zone components. 

 

We argued that max should be high enough to avoid the objective function not to cluster zone 

components whenever mind has not been met. We also found that max can be thought of as a 
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connectoid cost for a missing trip. This implies that it should at least match or exceed the 

highest found per trip connectoid cost across all viable clusterings that match or exceed min .d  

We therefore estimate max by imposing mind as a hard constraint. We also necessarily remove 

soft constraint 
mind  from the objective function as well because we do not know max yet. 

Imposing mind as a hard constraint does make the problem as a whole infeasible to solve (in 

most cases), however by considering each zone component separately, we can expect to be able 

to solve a large number of runs that allow us to construct a representative value for max , where 

the runs that we cannot solve are simply ignored. In total, we conduct 2 Z  runs of Algorithm 

1, each run resulting in either an average per trip egress cost or average per trip access cost 

estimate per zone component .z We adopt the can-link matrix 
I
zK of our initial bound 

estimation to reduce the search space. This leads to the following two functions, denoted 

( ), ( ),z zg g    respectively, which are defined as follows: 

 
total min

ˆ ˆ

total
T

ˆ

ˆˆif : d >d , rref ( ) 1,
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, otherwise,

I
Iz z
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and: 

(10.48) 
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(10.49) 

with ˆˆ{1, ,Z}, {1, ,Z}.z z  We negate the average per trip egress/access connectoid cost to 

retain our minimisation based formulation. The network wide penalty max is then obtained by 

taking the negated minimum value, i.e. maximum per trip connectoid cost, across all individual 

zone component solutions via: 

 

    max

{1, , }
min min ( , , ) ,min ( , , ) .

I I
z z z z

z Z
g g  


  G G

G G
G K K G K K  

 

(10.50) 

If one desires, max can be re-estimated/updated after constructing the bounds in the previous 

sections. In those cases there is no more need for a hard constraint on mind because there already 

exists an earlier estimated max to construct 
min

ˆ .d

z  

 

10.11 Network partitioning 
 

The soft constraint multiplier allows us to compute values for the (original) objective function, 

while the bounds, constructed in the previous sections, reduce the search space to explore when 

constructing our zoning system via Algorithm 1. Yet, even with tight bounds, a branch-and-

bound approach can quickly become infeasible to solve, especially when the number of zone 

components becomes large. To mitigate this problem, we decompose the problem as much as 

possible. If we can split the original problem in multiple sub-problems that have no 

interdependencies, then, we can solve each component separately and combine the results 
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without loss of generality. This however, is only possible when these partitions exist, 

something which heavily depends on the application context.  

 

One of the great benefits of both transport networks and land use planning - which influences 

zone component shapes - is that often such independent partitions do exist and can be identified. 

For example, rivers limit can-link options of zones due to reduced accessibility, dissimilarities 

in land use forbid many zone components to cluster, and motorways (with limited on/off ramps) 

act as barriers reducing connectivity. This leads to areas with a limited number of internal zone 

components while lacking options to cluster beyond aforementioned barriers. Hence, we can 

solve these areas locally, optimally, and separately from other sub-areas, leading to a 

computationally much more attractive proposition than to try and solve the problem as a whole. 

 

We identify the existing natural partitions of zone components by investigating the 

reachability of our can-link matrix .K  First, we exclude all one-directional can-link options, 

because if ,zz z zK K   there is no possibility to cluster these zone components (a cluster 

relation must be symmetric). We do so via T ,K K leading to the desired result as depicted in 

Figure 10.12. 

 

 
Figure 10.12: Identifying connected components based on bi-directional can-link options ,K

(cycles not depicted). 

Because TK K is symmetric, its connected components can be identified by taking its 

transitive closure, denoted trans( ), such that: 

 

Ttrans( ), K K  (10.51) 

 

with 
Z Z

2 .  As the name implies this function creates a direct link (closure) between two 

zone components whenever a path between the two zone components can be constructed based 

on transitivity, i.e. when 1z  is adjacent to 2 ,z and 2z is adjacent to 3 ,z  then 1z  becomes also 

adjacent to 3z  as well. The resulting matrix   its rows can be rearranged so that it becomes a 

block diagonal matrix. In block diagonal form it is easy to see that the number of (disjoint) 
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connected components, i.e. the number of blocks, is simply given by rk( ), while the zone 

components present within each connected component are found in the non-zero rows of 

rref( ).  A commonly adopted solution scheme to construct  is, for example, the Floyd-

Warshall algorithm. Observe that the number of connected components is also the number of 

natural partitions of our problem. We can therefore decompose the original constrained 

optimisation problem in exactly rk( ) sub-problems, where it holds that: 

 

 

     rk( )1 2

argmin ( , , )

    argmin ( , , ) || argmin ( , , ) || ||argmin ( , , ) ,

g

g g g

G

G

G G G

G GG

G K K

G K K G K K G K K 

 

(10.52) 

with: 

 

 ( (rref ( )),

K K I


  (10.53) 

 

Where 
Z Z

2
 K


represents the can-link options of each natural partition {1, , rk( )}.   In 

Figure 10.13 we see how this approach, based on the previous example, identifies the first 

partition 1,  comprising 1 2 3, ,  and ,z z z  and limits the clustering procedure accordingly via its 

can-link options. 

 

 
(a) 

 
(b) 

Figure 10.13: (a) Partition 1  as a graph (b) obtaining the same partition in matrix notation.  

On a final note, we discussed two possible alternative methods to identify connected 

components in a graph before; via a simple recursive depth-first search algorithm (Section 

9.6.1), and via a linear algebra inspired approach (Section 10.6.2). Effectively, any of the 

methods can be used here as well, yet the transitive closure approach, in our view, allows for 

the most natural formulation in this particular context. On this note, we conclude the solution 

scheme for construction of the zonal system. 

 

10.12 Constructing the final representation 
 

With both the formulation and solution scheme discussed, all steps required to construct a 

consistent traffic assignment representation are in place. To finalise the procedure, we construct 

supply side representation ,A as well as our demand side demand, zoning (and centroid) 

representations *, ,D Z respectively.  
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10.12.1 Retained boundary nodes 
First, recall that we already discussed how to obtain the final network representation A  in 

Section 9.6.4. However, this representation is conditional on the retained boundary nodes
* Z N

2 .
N These retained boundary nodes, could not yet be formulated because they are 

conditional on final clustering 
Z Z

2 . G  Since we finalised our clustering, we are now finally 

able to identify *.N  As we discussed earlier, retained boundary nodes serve as a way to add 

additional infrastructure to the keep network in case a final zone remains disconnected from 

this keep network. To verify the need for retaining the boundary node we therefore first 

establish which final zones are disconnected from the physical road network, denoted 
disconnected Z 1

2
ˆ ,

z  via: 

 

 disconnected
ˆ ˆ0, if :  1 and rref( ) || rref( ) 1,

ˆ
1, otherwise,
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  (10.54) 

 

where {1, , N}.n  The first case verifies if there exists a connectoid in this zone that is 

connected to the keep network, if so, then z  is also classified as connected to the physical road 

network, i.e. 
connectedˆ 1,
z

z   otherwise it reverts to 0. Knowing which final zones are disconnected 

allows us to construct the retained boundary nodes through: 
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0, otherwise,
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where the first case verifies that n  is a boundary node in final zone z  that is not part of the 

keep network. If this is the case, then the boundary node is retained only when z  is classified 

as disconnected, in all other cases we discard it (or it wasn’t a boundary node in the first place).  

 

10.12.2 Final zoning system and demand 
Knowing the final clustering also allows us to construct the representation of the final zoning 

system and its demand. We emphasize that the mapping from zone to centroid, is in fact 

unimportant. One can choose to place the centroid anywhere in the zone since the cost is 

attached to the connectoid. We therefore leave it to the reader to formalise Z N

2 ,
 Z  where 

we recall that the number of final zones Z is given by rk( ).
G The final trip matrix Z Z ,

  

D  

aggregates the disaggregate node demands of zone component origin-destination pairs ( , )z z  

based on which respective clusters they reside in via: 
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10.13 Synthesis and discussion 
 

In order to construct a refined zoning system based on the original zoning system and supply 

side information based on expected road usage, a general optimisation problem formulation to 

cluster zone components is proposed. The problem formulation supports both instance-level 

and cluster-level constraints. Solving this problem yields the optimal zoning system under the 



Chapter 10: Zonal representation: problem formulation and solution scheme 176 

 

given constraints and objective function considered. Two explicit objectives are considered: (i) 

minimise the distortion of the originally estimated connectoid costs, which acts as a measure 

of information loss, (ii) construct clusters with a suitable number of trips, which is the main 

driver for the desired granularity of the model inputs in a multi-scale environment. This latter 

objective can also be regarded as a measure of scaling, i.e. the magnitude of the aggregation. 

 

To solve our problem formulation, an optimal branch-and-bound algorithm is proposed. This 

algorithm is tailored towards our particular problem by: (i) proposing two increasingly tighter 

bounds following a Russian doll type approach, (ii) a cluster based branching mechanism, (iii) 

a can-link based natural partitioning method. 

