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ABSTRACT 

 

The land passenger transport sector lies on the cusp of a major transformation, guided by 

collaborative consumption, next generation vehicles, demographic change and digital 

technologies. Whilst there is widespread enthusiasm across the community for this nexus of 

disruptors, the wholescale implications on road capacity, traffic congestion, land use and the 

urban form remains unclear, and by extension, whether this emerging transport paradigm will 

bring a net benefit to the transport system and our communities. Some issues include the 

proliferation of point-to-point transportation, a continuation of universal vehicle ownership, 

and the demise of fixed route public transport—all envisaged by various industry leaders in 

technology and transportation. In this paper, we develop the modal efficiency framework, 

with axes representing spatial and temporal efficiency to illustrate why some of these 

developments may be geometrically incompatible with dense urban environments. We then 

investigate three potential scenarios likely to emerge and explain why they may be 

problematic with reference to this framework. Mobility as a service (MaaS) based on shared 

mobility and modal integration is then introduced as a sustainable alternative which accounts 

for the realities of spatial and temporal efficiency. Various models for implementing MaaS are 

evaluated including the distinction between commercially-motivated models (presently well 

advanced in research and development), and systems which incorporate an institutional 

overlay. The latter, government-led MaaS, is recommended for implementation given the 

opportunity for incorporating road pricing as an input into package price, defined by time of 

day, geography and modal efficiency. In amidst the hype of this emerging transport 

paradigm, a critical assessment of the realm of possibilities can better inform government 

policy and ensure that digital disruption occurs to our advantage. 

 

1. Introduction 

 

Cities, in bringing people and activities together, are an attempted solution to the 

transportation problem—reaping economies of scale from the shared use of infrastructure 

and services. This is built around sufficient population and employment densities, land use 

diversity and transit-conducive urban design—the oft-cited three Ds proposed in the classic 
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paper Cervero and Kockelman (1997). Ewing and Cervero (2010) extended these variables 

to include destination accessibility, distance to transit, demand management and 

demographics (as a confounding influence). Urban policy contravening these principles 

eventually descends into a destructive cycle, characterised by congestion and sprawl which 

ultimately dilutes the benefits of any agglomeration (Graham, 2007). Transportation and 

location choice are major inputs into the urban development process but often treated as 

exogenous in government policy and planning. 

 

New transport technologies have the potential to generate unintended consequences which 

can compromise these ideals for sustainable cities, as demonstrated by past historical 

developments. For instance, the air pollution, waste products and health implications of 

horse-based transport were replaced by more virulent externalities as combustion-engined 

motor vehicles came into being (Morris, 2007). Indeed, the existing transport paradigm can 

be traced back to Karl Benz’s Patent-Motorwagen (1885) and Henry Ford’s Model T moving 

assembly line (1908), bringing the world (despite great benefit!) universal car ownership and 

oil dependence, with implications for health and land use in encouraging urban sprawl. It is 

therefore important not to substitute an existing transport regime with a future which 

compromises the fundamental underpinnings of successful and efficient cities. 

 

The emerging transport paradigm guided by a nexus of collaborative consumption, next 

generation vehicles, demographic change and digital technologies has the potential to lead 

down a similar path. These disruptors may be regarded as a nexus because of their heavily 

complementary nature, but their direction of causality is generally unclear. The advent of 

collaborative consumption has opened up the market to intermediate modes like 

ridesourcing, microtransit and carsharing, courtesy of various TNC start-ups. Next generation 

vehicles led by autonomous and connected technologies could transform societal 

relationships with cars, and has implications for public transport provision by breaking the link 

between labour cost and service quantity. Demographic change, exhibited through a 

generational decline in emotional attachment towards cars, is making it more acceptable to 

shift from vehicle ownership to access. These trends are all underpinned by digital 

technologies which form the interface for connecting demanders and suppliers and 

facilitating the delivery of physical transportation. The implication of these future transport 

drivers on road capacity, traffic congestion, land use and the urban form are only just 

beginning to emerge and unlikely to be entirely positive, especially in the absence of strong 

regulation and control. 

 

In this paper, we will explore just what kind of future these developments may bring. Sections 

2-5 will discuss each of these disruptors in turn, reviewing recent literature and the latest 

progress from industry. Section 6 situates the plethora of new modes coming online within 

the modal efficiency framework—a tool for evaluating their spatial and temporal efficiencies 

and their role in a variety of urban environments. Section 7 then investigates three scenarios 

for modal development and implications based on this developed framework. Section 8 

proposes different spatial and temporal integration opportunities to account for the varying 

spatial and temporal efficiency realities of each mode. Finally, Section 9 introduces the 

concept of mobility as a service (MaaS), including various models of implementation and 

proposes how these may circumvent some of the described issues associated with this 
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emerging transport paradigm. 

 

2. Collaborative consumption 

 

Collaborative consumption or the sharing economy has proliferated across various sectors of 

the economy including hospitality (Airbnb), education (Italki), financing (Kickstarter), the 

labour market (TaskRabbit), property (BRICKX), in freight and passenger transportation. A 

multitude of application-based, shared mobility propositions have proliferated across both 

developed and developing countries, led (with controversy) by pioneers like Uber, Lyft, Curb, 

Didi Chuxing, Grab and Ola. These transportation network companies (TNCs) operate as 

peer-to-peer (or customer-to-customer) mutualisation schemes, challenging the traditional 

business-to-customer retail channel. 

 

2.1 Ridesourcing (and carpooling) 

 

Ridesourcing (UberX-type services also called ridehailing) has been the most prominent 

example of the collaborative consumption model where lower fares and a real time platform 

has allowed TNCs to disrupt the conventional taxi industry, with prominent impacts on the 

monopolistic pricing of taxi licences. Early evidence suggests that ridesourcing both 

competes with and complements public transport, though this depends on the exact market 

and demographic (Rayle, Dai, Chan, Cervero, & Shaheen, 2016). There also exists a range 

of commentary on the ethical implications of ridesourcing, including issues of safety, privacy 

discrimination and labour standards (Rogers, 2015). Looking to the future, Zha, Yin, and 

Yang (2016) suggest competition between TNCs do not improve social welfare in the 

ridesourcing market, instead encouraging platform mergers and for government to directly 

regulate a monopolist. Regardless of the business model, what remains to be seen is the 

impact of growing point-to-point transportation on road congestion, as vehicles circulate in 

search of trips, and passengers are drawn from more spatially efficient but less personalised 

public transport modes. 

