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1. Introduction

In biostatistical applications, the risk of an event is the probability of
the event occurring within a specific time-frame. Risk difference is then the
absolute difference in risk between two groups and is an important measure
of effect size. For example, in randomised clinical trials, risk difference can be
used to measure the magnitude of the treatment effect, while in observational
studies it can be used to quantify the association between a risk factor and
a disease event. Risk difference is important in practice because it is easier
to interpret than the odds ratio and can present an alternative perspective
to the relative risk.

As an important measure of effect size, the risk difference often needs to
be adjusted for covariates. Analogous to logistic regression for estimating ad-
justed odds ratios, the natural model for estimating adjusted risk differences
is a binomial generalised linear model (GLM) with identity link function,
which we refer to as the additive binomial model.

The purpose of this paper is to address some common computational diffi-
culties that arise with the additive binomial model for adjusted risk difference
estimation. These difficulties arise from the requirement that the parame-
ter space is constrained so that the linear probability model only produces
probabilities in [0, 1]. This means that the model fitting is a constrained
optimisation problem, and implementations of Fisher scoring or related pro-
cedures in popular statistics packages may fail to converge. Such numerical
instability can occur even when the maximum likelihood estimate (MLE) is
in the interior of the parameter space.

In light of these problems, there have been many proposals for estimating
adjusted risk differences without using the additive binomial model. These
include regression-based methods such as ordinary least squares or Poisson
GLMs. However, with these methods the model is misspecified and fitted
probabilities are not restricted to the [0, 1] range. Alternative approaches can
only provide the adjusted risk difference for a single binary comparison, and
are essentially approximations to estimates from the additive binomial model.
As demonstrated later in the paper, approximate methods for adjusted risk
differences can have some undesirable properties, including loss of efficiency
and violation of the parameter constraints.

In this paper we show that it is possible retain the natural additive bi-
nomial model for adjusted risk difference estimation, without introducing
numerical instability into the model fitting process. We propose a compu-
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tational method that uses a novel combination of two existing tools, the
multinomial-Poisson transformation and a stable method for fitting additive
Poisson models. A useful property of our approach is that it can be ex-
tended to allow semi-parametric adjustment, which is not available in other
approaches.

We begin by specifying the additive binomial model that can be used
to estimate adjusted risk differences, along with specification of the con-
strained parameter space and likelihood function. We then discuss how this
can be recast into an equivalent additive Poisson estimation problem, using
the multinomial-Poisson transformation. This allows application of stable
computational methods for the additive Poisson model in order to fit the
additive binomial model. Subsequently we present a range of simulation
studies and analyses of two clinical trial datasets which demonstrate the ad-
vantages of our approach over competing methods for adjusted risk difference
estimation. To facilitate practical implementation of this approach we have
provided R code in the supplementary materials for this paper.

2. Method outline

2.1. Model definition

We assume that there are n independent observations Y = (Y1, . . . , Yn),
where each observation Yi is associated with a vector of A categorical and
B continuous covariates. The covariate vector for observation i is therefore
xi = {ui,vi} = {ui1, . . . , uiA, vi1, . . . , viB}. Without loss of generality, we
assume that uia ∈ {1, . . . , ka} and vib ∈ R, where ka is the number of levels
of categorical covariate a.

In a binomial GLM, Yi is the number of events observed in a fixed number
Ni of independent Bernoulli trials, where each trial has an event probability
p(xi,θ) for some parameter vector θ. This event probability is referred to
as the risk. With an identity link function, the risk is assumed to have an
additive structure

p(xi,θ) = α0 +
A∑

a=1

αa(uia) +
B∑
b=1

βbvib, (1)

with θ = (α0,α1, . . . ,αA,β), where αa = (αa(1), . . . , αa(ka)) and β =
(β1, . . . , βB). Model (1) requires A identifiability constraints αa(ra) = 0 for
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a = 1, . . . , A, where ra is the chosen reference level for categorical covariate
a.

The risk difference for comparing two covariate combinations x1 and x2

is the difference in risks p(x1,θ)− p(x2,θ). Thus, the parameter αa(u) rep-
resents the risk difference for the uth level of the ath categorical covariate
versus the reference level ra, adjusted for the A − 1 other categorical co-
variates and B continuous covariates in the model. Likewise, βb represents
the adjusted risk difference associated with a one-unit increase in the bth

continuous covariate.

2.2. Parameter space and likelihood function

Since the linear functions p(x,θ) are probabilities, they must lie in the
interval [0, 1] for all x in the (A+B)-dimensional covariate space X . We will
define X as the space containing all possible combinations of the observed
values of the covariates, that is X = U × V , where

U =
A∏

a=1

{1, . . . , ka},

represents all possible combinations of the categorical covariates, and

V =
B∏
b=1

[v
(0)
b , v

(1)
b ],

is the B-dimensional Cartesian product of the observed ranges of the contin-
uous covariates, with v

(0)
b = mini{vib} and v

(1)
b = maxi{vib}.

We wish to find the MLE θ̂ of the parameter vector θ, subject to the
constraint that θ̂ lies in the parameter space

Θ = {θ : 0 ≤ p(x,θ) ≤ 1, x ∈ X}. (2)

The likelihood function for the additive binomial model, excluding a con-
stant term, is

L(θ;Y ) =
n∏

i=1

p(xi,θ)Yi(1− p(xi,θ))Ni−Yi .

