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Abstract. Four dimensional cone beam computed tomography (4DCBCT) is an

emerging image guidance strategy used in radiotherapy where projections acquired

during a scan are sorted into respiratory bins based on the respiratory phase or

displacement. 4DCBCT reduces the motion blur caused by respiratory motion

but increases streaking artefacts due to projection under-sampling as a result of

the irregular nature of patient breathing and the binning algorithms used. For

displacement binning the streak artefacts are so severe that displacement binning is

rarely used clinically. The purpose of this study is to investigate if sharing projections

between respiratory bins and adjusting the location of respiratory bins in an optimal

manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce

a mathematical optimization framework and a heuristic solution method, which we

will call the optimized projection allocation algorithm, to determine where to position

the respiratory bins and which projections to source from neighbouring respiratory

bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT

images. Projections were sorted into respiratory bins using equispaced, equal density

and optimized projection allocation. The standard deviation of the angular separation

between projections was used to assess streaking and the consistency of the segmented

volume of a fiducial gold marker was used to assess motion blur. The standard

deviation of the angular separation between projections using displacement binning

and optimized projection allocation was 30%-50% smaller than conventional phase

based binning and 59%-76% smaller than conventional displacement binning indicating

more uniformly spaced projections and fewer streaking artefacts. The standard

deviation in the marker volume was 20%-90% smaller when using optimized projection

allocation than using conventional phase based binning suggesting more uniform

marker segmentation and less motion blur. Images reconstructed using displacement

binning and the optimized projection allocation algorithm were clearer, contained

visibly fewer streak artefacts and produced more consistent marker segmentation than

those reconstructed with either equispaced or equal-density binning. The optimized

projection allocation algorithm significantly improves image quality in 4DCBCT

images and provides, for the first time, a method to consistently generate high quality

displacement binned 4DCBCT images in clinical applications.
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1. Introduction

Four dimensional cone beam computed tomography (4DCBCT) imaging is an emerging

image guidance strategy used to position patients for treatment in radiotherapy.

4DCBCT was first published between 2003 and 2005 (Taguchi 2003) and (Sonke

et al. 2005) and commercially released by Elekta (Stockholm, Sweden) in 2009 and

Varian (Palo Alto, USA) in 2013. 4DCBCT was developed to overcome image blurring

in (3D)CBCT which is caused by respiratory motion. On the day of treatment, 4DCBCT

provides valuable information on the average tumour position, the magnitude of the

tumour motion, validation of the treatment plan and the changing tumour size and

shape.

CBCT (or 3D CBCT) imaging involves rotating the kilovoltage imager around a

patient at a constant speed and acquiring 2D projections (kilovoltage images) with a

constant time interval and constant gantry angle between projections. The series of 2D

projections can be reconstructed into a CBCT image using the Feldkamp-Davis-Kress

(FDK) algorithm (Feldkamp et al. 1984). An example of a CBCT image is given in

Figure 1. It can take between 30 seconds and 4 minutes to rotate the gantry around

the patient in which time the patient’s anatomy moves due to respiratory motion.

4DCBCT imaging differs from CBCT imaging in that projections are allocated

to different phases of the respiratory cycle and used to reconstruct an image for the

corresponding respiratory phase. For example, projections acquired at peak exhale are

allocated to a peak exhale respiratory bin and are used to reconstruct a CBCT image in

the peak exhale respiratory bin, see Figure 2 for an example. Within each respiratory

bin there is little anatomical motion and blurring artefacts are greatly reduced. The

main problem with 4DCBCT imaging is streak artefacts. Streak artefacts occur because

a constant gantry speed and constant projection pulse rate are used leading to large

angular gaps between projections (Leng et al. 2008). Figure 2 shows the gantry angle

for the projections acquired in two neighbouring displacement bins with large angular

gaps, due to irregular breathing, in both respiratory bins. In this study we ‘close’ the

gaps by sharing projections between neighbouring respiratory bins.

In recent years there have been a number of studies with the focus on reducing

the streak artefacts in 4DCBCT images. There are two common approaches taken:

(1) A reconstruction approach where prior images, compressed sensing, iterative

reconstruction and deformable image registration are used (Mckinnon & Bates 1981),

(Leng et al. 2008), (Sidky & Pan 2008), (Chen et al. 2008) and (2) A hardware approach

where the gantry speed and projection acquisition are modulated in order to evenly

distribute projections in each respiratory bin (O’Brien et al. 2013), (O’Brien et al. 2014),

(Cooper et al. 2013) and (Fast et al. 2013).

Of the reconstruction approaches, there are two where projections, or pixels from

projections, are sourced from outside the respiratory phase of interest. Bergner et

al. introduce the auto adaptive phase correlated (AAPC) reconstruction for 4DCBCT

(Bergner et al. 2009). In this approach pixels, or regions in each projection, with
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Figure 1. Left: A 3D CBCT image containing 2388 projections of a lung cancer

patient with an expanded view of the region containing the marker. Right: A 4DCBCT

displacement binned image in the peak exhale respiratory bin. The marker is blurred

and less intense in the 3D CBCT image due to respiratory motion. However, the

streaks are clearly evident in the 4DCBCT image with a light streak running through

the marker.

little motion were identified. The pixels in regions at rest were weighted for use in

the reconstruction. However, it was demonstrated that the AAPC method produced

more motion blur than the leading 4DCBCT reconstruction algorithms because data

was sourced from respiratory phases that were too far away from the phase of interest

(Bergner et al. 2010). Projections from the neighbouring respiratory bin have been

used to improve micro-CT of free breathing mice (Armitage et al. 2012). However, they

exploited the regular, and predictable, nature of the cardiac cycle to determine which

projections to source from the neighbouring respiratory bin so the algorithms are not

applicable to respiratory induced 4DCBCT.