 

Unlike ridesourcing, ridesharing1 or carpooling drivers are not motivated by fare income and 

usually share a destination with the passenger—part of a regular journey-to-work trip, for 

instance. Ridesharing has long been a popular demand management method used to 

improve urban efficiency by increasing the individual occupancy of private vehicles 

(Shaheen, 2016), which average for commuting as little as 1.2 in Australia. Digital platforms 

are now facilitating a new wave of ridesharing services (Chan & Shaheen, 2012), and there 

continues to be innovative concepts proposed or in development to further enhance ride 

matching capabilities (Amey, Attanucci, & Mishalani, 2011; Teubner & Flath, 2015). TNCs 

are also targeting this market2 though with what appears to be less enthusiasm given the 

reduced margins available as the platform operator (GrabHitch and BlaBlaCar are two 

prominent exceptions to this). Ridesourcing continues to be their largest (and original) 

market, but there is increasingly an impetus to gain scale and market (from public transport) 

through increased sharing and larger vehicles. 

 

                                                
1 Commonly incorrectly used interchangeable with ‘ridesourcing’ in both academic and popular literature. 
2 Uber’s Destination feature which matches trips towards a driver/partner-specified locality is a recent addition. 
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2.2 Microtransit 

 

Microtransit has been introduced by all major players (and other startups) using everything 

from sedans to minivans, minibuses, midibuses and even standard rigid buses. These 

vehicles are either driver-owned (UberPOOL, Lyft Line, Via) or operate as part of a fleet 

(Bridj). Whilst early schemes operated as shared taxis (carrying few individual passengers 

with on demand routes and pick-up/set-up locations), the latest schemes are emulating 

public transport through the use of larger vehicles, fixed routes and even fixed stops. These 

services are indeed digitally-enabled paratransit and collectively come under the label 

‘microtransit’—a term more common in the grey literature now gaining increased 

prominence—though others have resorted to alternative descriptors like “demand adaptive 

hybrid transit” (Frei, Hyland, & Mahmassani, 2017) and “point-via-point(s) to point” transport 

(Hensher, 2017). 

 

A stated choice investigation of end user preferences in Frei et al. (2017) found microtransit 

wait time (an ‘at-home’ pick-up location) valued at USD 11.30 per hour—significantly lower 

than the typical disutility at bus stops, indicating the highly desired feature (and growth 

opportunity) of door-to-door, point-to-point transportation. There is so much interest in these 

concepts that even conventional public transport operators are exploring options to ‘uberise’ 

their services (for instance, RATP’s bookable bus service Slide Bristol). The growth of 

microtransit, however, poses a major threat for the survival of conventional bus operations 

and the existing model of remuneration for bus operators (see Section 7). 

 

2.3 Carsharing (and cycle hire) 

 

Another recent collaborative model for transportation is carsharing—the short-term rental of 

vehicles and a growing phenomenon across developed economies. These schemes may be 

either peer-to-peer (Car Next Door) or fleet managed, the latter run initially as return-to-base 

systems (GoGet), but now also as one-way and free-floating schemes (Car2Go). Carsharing 

has grown year-on-year in terms of members and vehicles, and expanding in geographic 

reach from the highest density urban centres to more marginal suburban locations (Shaheen 

& Cohen, 2013). Many carsharing schemes, however, remain dependent on commercial 

subsidies, supported by automobile manufacturers driven by their interest in bringing higher 

value vehicles into the market. 

 

Whilst round-trip carsharing allows far more flexibility for users to book in advance (Zoepf & 

Keith, 2016), it is free-floating schemes (i.e., Car2Go-type systems) which are currently 

exhibiting the largest rate of growth. Such one-way schemes, however, continue to suffer 

from redistribution issues (as do cycle hire systems), but new concepts like the Easily 

diStributed Personal Rapid Transit (ESPRIT)3 (with investment from public transport 

operators Keolis and First) are being developed which can couple individual vehicles (or 

rather, ‘pods’) to facilitate more effective operator redistribution. There is much interest here 

in optimising one-way distribution in urban areas and providing first/last mile transport to 

mass transit nodes in suburban environments. There is also a focus on the role of user 

incentives like free journeys to encourage users to redistribute vehicles within the system. 

                                                
3 See http://www.esprit-transport-system.eu. 

http://www.esprit-transport-system.eu/
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ESPRIT constitutes an early market initiative as the advent of autonomous vehicle 

technologies will eventually alter this paradigm significantly. 

 

Other innovative modes of travel include cycle hire (either return-to-base or roaming) and 

driver-sourcing (a form of designated driver hire)—both serving more niche markets with 

limited availability in Australia. A new generation of dockless cycle hire has gained interest 

around the world since its recent proliferation across East and South-East Asia. In Australia, 

Melbourne has embraced Singapore's oBike4, whilst Sydney has launched its own scheme 

Reddy Go5, backed by China's Bluegogo. One major concern with deployment is in ensuring 

that bicycles are properly parked and that riders comply with road rules—both major issues 

from the Asian experience. 

 

3. Next generation vehicles 

 

The emerging transport paradigm is also being driven by new transport technologies—often 

the myopic focus of many commentators in media and government. Autonomous vehicle 

technologies represent the greatest transformation of the transport network since the advent 

of the automobile, with flow-on effects on virtually all other sectors of the economy. Recently, 

there are also forays into autonomous vertical take-off and landing aircraft with the view of 

using them for urban point-to-point transport—moving the urban passenger transport debate 

beyond the surface dimension. 

 

3.1 Autonomous and connected vehicles 

 

Autonomous and connected vehicles offer the potential for operational savings, increased 

road capacity, safety and social inclusion. Record investments from automobile 

manufacturers (Tesla, Audi), technology giants (Google, Apple) and TNCs (Uber, Didi 

Chuxing) are already making these technologies a reality. Debate rages, however, on the 

path towards autonomy, its impact on congestion and implications for car ownership. The 

transitional phase towards vehicle automation with autonomous and manually-driven 

vehicles operating in mixed traffic is particularly challenging. Whilst the safety benefits of full 

automation are unquestionable, with one estimate expecting traffic accidents to reduce by up 

to 90 percent (Bertoncello & Wee, 2015) (heralded as the greatest health achievement of the 

century), research has shown that semi-autonomous vehicles are likely to be more 

problematic6 as drivers showed slower response times to hazards and displayed a tendency 

to overcompensate when any driving correction was required (Shen & Neyens, 2017). 