This model can, in principle, be fitted by any GLM software that fits
identity link binomial models. However, this approach is often numerically
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unstable due to the box constraints specified by (2), which can be difficult
to handle with standard computational methods such as Fisher scoring. We
therefore consider a more reliable approach that involves the novel combina-
tion of two existing tools described in the next two subsections.

2.3. Multinomial-Poisson transformation

The multinomial-Poisson (MP) transformation, described by Baker (1994),
relates the likelihood for a multinomial model to that of a Poisson model. In
general, the MP transformation applies to observationsZi = {Zi1, . . . , Zij, . . .}
from a multinomial distribution with j ∈ Ji, where Ji is any set of outcome
categories for individual i. Here we describe and apply the MP transfor-
mation for the special case of Ji = {1, 2} for all i, that is, the binomial
distribution.

If Yi are observations from a binomial distribution with Ni trials and
event probability pi(θ) for some parameter vector θ, we define the functions
gi1 and gi2 such that

gi1(θ)

Gi(θ)
= pi(θ) and

gi2(θ)

Gi(θ)
= 1− pi(θ),

where Gi(θ) = gi1(θ) + gi2(θ).
The likelihood function for θ, excluding a multiplicative constant, is there-

fore

LB(θ;Y ) =
n∏

i=1

(
gi1(θ)

Gi(θ)

)Yi
(
gi2(θ)

Gi(θ)

)Ni−Yi

.

Using dummy parameters ϕ = {ϕ1, . . . , ϕn}, with all ϕi > 0, the MP
transformation of LB is

LP (θ,ϕ;Z) =
n∏

i=1

2∏
j=1

(ϕigij(θ))Zij exp(−ϕigij(θ)), (3)

where Zi1 = Yi and Zi2 = Ni − Yi.
The MLE of ϕ for fixed θ is ϕ̂i(θ) = Ni/Gi(θ), and substituting this

back into (3) gives
LP (θ, ϕ̂(θ);Z) ∝ LB(θ;Y ).

Thus, following the work of Richards (1961) on profile likelihoods, the
MLE of θ and the information matrix are identical for LB(θ) and LP (θ,ϕ).
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This means that the MLE for the binomial model may be found by max-
imising LP , which takes the same form as the likelihood for a Poisson model
with

Zij ∼ Poisson(ϕigij(θ)). (4)

The problem of finding the MLE for an additive binomial model (1) can
thus be transformed into one of finding the MLE of a Poisson model (4)
which involves both multiplicative (ϕ) and additive (θ) components.

For model (1), the multiplicative component of (4) can be eliminated by
defining

gi1(θ) = Nip(xi,θ) and gi2(θ) = Ni(1− p(xi,θ)). (5)

Then Gi(θ) = Ni, and the MLEs of the dummy parameters are ϕ̂i = 1 for all
i, meaning that the problem reduces to one of finding the MLE of an additive
Poisson model.

Note also that the parameter space for θ which restricts the probabilities
pi(θ) to lie within [0, 1] is the same as that which requires both gi1(θ) ≥ 0 and
gi2(θ) ≥ 0 for all i. That is, the parameter constraints on the binomial prob-
abilities are equivalent to non-negativity constraints on the Poisson means
in (4).

2.4. Additive Poisson regression

The MP transformation converts an additive binomial fit into an additive
Poisson fit. However, although fitting an additive Poisson model tends to
be more numerically stable than fitting an additive binomial model, it can
still be subject to instability in standard software. We therefore make use
of the method presented by Marschner (2010) for additive Poisson models,
which always provides reliable convergence to the MLE. As well as numerical
stability, this method also has a number of other advantages.

The approach described by Marschner (2010) is a stable variant of the
Expectation-Maximisation (EM) algorithm, and applies to any identity link
Poisson GLM. The computational method is an example of a combinatorial
EM algorithm, which was presented in general terms by Marschner (2014).
The main advantage of this approach is that it reliably accommodates the
required non-negativity constraints on the Poisson means gij(θ) in (5). In
addition, the method has some flexible features that enhance its usefulness.
Firstly, while always accommodating the non-negativity constraints on the
Poisson means, the method allows the model fitting to be conducted either
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with or without non-negativity constraints on the individual regression pa-
rameters θ. This is a useful feature that we make use of in implementing
our method in Section 3.2. Secondly, the method can accommodate semi-
parametric monotone regression functions, which allows semi-parametric ad-
justment of risk differences.

Next we describe in detail how the combination of these two basic meth-
ods, the MP transformation and stable additive Poisson regression, yields a
reliable method for the additive binomial model that can be used for adjusted
risk difference estimation.

3. Additive binomial regression

3.1. Linear covariates

We will begin by examining the case of a single continuous covariate vi,
with no other covariates in the model, so (1) reduces to

p(vi,θ) = α0 + βvi.