 

We do want to point out that the optimisation problem formulation is mainly suited for when 

the inputs are provided at a relatively coarse granularity. When inputs, especially the zoning 

system are already very detailed, the number of zone components will increase. As a result 

constructing a coarse final zoning system based on the optimisation problem formulation will 

significantly increase the number of possible combinations and is likely to become much harder 

to solve optimally. Fortunately, in practice, most problems arise when one attempts to convert 

a coarse (strategic planning) model into a less coarse (operational) model. It is in those 

situations that finding an optimal solution is much easier; the number of zone components is 

then minimal while the desired output is at a higher level of detail such that there is less need 

for clustering zone components in the first place. 
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11 Case studies in consistent traffic assignment    

representation 
 

To demonstrate the suitability of the disaggregation-aggregation framework and our, per step, 

proposed methodology and solution methods, we conduct two case studies on the Amsterdam 

II model network and its trip demands. This network contains every single road in the inner 

city area, the main motorways leading into the city, and a zoning scheme in line with the 

granularity of a strategic planning model. It contains a wide variety of land uses such as ports, 

industrial areas, residential areas, and commercial areas. The city itself exhibits a rich diversity 

in infrastructure as the result of the different time periods in which it flourished: 15th-18th 

century; the golden age of Amsterdam yielding the canals and old-city, then the 19th century 

with the 2nd golden age and industrialisation, followed by the 20th century;  with contemporary 

“Vinex” residential areas and wide spread car use. This diversity is beneficial for testing out 

the effect of our zoning system method as it will be applied to each of these topologies/urban 

planning philosophies, within a single case study. The detailed network and original zoning 

system is depicted in Figure 11.1, a hypothetical morning peak demand matrix is also available. 

This model is in fact identical to Amsterdam I, only with a lower demand and containing the 

full supply representation. 

 

 

Demand side inputs 

 zones   279 

 trip demand    92,000 

 

Supply side inputs 

 nodes    8,098 

 directional links 22,738 

 

Demand-supply interface inputs (original) 

 centroids  279 

 connectors  844 

 

 

 

Figure 11.1: Amsterdam II network and related traffic assignment model input 

characteristics, colours indicate differences in road type and/or zone type. 

In Section 11.1 we propose metrics for result comparison and discuss our reference scenarios. 

Then, the first case study is discussed in Section 11.2, demonstrating the effects of adopting 

the base connectoid cost estimates as well as all other steps involved in the framework. In 

Section 11.3, we calibrate the parameters involved in connectoid cost scaling and provide some 

insight in the effect of altering the constraints on the zone granularity through our second case 
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study. In 11.4 we briefly discuss the performance, i.e. computational cost of our methods and 

in Section 11.5 we conclude with a summary and a discussion on model limitations. 

 

11.1  Amsterdam case study preliminaries 
 

Let us first provide some insight in the effects of choosing certain parameter settings on the 

final representation. The granularity of the representation resulting from our method is mainly 

determined by our choice for the minimum number of desired trips per zone min .d  When we 

choose min 0,d   there is no incentive to cluster and the final zones are identified by the found 

zone components. Conversely, if we set min ,d   clustering is maximised. In that case it 

depends on the configuration of the other (hard) constraints to what extent clustering occurs. 

For example, when relaxing pair-wise can-link constraints fully, i.e. 100% dissimilarity is 

allowed as well as any travel time distance between zone components, i.e. max max1, ,e  

respectively. Then, a single zone per natural partition results. Alternatively, we can also attempt 

to recreate the original zoning system by only allowing zone components to merge that are 

exactly similar in terms of productions/attractions, irrespective of their distance, via 
max max0, ,e    i.e. only if zone components originated from the same original zone they are 

considered similar enough. We can use this latter configuration to compare the original 

network’s zoning system to our method. In this situation, the only difference should be found 

in the demand-supply interface representation, see also our second case study. 

 

It is notoriously difficult to objectively assess the results of design problems such as this, 

because it is hard to establish meaningful reference points to compare against. To still provide 

insights in the effectiveness of the method we propose to construct the following two reference 

scenarios. A best-case reference scenario and a status-quo-case reference scenario. 

 

The best-case reference scenario is our source model resulting from the disaggregation step in 

the framework. In this scenario each node becomes a zone, it represents the situation without 

any aggregation and, under the given assumptions, does not suffer any information loss. Hence, 

any aggregation based on our methodology, in the best case, matches the results of this 

disaggregate representation.  

 

The status-quo-case reference scenario is, unavoidably, subjective. In our case, it is the 

Amsterdam I model (used in the Chapter 6 case studies). Recall that this model is identical to 

Amsterdam II, albeit for the reduced network detail and its centroids and connectors are readily 

provided by Amsterdam city council. These centroids and connectors have been constructed 

based on legacy projects, expert opinions, and ad-hoc modeller decisions. Our approach should 

be able to match the results of this alternative representation and hopefully surpass them, when 

adopting the same zoning system. Hence, to demonstrate suitability of our method we aim to 

verify that our methodological approach to placing and estimating connectoid costs can 

outperform the original model’s centroid/connector based results. 

 

Note that this status-quo reference model only provides a subjective comparison and results 

cannot be generalised, but at least we can provide some results that we feel are indicative of 

the potential of our method. Also, we can only compare against this second scenario when the 
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zoning system resulting from our method is virtually identical (e.g. in terms of the number of 

zones, their shapes and locations) to the original zoning system. 

 

11.1.1   Comparing results between scenarios 
Traffic assignment model input representations are eventually used in traffic assignment. 

Comparing the quality of these representations is therefore best verified based on traffic 

assignment results. We use a traditional static capacity restrained DUE assignment model to 

generate traffic assignment results. A volume-averaging method is used to smooth path flows 

across the conducted 50 iterations (to approximate equilibrium conditions). Given that we are 

only interested in the relative accuracy of the model representations compared to the 

disaggregate representation, the actual assignment model is of lesser importance and the 

aforementioned traditional capacity restrained assignment model, arguably, suffices. 

 

Two different traffic assignment model outputs are used as metrics to compare results: zone-

to-zone travel times, and average link flow rates. Both metrics adopt a Root Mean Squared 

Error (RMSE) approach, where the disaggregate results serve as the predicted value. To 

account for differences in link characteristics, we utilise the v/c ratio differences of links rather 

than absolute flow differences. Also, we only include comparable links, denoted by indicator 

matrix comparable N N

2 .A  A link is deemed comparable when: (i) the link is present in all 

network representations being compared, (ii) links are not directly adjacent to an original 

connector nor to a connectoid end node. The latter is due to the fact that link flows around 

connectors/connectoids are severely distorted because they are the main points of access to the 

physical network for trips. Therefore, we do not want to introduce an arguably unfair bias 

towards favouring our results because, in our method, we generally use more connectoids that 

allow for a bigger spread of access/egress flows than is the case when one only adopts a limited 

number of connectors (as in the status quo model). Note that connectoids can reside in different 

places than the original network’s connectors, hence these distortions are representation 

dependent. The link flow based RMSE for comparing the status-quo scenario to the source 

model is then given by: 
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(11.1) 

 

where aq  is the flow following from equilibrating the disaggregate source model, while aq  is 

the equilibrated link flow for the status-quo scenario. The RMSE for the zone-to-zone travel 

times are obtained in a similar fashion. Comparing the status-quo scenario to the disaggregate 

source model results in RMSE as given in Equation (11.2):  
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where zzH   denotes the original status-quo zone-to-zone travel time. The disaggregate node-

to-node travel times H  are aggregated up (taking the demand weighted average ) to match the 

granularity of original zoning system resulting in .zzH  We leave it to the reader to observe that 

RMSE formulations for alternative representations based on our disaggregation-aggregation 

method scenario can be formulated following the same approach. Finally, in our case studies 

we adjusted Equation (11.2) such that we only considered zone-to-zone pairs with non-negative 

demand to ensure we capture the differences that make an actual impact on the results.  

 

11.1.2   Conducted case studies 
We conduct two comprehensive case studies; the first case study demonstrates the results of 

applying the proposed methods for each of the steps in the disaggregation-aggregation 

framework while adopting the base estimation method for constructing connectoid costs. The 

second case study focusses on parameter estimation, especially with regards to the scaling of 

the connectoid cost base estimates. Both case studies aim to construct a zoning system identical 

to the original zones, but do so by employing branch-and-bound Algorithm 1. The purpose of 

choosing this particular granularity is to compare results with the status-quo scenario. Lastly, 

the second case study also explores a more fine-grained zoning system to verify if the found 

parameter settings are transferrable across granularities. 

 

11.2  Amsterdam case study I: Basic approach 
 

As mentioned, this initial case study serves as a demonstration of applying our disaggregation-

aggregation framework on a real-world network. This allows us to demonstrate all the steps 

involved and compare the differences in our demand-supply interface to the 

centroid/connectors in the status-quo case study. Table 11.1 provides an overview of the steps 

and the adopted configuration settings. 

 

Table 11.1: Case study I design decision overview. 