 

Given these issues, there is an expanding literature on the acceptability of driverless cars, 

primarily through the use of stated choice techniques (Kyriakidis, Happee, & de Winter, 

2015). Payre, Cestac, and Delhomme (2014), for instance, found 68 percent of respondents 

(n=421) willing to use autonomous vehicles, with particular interest in applications on 

motorway environments, in traffic congestion and for parking. Daziano, Sarrias, and Leard 

                                                
4 See https://www.o.bike/au.  
5 See http://www.reddygo.com.au. 
6 The high-profile crash of a Tesla S on Autopilot is a case in point, and demonstrates the moral hazard issues in 
play. 

https://www.o.bike/au
http://www.reddygo.com.au/
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(2017) found people’s willingness-to-pay for full automation technologies at USD 4900 

(n=1260). Research is also continuing on the user acceptability of automated public 

transport, including on heavy rail (Fraszczyk & Mulley, 2017) and autonomous buses (Piao et 

al., 2016). Transport operators like Transdev and Keolis (as well as bus manufactures) are 

looking into driverless minibuses and have already introduced pilot schemes (in closed 

environments with a supervisor on board at all times) around the world (e.g., Perth, 

Singapore, Paris). A prominent issue is how users’ knowledge of whether their service is 

driverless influences their preferences and support for automation. Coupled with the need to 

garner community support are the legislative and regulatory reforms required, including 

updating legal and liability models designed for another era (Glancy, 2015; Sun, Olaru, 

Smith, Greaves, & Collins, 2016). 

 

3.2 Ownership models and implications 

 

Autonomous vehicle technologies have been said to improve travel flow and throughput 

(Talebpour & Mahmassani, 2016), premised on reducing headway (distance between 

vehicles), narrowing lane widths, optimising lane merges and development of autonomous 

intersection management to facilitate the most efficient junction movements without the use 

of traffic signals (VanMiddlesworth, Dresner, & Stone, 2008). On some estimates, full 

automation can, in an ideal scenario7, increase throughput by nearly 500 percent over the 

status quo (Fernandes & Nunes, 2012)8. What remains unclear, however, is its net impact on 

congestion as the urban form morphs to reflect this increased accessibility. Induced demand 

will also arise from (i) existing drivers as the time freed en route may encourage them to 

travel further (related to location choice over the medium and long term) and more often; (ii) 

from non-drivers (Harper, Hendrickson, Mangones, & Samaras, 2016), either by choice or 

circumstance despite it being positive for social justice and transport equality; as well as (iii) 

from the influx of zero-occupancy vehicles deadheading to avoid parking or to reposition for 

their next trip. On-street parking (accounting for 30 percent of road space by some 

estimates) may also be eliminated or greatly reduced to increase road capacity, further 

inducing traffic. This also applies to off street parking (according to Ben-Joseph (2013), 

accounting for more than one third of land use in some American cities), which if eliminated 

will result in higher urban densities and more demand for travel. 

 

Perhaps the greatest unknown, however, is the likely future ownership model for 

autonomous vehicles, which will determine the number of vehicles in the system and the 

proportion of time vehicles are spent out on the road. Some have suggested that due to their 

high cost, autonomous vehicles will be deployed to TNCs or mobility service providers first 

(Davidson & Spinoulas, 2016), who will likely desire greater returns through higher use 

(providing automated taxi services) as compared with individuals (the existing paradigm 

being private vehicles lying idle 95 percent of the time). Others propose an own and share 

model (Musk, 2016), where privately-owned Teslas will be available for autonomous 

ridesourcing when not in use (see additional discussion in Section 7.1). Finally, outright 

ownership models similar to the status quo are also in play premised on people’s reluctance 

to share. A hybrid model featuring a mix of these owners is likely to emerge, depending on 

                                                
7 Based on motorway travel at 120 km/h. 
8 See results of alternative modelling based on Lisbon, Portugal in Section 7.1. 
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user characteristics. For instance, Arbib and Seba (2017) suggests that by 2030, 40 percent 

of cars will still be privately owned, but account for just five percent of vehicle kilometres 

travelled, recognising the many car enthusiasts in the community as fleet managed vehicles 

(with an order of magnitude fewer vehicle count per capita) ply the system delivering 

transport for the masses. 

 

3.3 Other technological developments 

 

Closely coupled to vehicle automation are other technologically-led innovations which will 

transform the urban passenger transport sector. New vehicle propulsion technologies and 

the electrification of road transport will further revolutionise the industry. Electrification is 

unlikely to alter the geometric paradigm of ownership models and travel behaviour 

implications, although if they were linked to household power production (e.g., by supplying a 

top up function), there may be a need for greater vehicle ownership across the community. 

There are now even forays into the third dimension, with Uber’s Advanced Technologies 

Group investigating how vertical take-off and landing aircraft, supported by ‘vertiports’ can 

play a role in future urban transportation (Uber, 2016). The group envisages that under its 

ridesharing model, on demand aviation can become sufficiently affordable and attractive as a 

form of daily transportation for the masses. 

 

Similar thinking has also taken hold at Airbus, where futurists and engineers have been 

developing three products—Project Vahana, a software platform for booking urban air 

mobility; Skyways, unmanned drones for freight transportation; and CityAirbus, a flying taxi 

prototype for passengers. These forays are all led by A³, the company’s Silicon Valley 

research outpost aiming to define the future of flight (Airbus, 2016). Whilst there is significant 

interest in these propositions, and the merits of sacrificing low altitude airspace for freight 

and passenger transportation must be reexamined, the same questions regarding 

technological implications for vehicle kilometres travelled and the proportion of travel under a 

zero-occupancy setting will continue to arise. Regulations will be required surrounding new 

safety challenges as well as to minimise externalities on the urban realm (perhaps only 

permitting flight above existing roads below a certain altitude?). 