Without loss of generality we use a rescaled version of the continuous
covariate

v∗i =
2vi − (v(0) + v(1))

v(1) − v(0)
,

where v(0) = mini{vi} and v(1) = maxi{vi}, so that v∗i ∈ [−1, 1]. Ac-
cordingly, we have a rescaled parameter vector θ∗ = (α∗

0, β
∗), such that

p(v,θ) = p(v∗,θ∗), using

α∗
0 = α0 +

v(0) + v(1)

2
β and β∗ =

v(1) − v(0)

2
β. (6)

The MP transformation is useful for additive binomial models because an
additive model for p(·, ·) implies an additive model for 1 − p(·, ·). Thus, as
in (5), we can define

gij(θ
∗) = Nigj(v

∗
i ,θ

∗) j = 1, 2,

where

g1(v
∗
i ,θ

∗) = p(v∗i ,θ
∗) = α∗

0 + β∗v∗i
g2(v

∗
i ,θ

∗) = 1− p(v∗i ,θ∗) = (1− α∗
0) + β∗(−v∗i ).
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This leads to a unified additive model

gj(Vij,θ
∗) = δj + β∗Vij, (7)

where Vij = (−1)j−1v∗i and (δ1, δ2) = (α∗
0, 1−α∗

0). Note that Vij ∈ [−1, 1] for
all i, j, ensuring that the covariate space is preserved in the unified model.

It follows from the MP transformation discussed in Section 2.3 that our
problem of finding the MLE for the additive binomial model is equivalent
to finding the MLE for an additive Poisson model with 2n observations,
{(Zi1, Zi2), i = 1, . . . , n}, where

Zij ∼ Poisson(Nigj(Vij,θ
∗)), (8)

with Zi1 = Yi and Zi2 = Ni − Yi.
Model (8) requires the non-negativity constraints gj(V,θ

∗) ≥ 0 for all V ∈
[−1, 1], which ensures that p(v∗,θ∗) ∈ [0, 1] for all v∗ ∈ [−1, 1]. Fitting (8)
subject to these constraints is achieved using the additive Poisson method of
Marschner (2010) with one categorical covariate and one continuous covariate
as specified by (7). The final step is then to transform θ∗ back onto its original
scale using the relationships in (6).

Extension to B > 1 continuous covariates is straightforward. Each co-
variate is rescaled onto [−1, 1], and the MLE for the rescaled additive bi-
nomial model is the same as the MLE for an additive Poisson model with
one categorical covariate, B continuous covariates and 2n observations. This
approach allows multiple linear regression models, which include non-linear
polynomial models.

3.2. Categorical covariates

The approach used for continuous covariates does not apply directly to
categorical covariates in an additive binomial model. However, a modification
of this approach, again using the MP transformation, does allow incorpora-
tion of categorical covariates.

We begin by considering the model with a single categorical covariate
ui ∈ {1, 2, . . . , k}, so model (1) reduces to

p(ui,θ) = α0 + α1(ui). (9)

Using the identifiability constraint α1(1) = 0, model (9) can be rewritten as
a linear model

p(ui,θ) = α0 +
k∑

b=2

βbvib, (10)

8



for an appropriately chosen parameterisation, βb and vib. There are many
possible parameterisations and a natural choice is

βb = α1(b) and vib = 1{ui = b}, (11)

so that βb is the contrast between level b and the reference level 1. The
representation (10) would then seem to allow the categorical covariate model
to be fitted using the methods described in Section 3.1 for linear covariates.
In particular, note that the MP transformation described in Section 3.1 can
again be applied, so that the additive binomial model (10) can be fitted
using the equivalent additive Poisson model (8), with k− 1 linear covariates.
However, there is a problem in that the procedure described in Section 3.1 will
maximize the likelihood function over the parameter space that restricts the
fitted event probabilities to be in [0, 1] for all possible covariate combinations
(vi2, . . . , vik) in which each vib is in [0, 1]. This is overly restrictive, because
(11) does not allow more than one of the vib to equal to 1 for each i. Thus,
the method of Section 3.1 applied to the linear covariate model (10) would
impose additional constraints that would cause the likelihood function to be
maximised over a smaller parameter space than is desired.

An alternative parameterisation is

βb = α1(b)− α1(b− 1) and vib = 1{ui ≥ b}, (12)

so that the parameters βb represent the increments between successive levels
of the categorical covariate. This parameterisation has an analogous prob-
lem to that described above for parameterisation (11), so the method of
Section 3.1 cannot be applied directly. However, the advantage of (12) is
that it allows a simple modification that rectifies the problem.

As described in Section 2.4, Marschner (2010) presented a method for
fitting the additive Poisson model, which can be applied subject to non-
negativity constraints on the regression coefficients. When applied in the
present context this method is an EM algorithm that imposes the constraints
βb ≥ 0 for all b = 2, . . . , k, or equivalently, α1(1) ≤ α1(2) ≤ · · · ≤ α1(k).
Although this imposes an undesired order restriction on the parameters,
this constraint can be removed by repeatedly applying the order-restricted
method after permuting the levels of the categorical covariate.