Framework step Implementation method Parameters 

Step 1-2 Source model construction AON node-to-node assignment - 

Step 3 Supply representation v/c ratio based link classification min 0.1    

Step 4 Demand-supply interface 
connectoid placement, base 

connectoid cost estimation  
- 

Step 5 Demand representation Branch-and-bound Algorithm 1 
max 0,e  max ,  
mind     

 

11.2.1   Step 1 and 2: creating the Amsterdam source model 
We first create the disaggregate source model inputs as discussed in Section 9.3. This involves 

creating the disaggregate node-to-node trip demand matrix first. Recall that the portion of the 

original zone demand assigned to each node is determined by the node’s weight. We choose 

the node weight to be determined by the number of outgoing links of each node, while setting 

the weight of boundary nodes to zero: 
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We acknowledge that this is a rather basic approach. However, this is not a problem when – as 

we do here – only construct this base model as a reference to compare against a more aggregate 

alternative model representation, based on this very source model. Clearly, if this model were 

to be used for an actual application, one would for example include land use information, or 

other available data sources to provide a more realistic estimate.  

 

Once, the disaggregate demand matrix is constructed, it is assigned to the network using AON 

assignment (Section 9.4). The v/c ratio based results are depicted in Figure 11.2. This step does 

not involve the use of centroids and connectors, instead, all nodes acts as zones. This means 

that virtually all links experience some demand, yet truly local roads exhibit very low flow 

rates, which is utilised in subsequent steps to identify the zone components.  

 

 
Figure 11.2: Disaggregate AON assignment results in terms of v/c ratios, from various 

perspectives. 

Note that we deliberately scaled back the demand matrix (compared to the demand used in Part 

II), so that it leads to a comparatively higher impact of connectoid costs on travel times. In 

doing so, the model becomes more sensitive to connectoid cost estimates allowing for more 

accurate parameter calibration (see Section 11.3). Secondly, we find that in the inner city v/c 

ratios are comparatively low compared to motorways. This is partly due to the fact that we do 

not take (the available) traffic signals into account. 

v/c ratios
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 A more sophisticated model would be able to incorporate the turn flow restrictions based on 

the available green times. However, we argue that while these effects on v/c ratios can be 

significant, they have far less influence on our link classification method and the final supply 

model representation. For example, let us assume that queues resulting from reduced capacity 

at traffic lights do not spillback beyond the link preceding the signal and that this preceding 

link is marked as a keep-link under AON. If this is true, then the supply representation based 

on AON is identical to a situation where traffic signals would be considered, simply because 

all the links experiencing increased v/c ratios would already be marked as keep-links. While 

we cannot guarantee that queues do not spillback beyond the signal’s preceding link, we can 

choose to calibrate our threshold value min  such that we capture all links preceding any 

signalised intersection. Therefore AON, while crude, is considered capable enough of 

establishing our link classification conditional on the fact that we choose min appropriately. 

 

11.2.2   Step 3: creating the Amsterdam supply input representation  
The granularity of the final supply input representation depends on how we choose the link 

classification v/c ratio threshold min . In this classification, we differentiate between links with 

low expected road usage, leading to stable internal travel times and links that might experience 

delays. As argued previously in Section 9.5, it is more important to retain the infrastructure that 

allows for accurate traffic flow interactions than to succumb to the temptation to remove or 

abstract out infrastructure to reduce computation times. We already saw in Part II that 

computational effort is mainly driven by the number of zones, rather than network granularity. 

Therefore, only when links have very low expected levels of usage we can justify abstracting 

them out without risking much information loss. 

 

We therefore argue that min must be chosen conservatively. Following the discussion in the 

previous section on the impact of signals and the fact that we have access to where the signals 

reside in the network, we choose to calibrate min with the objective to obtain a final supply 

representation that, at the very least, captures the infrastructure around existing signals. In 

doing so, we also comply with the assumption we made in the previous section that, if we were 

to include signals, the final supply representation under a v/c ratio based AON assignment does 

not change. 

 

After some experimentation, we found that choosing a threshold of min 0.1,   satisfied these 

conditions. The fact that this is a low value, we argue, is a good result because there is little 

room to reduce min  further without risking to include the full network, while increasing min  

would lead to missing important parts of the infrastructure, such as signalised intersections. 

This seems also to suggest that, regardless of the granularity of the model, the underlying 

physical road network that should be considered, to obtain accurate path travel times, is more 

or less the same. Something which might come as a surprise, given the wildly varying levels 

of network detail found across the current modelling paradigms. Figure 11.3 depicts the link 

classification resulting from applying min 0.1   to the Amsterdam case study, the inset shows 

intersection status as well. We specifically depicted the connectivity-keep links that ensure the 

network connectivity between the identified keep links based on the main section of the shortest 

paths as discussed in Section 9.5.1. 
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Figure 11.3: Link classification on Amsterdam case study, min 0.1,   at various zoom levels. 

We find that, at this stage, there are 4,774 keep links and 1,051 connectivity keep links. Hence, 

the keep network accounts for roughly 25% of the original number of links in the network. 

 

11.2.3   Step 4: creating the Amsterdam demand-supply interface 
In this step we start by identifying the zone components as originally formulated in Section 

9.6.1. They represent topologically connected areas with expected internal travel time stability. 

They are obtained based on the link classification of the previous step. 

 

The importance of delineating zone components not only based on expected road usage, but 

also by the original zone boundaries is illustrated by depicting what zone components look like 

without boundary nodes, as is depicted in Figure 11.4(a) and (b). As can be seen, in the absence 

of boundary nodes, many of the zone components span multiple (partial) original zones. In case 

of the highlighted zone component, there are significant differences in travel patterns between 

the original zones the zone component covers, exemplified by the differences in 

productions/attraction patterns, see Figure 11.4(c). Boundary nodes prevent such undesired 

initial amalgamations. Figure 11.4(d) shows the actual obtained zone components when 

considering boundary nodes, i.e. additional delineation by original zone boundaries, resulting 

in a more appropriate starting point for our zonal aggregation in Step 5. 

 

keep link
connectivity-keep link

non-keep linksignalised intersection

unsignalised intersection
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  (a)          (b)       (c)     (d) 

Figure 11.4: (a) Zone components in Amsterdam network without boundary nodes, (b) close 

up example zone component (purple) without considering boundary nodes, (c) original zone 

productions attractions, (d) zone component delineation with boundary nodes. 

 

11.2.3.1 Connectoid placement and cost estimation 

Connectoids are automatically constructed on all physical links that interface between the keep 

link network and the non-keep link network, following the procedure proposed in Section 9.6.3. 

Some examples are provided in Figure 11.5. As can be seen, some zone components are quite 

large with only a few connectoids, while other zone components are relatively small, but have 

many connectoids. 

 

 
Figure 11.5: Impression of differences in connectoid densities across Amsterdam network. 

Based on the supply side representation, zone components, and connectoid placement, we 

estimate the zone component connectoid costs , ,+H H respectively. We do so by adopting the 

base method without any additional scaling, as discussed in Section 9.6.6. 

 

11.2.4   Step 5: creating the Amsterdam demand input 
We intend to use the representation resulting from this first case study to compare against the 

status-quo reference scenario. Therefore, we aim to reconstruct the original zoning system 

productions/attractions

1

2

3

4

5

original zone boundary

non-keep node

connectoid

keep node keep link
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through our branch-and-bound procedure. We do so by setting max 0,e  max ,    respectively. 

Interestingly, we only succeed in replicating the original zoning system when the original 

zoning system complies with our contiguity constraint. Given that we enforce a topological 

contiguity rather than a shape based contiguity, violations of this constraint were found in the 

original zoning system and they occur more frequently than one might initially expect, as is 

illustrated in Figure 11.6.  

 

 
       (a)         (b) 

Figure 11.6: (a) Contiguity violation in original network zone, (b) final zone representation 

based on Algorithm 1. 

Here we find that the zone components (dashed circles) in the original zone (marked yellow, 

Figure 11.6(a)) cannot get to one another without going through other original zone’s 

infrastructure. Hence, the original zone (provided as a given and fixed input) is not contiguous 

from a supply side perspective, so the original zoning system cannot be reconstructed, unless 

we forcibly violate topological contiguity. In our comparison, we choose to maintain our 

contiguity constraint. Yet, whenever an “illegal” original zone is identified, the results of the 

contiguous subdivided zones are grouped, based on a demand weighted average, to yield values 

that can be compared to the original zone, consistent with the construction of the zone-to-zone 

travel time RMSE in Equation (11.2). This way, we construct a viable zoning structure while 

still being able to compare results to the original zoning system.  

 

Figure 11.7 gives an impression of the final zoning system constructed by Algorithm 1, the 

original shape based zoning system is added as an overlay for reference. Note that links, 

retained in the supply representation, are depicted in black and are not attributed to a final zone, 

the colour coded links are the links that are being abstracted out when performing assignment 

and represent the areas of internal travel time stability of each final zone. Finalising the zoning 

system also allows us to construct the final boundary nodes. This results in additional keep 

infrastructure because we classify all links on the shortest paths from these nodes to the keep 

network. Further, we add all non-keep links, connecting the connectoids to the keep network, 

to the keep network as well. This results in an additional 3,208  keep links. Hence, we retain 

41% of the original complete network in our new supply side representation.  

keep link

connectivity-keep link

zone component

non-contiguous 

zone-components

non-keep link
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Figure 11.7: Constructed zoning system as colour coded links, aligned with original zoning 

system. 
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11.2.5   Amsterdam case study I results 
For each of the three representations; the best-case scenario, the status-quo scenario, and our 

disaggregation-aggregation based representation, we obtained results via DUE volume-

averaging traffic assignment equilibration, outlined in Section 11.1.1. The best-case scenario 

is used as a reference allowing us to compare the results of the other two scenarios in Figure 

11.8. 