In this paper we make the best use of the projections acquired during 4DCBCT

imaging by optimising the respiratory bin position, size and projection allocation.

Although the projections in neighbouring bins are from a different part of the breathing

phase, they contain valuable information about the patient’s anatomy and can be used

to reduce streak artefacts. The result of this optimisation are 4DCBCT images with

fewer streak artefacts. We will also assess the amount of motion blur introduced using

4DCBCT scans of lung cancer patients with implanted fiducial gold markers.

2. Theory

The theoretical treatment begins by presenting the full set of equations that represent

the optimal respiratory bin and projection allocations using Mixed Integer Programming

techniques (MIP) (Nemhauser & Wolsey 1988). Even with the state of the art MIP
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Figure 2. Projection clustering and optimized projection allocation schematic.

The gantry angle for each projection in two neighbouring respiratory bins generated

using 4DCBCT, the breathing trace from a lung cancer patient, and displacement

binning. The arrows indicate projections that could be shared, or used in both

respiratory bins, to try to close the angular gaps between projections. Peak inhale

is at 100% displacement, mid inhale occurs at 50% displacement and peak exhale is at

0% displacement.

solvers the problem is NP -Hard and we are only able to solve problems to optimality

with 300 projections or fewer on current computers; this is well below practical problem

sizes used for 4DCBCT imaging in radiotherapy. We will then present a simple heuristic

solution method that can obtain a near optimal, but not provably optimal, solution to

the MIP model. We will show that the simple heuristic greatly improves image quality.

The equations presented apply to both phase based binning and displacement binning.

2.1. Modelling the respiratory bin size and position

Let rj and θj be the respiratory signal, either phase or displacement, and gantry angle

respectively for projection j of P projections acquired across B respiratory bins. We

assume that the projections are sorted in order from the smallest gantry angle j = 1

to the largest gantry angle j = P . To model the location of each respiratory bin we

let Ru
b and Rl

b be the upper and lower respiratory signal respectively for respiratory

bin b (b = 1, 2, . . . , B). The values of Ru
b and Rl

b are to be determined as part of the

optimisation but to make sure that the respiratory bins are contiguous we must have

Ru
b = Rl

b+1 for b = 1, 2, . . . , B − 1,

with Rl
1 ≡ rmin = minj{rj} and Ru

B ≡ rmax = maxj{rj}.
To ensure that respiratory bins are not too large, and span a range of respiratory

signals where significant anatomical motion takes place, we need to place restrictions on

the maximum size of each respiratory bin. If respiratory bins were evenly spaced then

we would expect the size of each respiratory bin, (Ru
b −Rl

b), to be ∆ = (rmax− rmin)/B.
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We allow the respiratory bins to grow by a factor g or shrink by a factor s

∆(1− s) ≤ Ru
b −Rl

b ≤ ∆(1 + g) for b = 1, 2, . . . , B.

In our simulations we will allow the respiratory bins to be 50% larger (g = 0.5) or

smaller (s = 0.5) than ∆.

2.2. Allocating projections to respiratory bins

To determine if a projection is allocated to a respiratory bin we introduce binary

variables δb,j which take the value 1 if projection j is allocated to respiratory bin b

and zero otherwise. The values of δb,j are to be determined as part of the optimisation.

The proximity constraints used to determine if the projection belongs to a respiratory

bin are

rj ≥ rlbδb,j −∆l
b∆, (1)

rj ≤ rub + ∆u
b∆ + rmax(1− δb,j), (2)

for b = 1, 2, . . . , B and j = 1, 2, . . . , P . The values of ∆l
b and ∆u

b are zero if we do

not allow sharing of projections, but can take a value if sharing of projection from

neighbouring respiratory bins is allowed. The notation ∆l
b∆ allows us to refer to sharing

of projections from the whole neighbouring respiratory bin using ∆l
b = 1 and ∆u

b = 1 or

half the neighbouring respiratory bin using ∆l
b = 0.5 and ∆u

b = 0.5.

To make sure that every projection is allocated to a respiratory bin we must have∑
b

δb,j = 1 if projections cannot be shared between respiratory bins,∑
b

δb,j ≥ 1 if projections can be shared between respiratory bins,

2.3. The objective function

An objective function that has been found to correlate well with image quality is the

standard deviation, σ, of the angular separation between projections (Shieh et al. 2014),

(O’Brien et al. 2013) and (O’Brien et al. 2014). If the standard deviation is zero then

the projections in each respiratory bin are uniformly spaced and image quality is likely

to be good. For a respiratory bin with 120 projections, and a standard deviation of

3◦, the standard deviation is equal to the average separation between projections (i.e

the average separation is 360◦/120 = 3◦) and we might expect to see a cluster of two

projections close together followed by a large gap before the next cluster of projections.

Larger gaps between consecutive projections contribute to the standard deviation more

than nearly uniformly spaced projections, so the optimisation algorithms are likely to

reduce the standard deviation more by closing the large gaps.