To see this, we first define the set T , which consists of the k! possible
permutations of the levels of ui. For each permutation t ∈ T , there is a
corresponding vector of permuted parameters

(
α
(t)
1 (1), α

(t)
1 (2), . . . , α

(t)
1 (k)

)
.
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Application of the additive Poisson method with non-negativity constraints
leads to maximisation of the likelihood over the space

Θ(t) ⊂ Θ = {θ : 0 ≤ p(u,θ) ≤ 1, for all u = 1, . . . , k},

where Θ(t) is the subset of the parameter space Θ that has α
(t)
1 (1) ≤ α

(t)
1 (2) ≤

· · · ≤ α
(t)
1 (k). Since the parameter space Θ may be partitioned into k! such

subsets corresponding to the k! orderings t ∈ T , it follows that Θ is the union
of these subsets, Θ =

⋃
t Θ

(t). Thus, having found the constrained maximum
within each restricted parameter space Θ(t), the global maximum over Θ
will simply be the constrained maximum that achieves the highest likelihood.
This procedure of cycling through all possible permutations of the categorical
covariate levels, and applying an EM algorithm for each permutation, is an
example of a combinatorial EM algorithm (Marschner, 2014).

For the model with A > 1 categorical covariates, where covariate a has ka
distinct levels, the same procedure is applicable except that we must consider
the Cartesian product of all possible permutations of each covariate. This
leads to K =

∏A
a=1 ka! restricted parameter spaces that have to be searched

for the MLE. In practice, if one of these spaces is found to have a stationary
maximum, then it is the MLE and the algorithm may be halted. The same
approach can be combined with the method described in Section 3.1 for linear
covariates, to fit the model with A categorical and B continuous covariates
specified in (1). In this case the EM algorithm would be applied a maximum
of K = 2B+1

∏A
a=1 ka! times.

3.3. Data analysis example 1

The ASSENT-3 study (ASSENT-3 Investigators, 2001) was a clinical trial
of 6095 patients with acute myocardial infarction (heart attack), randomly
allocated to treatment regimens containing antithrombotic therapies. The
primary treatment comparison of interest was between the group allocated
to unfractionated heparin (UFH; n = 2038) and the group allocated to receive
enoxaparin (n = 2040). The trial was designed as a non-inferiority study,
with the non-inferiority margin being a 1% risk difference in favor of UFH
for the composite endpoint of 30-day mortality and in-hospital reinfarction
or ischemia. As a brief numerical illustration we consider estimation of the
risk difference between UFH and enoxaparin, adjusted for age.

For comparative purposes, we begin by investigating the form of the re-
lationship between age, treatment and risk by fitting binomial GLMs with
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Table 1: Comparison of adjusted effect measures in Example 1, based on GLMs with
logit, log or identity link functions. Adjusted estimates are displayed for the odds ratio
(OR), relative risk (RR) and risk difference (RD). Standard errors were estimated using
the information matrix (SEI) and bootstrap resampling (SEB), and are shown on the log
scale for the logit and log link models.

Logit link Log link Identity link
Parameter OR SEI SEB RR SEI SEB RD SEI SEB

Treatment 0.70 0.093 0.093 0.74 0.080 0.080 -0.041 0.010 0.010
Age (per year) 1.03 0.004 0.004 1.03 0.003 0.003 0.003 0.0004 0.0003
Intercept 0.06 0.170 0.171 0.06 0.147 0.151 0.044 0.015 0.018
Scaled deviance 1.068 1.065 1.091

three different link functions: the logit link (adjusted odds ratio), the log
link (adjusted relative risk) and the identity link (adjusted risk difference).
We estimated the adjusted risk difference using the method presented above,
as implemented in an R function called addbin. The resulting parameter es-
timates and standard errors (derived from the observed information matrix)
were identical to those found using the glm function in R (R Core Team, 2013)
and PROC GENMOD in SAS (SAS Institute Inc., 2008). For all three link func-
tions, likelihood ratio tests for the inclusion of either a quadratic age relation-
ship or an interaction between age and treatment were non-significant, and
the parameter estimates and their approximate standard errors are shown in
Table 1.

The deviances for the three alternative link functions are comparable,
suggesting that any of these may be appropriate for modelling the risk of
an event. This is an example of a scenario in which risk differences may
be useful because they may be considered more interpretable than other
measures, particularly odds ratios.

We will focus on the additive binomial model in order to obtain the
treatment effect as a risk difference, adjusted for age. Whilst asymptotic
normality would allow construction of approximate confidence intervals, this
assumption is questionable when the MLE is close to the boundary of the
parameter space. We will demonstrate the stability of our algorithm by
constructing non-parametric confidence intervals based on 1000 bootstrap
samples.

The proposed method converged to the MLE in all 1000 bootstrap sam-
ples. In contrast, PROC GENMOD failed to converge in 214 samples. Figure 1
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compares the distribution of the MLEs of each parameter, separated by
whether or not PROC GENMOD reached convergence, demonstrating that con-
fidence intervals obtained from only the converged samples would be biased.

The glm function available in R failed to converge in only one sample,
however, this non-convergence was concerning because both addbin and PROC

GENMOD converged to a point in the interior of the parameter space. Figure 2
shows the deviance achieved at each iteration of glm, demonstrating the
potential instability of the algorithm implemented in R. This type of periodic
non-convergence in R has been observed in other related contexts; see for
example Marschner and Gillett (2012). In contrast, Figure 2 shows that
addbin exhibited stable, albeit slow, convergence.