 

 
      (a)            (b) 

Figure 11.8: Results of status-quo and base configuration of disaggregation-aggregation 

framework in comparison to disaggregate best-case scenario for (a) zone-to-zone travel 

times, (b) link usage. 

 

We find that both the coarser model representations suffer significant information loss. This 

loss amounts to almost 17% RMSE of travel times compared to the disaggregate case. The 

RMSE on the link level (for comparable links) is surprisingly low. Interestingly, we also find 

that, in this initial configuration, our results are in fact somewhat worse than the status-quo 

model. This either indicates the practitioner’s model is actually pretty good, our current 

configuration is too simplistic, or both. Analysing the results more closely we find that both 

the status-quo scenario, as well as our method, overestimate zone-to-zone travel times 

significantly, where our method’s overestimation exceeds that of the status-quo representation, 

see Figure 11.9.  

 

 
Figure 11.9: Average origin-destination travel time difference in minutes, via summation of 

absolute origin-destination travel time differences divided by number of origin-destination 

pairs. 

14.59%

16.84%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Status-quo case Our method

R
M

S
E

Travel time differences

Best case

(base configuration)

5.16%
4.51%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Status-quo case Our method
R
M

S
E

Link usage differences

(base configuration)

3.72

6.95

0

1

2

3

4

5

6

7

8

Status-quo case Our method

A
ve

ra
g
e
 o

d
 t
ra

ve
l 
ti
m

e
 

d
if
fe

re
nc

e
 [

m
in

]

Best case

(base configuration)



Chapter 11: Case studies in consistent traffic assignment representation  188 

 

The status-quo overestimation is likely the result of the strategic network missing local 

infrastructure to accommodate short trips, requiring larger detours to the sparsely available 

connectors. For our method, this overestimation is caused by carrying over the distorted cluster 

based connectoid costs into the assignment procedure. Figure 11.10, shows an example where 

two zone components are clustered, however some of the shortest paths between internal 

cluster nodes and cluster connectoids - used in estimating the cluster connectoid costs - are 

costly and are unrepresentative of the true first/last mile cost. 

 

 
Figure 11.10: Clustering and the effects of connectoid cost distortion. 

This, in our view, does not discredit using connectoid cost distortion as a measure to quantify 

the (un)attractiveness of clustering zone components, because clearly the two zone components 

in the example have poor intrazonal connectivity, mainly due to the one-way streets in this 

area, which should deter them from clustering. However, when the clustering procedure does 

decide to cluster such zone components, for example to meet a minimum demand, or to force 

a particular zone cluster to match some reference zoning; the cluster connectoid cost might 

cause an overestimation in the zone-to-zone path travel times. In such cases we should not 

carry it over directly for assignment purposes. Instead, we aim to calibrate, change, and/or scale 

the available cluster and/or component based connectoid costs in a post-processing step to 

better match the disaggregate travel times and link flows as much as possible. 

 

11.3  Amsterdam case study II: post-processing connectoid costs  
 

This second case study is dedicated to exploring different ways to calibrate the connectoid costs 

discussed in the previous section. We do so in four distinct ways: (i) vary connectoid cost 

between cluster connectoid cost and the original – lower - zone component based cost, (ii) we 

employ the service area scaling factor method, proposed in Section 9.6.7, (iii) we employ the 

centrality scaling factor, proposed in Section 9.6.8, (iv) we explore the effect of reducing the 

number of connectoids. 

 

11.3.1  Connectoid cost choice based on relative zone component size 
To provide insight in to what extent the cluster distortion influences the overestimation of travel 

times, we first explore reverting the cluster based connectoid cost back to the zone component 

connectoid cost. In other words, regardless of what cluster a zone component belongs to, the 
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employed connectoid cost used in assignment is estimated based only on the nodes internal to 

the zone component the connectoid resides in. This should lead to an underestimation of travel 

times because it disregards the access/egress cost of trips in other zone components in the same 

cluster that can use the connectoid. Therefore, the “true” connectoid cost is likely to be found 

somewhere in between those two extremes. In addition, we also explore taking the average of 

the zone component connectoid cost and cluster based connectoid cost. The results are plotted 

in Figure 11.11. We find that the zone component based cost performs better on path travel 

times, but worse on the link usage, compared to the original cluster based costs. Taking the 

average connectoid cost yields results in between the two approaches, but does outperform the 

status-quo scenario on both metrics used. 

 

 
Figure 11.11: Comparing different connectoid cost estimates against the status-quo scenario. 

The alternative connectoid costs as outlined above are crude because they are applied to all 

connectoids in the same fashion. We therefore propose a slightly more sophisticated way to 

attribute either zone component based or cluster based connectoid costs to connectoids. We let 

each clustered zone component choose between applying the original zone component 

connectoid cost or the cluster based connectoid cost depending on the relative size of the zone 

component within the cluster. 

 

Let us measure the (topological) size of a zone component by its internal infrastructure, i.e. 

total internal link length. The relative size factor [0,1],zl G  of a zone component {1, ,Z}z 

is then expressed by the ratio between the zone component’s size and the largest zone 

component in its cluster via 
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We use this metric to determine which of the two connectoid costs is likely to be most 

appropriate. When a zone component z  is relatively small because there exist other larger zone 

components, then the other larger zone component(s) are more representative for the zone as a 
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whole and we should deter using the small zone component’s connectoid cost estimate. Hence, 

the cluster based connectoid cost is most appropriate. On the other hand, when the zone 

component is small when all other zone components in the cluster are also small, then all zone 

component are roughly equally representative as access/egress points for the zone and we are 

probably better off  using the zone component based cost (because on average the originally 

adopted cluster based cost yielded an overestimation). When a zone component is relatively 

large, its zone component based costs is most likely already representative for the zone cluster 

as well. We can therefore use it instead of the cluster cost, also reducing our initial cost 

overestimation. We could alternatively adopt the cluster based cost here as well, but as shown 

before, we rather avoid including potential outliers that are contributed to our initial 

overestimation, so we refrain from doing so. 

 

Given that we do not know what relative size provides the best choice to switch from cluster 

costs to zone component costs, we estimate a threshold min [0,1],l  where, once min

zl lG  zone 

component z  adopts zone component based connectoid costs via , ,z z

 

 H H respectively. 

Otherwise, the cluster based costs, via ˆ ˆ
ˆ ˆ, ,z z

 

 H H respectively, are retained as shown in 

Equations (11.5) and (11.6): 
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 (11.6) 

 

with {1, ,Z}z   and where * *

ˆ ˆ, ,zn znH H   denote the connectoid costs applied in assignment. 

Results are provided in Figure 11.12. Note that min 1l   signifies that only the largest zone 

component adopts its original zone component cost while all other zone components in the 

cluster adopt the cluster based cost. It therefore does not provide the same result as the original 

cluster based connectoid cost.  

 

We find that link results are fairly robust across the different values of minl with reduced RMSE 

for link usage ( 0.5% ) when adopting more cluster oriented connectoid costs. Conversely, 

travel time results improve for zone component oriented connectoid costs with low thresholds. 

We also see that some threshold based results min( 0.3)l  outperform the fixed zone component 

connectoid cost approach on travel times, some threshold based results outperform the average 

approach on link results min( 0.4),l   but not both at the same time. Comparing results against 

the status-quo case, we find link RMSE roughly on par or slightly better, while travel times are 

more accurate across all explored threshold settings 
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Figure 11.12: Pareto front of imposing various relative size thresholds in adopting cluster or 

zone component connectoid costs on RMSE link usage and RMSE travel times. 

The (absolute) overestimation of travel times has reduced significantly under the modified 

connectoid costs as can be seen in Figure 11.13, confirming that connectoid costs play an 

important role in the total path travel times (in this case study), and more importantly, we can 

use path travel time information as an indicator to improve connectoid cost travel time 

estimates. 

 

 
Figure 11.13: Average origin-destination travel time differences compared to best-case for 

additional approaches under different relative size thresholds 
min .l  

11.3.2   Service area scaling factor 
The choice between zone component and cluster level connectoid costs, as discussed in the 

previous section, is calibrated on the network level and considers differences between zone 

component and cluster. It does however not consider connectoid specific characteristics such 

as to what extent we expect a connectoid to be used in the presence, or absence, of other 

connectoids within the cluster. The service area scaling factor, see Section 9.6.7, attempts to 
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scale back a connectoid’s cost estimate whenever we expect that trips originating farther away 

from the connectoid will underutilise the connectoid compared to the base estimate. The service 

area scaling factor is conditional on the number of connectoids in the cluster that we consider 

eligible of capturing trips originally attributed to the connectoid under consideration and 

therefore reducing its service area. The more such connectoids we find, the more the connectoid 

cost is scaled back. Given it is difficult to justify this choice without any calibration, we explore 

a number of scenarios, as outlined in Table 11.2. In each scenario we created one or more bins, 

where each bin got assigned the service area scaling factor of the minimum value in the bin, 

i.e. in scenario B, if a cluster has three connectoids a scaling factor of 0.91 is assigned, while 

if the cluster has five connectoids, it gets assigned the service area scaling factor of 0.78, which 

is in fact the value based on having four connectoids etc. 