 

4. Demographic change 

 

Some of the sharing models described are contingent on demographic change and a shift in 

thinking across the community on shared mobility and vehicle ownership. Whilst obtaining a 

driver licence and owning a vehicle were once a ‘rite of passage’ for teenagers; this 

aspiration, despite great inertia, is quickly changing. Some say that baby boomers obtained 

freedom through their cars, whilst millennials seek freedom through mobile communication 

devices, and that the percentage of young drivers is inversely proportional to the availability 

of the internet. There is evidence of youth licensing decline across developed economies, 

though Delbosc and Currie (2013) suggests that this may be more the result of increasing 

educational participation and decreasing full-time employment rates, rather than attitudinal 

changes in cars no longer being a status symbol, nor ideology around climate change and 

sustainability. Indeed, Australia leads in youth licencing decline, though this has not 

translated to reducing the quantity of registered passenger vehicles per capita (Mulley, 

2017). Other authors, however, have found that millennial changes in car ownership attitude 
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and the use of virtual media can, for instance, account for some 35-50 percentage drop in 

driving in the United States (McDonald, 2015). 

 

Millennials and young consumers are also the driving force behind the growth of the access 

or collaborative economy, willing to rent goods and services on demand rather than acquiring 

them permanently. Intermediate modes of transport imply a higher level of personal intimacy 

than mass transit—a psychological barrier for some users (Gardner & Abraham, 2007). 

Importantly, is the distinction between millennials’ disposition to share on social media and 

their propensity to share personal space. A final demographic factor relates to an aging 

population, with increasing life expectancies leading to a greater proportion of dependents 

who can no longer drive (Shergold, Lyons, & Hubers, 2015). Whilst these demographic 

factors appear to point towards the right direction, positive network effects are far from 

guaranteed, particularly in conjunction with other factors in this emerging transport paradigm. 

 

5. Digital technologies 

 

The aforementioned drivers of collaborative consumption, next generation vehicles and 

demographic change are all predicated on the digitalisation of the economy—its significance 

hailed as the fourth industrial revolution. Any collaboration consumption model is contingent 

on a broker and an application interface which can bring demanders and suppliers together 

in real time. Autonomous and connected vehicles are digital technologies in themselves, 

aided by intelligent transport systems, the internet of things and big data analytics. Finally, 

demographic and attitudinal change accompany the emergence of digital technologies, 

though the direction of causality is less clear. The emerging transport paradigm constitutes a 

rare and unpredictable technological revolution, against a backdrop of incremental advances 

and social equilibrium—a standard pattern of evolution described in Dokko, Nigam, and 

Rosenkopf (2012). This technology-push force works in conjunction with market or demand-

pull forces (Coombs & Richards, 1991), hence the recurring theme around user testing new 

propositions. These digital technologies offer the potential for more efficient vehicle use, 

optimising transport networks, better utilising infrastructure and delivering a more seamless 

customer experience (Kamargianni & Matyas, 2017). These outcomes, however, are not 

guaranteed—as technology does not drive change, but rather, technology only enables 

change (Mulley, 2017). Appropriate regulatory structures and other mechanisms must 

therefore be in place to guide these forces and secure the desired outcomes for society. 

 

6. Implications for urban efficiency: The modal efficiency framework 

 

The preceding literature review raises important questions on the impacts of this emerging 

transport paradigm on travel behaviour, vehicle ownership and urban efficiency. Specifically, 

the advent of collaborative consumption is leading a push towards smaller and more flexible 

(point-to-point) modes of transport. Questions remain surrounding the sustainability of 

various business models, and their impacts on the urban realm. How will public transport 

patronage (and thereby funding) and private car ownership be affected? What are the 

implications for these intermediate modes as autonomous vehicle technologies come online? 

What are the wholescale impacts of this emerging transport paradigm on road capacity, 

traffic congestion, land use and the urban form? To answer these questions, it is necessary 

to consider the plethora of new transport modes (including distinct ownership models) 
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enabled by various digital disruptors and develop a framework with which to evaluate their 

suitability for a variety of urban environments. 

 

Table 1 organises the collection of new mobility options (intermediate modes) introduced in 

Sections 2-3 according to relevant attributes as part of this emerging transport paradigm. 

Naturally, the full range of service possibilities cannot be considered within the constraints of 

this paper, but the focus will be on some of the major forces, their implications for urban 

efficiency, and a potential integrative transport solution which can help circumvent arising 

externalities and optimise this future transport landscape. 

 

Table 1: Existing and emerging intermediate urban passenger transport modes 

defined by various attributes 

Mode Product Ownership 
Relevant 
Attribute 

Example(s)9 

Road (Manual) Cycle Hire 

Fleet 

Station-Based 
Melbourne Bike 

Share 

Roaming oBike 

 
Road 

(Motorised) 

Ridesourcing 

Point-to-Point 
Taxi, UberTaxi, 

GrabTaxi 

Peer-to-Peer 

Point-to-Point UberX, GrabCar 

Point-to-Point 
(Luxury) 

UberBLACK, 
UberLUX 

Driver-sourcing Point-to-Point Didi Chauffeur 

Ridesharing 
(Organised) 

Destination-
Based 

Co-Hop 

Ridesharing 
(Casual) 

UberCOMMUTE 

Social GrabHitch 

Microtransit 
(Point-via-
Point(s) to 

Point) 

Commercial 
UberPOOL, 

GrabShare, Lyft 
Line 

Fleet 

First/Last Mile Didi Minibus 

Fixed Route 

UberHOP, Didi 
Bus, 

GrabShuttle, 
Lyft Shuttle 

Fixed Route 
(Luxury) 

Leap, SuitJet 

Carsharing 

Round-Trip GoGet 

One-Way Car2Go 

One-Way 
(Coupled) 

ESPRIT10 

Peer-to-Peer 

Round-Trip Car Next Door 

Road 
(Autonomous) 

Automated Taxi 

Point-to-Point 

Autonomous 
Tesla10 

Fleet 

nuTonomy 

Air (Motorised) Helicopter UberCOPTER 

Air 
(Autonomous) 

Flying Taxi 
Uber Elevate10, 

CityAirbus10 

                                                
9 Australian examples are used where possible and shown in italics. 
10 Under development—services not yet in commercial operation. 
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The efficacy of various transport modes can be considered with reference to their spatial and 

temporal efficiencies—their ability to reap economies of scale by delivering maximum 

transportation across space (carrying multiple people per unit area) and time (providing 

mobility rather than lying idle). To consider the implications of the emerging transport 

paradigm for urban efficiency, it is necessary to develop an ordinal measure for modal 

efficiency in terms of spatial and temporal efficiencies. In this spirit, the modal efficiency 

framework (Figure 1) situates public, private and intermediate modes in each quadrant within 

a space-time plane defined by axes representing spatial and temporal efficiencies. Spatial 

efficiency is defined as passengers per vehicle/train consist (or per unit road space) whilst 

temporal efficiency can be considered as the proportion of time a vehicle spends on the road 

(in revenue service for public transport). Axes scales are estimated and intended to be 

illustrative only. 