The additive model yields an estimate of 4.11% for the adjusted risk
difference favouring the enoxaparin arm, with a one-sided 95% confidence
interval from bootstrap resampling that extends to a 2.37% risk difference,
still in favour of enoxaparin. This is well below the pre-specified 1% margin
in favour of UFH, and so we can conclude that enoxaparin is not inferior (and
in fact is superior) to UFH after adjusting for age. These adjusted results
are consistent with the unadjusted results, which is not unexpected because
age was balanced by randomisation. Nonetheless, the example does provide
an initial numerical illustration of the method’s performance.

4. Simulation study

For a more detailed evaluation of the performance of the MLE from an
additive binomial GLM as an estimator of adjusted risk difference, we per-
formed a number of simulation studies. In these simulations, the MLE was
computed using the proposed method described in Section 3, as well as using
the glm routine in R and PROC GENMOD in SAS. We empirically assessed the
statistical properties of the proposed method, and compared it with various
alternative non-MLE methods for calculating adjusted risk differences.

4.1. Summary of alternative methods

4.1.1. Misspecified regression models

In cases where the additive binomial model fails to converge, alternative
models have been suggested in which the distribution of the outcome variable
is misspecified in order to estimate the model parameters. Using a Poisson
GLM with an identity link was discussed by Spiegelman and Hertzmark
(2005), and Cheung (2007) proposed modified least-squares (MLS), where
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Figure 1: Smoothed density estimates of the MLE from 1000 bootstrap samples in Example
1, using addbin to compute the intercept (top), treatment (middle) and age (bottom)
parameter estimates. Results are separated by whether PROC GENMOD converged (79%,
solid line) or not (21%, dashed line). The vertical line shows the parameter estimate in
the original data.
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sample from Example 1. For the addbin iteration history, the number of iterations has
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the binomial risk is represented as the expected value of a binary dependent
variable, and ordinary least-squares is used to find parameter estimates. In
both cases, a robust variance estimator is used in calculating confidence in-
tervals. The fitted risks from MLS are unrestricted, and the fitted Poisson
means are only constrained to be non-negative, so both approaches can pro-
duce models with fitted risks outside [0, 1].

4.1.2. Weighted mean methods

Other alternative methods only estimate the adjusted risk difference for
a single binary comparison, rather than for a multivariable regression model.
The first such methods were based on data in the form of stratified 2 × 2
contingency tables, with the risk difference estimator being a weighted aver-
age of the unadjusted risk differences observed in each stratum. We examine
weighting schemes defined by Cochran (1954) (Cochran-Mantel-Haenszel),
Kleinbaum et al. (1982) (inverse variance), Rothman and Boice (1982) (null-
weighted), Böhning and Sarol (2000), Greenland and Holland (1991), and
Mehrotra and Railkar (2000) (minimum-risk). To avoid problems with zero
cells, we follow Greenland and Robins (1985) and add c = 0.5 to each cell in
calculating the inverse variance weights.

4.1.3. Other approximations

There exist other methods that are also restricted to a single binary com-
parison. Lee (1981) suggested fitting a logistic GLM and finding the average
of the difference between the hypothetical fitted risks calculated as if all in-
dividuals had been in ‘group 0’ and those calculated as if all individuals had
been in ‘group 1’. Stijnen and Van Houwelingen (1993) proposed a pseudo-
likelihood approach for sparse stratified data, where the distribution of the
response variable is misspecified as a standard normal distribution, such that
nuisance parameters are removed from the likelihood and a consistent esti-
mate for the adjusted risk difference can be found. Finally, Lunceford and
Davidian (2004) proposed a number of estimators based on propensity scores,
where the probability of group assignment must be modelled with respect to
the adjustment variables. We examine the IPW2 estimator, later also derived
by Ukoumunne et al. (2010), and the double-robustness estimator, which re-
mains consistent if the model for the propensity scores is misspecified.

4.2. Simulation assumptions
We simulated samples of five different sizes, n = 100, 500 and 5000.

Motivated by Example 1, the risk for individual i was determined by an
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additive model
pi(xi,θ) = α0 + α1(ui) + β1vi,

where ui ∈ {0, 1} is the indicator for randomly-allocated treatment group (0
= control, 1 = intervention) and vi is a continuous covariate for age, generated
from a normal distribution with mean 62.5 and variance 102, truncated to lie
in the range [40, 85]. The parameter of interest is the adjusted risk difference
between the treatment groups, α1(1)− α1(0).

With the adjusted treatment effect taking values 0.05 and 0.15, and the
gradient of age being 0.0015, 0.0030 or 0.0060 per year, we changed the
value of α0 to provide three different scenarios in which the properties of our
method could be tested: an average risk of 0.5; a minimum risk of 0; and a
maximum risk of 1.

For each sample size and set of parameter values, we produced 1000 simu-
lations and estimated the parameters in an additive binomial model using the
method described in Section 3, as implemented in the addbin routine. We
estimated the bias of the risk difference parameter estimate, and calculated
its sample variance.

We also calculated adjusted risk differences using each of the methods
described in Section 4.1, and compared them to the MLE using the esti-
mated mean squared error (MSE). For the misspecified regression models,
which provide estimated risks for each individual, we counted the number of
simulations in which all fitted risks were valid (within [0, 1]).