 

Table 11.2: Explored scenarios13 for service area scaling factors. 

Scenario Number of cluster 

connectoids 

Service area 

scaling factor 

RMSE Link  

best-worst (1-4) 

RMSE travel time 

best-worst (1-4) 

A 4   0.78 No improvement 4 

B 3 

4  

0.91 

0.78 

1 3 

C 3 

4 

5 

6  

0.91 

0.78 

0.69 

0.62 

No improvement 1 

D 3 

4 

5 

6 

7 

8  

0.91 

0.78 

0.69 

0.62 

0.57 

0.53 

No improvement 2 

 

Without discussing each individual result, we found that travel times do improve for all 

scenarios considered, but that link usage estimates improved only for scenario B while 

compromising all other scenarios. The cause of deteriorating link estimates may be found in 

that large zone components (with many connectoids) are scaled back more, making fringe 

connectoids very attractive allowing trips to bypass significant portions of the physical road 

network. While travel times may improve in such a scheme, physical link flows within the 

larger zones are reduced causing additional error. To ensure our method contributes only 

positively to the reduction in error, we recommend a conservative approach and only apply 

scenario B.  

 

The service area scaling factor is originally formulated on the level of zone components, 

yielding Z N.I X  Given that we apply the connectoid cost calibration as a post-processing 

step, we construct the service area scaling factors on the cluster level instead, denoted 
Ẑ Nˆ .I X This is a straightforward conversion and is provided in Appendix A. The connectoid 

costs used in assignment are then simply constructed via * *ˆ ˆˆ ˆ, ,I I 
H HX X  respectively. 

                                                 
13 Each of the scenarios was investigated with 

min 0.5.l    
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Results, in conjunction with the various configurations of min.,l are provided in Figure 11.14. 

As can be seen RMSE of travel times improve significantly, especially for values of minl  that 

yield good link estimates. Link use estimates remain roughly the same, with slight 

improvements for values of  minl  yielding the best travel time estimates. We still find that there 

is a trade-off between obtaining slightly better link results (cluster oriented connectoid costs) 

versus better travel times (zone component oriented results), but applying service area scaling 

factors demonstrably improve overall model performance. 

 

 
Figure 11.14: (a) Improvements in RMSE by including service area scaling factors ˆ ,IX  

based on scenario B (b) close-up of per estimate improvement. 

 

11.3.3   Centrality scaling factor 
The third adjustment to the connectoid cost pertains to the centrality scaling factor, as originally 

formulated in Section 9.6.8. This measure scales back the connectoid cost, based on the 

expected double counting that might occur when combining connectoid costs with path costs. 

We argued that this double counting effect becomes more pronounced when connectoids reside 

closer to the zone centre, hence we apply this scaling progressively conditional on the 

connectoid location. Recall that the centrality scaling factor min ,  for the zone centre (Equation 

7.35) relies on the choice of [0,1].  This factor   dictates the portion of trips that approaches 
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their cluster destination from their ideal point of access, e.g. when the destination is on the 

Eastern side of the zone, they are expected to arrive via a road entering from the East. 

Conversely, the 1   portion of trips is assumed to arrive uniformly from all directions. The 

combination of the two portions determines min and therefore the centrality scaling factors 
ˆ .IIX  Given we do not know , we must estimate it. For each estimate we then construct final 

connectoid cost estimates * *ˆ ˆ ˆ ˆˆ ˆ, ,I II I II 
H HX X X X respectively. Note that the original 

centrality scaling factors, like the service area scaling factor, are formulated on a zone 

component basis, i.e. Z N.II X  The conversion from zone component based formulation to 

the cluster based formulation ˆ IIX is also provided in Appendix A for the reader’s convenience. 

We also point out that for each value of [0.0,0.1,0.2,0.3,0.4,0.6,0.8],  we explored 
min [0.1,0.2, ,0.9]l   resulting in a total of 7*9=63 data points, where we left out some higher 

values of   since it is highly unlikely that more than 50% of all trips approach a zone from the 

ideal entrance. Results are depicted in Figure 11.15. 

 

 
Figure 11.15: (a) Results including centrality scaling factors, (b) close-up of Pareto front 

improvements. 

We find that the best travel time and link RMSE estimates improve noticeably, although not 

all combinations of parameters exhibit improvements. Upon closer inspection we find that 
min0.2,  with 0.3 0.4,l     yields the best travel time RMSE of 7.1% . These settings also 

provide decent link usage RMSE estimates of 4.6% . However, the best link use RMSE 
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estimates are found to be around 4.4%  requiring min0.3,  with 0.5.l    Yet, these latter 

settings result in a noticeable deterioration of the travel time RMSE estimates ( 7.5% ). 

 

11.3.3.1 Reducing accessible connectoids 

While the results of using the centrality scaling factors are demonstrably good, Figure 11.15 

does reveal there remains some trade-off between acquiring the best possible travel times 

versus acquiring the best possible link estimates. Also, ideally, we would prefer to find less 

scatter in our results to make our choice of parameters more robust. Generally though, we find 

that when   is high, then min  becomes smaller, and link load estimates improve. Meaning 

that, by making connectoids close to the centre more attractive (by scaling back their 

connectoid costs more aggressively), we increase usage of links within the zone, due to more 

paths preferring centrally located connectoids over fringe connectoids, leading to less 

bypassing of infrastructure and better link load estimates. 

 

To obtain our best path travel time estimates, we do not scale back centrally located costs as 

aggressively as we do for our best link estimates. In these cases, fringe connectoids are still 

relatively attractive and a significant portion of the internal zone structure can be bypassed. At 

the same time, fringe connectoid costs are generally higher than internally located connectoids, 

but not high enough to deter travellers from using them. Disallowing the usage of the most 

costly connectoids, i.e. the connectoids at the fringes, should therefore improve link estimates 

while, due to our earlier calibration efforts, path travel times should remain mostly unaffected. 

To test this hypothesis, we perform one additional study where we only mark the four cheapest 

connectoids as accessible while imposing an infinite connectoid cost on the remaining 

connectoids (if any). The number of four is somewhat arbitrary, but the idea is that, for travel 

times, it is largely irrelevant how many connectoids exist as long as there is roughly one 

available per main wind direction, hence our choice of four. The results are depicted in Figure 

11.16. 

 

As can be seen the scatter is reduced drastically compared to Figure 11.15, with all data points 

within 0.45% RMSE regarding link usage (4.3%-4.75%) and within 1.8% travel time RMSE 

(7.2%-9.0%). So, even a suboptimal choice of parameter settings is less likely to drastically 

affect the result in a negative way. We also find that there is less of a trade-off as before. The 

Pareto front is now close to invariant to the link usage estimate, due to forcing paths to choose 

centrally located connectoids. 
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Figure 11.16: (a) Link load estimate improvements by excluding high cost connectoids (b) 

close-up showing Pareto front without imposing limit on connectoids. 

 

Table 11.3 outlines the top 5 results based on uniform weighting of the two metrics. The best 

link usage RMSE remain roughly at 4.4%,  but this estimate can now be obtained in 

combination with a travel time RMSE of 7.18%,  only slightly above our overall best travel 

time RMSE estimate of 7.12%. 

 

Table 11.3: Top 5 results when imposing limit on connectoids, including service area scaling 

(Scenario B), relative size factor and centrality scaling factors. 

Result Travel time RMSE Link usage RMSE Centrality factor Relative size threshold 

1 7.18% 4.40% 0.2    min 0.3l   

2 7.20% 4.41% 0.1   min 0.3l   

3 7.26% 4.38% 0.3   min 0.3l   

4 7.25% 4.4% 0.0   min 0.3l   

5 7.35% 4.35% 0.4   min 0.3l   

 

Intuitively, the settings for our best result seem reasonable as well, since 0.2   represents a 

maximum of 40% of trips approach destinations from the ideal direction; 20% directly via 

0.2   and another 20% via the uniformly assumed arrival, i.e. 1
4

( (1 0.2)) . The min 0.3l   

reflects that zone components that make up less than 30% of largest zone component should 
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revert to using the cluster connectoid cost estimate to deter their overly attractive connectoids 

to be utilised. At the same time, zone components larger than 30% of the largest zone 

component in the cluster benefit from not being influenced by outliers in cluster estimates 

(causing overestimation) and have sufficient size for their zone component based connectoid 

cost to obtain a decent estimate. We do note that the choice of  min 0.3l   seems more important 

than the choice of centrality factor. Figure 11.17 depicts our best calibrated result against the 

status-quo case and our earlier attempts. While the comparison with the status-quo scenario is 

subjective, it confirms a fully automated method is capable of outperforming this scenario to 

the point that travel time RMSE decreases with 50.8%, while link RMSE reduces by 14.8%. 

 

  
Figure 11.17: Overview of results compared to calibrated parameter estimate. 