For illustration purposes let θb,k be the kth largest gantry angle for the projections

in respiratory bin b (k = 1, 2, . . . , Pb where Pb =
∑P
j=1 δb,j are the number of projections
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in respiratory bin b) then the standard deviation in respiratory bin b is

σ2
b =

Pb−1∑
k=1

(θb,k+1 − θb,k − µb)2 + (θb,1 + 2π − θb,Pb
− µb)2


where µb = 2π/Pb is the mean angular separation between projections. We average the

standard deviation for each respiratory bin to give the average standard deviation of

the angular separation between projections for the 4DCBCT scan

σ =
B∑
b=1

σb/B (3)

We use equation 3 when we want to calculate the standard deviation from a given set

of projections. We will make extensive use of this equation in our heuristic solution

methods below. Unfortunately, we cannot minimise the standard deviation in an

optimisation algorithm because equation 3 contains quadratic terms and the value of Pb
is to be determined as part of the optimisation. However, equation 3 can be reduced to

linear terms which are suitable for use in mixed integer programming (MIP) solvers. To

avoid interrupting the flow of this paper we present the linear version of the standard

deviation in Appendix A.

One problem with the standard deviation is that it can be made small by trading-

off one respiratory bin for another. For example, one respiratory bin may contain two

projections (at 0◦ and 180◦) while the neighbouring respiratory bin may contain 500

evenly spaced projections. To stop this happening we add additional constraints to

ensure that each respiratory bin contains at least 120 projections and the standard

deviation in each respiratory bin is less than 3◦.

3. Method

Even with the fastest commercial mixed integer programming solvers (XPRESS-MP,

GUROBI and ILOG-CPLEX) it is not possible to solve problems with more than

about 300 projections to optimality. For larger problems the computation time grows

exponentially with problem size and in our experiments an optimal solution to a 1200

projection problem was not found within one month on a 16 Core 3.1GHz machine.

3.1. Heuristic solution methods

Although a provably optimal solution is difficult to obtain, we can make considerable

progress using heuristic solution methods (Talbi 2009). Heuristic solution methods are

used to obtain a good/near optimal solution in a small amount of time. There are a

large range of heuristic solution methods available and each have their advantages and

disadvantages (Talbi 2009). Below we have used a very simple heuristic solution method

that obtains a solution in one or two seconds making it a viable candidate for clinical

use.
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3.1.1. The simple heuristic: There are two steps in the simple heuristic. The first step

involves optimising the location of the respiratory bins and the second step involves

determining if projections in neighbouring respiratory bins will improve the standard

deviation.

The Respiratory Bin Position Algorithm (BPA): The respiratory bin position

algorithm moves the position of each respiratory bin up or down a small increment, δ.

The algorithm moves the position of the respiratory bin down N increments, for a total

distance of δN , and then up N increments, for a total distance of Nδ. The position of

the respiratory bin that produces the lowest standard deviation is accepted as the best

solution.

Algorithm 1 The Respiratory Bin Position Algorithm (BPA).

Initialise variables used only in this algorithm:

N = 20

δ = (∆l
b + ∆u

b )∆/(2N)

σmin = 10000

for b = 1, 2, . . . , B do
Initialise temporary variables:

U b
init = (b+ 1)∆ or to the best value of Ru

b known.

for For i = −N, . . . , N do
Move bin boundaries up, or down, a small increment via

Rl+1
b = U b

init −∆l
b∆ + iδ

Ru
b = Rl+1

b

for For j = −N, . . . , N do

if All constraints, e.g. bin sizes, are satisfied. then

if Extensive Heuristic then
Calculate σ using the projection allocation algorithm (PAA).

else
Calculate σ from equation 3.

end

if σ < σmin then
σmin = σ

Record Ru
b as the best value found.

end

end

end

end

end

Optimized Projection Allocation Algorithm (PAA): The projection allocation

algorithm identifies projections in the neighbouring respiratory bins that can fill gaps.

If theses projections reduce the standard deviation then they are accepted as the best

solution.
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Algorithm 2 Optimized Projection Allocation Algorithm (PAA). This algorithm can

be run several times.
If not running the extensive heuristic then run the bin position algorithm (BPA).

σmin = 10000

for b = 1, 2, . . . , B do
For each respiratory bin find the candidate list, Li for i = 1, 2, . . . ,M , of M

projections that are in a neighbouring respiratory bin and satisfy the proximity

constraints (equations 1 and 2).

Sort Li from the largest angular gap between projections, i = 1, to smallest angular

gap between projections, i = M .

for i = 1, 2, . . . ,M do
Add projection Li to respiratory bin b.

if All constraints are satisfied then
Calculate σ from equation 3.

if σ < σmin then
σmin = σ

Permanently add the projection to the respiratory bin.
end

end

end

end

return σmin.

3.1.2. The extensive heuristic: Applying the simple heuristic produces a good solution

within 1 or 2 seconds of computation time and is a very useful algorithm to apply

in practice. To determine if the simple heuristic produces a solution that is close to

optimality we apply a more extensive heuristic that takes approximately 12 hours to

determine if better solutions are available. The extensive heuristic is a simple extension

on the simple heuristic and applies the projection allocation algorithm at each window

position in the respiratory bin position optimisation algorithm. That is we run the

optimized projection allocation algorithm at each step of the respiratory bin position

algorithm.