4.3. Results

The addbin routine found the MLE in all 1000 simulated samples for all
18 parameter combinations and all sample sizes, demonstrating its stability.
The glm routine in R performed almost as well, but failed to converge in a
small number of samples (< 1%) with low or high risk ranges. PROC GENMOD

in SAS converged to the MLE in over 99% of samples where the average risk
was 0.5, but consistently failed to converge in around 50% of samples with
risks close to 0 or 1, even with n = 5000.

4.3.1. Misspecified regression models

The MLE and the misspecified regression models all performed well for an
average risk of 0.5, with the relative efficiency of the MLE being in the range
100–106%. Table 2 shows results for scenarios with 5% treatment effect and
0.6% age effect per year.
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The additive Poisson model was slightly less efficient than the binomial
MLE in terms of both the variance and MSE of its treatment effect estimate,
but the difference was usually less than 5%. The estimate from the least-
squares method (MLS) generally had a lower variance, though the gain in
efficiency was less than 1%.

At the lower and upper ends of the risk range, MLS mostly produced
estimates with slightly lower bias but much higher variance than the binomial
MLE, and around half of these MLS models had fitted risks outside [0, 1].
This led to the MLE being more efficient, in the range 115–125% for this
parameter combination. The Poisson model performed similarly to the MLE
at low risks, where its non-negativity constraint on the fitted means was
imposed. At high risks, the additive Poisson model often produced invalid
fitted risks, and was less efficient than the MLE from the additive binomial,
with relative efficiency around 125%.

The full range of results are presented in Web Tables 1–6, where it is
shown that the differences between methods may be smaller for other pa-
rameter combinations; albeit almost always in favour of the binomial MLE.
Nonetheless, this example shows the potential for large differences in effi-
ciency between the estimates.

4.3.2. Weighted mean methods

The weighted mean approaches generally performed best when the age co-
variate was split into 5 categories, and the results for n = 100 and n = 5000
are shown in Web Tables 7–12. When the average risk was 0.5, the per-
formance of the alternative methods was generally similar to that of the
MLE, with the exception of the inverse variance and Böhning-Sarol meth-
ods, which had inferior performance. Greenland and Holland’s estimator
performed particularly well in the interior of the parameter space for small
n, having a small efficiency advantage (5%) compared to the MLE, but this
was not consistently true close to the boundaries, where relative efficiency
ranged from a 15% advantage to a 20% disadvantage in the parameter com-
binations we tested. Other estimators also generally suffered at least some
loss of efficiency when risks were close to 0 or 1, with the exception of the
null-weighted method in small samples, which often had a large bias but
small variance, giving efficiency gains of up to 16% in some scenarios.
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Table 2: Simulation results for adjusted treatment effect estimates from additive binomial,
Poisson and modified least-squares methods with a true treatment risk difference of 5%
and age effect of 0.6% per year. Relative MSE is mean squared error relative to the
binomial method, and “Valid” refers to the percentage of simulations with all fitted risks
in [0, 1].

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.34–0.66 100 Binomial 7.25 0.0989 1 100
Poisson 9.51 0.1017 1.058 99.4
Least squares 6.74 0.0987 0.996 99.5

500 Binomial -1.72 0.0445 1 100
Poisson -1.15 0.0449 1.021 100
Least squares -1.57 0.0444 0.998 100

5000 Binomial -1.15 0.0141 1 100
Poisson -1.12 0.0143 1.022 100
Least squares -1.16 0.0141 0.999 100

0–0.32 100 Binomial -6.95 0.0678 1 100
Poisson -6.68 0.0678 1.002 100
Least squares 2.07 0.0745 1.205 47.8

500 Binomial -6.43 0.0285 1 100
Poisson -6.64 0.0287 1.009 100
Least squares -0.36 0.0307 1.140 49.5

5000 Binomial -1.51 0.0089 1 100
Poisson -1.42 0.0089 0.999 100
Least squares -0.48 0.0100 1.252 47.9

0.68–1 100 Binomial -5.31 0.0669 1 100
Poisson 6.32 0.0745 1.242 47.7
Least squares 5.04 0.0719 1.156 48.7

500 Binomial -7.74 0.0300 1 100
Poisson -1.48 0.0338 1.248 49.4
Least squares -1.61 0.0329 1.188 48.4

5000 Binomial -1.12 0.0093 1 100
Poisson -0.22 0.0104 1.252 52.3
Least squares -0.13 0.0102 1.195 51.0

18



4.3.3. Other approximations

For the approaches that allow only a binary risk difference comparison to
be made, we show the empirical properties relative to the binomial MLE in
Web Tables 13–18. The estimates from the fitted logistic model and pseudo
likelihood approach have almost identical properties, which are very similar
to those of the binomial MLE when risks average 0.5. When risks were closer
to 0 or 1, these estimators tended to be less efficient, resulting in 10–20%
greater efficiency for the MLE in some scenarios. Both propensity score-
based methods produced estimates with similar performance to the MLE in
the interior of the parameter space. At the upper and lower boundaries, the
propensity score methods generally had slightly lower bias but larger variance
than the MLE, resulting in efficiency losses of up to 25%.