 

11.3.4   Verifying parameter estimates under a different zoning system 
To verify if the found parameter estimates transfer to other zone granularities we now set 

min 100d  (veh/h), ceteris paribus. In this context, this means more and smaller zones at 

roughly half the size compared to the original zoning, since the original zoning system averaged 

235 produced trips and 221  attracted vehicle trips per zone per hour. One would also expect 

link load estimates, as well as travel time estimates, to improve due to the increased detail in 

the underlying zoning system.  

 

Note that, to be able to compare these results with the status-quo case, we aggregated and 

averaged the travel times of our, now more disaggregate, zoning system to the granularity of 

the original zoning system. We adopted the same service area scaling approach as before as 

well as reducing the number of eligible connectoids as discussed in the previous section. 

Results for the combinations of ,  i.e. centrality scaling, and min ,l i.e. relative size based 

connectoid cost configuration, are depicted in Figure 11.18. We find that the best link usage 

RMSE improve from 4.4%  to a RMSE of 3.4%.  We also find improved RMSE for the best 

travel time estimates from 7.2%  to 6.8%.    
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Figure 11.18: (a) Increased zonal detail leading to improved link and travel time estimates, 

(b) close-up of Pareto front. 

 

Note that the RMSE for the status-quo case differ from the earlier values. This is not because 

results have changed, but due to a change in the set of links that is considered comparable 

(Section 11.1.1); the different zoning system results in additional connectoids emerging around 

newly retained boundary nodes leading to different comparable links and resulting in this 

change. Table 11.5 outlines the top 5 results, based on uniform weighting of the two metrics. 

 

Table 11.4: Top 5 results conditional on min 100,d   when imposing limit on connectoids, 

including service area scaling (Scenario B), relative size factor and centrality scaling factors. 

Result Travel time RMSE Link usage RMSE Centrality factor Relative size threshold 

1 6.76% 3.64% 0.3    min 0.2l   

2 6.78% 3.63% 0.4   min 0.2l   

3 6.95% 3.53% 0.4   min 0.3l   

4 6.82% 3.69% 0.2   min 0.2l   

5 6.87% 3.71% 0.1   min 0.2l   

 

Compared to the results in the previous section we see some subtle differences. There is a shift 

from consistently choosing min 0.3,l   to now sometimes preferring min 0.2.l   This might be 

explained by the fact that when zones get smaller the connectoid cost based on the original 

zone component becomes relatively more representative, compared to when the zones are 

larger, hence accommodating this shift. The choice of centrality factor, again, plays a less 

significant role, although in general we obtain better results with slightly higher values of   

than before, with the best result shifting from 0.2   to 0.3.   This is perhaps due to the fact 

that with smaller zones, the reduction of the number of connectoids to four has less effect 

because there are less connectoids per zone. In that case fringe connectoids remain active more 

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18%

R
M

S
E 

Li
nk

 u
sa

g
e
 

RMSE od travel time

Cluster connectoid cost Zone component connectoid cost

Status-quo case Average connectoid cost

0% centrality 10% centrality

20% centrality 30% centrality

40% centrality 60% centrality

80% centrality

Status-quo case

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%11%12%13%14%15%16%17%18%

R
M

S
E 

Li
nk

 u
sa

g
e
 

RMSE od travel time

10%

20%

30%

40%

50%

60%

70%

80%

90%

Cluster connectoid cost

Zone component connectoid cost

Status-quo case

Average connectoid cost

min [0.1,0.2, ,0.9]*  l   

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18%

R
M

S
E 

Li
nk

 u
sa

g
e
 

RMSE od travel time

10%

20%

30%

40%

50%

60%

70%

80%

90%

Cluster connectoid cost

Zone component connectoid cost

Status-quo case

Average connectoid cost

10% + service area

20% + service area

30% + service area

40% + service area

50% + service area

60% + service area

70% + service area

80% + service area

90% + service area

0% centrality

10% centrality

20% centrality

30% centrality

40% centrality

60% centrality

80% centrality

ˆ ˆ 0.0| 
I II  X X

ˆ ˆ 0.1| 
I II  X X

ˆ ˆ 0.2| 
I II  X X

ˆ ˆ 0.3| 
I II  X X

ˆ ˆ 0.4| 
I II  X X

ˆ ˆ 0.6| 
I II  X X

ˆ ˆ 0.8| 
I II  X X

Relative size + 

service area scaling + 

centrality scaling*

( )a

( )b

3.0%

3.5%

4.0%

4.5%

6.5% 7.0% 7.5% 8.0% 8.5% 9.0% 9.5% 10.0% 10.5%

R
M

S
E 

Li
nk

 u
sa

g
e
 

RMSE od travel time

Cluster connectoid cost Zone component connectoid cost

Status-quo case Average connectoid cost

0% centrality 10% centrality

20% centrality 30% centrality

40% centrality 60% centrality

80% centrality



Chapter 11: Case studies in consistent traffic assignment representation  199 

 

often and a more aggressive scaling is required to attract paths to the more centrally located 

connectoids.  

 

Overall, we see results as expected here, with improved link usage and travel time estimates. 

Also parameter settings seem to fall within similar ranges and exhibit only moderate scatter, 

suggesting there is potential for these settings to be transferable to other networks and levels 

of detail. 

 

11.4  Performance  
 

While the main objective of the representations constructed through our disaggregation-

aggregation framework has been to guarantee consistency, rather than optimising performance, 

we do want to at least provide some insight as in how the various steps compared in terms of 

computational costs as well. All methods are implemented in C++ as part of the StreamLine 

assignment framework within the OmniTRANS transport planning suite. Table 11.5 provides 

indicative, per step, computation times based on our prototype implementation14 that we found 

when constructing the representation used in our two case studies. 

 

The disaggregate assignment is currently the mostly costly component which, even for such a 

moderately small network, already takes 3 minutes for just a single AON assignment. The link 

classification is computationally on par with the AON assignment since each path is revisited 

to identify the connectivity-keep links. The branch-and-bound solution scheme is, under the 

current settings, easy to solve. It should be noted however that relaxing the can-link constraints, 

is exponentially increases the solution space making it much more difficult to solve optimally. 

This situation can for example arise when one desires a coarse zoning system while the input 

zoning system is more detailed. Fortunately, in a practical setting, the opposite is currently 

more common. 

 

Table 11.5: Indicative computation times for Amsterdam II case study. 

Framework step Implementation method Computation time 

Step 1-2:  

Source model construction 
AON node-to-node assignment 3 min   

Step 3:  

Supply representation 
v/c ratio based link classification 3 min  

Step 4:  

Demand-supply interface 

connectoid placement, base 

connectoid cost estimation  
1 min  

Step 5 : 

Demand representation 
Branch-and-bound Algorithm 1 2 min  

 

11.5  Synthesis and discussion 
 

The Amsterdam II network (and demand) served as input for our case studies. While network 

design problems inherently lead to subjective results as to what can be considered a “good” 

                                                 
14 Computation times obtained based on following setup: 32bit C++ MS Visual Studio 2008 SP1 compiler, 16 GB 

RAM, Intel Xeon 3.1 GHz, Windows7 SP1. 
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outcome, we argue that by utilising two reference scenarios as a lower and upper bound, 

sufficient insight has been provided to draw some conclusions on the effectiveness of our 

method. Further, we calibrated the parameters proposed in Chapter 9 based on two RMSE 

based metrics, one metric related to path travel times, while the other focussed on link usage. 

 

As concluded in Part II already, it is typically better to retain a significant amount of detail in 

the supply representation because it has relatively little impact on computation times, while 

missing critical infrastructure can quickly compromise assignment results. Following this line 

of reasoning, and based on the findings resulting from the disaggregate assignment, we advise 

a keep-link v/c ratio threshold of min 0.1,   irrespective of the desired level of detail in zoning. 

In this case it leads to retaining 25% of the original network, which expands to 41% once we 

also include the additional non-keep links needed to allow the connectoids to access the 

physical road network. 

 

The zone components resulting from the link classification are used to obtain the base estimated 

for connectoid costs. When comparing our final representation with a best-case scenario (fully 

disaggregate assignment) and a status-quo scenario (original strategic planning network 

Amsterdam I), this initial case study outperformed the status-quo scenario with identical zoning 

based on link load accuracy, but lagged behind in travel times.  

 

The second case study was used to calibrate the base estimated for connectoid costs to improve 

upon the link level usage and zone-to-zone travel time accuracy. Three different methods have 

been explored, each of which required some form of parameter calibration. The optimal 

parameter settings were found to be: 

 

 Connectoids residing in an original zone components that comprises more than 30% of 

the infrastructure of the largest zone component in the cluster, i.e. min 0.3,l    should 

adopt the original zone component based connectoid cost because it is best representing 

the cost to access/egress the zone. Otherwise, the cluster based connectoid cost is to be 

adopted, which is higher, and deters paths from using the connectoid in order to avoid 

underestimation of the travel time. 

 

 Service area scaling factors are applied to adjust the original connectoid cost estimate 

to the portion of the zone it is actually servicing. We found that the settings based on 

Scenario B yielded the best results, meaning that whenever a cluster has three 

connectoids, its cost is scaled back to 91% of its original cost, when it has four or more 

connectoids the connectoid cost is scaled back to 78% of its original cost, while 

otherwise its cost remains unchanged. 