3.2. Patient image data

To test the optimized projection allocation algorithm, five 4DCBCT data sets from

three patients in the study by (Roman et al. 2012) were used. The 4DCBCT datasets

were selected because the patients had fiducial gold markers implanted from which we

could extract a respiratory signal during the entire 4DCBCT scan. The marker around

the thoracic cavity was used to extract the respiratory signal because it was the most

easily segmented of the three markers.

The five scans consist of 2360 (patient 1 scan 1), 2406 (patient 1 scan 2), 2508

(patient 2 scan 1), 2435 (patient 2 scan 2) and 2390 (patient 3 scan 1) half fan projections
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respectively with a resolution of 1024 by 768 pixels (0.388mm per pixel). For phase

based binning, respiratory cycles were first identified by determining the peak inhale

and exhale points.

3.3. Binning options

In all simulations a total of ten phase or displacement bins were used. The following

binning options apply to both phase and displacement binning.

3.3.1. Equispaced binning: Respiratory cycles were divided into 10 equally spaced

respiratory bins based on either phase or displacement. For displacement binning the

peak inhale and exhale points were averaged to determine the location of the respiratory

bins. Any projections falling above or below the average points were allocated to the

peak inhale or peak exhale respiratory bins respectively.

3.3.2. Equal density binning: The recorded respiratory signals for each projection were

sorted from lowest to highest in either phase or displacement. The lowest 10% were

allocated to the first respiratory bin, the second 10% were allocated to the second

respiratory bin and so on. This method ensures that every bin has exactly the same

number of projections but the size and location of each respiratory bin cannot be

controlled.

3.3.3. Optimized projection allocation (Optimized binning): Both the simple and

extensive heuristic have been used to determine the location of respiratory bins and the

allocation of projections to the respiratory bins. In the optimisation the respiratory bins

were allowed to grow, or shrink, by 50% and projections could be sourced from either half

way (∆l
b = ∆u

b = 0.5) or from the whole neighbouring respiratory bin (∆l
b = ∆u

b = 1).

A minimum of 120 projections per respiratory bin were required to ensure that image

quality is adequate. We refer to this binning method as optimized projection allocation

or optimized binning. We will refer to the simple or extensive heuristic when using

optimized projection allocation with the simple or extensive heuristic respectively.

3.4. Image reconstruction

Images were reconstructed using COBRA‡ to give 96 transverse slices of dimension

224×224 pixels. Each slice in the reconstructed image was 2mm and the voxel size was

2mm×2mm×2mm which is commonly used clinically.

3.5. Marker volume estimation

Because our analysis involves real patient data, we do not have a ground truth image to

make comparisons. To determine if sourcing projections from neighbouring respiratory

‡ COBRA, Exxim Computing Corporation, 3825 Hopyard Road, Suite 220, Pleasanton, CA 94588.
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bins has blurred the image we segment a fiducial gold marker and calculate the volume of

the marker in each respiratory bin. If significant blurring of the marker has taken place

then we expect the volume of the marker to be inconsistent across the respiratory bins.

The fiducial gold markers were 0.35mm×10mm or 20mm in length (Visicoil, RadioMed

Corp., Tynsboro, MA) (Roman et al. 2012). It should be noted that recovering the

original volume of the marker is difficult because the diameter of the marker, 0.35mm,

is less than the voxel size and the coils stretch and curl on insertion. However, apart

from a small amount of deformation between respiratory bins we expect the volume of

the marker to be reasonably consistent from one respiratory bin to the next. This gives

us a method to analyse the patient data for motion blur with more conclusive metrics

to be calculated from the XCAT phantom.

To calculate the size of the gold markers from the reconstructed 4DCBCT images,

we select a region around the markers of 30mm×30mm×24mm in the lateral, anterior-

posterior and superior-inferior directions respectively. We compute the mean and

standard deviation of the voxels within the region. Voxels with an intensity of two

standard deviations above the mean were selected as candidate voxels. From the

candidate voxels the largest connected cluster of voxels were selected as the marker.

We then calculate the centre-of-mass (COM) of the marker to represent the location of

the marker.

Failed segmentations occur when large streaks run through the marker. For

example, in Figure 4, respiratory bin 0 with equal density binning has streaks running

through the marker which result in a failed segmentation. Failed segmentations were

identified by comparing the position of the segmented marker with the position in

the two neighbouring respiratory bins. If the distance is greater than 3mm then the

respiratory bin is marker as a failed segmentation. If consecutive respiratory bins had

failed segmentation then comparisons were made with the closest bin having a successful

segmentation or the phase binned marker trajectories were used as a reference.

3.6. Digital XCAT phantom data

We do not have a ground truth for the patient data, so the digital XCAT phantom

(Segars et al. 2010) was used to facilitate ground truth comparisons. To make the

tumour easy to segment, a 19mm tumour was placed in the middle of the right lung.

For each projection in the patient data, and corresponding displacement signal, the

XCAT phantom was deformed according to the breathing signal and forward projected.

These projections were generated with the same resolution as the patient data so that the

only difference between the patient data and the XCAT data was the medium through

which the projections were generated.

For the XCAT phantom the tumour size was known so the difference between the

segmented tumour volume was compared to the known tumour volume. The absolute

value of the marker volume error was calculated and then averaged across the 10

respiratory bins to give the mean marker volume error. The standard deviation in
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the marker volume was also calculated in the same way as for the patient data.