 

Public transport (or specifically, mass transit), is both spatially efficient in bringing large 

numbers of people onto a single vehicle11, as well as temporally efficient, by providing 

service around the clock12. Conventional taxis are temporally efficient but not spatially 

efficient, and constitute the sole intermediate mode which has prospered without the aid of 

digital technologies. Private transport like the car is neither spatial nor temporally efficient, 

with an average occupancy of 1.2 people per vehicle (for journey-to-work) and spending 95 

percent of the day idle (parked either at home or at a destination). Intermediate modes which 

have recently emerged or are currently in development (with a selection of the most 

prominent propositions from Table 1 featured) are less spatially efficient, but have the 

potential to be temporally efficient through shared models of ownership—for example, by a 

TNC or mobility provider. As expected, there is a direct correspondence between the spatial 

efficiency axis and vehicle occupancy (sole, shared or mass) and between the temporal 

efficiency axis and the ownership model (private, peer-to-peer or fleet managed) of vehicles 

or the service. 

 

                                                
11 A caveat is an empty bus scenario. 
12 The extent of this across the fleet can be measured by metrics such as the operational peak-to-base ratio. 
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Figure 1: The modal efficiency framework situating public, private and intermediate 

modes with respect to their spatial and temporal efficiencies—mobility as a service 

(MaaS), to be introduced in Section 9, offers an integrative solution bringing together 

temporally efficient modes across a range of spatial efficiencies 

 

7. Future scenarios for modal development 

 

Whilst Sections 2-3 and Table 1 introduced a plethora of emerging intermediate modes 

enabled by digital technologies, this section looks to how these modes may further transform 

or converge. Their development is evaluated with greater specificity and with reference to the 

modal efficiency framework. Three potentially problematic scenarios have been proposed by 

the authors—(1) modal convergence towards an automated taxi service, (2) microtransit 

displacing and replacing fixed route public transport, and (3) microtransit evolving into fixed 

route public transport. One nuance is how models (2) and (3) may differ between first/last 

mile and trunk public transport which will feature in the subsequent discussion of Section 8. 

 

7.1 Modal convergence to automated taxi service 

 

Automated taxis (also known as driverless taxis, robo-taxis or taxibots) have garnered great 

interest in both academic and popular literature, and are often regarded as a panacea for 

urban passenger transportation by being able to deliver point-to-point services at low cost. 

The exact cost and service differential relative to public transport and private cars will likely 

determine its take-up and market share. Some authors, however, see an automated taxi 
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service becoming the sole mode of transport available in the long term. Enoch (2015), as a 

prominent example, envisages a model where buses (due to the desire for point-to-point 

service), cars (due to externalities) and taxis (due to a desire for lower cost) converge to 

become a universal automated taxi system. Stated preference work like Krueger, Rashidi, 

and Rose (2016) attempt to predict the possibilities and impacts on travel behaviour. Whilst 

Enoch (2015) recognises the issue with urban sprawl and increased vehicle kilometres 

travelled, he ignores road space as a scarce commodity in dense urban environments. Point-

to-point transportation is by definition low volume and associated with sole or low occupancy 

vehicles which take up more road space per passenger transported (being less spatially 

efficient)13. Further, autonomous vehicle technologies will bring the problems of induced 

demand as introduced in Section 3.2. 

 

The Enoch (2015) modal convergence hypothesis is premised on a taxi model (operated by 

a mobility provider) which is far more temporally efficient than an ownership model where 

vehicles owned by individuals continue to dominate the mobility paradigm. More intriguing is 

an own and share model, as suggested by Musk (2016), where autonomous vehicles 

(Teslas) are owned privately but hired out when not in use for ridesourcing. Temporal 

efficiency in this case will depend on the proportion of the population owning vehicles, which 

by extension determines the demand for ridesourcing and the relative amount of time these 

vehicles will spend deadheading. Peaking issues also come to mind where there will either 

be an abundance of empty vehicles or a lack of vehicles providing ridesourcing services out 

on the road14. 

 

The system design, operation and congestion impacts of an automated taxi service regime 

has been the subject of some very advanced modelling. A recent study (Martinez & Crist, 

2015) conducted by the International Transport Forum in Lisbon, Portugal found that under a 

sole passenger driverless taxis scenario with 92 percent mode share (the other 8 percent on 

active modes with 0 percent using public transport), only a quarter of the existing car fleet will 

be required—though these will be used far more efficiently across time, doubling current 

vehicle kilometres travelled. This model also suggested that there would be only a minor 

increase in average travel times, based on the proposition that less than 40 percent of 

Lisbon’s roads were used in peak periods. Further investigation revealed that distributors will 

see traffic increase by 76 percent and local roads by 115 percent, disregarding the road 

hierarchy and turning over communities where pedestrians ought to have priority to 

motorised modes, bringing associated noise, air and urban amenity externalities. 

 

7.2 Microtransit displaces and replaces fixed route public transport 

 

The growth of microtransit can be attributed to a broader desire to provide more personalised 

service than conventional public transport, which features an access/egress component to 

and from the public transport stop or station, set schedules, and often less direct routing. 

                                                
13 Even accounting for the likely headway reduction enabled by full autonomous vehicle deployment. 
14 Similar to the developing world paratransit experience where there is either an oversubscription (too many 
vehicles) or overcapacity (not enough vehicles)—due to vehicle drivers operating as individual agents (not 
coordinated as part of a system) and the lower capacity of paratransit vehicles (leading to less latent capacity to 
meet peak demand). 



A case for mobility as a service (MaaS) 

Page 13 of 24 

Intermediate modes first emerged many decades ago as “unconventional modes” (Nutley, 

1988), filling both a welfare obligation (as community transport to the disabled and elderly), 

and to fill a gap in service to compete with the private car. Many such flexible transport 

services (including dial-a-ride) have been driven by the impetus to reduce the cost of public 

transport provision, especially during evening and weekend periods when many services run 

empty15. The use of smaller vehicles is generally not a motivation because of the extra fleet 

which would be required (Walker, 2012). 