 

 To account for double counting of path travel times leading up to a connectoid and the 

cost imposed by the connectoid, a centrality scaling factor is applied to adjust the 

original connectoid cost estimate, leading to improved results in conjunction with 

service area scaling factors. where we found the top three results for [0.1,0.2,0.3].   
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 Reducing the number of connectoids to the four cheapest connectoids can lead to a 

further improvement of link load estimates without compromising travel time 

estimates.  

 

Applying the optimal parameter settings found, our proposed methodology yields a 50.8% 

improvement regarding the travel time RMSE and a 14.8% improvement in link RMSE in 

comparison to the status-quo scenario. Note that the main difference between these scenarios 

is found solely in the construction of the demand-supply interface where the ad-hoc 

centroid/connectors have been replaced with a connectoid based approach which is fully 

automated. 

 

Lastly, the second case study explored setting the desired zonal demand to a smaller value of 
min 100d   to increase the number of zones found by the branch-and-bound algorithm. It was 

found that indeed link and travel time estimates improved, as you would expect. Also, the 

optimal parameter settings remained largely the same, with min [0.2,0.3]l  and the top three 

results adopting [0.3,0.4]. The slight decrease in minl and slight increase in   is likely due to 

the differently chosen granularity, suggesting that the found settings might be somewhat 

dependent on the desired level of detail. Yet, we also found that by simply applying the 

proposed scaling methods already results in marked improvements over the base estimates as 

well as the status-quo scenario, regardless of the chosen parameter settings that accommodate 

further fine-tuning.  

 

11.5.1   Model limitations and extensions 
The results presented in this chapter demonstrate the suitability of both the disaggregation-

aggregation framework itself as the methods proposed for each step. However, due to the 

complexity of combining these different methods, in a practical setting, as well as calibrating 

the parameters involved, there are inevitably some limitations that require addressing. Most of 

all, there is a need for exploring additional case studies to be able to draw stronger conclusions.  

 

The presented case studies took a considerable amount of time and effort to put together. Yet 

we would like to conduct additional tests to further strengthen our findings. These additional 

tests would mainly involve: 

 

 Explore different original travel demand scenarios to investigate the effect of demand 

impacting the supply representation when fixing min .  

 

 Explore the impact of the granularity of original zoning systems on the final zoning 

system while keeping parameter settings fixed. 

 

 Explore the impact on computation times when varying model inputs, i.e. does a larger 

model scale linearly, exponentially, and how feasible is it to solve the problem 

optimally under other circumstances?  

 

 Explore the impact on computation times on varying desired zone granularity, 

especially when original zoning is more detailed while the desired output is more 

aggregated. 
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 Explore heuristics that can guarantee competitive computation times of the constrained 

optimisation problem on large networks and compare how well they perform against 

the optimal branch-and-bound algorithm. 



 

 

Part IV  
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12  Conclusions 
 

In this chapter we draw conclusions based on the combined findings of Part II and Part III. 

Each part focussed on a specific topic regarding the representation of traffic assignment 

models. In Part II computational optimisation was the objective and we used the construction 

of an alternative (lossless) representation as the way to achieve this goal. In Part III we focussed 

on consistency in the representation of traffic assignment models in a multi-scale environment 

and proposed an integrated disaggregation-aggregation framework to achieve this. 

 

In Section 12.1, we briefly reiterate the background and motivation for each of the two parts, 

followed by the conclusions of Part II and possible extensions in Section 12.2 and Section 12.3, 

respectively. Then, we do the same for Part III, drawing conclusions in Section 12.4 and 

summarise possible extensions in Section 12.5. 

 

12.1  Overview 
 

Reducing the computational cost of traffic assignment methods has long resulted in either 

choosing a simpler model, for example replacing a dynamic model with a static model, or apply 

some kind of simplification on one of the model inputs. At the same time, there exist very few 

methods that explicitly consider the application context of the model and remove redundant 

detail based on how the model is used. We argue that the latter approach can be much more 

effective in achieving a reduction in computational cost. The main reason for this is found in 

the fact that the context information of the targeted application can be used to reduce 

information loss while it can also be used to maximise the simplification. In Part II we proposed 

such a tailored method, targeted at applications where the supply is fixed while demand may 

vary. Typical applications that would benefit from such an optimisation procedure are quick-

scan methods, matrix calibration procedures, or applications that consider demand variability. 

All of these applications explore a large number of different demand scenarios under a fixed 

network and can benefit from our findings. 

 

Besides optimisation, consistency can be of similar importance, if not more important, when 

constructing traffic assignment representations. With the increasing popularity of multi-scale 

environments, where multiple models operate alongside each other, it has become paramount 

that model results are consistent. This is needed to be able to attribute differences in the 

obtained results between models to certain simplifying assumptions made. Without fully 

consistent models, this is simply not possible. To date, as far as the author is aware, no methods 

existed to guarantee this consistency. In Part III we provided both methodology as well as a 

number of conditions regarding the construction of consistent traffic assignment inputs in a 

multi-scale context. 

 

We hope that providing novel methodology to reduce the computational cost of traffic 

assignment models as well as designing consistent model representations across different levels 

of detail contributes to a more effective as well as a more responsible use of traffic assignment 

models both in theory and in practice. 
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12.2  Conclusions Part II 
 

Based on the findings in Part II we draw the following conclusions: 

 

1) Existing aggregation and decomposition methods in traffic assignment are mostly 

focussed on properties of the traffic assignment procedure, rather than the application 

they are used for. 

 

2) Explicitly considering the application context opens up new possibilities for traffic 

assignment optimisation that otherwise would not be possible. 

 

We choose a particular context, where the supply side is fixed while demand may vary. Further, 

when adopting a static capacity constrained traffic assignment model utilising a triangular 

fundamental diagram and a fixed a-priori path set, we conclude that: 

 

3) One can decompose the original network in a free flow subnetwork and a delay 

subnetwork such that the combined path travel times from the two networks equate to 

the path travel time in the original network. The free flow network path travel times are 

invariant to flow and therefore do not require equilibration. 

 

4) Equilibrating a delay subnetwork is less costly than equilibrating the original network 

since it only contains a subset of the original infrastructure. This also causes increased 

path overlap. When paths overlap completely, they can be aggregated into equidelay 

paths without any loss of information. The resulting consolidated path set can be used 

to replace the original path set in network loading significantly reducing computation 

times. 

 

5) We demonstrated that replacing the original traffic assignment procedure with our 

decomposition based approach can reduce network loading computation times by 59% 

in our Gold Coast case study. When also using the consolidated path set this further 

improved to a reduction of 96%, on this same case study.  

 

6) The proposed decomposition method is lossless when all bottleneck infrastructure 

across demand scenarios is contained in the delay subnetwork. To date, there exists no 

method able to construct a delay subnetwork while guaranteeing this condition is met. 

Yet, as our case study demonstrates, it is relatively straightforward to find delay 

subnetworks that contain virtually all bottleneck infrastructure. We also found that any 

missing infrastructure can be easily identified a-posteriori. Hence, in a practical setting 

a lossless result can always be achieved when needed. 

 

12.3  Possible extensions Part II 
 

The case studies that we considered in Part II adopted the static residual queuing model of 

Bliemer et al. (2014) in a single user class setting. However, this assignment model can easily 

be made suitable for multi-modal assignment and the proposed decomposition and path 

consolidation methodology are equally capable to handle multiple modes as well. Extending 
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our method to a multi-modal approach increases the applicability of the method. If the 

additional mode is a freight based mode, it is not expected that the results will be very different 

compared to the current results. The difference in vehicle speed will have little impact on 

bottleneck locations because in static assignment the propagation of flow is instantaneous. In 

case the additional mode(s) include public transport the impact might be more significant. 

Then, bus stops (train stations, tram stops) need to be retained, even if these locations reside 

on links that do not exhibit any delay. Therefore, the delay subnetwork might grow 

substantially. On the other hand, most bus lines reside on main roads and main roads are more 

likely to be already included in the delay subnetwork, so maybe there is not that much impact 

after all. We simply do not know at this stage and this would be worth pursuing. 

 

In the context of matrix calibration, there are also some additional measures that one needs to 

consider. Calibration procedures rely on data sources linked to particular spatial locations such 

as loop detector data, probe vehicle path travel times, and/or average travel times for monitored 

corridors. This means that the delay subnetwork needs to include this additional infrastructure, 

not for delay purposes but to support the calibration procedure. This can be achieved by 

extending the link classification method with additional constraints, but is something we have 

not included so far. 

 

It would also be interesting to see if the method can be extended, so it can deal with assignment 

models that are either dynamic, consider spillback, or both. Clearly, this would mean a larger 

delay subnetwork because of the (temporal) spillback that can occur, but it is our expectation 

that even under spillback the delay subnetwork would still be significantly smaller than the 

original network. Another potentially interesting area of research can be found in improving 

the methodology for constructing the super-scenario. Currently, it is based on a heuristic 

(taking the maximum origin-destination demand across demand scenarios) that in turn is fine-

tuned by adopting another heuristic (relative flow margin) to minimise information loss 

(missed critical delay links). There is potential for improved methodology on this end, to obtain 

a more minimal delay subnetwork containing less false positive links. 