3.7. Estimating streaks from the images

To quantify streaking, the streak ratio of (Leng et al. 2008) has been calculated for each

reconstructed image. The streak ratio uses the total variation (the sum of the image

gradient) as an estimate of the number of streaks in an image. The streak ratio is the

ratio of the total variation of the reconstructed image divided by the total variation of

a ground truth, or streak free, image. A value of 1 indicates that there are no streaks

while values above 1 indicate more extensive streaking.

For each patient, we have calculated the streak ratio for each slice in the

reconstructed image set by using the 3D (or motion blurred) image as the streak free

baseline image. We calculate the streak ratio for each slice and each respiratory bin

and then average the values across slices and respiratory bins to give the average streak

ratio.

4. Results

There are three different parameters that we present in our analysis of the results:

(1) reconstructed images (2) the standard deviation of the angular separation between

projections and (3) an analysis of the consistency of the marker size segmented in the

reconstructed images.

4.1. Reconstructed images

A transverse slice of patient 1 scan 1 was selected showing the location of the fiducial

gold marker. Figure 3 contains reconstructed images for phase based binning using

equispaced, equal density and optimized binning. Optimized binning produces better,

or similar, quality images in all respiratory bins when compared to equispaced or equal

density binning. For bin 0 with equispaced binning and bin 6 with equal density

binning optimized binning was able to eliminate the dominant streak artefacts. For

each respiratory bin, including the bins not shown, optimized binning was as good, or

better than, the best image from either equispaced or equal density binning. There are

no large streaks observed, as seen in bin 0 with equispaced binning, in the 10 respiratory

bins for optimized binning.

Figure 4 gives reconstructed images for displacement binning using equispaced,

equal density and optimized binning. For displacement binning the image quality is

visibly improved using optimized binning with the most significant improvement in the

peak inhale and peak exhale respiratory bins (bins 0 and 9). In the peak inhale and peak

exhale respiratory bins, although the streak artefacts have been reduced with optimized

binning, there are still some streak artefacts. The streaks can be reduced further by

allowing projections to be sourced from further into the neighbouring respiratory bin,
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Equispaced Binning Equal Density Binning Optimized Binning

Phase Bin 0

RMS = 1.3◦ RMS = 1.1◦ RMS = 0.9◦

Phase Bin 3

RMS = 1.1◦ RMS = 1.1◦ RMS = 0.9◦

Phase Bin 6

RMS = 0.9◦ RMS = 1.4◦ RMS = 0.9◦

Phase Bin 9

RMS = 1.3◦ RMS = 1.3◦ RMS = 1.3◦

Figure 3. A transverse slice for patient 1 scan 1 using phase binning. Columns

one, two and three use equispaced, equal density and optimized projection sorting

respectively. Rows one, two, three and four are respiratory bins 0, 3, 6 and 9

respectively. Optimized binning allowed projections to be sourced from half way into

the neighbouring respiratory bin.

or, allowing the bins to grow by more than 50%. Similar image quality is observed in

the respiratory bins now shown.

4.2. The standard deviation between projections

As the objective of the optimisation is to reduce the standard deviation of the angular

separation between projections it is important to establish how much we can reduce the

standard deviation. In Table 1 we present the standard deviation for the five 4DCBCT

datasets using equispaced, equal density and optimized binning (the simple heuristic).

In all cases the standard deviation is reduced using optimized binning when compared to

either equispaced or equal density binning. The improvement in the standard deviation

is more significant for displacement binning. For displacement binning the standard

deviation is reduced by at least 50% over both equal density and equispaced binning

for all parameter settings and patient scans. For phase based binning the improvement
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Equispaced Binning Equal Density Binning Optimized Binning

Displacement Bin 0

RMS = 1.9◦ RMS = 3.2◦ RMS = 1.2◦

Displacement Bin 3

RMS = 2.3◦ RMS = 1.6◦ RMS = 0.7◦

Displacement Bin 6

RMS = 2.2◦ RMS = 1.5◦ RMS = 0.6◦

Displacement Bin 9

RMS = 1.4◦ RMS = 2.0◦ RMS = 1.0◦

Figure 4. A transverse slice for patient 1 scan 1 using displacement binning. Columns

one, two and three use equispaced, equal density and optimized projection sorting

respectively. Rows one, two, three and four are respiratory bins 0, 3, 6 and 9

respectively. Optimized binning allowed projections to be sourced from half way into

the neighbouring respiratory bin. With optimized binning the streak artefacts are

significantly reduced and image quality is significantly better.

in the standard deviation is usually in the range of 10-30% over both equal density and

equispaced binning.

The simple heuristic includes two components, the bin position algorithm (BPA)

and the projection allocation algorithm (PAA). In Table 1 we have used only one

algorithm at a time to examine if one algorithm dominates. Comparing the BPA,

PAA columns to the simple heuristic (SH), we can see that for phase binning the BPA

produces a smaller standard deviation than the PAA algorithm for 4 of 5 cases when

sharing is from half way into the neighbouring bin. However, the PAA performs better

when sourcing projections from the entire neighbouring bin. The final bin positions, are

highly dependent on the patients unique breathing pattern so no systematic behaviour in

the bin position adjustment was observed. For displacement binning the PAA performs

better than the BPA and produces the same standard deviation as the SH in 9 of 10



Optimizing 4DCBCT Projection Allocation to Respiratory Bins 14

Table 1. The standard deviation, equation 3, of the angular separation between

projections. The sharing distance parameters (∆u
b and ∆l

b) can be either 0.5 or 1.0

allowing projections to be sourced from half way and the full neighbouring respiratory

bin respectively. BPA applies only the bin position algorithm. PAA applies only the

projection allocation algorithm. The simple heuristic (SH) applies both the BPA and

PAA. SH allows bins to shrink by 50% and grow by 50%. SH100 allows bins to shrink

by 50% and grow by 100%. The numbers in brackets are the average streak ratio for

the patient dataset.