4.4. Conclusions

Although there were some isolated scenarios in which alternative meth-
ods outperformed the additive binomial MLE for estimating adjusted risk
difference, when viewed across the full range of scenarios the MLE was the
most efficient approach. Those estimators from misspecified regression mod-
els were generally less efficient than the correctly-specified binomial model,
and also were not constrained to produce fitted risks inside [0, 1]. Other
approximate methods required additional assumptions, and whilst they per-
formed similarly to the MLE in the interior of the parameter space, they were
substantially less efficient near the boundaries. The various weighted meth-
ods require that adjustment covariates be categorised, and only challenged
the efficiency of the MLE in isolated scenarios.

5. Flexible monotonic regression

In some situations we may be confident of the direction of the effect
of a continuous or ordered categorical covariate, but we may not want to
restrict the relationship to be linear. To provide for more flexible modelling,
we can include unspecified monotonic regression functions in our proposed
method. This allows semi-parametric adjustment of risk differences, as well
as exploration of an appropriate parametric form for the regression function.

We now include C monotonic covariates wi = {wi1, . . . , wiC} in the
model, where the contribution of wic to risk is determined by an unspeci-
fied non-decreasing function fc. This leads to a semi-parametric extension of
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model (1):

p(xi,θ) = α0 +
A∑

a=1

αa(uia) +
B∑
b=1

βbvib +
C∑
c=1

fc(wic). (13)

The function fc is only estimable at the unique observed values of wic,
zc(0) < · · · < zc(lc), and so for each monotonic covariate we introduce lc
parameters

γc(d) = fc(zc(d))− fc(zc(d− 1)) for d = 1, . . . , lc,

with γc(0) = fc(zc(0)) = 0. These parameters represent the non-negative
increments in risk between the observed covariate values. Model (13) can
then be rewritten in the linear form

p(xi,θ) = α0 +
A∑

a=1

αa(uia) +
B∑
b=1

βbvib +
C∑
c=1

lc∑
d=1

γc(d)hicd,

where hicd = 1{zc(d) ≤ wic}.
This form of the model means that for each monotonic covariate c we

have lc dummy linear covariates {hicd; d = 1, . . . , lc}. These covariates can
therefore be handled in the same manner as the linear covariates discussed
in Section 3.1 after transformation to an additive Poisson model. The only
difference with Section 3.1 is that the constraints γc(d) ≥ 0 must be im-
posed to retain monotonicity of the regression function fc. This can be han-
dled straightforwardly by the additive Poisson method of Marschner (2010),
which as discussed previously, allows such non-negativity constraints on the
parameters.

5.1. Data analysis example 2

In Section 3.3, we showed an example in which different link functions
produced similar fit, and our method allowed us to estimate an adjusted risk
difference with bootstrapped confidence intervals. Here we demonstrate an
example in which an additive binomial model provides a superior fit, but
this is only apparent after identifying an appropriate functional form for a
continuous covariate by first including it in the model as a semi-parametric
monotonic covariate.
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The ASSENT-2 study was a double-blind clinical trial to assess the safety
and efficacy of tenecteplase versus alteplase in 16,949 patients with acute my-
ocardial infarction (MI) treated within six hours (ASSENT-2 Investigators,
1999). The primary outcome was 30-day mortality after randomisation.

Marschner and Gillett (2012) analysed the ASSENT-2 data using a bino-
mial GLM with a log link function, focusing on the age-specific relative risk of
mortality, adjusting for MI severity, treatment delay and geographic region.
Since mortality in the treatment arms was virtually identical, treatment was
not included in the model.

We repeated the same analysis of the ASSENT-2 data, but this time with
an additive binomial model, such that the parameters represent adjusted
risk differences. With age as a 3-level categorical variable (40–59, 60–75,
76–85), and adjusted for MI severity (Killip class I, II or III/IV), treatment
delay (< 2, 2–4, > 4 hours) and region (Western countries, Latin America,
or Eastern Europe), the residual deviance of the additive risk model fitted
using addbin was 91.92 on 65 degrees of freedom compared to 149.32 for
the relative risk model, indicating a superior fit. The fitted risks lie within
[0, 1], and both the glm function in R and PROC GENMOD in SAS successfully
converged to the MLE in the main analysis. However, in 1000 bootstrap
samples taken in order to estimate 95% confidence intervals, whilst both
our method and the glm function converged in 100% of replications, PROC
GENMOD failed to converge in 2.4% of samples.

Since a scaled deviance of 91.92/65 = 1.41 is not adequate, we further
investigated the effect of increasing age on risk by entering it into the model
as a 46-level covariate using a flexible monotonic function, and adjusting for
the same categorical covariates as above. The adjusted age-specific risk from
this model is plotted in Figure 3, shown for the following covariate pattern:
low severity event, < 2 hour delay and Western region. The monotonic model
is compared to a model in which age is assumed to have a linear effect on
risk, as well as a model with a piecewise linear effect of age, where the risk
gradient changes at 65 years, as suggested by the shape of the monotonic
function. The linear model is clearly inadequate, having a deviance of 926.13
on 744 degrees of freedom. The piecewise linear model, however, compares
favourably to the monotonic model and has an adequate fit to the data with
a deviance of 722.36 on 743 degrees of freedom.