 

12.4  Conclusions Part III  
 

Based on the finding in Part III we draw the following conclusions: 

 

1) There exist no methods in the literature regarding traffic assignment representation 

from an integrated demand and supply perspective. So far, most methods only consider 

a single, or at most a subset, of the model components. 

 

2) There is hardly any literature on how to construct traffic assignment model 

representation in a multi-scale environment despite the fact that in practice it 

increasingly occurs that traffic assignment models operate alongside each other in a 

similar spatial domain. 

 

3) We argue that, in our assessment on the procedural consistency of traffic assignment 

models, consistency can only be achieved when the following three conditions are 
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satisfied: (i) directional consistency, (ii) source consistency, and (iii) abstraction 

consistency.  

 

A disaggregation-aggregation framework for constructing consistent traffic assignment model 

inputs is proposed. The original model inputs together with a procedural consistent model, 

satisfying aforementioned three conditions, can then be used to create traffic assignment 

representations in a multi-scale environment. 

 

4) It is possible to construct an integrated aggregation method that considers all traffic 

assignment model inputs in unison: zoning system, trip demand, demand-supply 

interface, and the transport network. We demonstrated this by adopting a supply side 

perspective and adopting expected road usage as our base metric within the proposed 

disaggregation-aggregation framework. This supply perspective then supplements the 

original demand based methods that led to the original zoning system and demand-

supply interface. 

 

5) Original zoning systems hardly take supply side characteristics into account. By 

explicitly considering expected road usage as an additional metric we can alter the 

original zoning system. This can either lead to a more disaggregate representation, or a 

more aggregate one, depending on the desired granularity. 

 

6) The traditional centroid/connector paradigm is based on a number of, arguably, poorly 

justified simplifications which are further compromised by lack of methodology. This 

results in issues regarding the placement of centroids, placement of connectors, 

connector cost estimation, as well as the number of connectors to consider. We replace 

the centroid/connector paradigm with an automated method to estimate the costs of the 

interaction between zone and physical network. This new method replaces connectors 

with connectoids and no longer requires the placement of centroids. It remains possible 

to implement our approach within the centroid/connector paradigm so it is compatible 

with existing implementations as well. 

 

7) Estimating connectoid access/egress costs of a zone by computing the average cost 

from all disaggregate departure/arrival nodes within a zone (considering the complete 

underlying transport network) reveals an overestimation of the “true” path travel times 

compared to a full disaggregate assignment. 

 

8) Employing two additional scaling methods estimating the double counting of path 

travel times as well as acknowledging that not all nodes internal to a zone are likely to 

use every connectoid can significantly mitigate the effects of aforementioned 

overestimation. 

 

9) The Amsterdam case study demonstrated that our method, with additional scaling 

methods in place, compared to a strategic planning network of the city, resulted in 

markedly reduced zone-to-zone travel time and link usage RMSE estimates (50.8% and 

14.8%, respectively) for a matching zoning system. In addition, compared to a fully 

disaggregate result, our coarser model exhibited 7.2% RMSE on travel time estimates 
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and 4.4% RMSE on link usage. This was achieved, while the number of links in the 

coarser model comprised only 41% of the disaggregate model links. The actual keep 

link network (excluding converted non-keep links retained to allow connectoids to 

access the keep network) comprises only 25% of the original network. 

 

10) The RMSE on link usage improves further when restricting the use of connectoids with 

a high cost (typically close to the zone fringes). However, estimating connectoid costs 

for connectoids close to zone centres is more difficult due to double counting of travel 

times. It was found that that additional measures are need to calibrate this cost on top 

of the simple base cost estimate adopted originally. 

 

11) When adopting our approach, i.e. complying with procedural consistency as well as 

consistent model inputs through our disaggregation-aggregation framework, results 

between different models at different granularities can be compared objectively. 

Differences can be attributed to (simplifying) assumptions made, due to the model 

assumptions being explicit, known and consistent across the models. This, in our view, 

is much more important than obtaining perfectly calibrated results and is in fact the 

most important contribution of this work. 

 

12.5  Possible extensions Part III 
 

There are numerous ways to extend the current methodology. Most notably, we only provided 

a single method for each of the steps in the disaggregation-aggregation framework. As stated 

before, we deliberately choose relatively basic methods for each of steps to demonstrate that 

even with simple methods good results can be achieved. Yet, more sophisticated methods are 

likely to yield even better results. Also, the premise so far has been that we have no access to 

empirical data to enhance some of the steps in the modelling procedure. It would be of interest 

to verify to what extent empirical data can improve (the predictive power of) the final model 

representations, for example by more sophisticated approaches to: disaggregating demand 

(Section 9.3.2), distribution of demand across connectoids (Section 9.3.3), or calibration of 

connectoid costs (Sections 9.6 to 9.8). 

 

With respect to the link classification in the first three steps of the disaggregation-aggregation 

framework, it would be interesting to improve upon the AON assignment method to assess the 

impact of a more capable model, for example by adopting the capacity restrained model by 

Bliemer et al. (2014), see also Part II, or adopt an iterative procedure with a simplified 

disaggregate demand matrix. This prevents overestimation of flows downstream due to the 

inclusion of capacity constraints and would improve upon the path choice. Also, the found 

vertical queues can be transformed (post simulation) into physical (horizontal) queues to obtain 

a better estimate for upstream congestion caused by bottlenecks. Alternatively, one might be 

able to adopt a (one shot) macroscopic dynamic assignment model such as computationally 

efficient event based link transmission models (Raadsen et al., 2016), or iterative solutions 

(Himpe et al., 2016). Do note however that all these alternative approaches come at a 

significantly higher computational cost. A cost that, today, might still be unacceptable for 

medium to large transport model projects. 

 



Chapter 12: Conclusions  209 

 

Regarding the demand-supply interface, we found that applying (methodologically justified) 

scaling factors based on specific properties of connectoids is quite successful, as the results in 

Chapter 11 confirm. However, the service area scaling factor is formulated on such an abstract 

level that it might be possible to improve on it. For example by employing some kind of 

deterrence function instead. Perhaps something similar can be done for the estimation of path 

cost double counting that we capture via the centrality scaling factor. We also would like to 

test if incorporating these two concepts in the optimisation problem formulation would yield 

any (dis)benefits. 

 

The zoning system problem formulation is sufficiently general to accommodate any constraint 

formulation. However, we constructed some of our constraints rather crudely and in a way that 

can possibly be improved upon For example, the similarity constraint in the clustering 

procedure is based on productions/attractions. This does capture some of the underlying land 

use homogeneity, but it fails to account for the possible heterogeneity in the distribution of 

trips across destinations. It can be expected that including such additional characteristics will 

only improve results further. 

 

The branch-and-bound solution scheme to solve the constrained optimisation problem for the 

zoning system adopted a (search space) partitioning approach that is fairly basic. We are 

confident better partitioning algorithms (for example using spectral partitioning) can be 

designed, leading to much improved computation times, hopefully allowing the algorithm to 

scale up to much larger networks. 

 

Finally, the branch-and-bound algorithm provides optimal solutions which, due to the strict 

constraints involved in the supply side zone refinement, allows us to solve optimally in the case 

studies explored. Unfortunately, it remains likely that, for (very) large models, solving the 

optimisation problem optimally becomes too costly at some point. The design of heuristic 

alternatives is therefore of interest. We can use our current case studies as benchmarks to verify 

how well these heuristic alternatives perform against the optimal solution.  
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Appendix A 
 

Both scaling factors introduced in Chapter 9 are formulated on the zone component level. 

However in the case studies they are utilised on a cluster level. This requires an alternative 

formulation, although the underlying principle remains identical. In this appendix, the cluster 

based formulation is provided.  

 

A.1 Cluster based service area scaling factor 
 

The original service area scaling factors are made cluster aware, denoted 
Ẑ Nˆ [0,1] ,I X  via 

 

 

1
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with ˆˆ {1, , }, {1, , N}.z Z n  The only difference with Equation (9.27) being that the 

number of connectoids is conditional on the cluster rather than the zone component.  

 

A.2 Cluster based centrality scaling factor 
 

Like the service scaling factor, the centrality scaling factors also require a cluster based 

counterpart. First, the coordinates for the cluster extreme points 
ˆmax max min max Z 1ˆ ˆ ˆ ˆ, , , 

x y x y are 

defined: 
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  (A.2) 

 

with ˆˆ {1, ,Z}, {1, ,Z}.z z   Each cluster ẑ  its centre points is obtained in a similar fashion 

as Equation (9.29) and (9.30), only now conditional on cluster extremities: 

 

max min

ˆ ˆ

1 ˆˆ ˆ ˆ ˆ( ), {1, , Z},
2
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max min

ˆ ˆ

1 ˆˆ ˆ ˆ ˆ( ), , {1, , Z},
2

z z zy y y z    (A.4) 

 

which then leads to the portion Ẑ Nˆ [0,1] X of the centrality factor min  to be applied to the 

connectoid, analogous to Equation (9.31), but conditional on the cluster ˆ.z  This is achieved via 
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with ˆˆ {1, ,Z}, {1, , N}.z n   The cluster based centrality scaling factors 
ˆmin Z Nˆ [ ,1]II  X

are then found, based on the same concept originally defined in Equation 9.28, via 
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with ˆˆ {1, ,Z}, {1, , N}.z n   
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