∆l
b = ∆u

b = 0.5 ∆l
b = ∆u

b = 1.0

Patient Equi- Equal- BPA PAA SH SH100 PAA SH SH100

-Scan spaced density

Phase Based Binning

1-1 1.2◦ (1.4) 1.3◦ (1.4) 1.0◦ 1.2◦ 0.9◦ 0.9◦ 1.0◦ 0.9◦ (1.3) 0.9◦

1-2 1.6◦ (1.5) 1.3◦ (1.4) 1.0◦ 1.1◦ 0.9◦ 0.9◦ 0.9◦ 0.8◦ (1.3) 0.8◦

2-1 1.6◦ (1.4) 1.5◦ (1.4) 1.4◦ 1.3◦ 1.2◦ 1.3◦ 1.2◦ 1.1◦ (1.3) 1.2◦

2-2 1.5◦ (1.5) 1.5◦ (1.5) 1.3◦ 1.4◦ 1.2◦ 1.2◦ 1.2◦ 1.1◦ (1.5) 1.1◦

3-1 1.8◦ (1.6) 1.8◦ (1.5) 1.7◦ 1.6◦ 1.6◦ 1.6◦ 1.5◦ 1.5◦ (1.5) 1.3◦

Displacement Binning

1-1 1.9◦ (1.9) 1.9◦ (1.8) 1.8◦ 0.8◦ 0.8◦ 0.8◦ 0.6◦ 0.6◦ (1.2) 0.6◦

1-2 2.6◦ (3.2) 3.9◦ (3.6) 2.6◦ 1.1◦ 1.1◦ 1.1◦ 0.7◦ 0.7◦ (1.7) 0.7◦

2-1 2.5◦ (2.3) 2.4◦ (2.5) 2.4◦ 1.0◦ 1.0◦ 1.0◦ 0.7◦ 0.6◦ (1.3) 0.6◦

2-2 2.2◦ (2.1) 4.3◦ (2.5) 2.1◦ 0.8◦ 0.8◦ 0.8◦ 0.6◦ 0.6◦ (1.2) 0.6◦

3-1 2.0◦ (1.8) 3.2◦ (2.1) 2.0◦ 0.8◦ 0.8◦ 0.8◦ 0.7◦ 0.7◦ (1.3) 0.7◦

cases. The BPA could be considered optional for displacement binning.

In Table 1 the difference between SH and SH100 is that bins are allowed to grow

by 100% (i.e. double in size) in the SH100 simulation. For displacement binning SH

and SH100 produce the same standard deviation. For phase binning, only a small

improvement is obtained when using SH100 compared to SH. These results are not

surprising because if one bin increases in size then the other bins must shrink to account

for the increased respiratory bin size; which degreases the image quality in these bins

as a consequence. For the remainder of this study we will allow bins to shrink or grow

by 50% and vary the distance from which projections can be shared.

The streak ratio, the numbers in brackets in Table 1, follow a similar pattern to the

standard deviation of the angular separation between projections. This indicates that

the standard deviation of the angular separation between projections is a good metric

for estimating streaks in images.

Table 2 lists the percentage of projections sourced from neighbouring respiratory

bins. With phase based binning, the number of projections sourced from neighbouring

respiratory bins ranges from 22% to 32%. For displacement binning more projections are

sourced from neighbouring respiratory bins with the number ranging from 44% to 60% of

the total projections used to reconstruct each image. The number of projections sourced

from the neighbouring respiratory bin can be reduced by reducing the parameters ∆l
b
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Table 2. The simple heuristic versus the extensive heuristic with projection sharing

from the neighbouring respiratory bin (∆u
b = ∆l

b = 1.0). Foreign projections are the

percentage of projections that have been sourced from the neighbouring respiratory

bin.

Simple Heuristic Extensive Heuristic

Patient σ Total Foreign σ Total Foreign

-Scan ◦ Proj’s Proj’s ◦ Proj’s Proj’s

Phase Based Binning

1-1 0.9◦ 2995 21% 0.8◦ 2873 23%

1-2 0.8◦ 3236 26% 0.8◦ 3258 25%

2-1 1.1◦ 3412 26% 1.2◦ 3224 22%

2-2 1.1◦ 3451 29% 1.1◦ 3581 32%

3-1 1.5◦ 3097 23% 1.4◦ 3248 26%

Displacement Binning

1-1 0.6◦ 4732 50% 0.6◦ 3746 49%

1-2 0.7◦ 5150 53% 0.7◦ 5361 55%

2-1 0.6◦ 6317 60% 0.6◦ 6206 60%

2-2 0.6◦ 4755 49% 0.5◦ 4955 51%

3-1 0.7◦ 4535 47% 0.7◦ 4292 44%

and ∆u
b . Comparing the simple and extensive heuristic in Table 2 gives an indication

on the quality of the simple heuristic. For both phase and displacement binning the

extensive heuristic was able to improve the standard deviation over the simple heuristic.