The parameter values and their 95% confidence intervals (estimated using
bootstrap resampling) for the piecewise linear model are shown in Table 3,
compared to those from the model with age as a simple linear covariate. Un-
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Figure 3: Age-specific risk of heart attack mortality in Example 2, using an additive
risk model fitted with addbin and adjusted for event severity, treatment delay and re-
gion. The effect of age is specified using linear (dashed), piecewise linear (dotted) and
semi-parametric monotonic (solid) regression functions. Fitted risks are presented for the
Western region with low severity event and treatment delay < 2 hours.
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Table 3: Risk differences (RD) and 95% confidence intervals (CI) from an additive risk
model with a linear age term, and those from an additive risk model with a piecewise
linear age term on the Example 2 data.

Linear model Piecewise linear model
RD 95% CI RD 95% CI

Age (per year):
40–85 0.0022 (0.0020, 0.0023) — —

40–65 — — 0.0008 (0.0006, 0.0011)
65–85 — — 0.0086 (0.0077, 0.0096)

Severity (Killip class):
I 0 — 0 —
II 0.066 (0.050, 0.082) 0.061 (0.045, 0.076)
III/IV 0.281 (0.226, 0.335) 0.269 (0.216, 0.322)

Delay:
< 2 h 0 — 0 —
2–4 h −0.000 (−0.003, 0.003) −0.001 (−0.006, 0.004)
> 4 h 0.003 (−0.002, 0.010) 0.002 (−0.005, 0.009)

Region:
Western 0 — 0 —
Latin America −0.002 (−0.004, 0.001) −0.002 (−0.008, 0.016)
Eastern Europe 0.032 (0.013, 0.052) 0.037 (0.018, 0.056)

Deviance 926.13 (744 df) 722.36 (743 df)

der the piecewise linear model, each year of age up to 65 leads to a mortality
risk difference of 0.08%, adjusted for MI severity, treatment delay and region.
After 65 years of age, this rises to a risk difference of 0.9% per year. This
illustrates that flexible monotonic regression, which is not available in stan-
dard implementations of the additive binomial GLM such as in R and SAS,
can suggest a simpler parametric form for modelling risk. In constructing
confidence intervals for the piecewise linear model, our method converged in
all 1000 bootstrap samples, whereas the glm function in R failed to converge
in one sample and PROC GENMOD in SAS failed to converge in over 20% of
samples.
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6. Discussion

We have described a computational method for estimating adjusted risk
differences using the additive binomial model. The proposed approach is
a novel combination of two existing methods, the MP transformation and
a combinatorial EM algorithm for additive Poisson regression. This leads
to a reliable procedure for computing the additive binomial MLE, which
avoids the convergence problems inherent in standard GLM algorithms such
as Fisher scoring.

Since the proposed method retains the natural additive binomial model,
it avoids the need for other approximate methods for adjusted risk differ-
ences, which require us to misspecify the outcome distribution, make addi-
tional assumptions, or classify covariates into a one-dimensional list of strata.
Furthermore, even when a standard GLM algorithm does converge for an ad-
ditive binomial model, the proposed method may still be advantageous for
auxiliary analyses such as the bootstrap, which require convergence in many
samples.

Standard algorithms such as Fisher scoring can sometimes be modified to
increase their stability. One such approach is offered by the glm2 package in
R (Marschner, 2011), which uses a modified step-halving algorithm to ensure
that the deviance will decrease at each iteration. This method converged
to the MLE for the model in Example 1, and had a greater percentage of
convergence in our simulations than the standard glm function, but still failed
to converge in some samples. An alternative to standard GLM methods is a
generic constrained optimisation algorithm applied to the additive binomial
model. For example, Kovalchik et al. (2013) recently developed a method
based on an adaptive barrier approach, which also includes the more general
LEXPIT model. However, this too failed to converge to the MLE in some of
our simulations. Importantly, our method has an advantage over all others in
that it allows for the additional flexibility of unspecified monotonic regression
functions. This allows semi-parametric adjustment of risk differences, and
can also assist in identifying the functional form of continuous covariates.

Adjusted risk differences have wide applicability in biostatistics, and this
has led to the use of the additive binomial model in real applications (e.g.
Grotvedt et al., 2008; Adelstein et al., 2011). From an individual perspective,
risk difference is often a better effect measure than relative risk or odds ratio.
Furthermore, from a population health perspective, risk difference is often
more relevant than relative measures for assessing the benefit of a population
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intervention policy. One reason for this is that the reciprocal of the risk
difference can be interpreted as the average number of individuals from the
population that need to be treated with the intervention for a given time
period to observe one fewer event within that time compared to the control,
commonly referred to as the number needed to treat (NNT) (Laupacis et al.,
1988).

In some datasets the additive binomial model may better characterise
the simultaneous contribution of risk factors to an absolute change in risk,
compared to a multiplicative model such as logistic regression. For example,
the presence of an interaction between covariates on a multiplicative scale
may disappear when their effects are considered on an additive scale, leading
to a more parsimonious model for risk.

Our method for additive binomial models has been developed with ad-
justed risk differences in mind, but this model is also appropriate in many
other situations. In epidemiology, adjusted prevalence differences from cross-
sectional studies can be estimated using the additive binomial model. Linear
probability models are also used in econometrics (Gujarati, 2003) and psycho-
metrics (Maydeu-Olivares, 2005). This suggests that the proposed method
may have broad applicability beyond our primary motivation of adjusted risk
difference estimation.
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