 

Dedicated systems with their own right of way have even been proposed or implemented—

like the Cabinentaxi (Hesse, 1972), and more recently, the Masdar Personal Rapid Transit—

without great success, despite initially seen as the future of urban passenger transportation 

(much like automated taxis are today). The growth of microtransit also has links with 

developing world paratransit16, ubiquitous across Africa, south Asia and Latin America. 

These services have long been regulated out of developed countries, with Hong Kong being 

a prominent exception where public light buses have been integrated within the public 

transport regulatory framework (Lee, 1989). There is a strong parallel between TNCs 

providing ridesourcing and microtransit with (for instance) South African minibus taxis, which 

have proven to be a sustainable business model. Both utilise independent contractors driven 

by the profit motive, though the microtransit model is enabled by digital technologies which 

better connect demanders and suppliers. 

 

In the same way that minibus taxi associations have been able to force out conventional 

fixed route public transport (buses) in South Africa, albeit under a lapse in regulation, 

enforcement, and with incredible violence; TNCs may pick the cream and begin to undercut 

heavily profitable bus routes. One major issue is the unfair playing field as TNCs do not own 

their own fleet, have no social obligation to provide service, and do not treat their 

driver/partners as employees (with related on-costs like worker’s compensation). As the 

destructive cycle begins, governments will have less impetus to subsidise increasingly costly 

public transport—further accelerating its decline. Microtransit working in competition with 

mass transit provides point-to-point transportation, abolishing connections to “take people all 

the way to their destination” (Musk, 2016). People will stop feeding into buses and buses 

stop feeding into railways (towards more spatially efficient modes), but rather, use smaller 

vehicles to travel directly to their destination. The result of smaller vehicles is significantly 

greater vehicle kilometres travelled (with implications on emissions and congestion) and less 

impetus for developing transit-conducive urban design (and hence reaping the agglomeration 

economies of cities). There will also be the issue of replacing the current access/egress 

component in terms of the walk to public transport stops or stations with motorised transport, 

with impacts on health and social inclusion. These hypothesised impacts depend on 

commuters’ willingness-to-pay for a more personalised service and the fare differential 

between microtransit and conventional public transport. Stated choice experiments like Frei 

et al. (2017) constitute one way for establishing this future. 

                                                
15  Canberra’s Flexibus (since discontinued due to difficulty coordinating inbound pick-ups) and their recent 
BusPlus proposal (cancelled before implementation) are such examples attempting to reduce cost. 
16 Paratransit in the developing world refers to flexible transport services, usually with small and medium-sized 
buses not following fixed routes and schedules—different to the United States where use of the term is 
associated with transport for the disabled, as required by law. 
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7.3 Microtransit evolves into fixed route public transport 

 

Whilst there are proponents of flexible bus services (in effect, microtransit), their efficiency 

and scalability remains questionable and the wholescale removal of fixed stops, routes and 

timetables ignores the intrinsic value in accessibility. The future of microtransit can again be 

related to the history of minibus taxi development in South Africa (as an example). What 

began as sedans offering shared taxi services in townships slowly grew in size to become 

combis and minibuses, developing increasingly fixed route structures during this process 

(McCaul, 1990). In major town centres, there are even designated stops where customers 

are encouraged to board and alight. In many ways, these paratransit services operate as 

fixed route buses with ‘fill-and-go’ and ‘crawling’ behaviour as opposed to set schedules 

(Behrens, McCormick, & Mfinanga, 2015). 

 

This development confirms the operational merits of fixed route public transport, as reflected 

by increasing instances of microtransit taking on a more rigid form. Uber Smart Routes, for 

instance, offers a discount for customers walking to a major arterial to access their 

UberPOOL. Indeed, there are benefits to meeting points in ridesharing systems (Stiglic, 

Agatz, Savelsbergh, & Gradisar, 2015; Teubner & Flath, 2015), due to the economies of 

scale achieved at each stop. New services like UberHOP even use bus-sized vehicles and 

charge fixed prices much like conventional buses. CityMapper, an application developer, 

recently launched Smartbus, using midibuses on a crowd-sourced fixed route in Central 

London. These trends suggest a possible alternate future for urban efficiency, though the 

issue of a level playing field once again emerges as the demise of government 

operated/subsidised services brings externalities for the labour market and issues for social 

inclusion. 

 

8. Spatial and temporal integration opportunities 

 

Ultimately, each mode constitutes a trade-off between various attributes, including service 

quality and quantity (e.g., comfort, an ability to personalise travel space, speed, reliability, 

directness), with spatial and temporal efficiency. The modal efficiency framework (Figure 1) 

constitutes one attempt at explaining why some of these emerging transport modes and 

scenarios for their subsequent development may be geometrically incompatible with dense 

urban environments. Clearly, there is time and place for each mobility proposition, and an 

integrated system is required to deploy the most appropriate mode for each urban 

environment, consistent with the policy objectives of government. Modal integration will 

ensure that the transport system is network efficient, not just efficient for each mode or 

operator. For instance, ridesourcing or microtransit, whether manually-operated or 

autonomous (Ohnemus & Perl, 2016) can provide first and last mile connections in suburban 

locales to mass transit corridors which service the densest urban environments (Shaheen & 

Chan, 2016). 

 

This is especially important given the trend towards the consolidation of bus routes for higher 

frequency, increased stop distances and reduced coverage services (Nielsen et al., 2005; 

Walker, 2008). The success of Metrobus in Sydney (Ho & Mulley, 2014), Smartbus in 

Melbourne, and growth of other branded bus services (Devney, 2011) are cases in point. 
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Such trunk and feeder systems, with a divergence in service (mass transit on thriving 

arterials and dense locales; microtransit or ridesourcing in marginal environments) meets the 

spatial constraints of the urban realm. Indeed, the intermediate modes outlined in the modal 

efficiency framework ought only be deployed where there is a cost advantage and 

geographic impetus for such services. 