However, the improvements are small and they do not justify the increase in computation

time (up to 12 hours). The implication is that the simple heuristic will produce a good

solution for most problems of practical interest within the clinically viable computation

time of 1-2 seconds.

For phase binning, projections are only shared in the irregular breathing cycles

with more sharing occurring for the more irregular breathing cycles. For displacement

binning, in addition to the irregular breathing cycles, more projection sharing occurs in

the peak inhale and peak exhale respiratory bins.

4.3. Quantifying marker blur

Table 3 lists the segmented marker volume in voxels for the five 4DCBCT datasets. For

patient 1, scans 1 and 2, we have segmented different markers but both markers are of

the same size (10mm in length). To give further variety to our results, for patient 2, we

have segmented two markers of different length which are a marker of 10mm length for

scan 1 and 20mm length for scan 2.

We are interested in the standard deviation in the marker volume across the 10

respiratory bins because if the standard deviation is higher then the implication is that

the marker is more blurry, and has a less consistent volume, across the 10 respiratory

bins. Phase based binning indicates similar standard deviations in the marker volume
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between the three binning methods for all five patient scans which indicates that marker

blur is primarily caused by using phase as the respiratory signal. For phase based

binning, patient 2 scan 1 is the only scan where there was a failure to segment the

marker in one or more respiratory bins with optimized binning failing in fewer cases

than both equispaced and equal density binning.

Displacement binning indicates that optimized binning is able to segment the

marker in all cases while equispaced and equal-density binning have a large number of

failed segmentations (usually at inhale and exhale limits). Failed segmentations occur

more often with equal-density binning than equispaced binning during mid inhale. The

standard deviation for optimized binning is always lower, and often by a significant

amount, than both equispaced and equal-density binning.

An important result is that displacement binning, with the optimized projection

allocation algorithm, produces a lower standard deviation in marker volumes than phase

based binning for all datasets except for patient 1 scan 2. This indicates that on average

the marker can be more consistently segmented using displacement binning than phase

binning. These results are not surprising because phase binning sources projections

from a much larger range in displacement than optimized projection allocation with

displacement binning. To illustrate this further, in Figure 5, we have displayed the

first 60 seconds of the breathing trace for patient 2 scan 1. We can see that optimized

projection allocation with displacement binning sources projections from a narrow band

in displacement (usually between 9.9mm and 10.7mm) with a few projections sourced

from the neighbouring respiratory bins outside this band (between 9.4mm and 11mm

in this case). However, equispaced phase binning, which is currently used clinically,

sources projections from a much wider displacement band (usually 9.4 to 11.1mm) with

some projections sourced from 7.9mm to 12.4mm.

Figure 5 also highlights the difficulties encountered calculating phase. In Figure

5 we have calculated phase as rising linearly from 0 to 100 from peak inhale to peak

inhale. A different result will be obtained if phase rises from 0 to 50 from inhale to

exhale then 50 to 100 from exhale to inhale as a different amount of time is spent in

inhale versus exhale. It is difficult to accurately identify the peak inhale and exhale

points in many of the breathing cycles because images are only acquired at a rate of

10hz. There are several small short breathing cycles that can be identified as either

short breathing cycles or irregularities within a cycle.

In Table 3 the results in brackets are from the digital XCAT phantom. The values in

the mean column represent the mean error in the marker volume when compared to the

known marker volume. A similar pattern to the patient data emerges , i.e. projection

sharing with displacement binning performs consistently well in comparison to all other

methods. We also note, that when the mean marker volume error is low the standard

deviation in the marker volume is also low; this gives us confidence that the standard

deviation in the marker volume is a useful metric.
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Table 3. Segmented marker volumes. The mean and standard deviation measured

in voxels across the 10 respiratory bins for the cases where segmentation was successful

for the patient data. Failed is the number of respiratory bins for which the segmented

location had an error greater than 3mm. The simple heuristic allowed respiratory bins

to shrink or grow by 50% and projections to be source from the entire neighbouring

respiratory bin. The values in brackets are the mean marker volume error from the

digital XCAT phantom and marker volume standard deviation.
Phase Binning Displacement Binning

Binning Failed Mean Standard Failed Mean Standard

Method (Error) Deviation (Error) Deviation

Patient 1 scan 1

Equispaced 0 20 (49) 2.1 (45) 2 22 (48) 8.4 ( 42)

Equal-Density 0 21 (47) 1.8 (75) 2 22 (67) 7.0 (106)

Simple heuristic 0 20 (29) 2.6 (40) 0 19 (25) 1.7 ( 32)

Patient 1 scan 2

Equispaced 0 25 (31) 7.4 (19) 2 46 (84) 30.0 ( 84)

Equal-Density 0 22 (28) 3.0 (17) 3 45 (81) 27.8 (104)

Simple heuristic 0 20 (24) 3.6 (19) 0 22 (26) 5.2 ( 33)

Patient 2 scan 1

Equispaced 3 35 (12) 9.3 (16) 3 39 (127) 13.9 (77)

Equal-Density 4 40 (14) 8.1 (17) 6 32 (100) 20.1 (91)

Simple heuristic 2 39 (28) 7.0 (30) 0 41 ( 19) 7.0 (12)

Patient 2 scan 2

Equispaced 0 15 (38) 2.6 (38) 1 15 ( 76) 3.6 ( 86)

Equal-Density 0 15 (50) 1.9 (70) 1 14 (160) 4.1 (312)

Simple heuristic 0 15 (61) 2.2 (77) 0 16 ( 12) 1.3 ( 19)

Patient 3 scan 1

Equispaced 0 16 (52) 10.5 ( 59) 1 11 (32) 2.1 (45)

Equal-Density 0 13 (38) 4.3 ( 46) 1 11 (55) 2.4 (90)

Simple heuristic 0 13 (82) 6.1 (112) 0 12 (25) 1.2 (30)

5. Discussion

Significant improvements in image quality have been observed using displacement

binning with optimized projection allocation. In clinical practice phase based binning

is usually preferred because of data sufficiency problems and streak artefacts present in

the displacement binned images. For 4DCT it has been demonstrated that displacement

binning is more accurate, contains fewer motion artefacts and recovers the tumour size

and shape better than phase binning (Abdelnour et al. 2007), (Fitzpatrick et al. 2006)

and (Li et al. 2012). Our algorithms confirm this result for 4DCBCT imaging and

allows the user to establish a trade-off between reducing streak artefacts and increasing

motion blur. Our algorithms also presents a pathway to reliably generate low streak

displacement binned 4DCBCT images.

Streak artefacts significantly degrade the quality of deformable image registration.

Applications using deformable image registration, such as lung ventilation studies, are

likely to benefit using the optimized projection allocation algorithm. Additionally,

several CBCT iterative reconstruction techniques utilise deformable image registration
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Figure 5. Phase binning versus the corresponding displacement bin using

optimized projection allocation for patient 2 scan 1. The first 60 seconds of the

patients respiratory signal is given together with the projections taken using phase

binning (red crosses) and optimized projection allocation (black triangles) for the

corresponding respiratory bin. Although optimized projection allocation binning

sources some projections from the neighbouring respiratory bin, there is a smaller

range in displacement than for phase binning.

either between prior images or between respiratory bins; these techniques will also

benefit from the optimized projection allocation algorithm.

Further progress needs to be made in several areas. From an optimisation point of

view solving the equations to optimality would give a ground truth to benchmark the

faster, but not guaranteed optimal, heuristic solution methods. Further development

on fast heuristic methods can be made, in particular, a heuristic solution method that

can run during projection acquisition, that updates as projections are acquired, would

be a useful development so that 4DCBCT images could be available as soon as the

scan finishes. Further 4DCBCT images need to be examined to determine how far into

neighbouring respiratory bins we source projections.

Sourcing projections from a large distance into the neighbouring bin is likely to

produce images with fewer streaks but the trade-off is that there will be more motion

blur in the images. In this study we have chosen to control streaking and motion

blur by limiting the amount that bins can grow/shrink and limiting the distance that

projections can be sourced from the neighbouring bins. An optimal trade-off between

image quality and motion blur should be established with motion blur taken into account

in the objective function. This could be achieved by calculating an estimate of motion

blur from the projections themselves, or respiratory signal, and including this measure

in the objective function with an appropriate weight. Placing additional constraints on
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the motion blur and streak width (i.e. limiting both values to 3mm) would enable the

user to control the accuracy of the reconstructed images.

For some clinical applications there may be a requirement that respiratory bins

are located at specific locations rather than the optimized locations presented in this

work. Deformable image registration may be necessary to recover images at the specified

locations. With better image quality there is the potential for reducing both imaging

time and imaging dose (fewer projections) and further studies need to be performed to

determine how much the imaging time and imaging dose can be reduced.

6. Conclusions

We have developed an optimized 4DCBCT projection allocation algorithm that leads

to improvements in 4DCBCT images. The improvement in image quality using our

optimized projection allocation approach is more significant when using displacement

binning than phase binning. Our results suggest that optimized projection allocation

using displacement binning has the potential to produce better 4DCBCT images than

phase based binning, which opens the door for the clinical use of displacement binning

to improve image quality and patient positioning in radiotherapy.
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Appendix A. Linearizing the standard deviation

The equations presented in this section can be used to linearise the standard deviation

for use with standard Mixed Integer Programming solvers. A solution to these equations

represents the best possible value of the standard deviation while the heuristics presented

in the main text are fast but do not produce a provably optimal solution. The standard

deviation in bin b (σb) can be expressed in linear form as

σb = −4π2 − 2θbsl + 4π(θbs − θbl)− 2πδθ,b +
∑
j

(2δb,jθj − 2θb,j) ,

with

θb,k ≤Mδb,k,

θb,k ≤M
∑
j>k

δb,j,

θb,k ≤M(2− δb,k − δb,j) + θkθk′ ,
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θbl ≤ θk +M
∑
j>k

δb,j,

θbl ≥ θkδb,k,

θbs ≤ θk +M(1− δb,k),
θbs ≥ θk −M

∑
j<k

δb,j,

θbsl ≥ θblθk +M(1− δb,k),
θbsl ≥ θk −M

∑
j<k

δb,j,

δθ,b = 2π +
∑
j

Cb,j,

Cb,k ≤ δθ,b,

Cb,k ≤ 2πδb,k,

Cb,k ≥ δθ,b +M(δb,k − 1),

for all k and k′ and M is a suitably large number which in this case can be 4π2. By

programming these equations into a Mixed Integer Programming solver the optimal

solution for the standard deviation can be found.
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