 

Whilst trunk and feeder systems constitute a spatial integration of public and intermediate 

modes, there also exists the opportunity to integrate across the temporal dimension of 

transport service provision. All modes of transport seek to meet peak demand (Walker, 

2012), when roads are most congested and public transport most crowded. For public 

transport agencies, peak demand defines vehicle requirements, vehicle capacities as well as 

staffing levels (Vuchic, 2005). Peak transport costs are highest as these additional vehicles 

are procured and personnel employed to service peak periods exclusively (De Borger & 

Kerstens, 2007; Walker, 2012), sitting idle and unproductive at other times of the day. There 

exists a significant negative correlation (Nolan, 1996) between the peak-to-base ratio17 and 

technical efficiency in the use of resources, through impacts on service scheduling (García 

Sánchez, 2009; Iseki, 2010). The temporal efficiency of public transport as defined in the 

modal efficiency framework is hence a function of its operational peak-to-base ratio, with 

temporal integration between public and intermediate modes offering the potential to further 

enhance temporal efficiency. 

 

There is again a link with the South African experience, as minibus taxis operate illegally and 

compete on road with new bus rapid transit systems18, despite having been compensated by 

government to exit the market. These illegal entrants operate essentially as a top up service 

on the bus rapid transit base load19, representing a form of temporal integration and saving 

30-40 percent in bus rapid transit peak vehicle requirements (personal communication: 

Transport and Urban Development Authority, City of Cape Town, 14 February 2017). 

Similarly, digitally-enabled intermediate modes can provide a top up service to the 

conventional public transport base load in developed economies (Figure 2), saving peak 

service costs. One weakness with this model is that it outsources the most expensive (peak) 

service to independent contractors, bringing potential issues in the social dimension (Rogers, 

2015). Work has also been done plotting the distance decay function for temporal variation in 

transit patronage—namely, how the patronage peak-to-base ratio varies with increasing 

journey distances (Wong, 2015). This suggests that there are particular geographic contexts 

where this model of temporal integration is most applicable and useful for maximising urban 

efficiency. 

 

                                                
17 Defined as the quotient of peak vehicle requirements and vehicle requirements in the inter-peak (usually 
calculated at midday). 
18 Rea Vaya in Johannesburg and MyCiTi in Cape Town as examples. 
19 This compares with the traditional model where minibus taxis service the base load and conventional buses 
provide the top up (forced out due to taxi violence and intimidation), completing perhaps two trips per day and 
representing a very poor utilisation of resources. 
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Figure 2: Potential model for temporal integration between public transport and 

intermediate modes, based on the South African bus rapid transit / minibus taxi 

integration experience (base diagram from Walker (2012: 77)) 

 

Spatial and temporal integration objectives necessitate an integrated transport regime which 

brings together public transport and intermediate modes. There already exists an abundance 

of literature on transport integration (Chowdhury & Ceder, 2016; Grotenhuis, Wiegmans, & 

Rietveld, 2007; Mulley & Moutou, 2015; Preston, 2010), mainly surrounding customer 

preferences, government policy and regulatory structures. Theoretical antecedents for 

integration are based around search economies, enhanced customer satisfaction and an 

improved total image for business (Guiltinan, 1987). However, existing integration appears to 

be centred around different public transport modes (bus, rail, etc.), and are only just 

beginning to incorporate emerging intermediate modes of transportation. Exceptions include 

cycle hire schemes which are prominent in Europe and park and ride facilities which attempt 

to bring together public and private modes of travel. 

 

New partnerships are now being developed between city authorities, public transport 

operators and TNCs in the United States (see different tiers of partnership proposed in 

Campbell (2016)) and also Australia (Canberra’s Night Rider being a national first), in terms 

of providing first/last mile connections to and from fixed route public transport. Various 

transport smartcards (e.g., Oyster in London) are seeing their functionality extended to 

encompass access to carsharing services (Kamargianni, Li, Matyas, & Schäfer, 2016). 

Integrated mobility services (Hinkeldein, Schoenduwe, Graff, & Hoffmann, 2015) can 

circumvent some of the potential externalities associated with the emerging transport 

paradigm—such as a proliferation of zero occupancy vehicles autonomously roaming the 

network, or a destructive cycle where mass transit is increasingly replaced by less spatially 

efficient point-to-point transportation.  

 

9. A case for mobility as a service (MaaS) 

 

Mobility as a service (MaaS) offers an integrative solution which brings together temporally 

efficient modes across a range of spatial efficiencies (Figure 1), thus incorporating both 

public and intermediate modes of transportation (private transport being provided through 
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sharing). Also known as transport as a service (TaaS)20, combined mobility, integrated 

mobility or mobility services, MaaS can be defined as a personalised, one-stop travel 

management platform digitally unifying trip creation, purchase and delivery across all modes. 

MaaS is growing increasingly mainstream in both theory and practice, with a bourgeoning 

literature base (Table 2) and innovative trials underway around the world (e.g., Helsinki, 

Birmingham). 

 

A major component in the design and implementation of MaaS are the three Bs bundles, 

budgets and brokers (Hensher, 2017). A key innovation in MaaS is the ability for customers 

to purchase ‘bundles’ of mobility which grant them a defined volume of access to each 

mode for a specified level of service. This opens up an opportunity for the mobility provider of 

such integrated system to (in real time) price people21 away or towards certain routes/modes 

per time of day, and even completely degenerate a trip. Budgets relate to end user 

preferences and service provision possibilities. A key consideration concerning the take up of 

MaaS or shared mobility accessed as a service is the willingness of people to move from low 

marginal cost transport—i.e., vehicle ownership, where the cost of purchase (and sometimes 

even maintenance and government charges) are perceived as ‘sunk’—to high marginal cost 

transport, where one pays the true (private) cost per trip or period of time. Stated choice 

investigations in Matyas and Kamargianni (2017) and Ho, Hensher, Mulley, and Wong (2017) 

offer welcome insights into the community’s willingness-to-pay for mobility packages, helping 

forecast demand, estimate mode shares and inform the design of MaaS for either 

commercial viability or societal optimality. Finally, brokers refer to the business models 

around which MaaS will be delivered, including the potential for new entrants (from non-

mobility suppliers like technology startups, banks and property developers) and implications 

on existing public transport contracts (Hensher, 2017). 

 

Table 2: Academic literature (journal articles and research theses) to date specific to 

mobility as a service 

Publication Principal Technical Topic Nature of Analysis 

Mulley (2017) Implementation and scalability of mobility as a 
service 

Editorial 

Matyas and 
Kamargianni (2017) 

Stated choice investigation on demand for 
mobility as a service packages 

Empirical (London, 
United Kingdom) 

Kamargianni and 
Matyas (2017) 

Potential business models for delivering 
mobility as a service 

Think piece 

Hensher (2017) Future of public transport contracts under 
mobility as a service 

Think piece 

Sochor, Karlsson, 
and Strömberg 

(2016) 

Travel behaviour impacts of mobility as a 
service, based on ex-ante and ex-post 
questionaries and interviews with users 

Based on data from 
Sochor, Strömberg, 

and Karlsson 
(2015) 

Mukhtar-Landgren 
et al. (2016) 

Institutional requirements for implementing 
mobility as a service 

Think piece 

Kamargianni et al. 
(2016) 

Integration opportunities and evaluation of 
existing mobility as a service schemes 

Literature review 

                                                
20 In the United States. 
21 Akin to off-peak fare discounts on public transport (but in real time, across all modes of travel and to more 
temporal specificity)—Uber’s Surge Pricing is perhaps a more salient (yet controversial) example. 
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Giesecke, Surakka, 
and Hakonen 

(2016) 

Conceptual issues in mobility as a service 
implementation for users, infrastructure and 

sustainability 

Think piece 

Brendel and 
Mandrella (2016) 

Information system requirements for mobility 
as a service 

Literature review 

Sochor et al. (2015) Stakeholder expectations on mobility as a 
service, based questionnaires and interviews 

with users, the mobility provider and 
government 

Empirical 
(Gothenburg, 

Sweden) 

Rantasila (2015) Potential impacts of mobility as a service on 
land use 

Interviews 
(Helsinki, Finland) 

Hu, Giang, Shen, 
Leung, and Li 

(2015) 

Evaluation of mobility cloud service for smart 
transportation 

Product evaluation 

Heikkilä (2014) Government interest in mobility as a service 
and industry transition opportunities 

Think piece 

 

A major omission based on a comprehensive review of the MaaS literature (Table 2) 

concerns the theoretical rationale for implementing such an integrated mobility product. 

Whilst the user benefits in terms of true competition with vehicle ownership (transforming 

mobility based on asset ownership to one where it is consumed as a service) and a 

seamless customer experience, as well as the benefits for service providers by improving the 

capacity utilisation of their vehicles and opening up new opportunities for forward-thinking 

businesses are well developed, there remains limited recognition in terms of the societal 

imperative for MaaS. An emerging transport paradigm driven by the range of digital 

disruptors developed in this paper will bring a variety of externalities which MaaS can help 

circumvent. The potential here, however, depends on the exact service delivery model or 

broker-government interface for MaaS. 

 

At present, MaaS is being implemented in a (somewhat) policy vacuum, driven by the market 

with limited government interference. Companies like MaaS Global and bodies such as 

MaaS Alliance (both of which constitute cross-sector industry collaborations) are driven by a 

commercial imperative which may or may not align with government goals for transport and 

land use. As an example, intermediate modes are usually more lucrative operating with 

higher margins (profits) than heavily subsidised public transport operators whose businesses 

are generally very marginal. As a result, there may be greater substitution in these MaaS 

schemes from public transport towards intermediate modes (consistent with all scenarios 

developed in Section 7). Under this economically deregulated model, there may be the 

opportunity to move from self-regulation towards government acting as an independent 

regulator similar to the Office of Rail and Road (ORR) and the Water Services Regulation 

Authority (Ofwat) in the United Kingdom, to define conditions around safety and fair 

competition in the MaaS marketplace. 

 

The alternative is a government-contracted model which adds an institutional overlay to 

impose conditions such that service delivery is consistent with societal objectives. This offers 

the best opportunity for achieving a societal equilibrium based on network efficiency and the 

equating of marginal social costs with benefits. The government can directly procure a 

mobility broker through a competitive tender, with the opportunity to negotiate contract 

renewal (under actionable benchmarking) at subsequent rounds once the market has 
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matured—the present best practice in public transport service contracts (Wong & Hensher, 

2017). The government can set accessibility standards, including key performance indicators 

such as delivering X percentage of people services within Y minutes, for a given period using 

any mode of their choosing; thus reflecting the increasing shift from output-based towards 

outcome-based contracts. To maintain the full range of service offerings across spatially 

efficient modes and for transport equity considerations, there exists the prospect of 

government support and the opportunity for government to guide the conditions of operation. 

 

Perhaps the greatest opportunity under a MaaS model is the ability for government to 

regulate for network efficiency by incorporating road pricing as an input into package price. 

Whilst road pricing has been on the agenda since the 1960s, there has only been limited 

implementation around the world. Both cordon-type charges (e.g., in London, Singapore) and 

road tolls (e.g., public/private motorways in Sydney) constitute flawed systems which distort 

the market rather than maximising for network efficiency. MaaS, in bringing together all 

modes of travel, allows an easily implementable system of great sophistication which can 

price according to time of day (to the minute), geography (by location and road type) and 

modal (both spatial and temporal) efficiency. Both time of day and geography (themselves 

spatial and temporal elements) are well regarded in their ability to correct for market failures 

and to internalise negative externalities. The spatial mode price can reflect a level of cross-

subsidisation between intermediate modes and public transport (through mandated pricing 

ratios, for instance), such that the additional externalities associated with point-to-point 

transportation can be priced, thus helping shift users onto more spatially efficient modes. The 

temporal mode price favours fleet managed systems (e.g., carsharing) over peer-to-peer and 

private ownership, with links to sustainability as well as freeing up road space occupied by 

parked vehicles22. 

 

MaaS ought to have as its stated goals not only to deliver a seamless customer experience 

across all modes of travel, but also to align with the urban efficiency objectives of cities as 

dense urban environments. In this paper, we have presented an emerging transport 

paradigm driven by a range of digital disruptors. There is widespread enthusiasm over these 

technologies, but a lack of clarity on their travel behaviour impacts, including a poor 

recognition that it may lead to a more virulent form of the existing transport paradigm. The 

lesson here is that whilst “change is certain, progress is not” (E. H. Carr). The challenge, 

therefore, is to garner the enabling role of technology and to disrupt the transport system to 

our advantage—for societal, rather than commercially-driven objectives. Government-led 

MaaS, based on road pricing as an input into package price can help deploy the most 

appropriate mode for each urban environment (informed by the modal efficiency framework), 

thereby maximising urban efficiency to deliver a societal equilibrium. 

  

                                                
22 Parking charges may be incorporated as part of MaaS and thus no longer required as a standalone system. 
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