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1 INTRODUCTION

The ‘Green Revolution’ in rice farming of the late 1960’s denotes the beginning of the
extensive breeding programs that have led to the many improved rice varieties that are now
planted on more than 60% of the world’s riceland (Khush, 1987).  This revolution led to
increases in yield potential of 2 to 3 times that of traditional varieties (Khush, 1987).  Similar
trends have also been seen in the Irrigation Areas and Districts of southern New South Wales
(NSW) as the local breeding program has produced many improved varieties of rice adapted
to local growing conditions since the 1960’s (Brennan et al., 1994).  Increases in area of rice
planted, rice quality, and paddy yield resulted (Brennan et al., 1994).

Increased rice area, however, has led to the development of high water tables and risk of large
tracts of land becoming salt-affected in southern NSW (Humphreys et al., 1994b).  These
concerns have led to various environmental regulations on rice in the region, culminating in
1994 when restrictions on rice area, soil suitability, and water consumption were fully enacted
(Humphreys et al., 1994b).  Strict environmental restrictions in combination with large areas
of land make the management of this region a difficult task.  Land managers require, among
other things, a way of regulating water use, assessing or predicting crop area and productivity,
and making management decisions in support of environmentally and economically
sustainable agriculture.  In the search for more time and cost effective methods for attaining
these goals, while monitoring complex management situations, many have turned to remote
sensing and Geographic Information System (GIS) technologies for assistance.

The spectral information and spatial density of remote sensing data lends itself well to the
measurement of large areas.  Since the launch of LANDSAT-1 in 1972, this technology has
been used extensively in agricultural systems for crop identification and area estimation, crop
yield estimation and prediction, and crop damage assessment. The incorporation of remote
sensing and GIS can also help integrate management practices and develop effective
management plans.  However, in order to take advantage of these tools, users must have an
understanding of both what remote sensing is and what sensors are now available, and how
the technology is being used in applied agricultural research.  Accordingly, a description of
both follows: first a description of the technology, and then how it is currently being applied.
The applications of remote sensing relevant to this discussion can be separated into crop type
identification; crop area measurement; crop yield; crop damage; water use/ moisture
availability (ma) mapping; and water use efficiency monitoring/mapping.

This report focuses on satellite remote sensing for broad-scale rice-based irrigation
agricultural applications.  It also discusses related regional GIS analyses that may or may not
include remote sensing data, and briefly addresses other sources of finer-scale remote sensing
and geospatial data as they relate to agriculture.  Since a complete review of the remote
sensing research was not provided in the rice literature alone, some generic agricultural issues
have been learned from applications not specifically dealing with rice.  Remote sensing
specialists may wish to skip section 2.
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2 BACKGROUND OF REMOTE SENSING

The following has been updated from McVicar and Jupp (1998).

Remote sensing is the acquisition of digital data in the reflective, thermal or microwave
portions of the electromagnetic spectrum (EMS). Measurements of the EMS are made either
from satellite, aircraft or ground-based systems, but it is characteristically at a distance (or
“remote”) from the target. Due to the large spatial extent of the areas considered for the CRC
for Sustainable Rice Production Project 1.1.05, this report will focus on data gathered from
satellite remote sensing systems.

Remotely sensed images are recorded digitally by sensors on board the satellites. An example
of a satellite operation is shown in Figure 1. The satellites vary in height above the Earth’s
surface from approximately 700 km, which orbit the earth, to some 36 000 km, which are
geostationary above the equator. The images can be manipulated by computers to highlight
features of soils, vegetation and clouds. Each pixel, or picture element, contributing to the
image is a measurement of a particular wavelength of electromagnetic radiation at a particular
spatial scale for a particular location at a specific time. The most common display of remotely
sensed data is a single overpass, which non-remote sensing specialists may think of as a
‘satellite photo’.

Figure 1.  Schematic of satellite operation, specifically the LANDSAT satellite and the
Thematic Mapper (TM) sensor. [Adapted from (Harrison and Jupp, 1989). Reproduced by

permission of CSIRO Australia].
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When dealing with remotely sensed images, the extent, resolution, and density of the spectral,
spatial and temporal characteristics need to be considered. Spectral extent describes what
portion of the EMS is being sampled (e.g., is it just visible or does the range extend into the
thermal). Spectral resolution refers to the bandwidths in which the sensor gathers information.
Spectral density indicates the number of bands in a particular portion of the EMS (e.g.,
hyperspectral sensors have higher spectral density than broadband instruments). Spatial extent
is the area covered by the image, while spatial resolution refers to the smallest pixel or picture
element acquired. Spatial density refers to the amount of area measured by the sensor, so the
spatial density for remotely sensed data is complete, while the spatial density of, for example,
rainfall stations which are sampled at explicit points, would be incomplete. This means, for
the extent of the image, remotely sensed data are a ‘census’ at a particular spatial scale
recorded at a specific time.  Temporal extent is the recording period over which the data is
available.  For some systems, data has been recorded for over 25 years. Temporal resolution is
the time that the data is acquired over.  Remote sensors usually have a low temporal
resolution (i.e., a matter of seconds), while rainfall data recorded at meteorological stations
usually have a very high temporal resolution (i.e., they record almost continuously). Temporal
density is the repeat characteristics of the satellite and, for some applications, greatly
influences the availability of cloud free data.

Remote sensing of the land surface occurs at wavelengths of the EMS where the light can
pass through the Earth’s atmosphere with no, or little interaction with the atmosphere. These
bands of the EMS are called ‘atmospheric windows’ and refer to the spectral extent in which
radiation reaching remote sensing instruments carries information about the Earth’s surface
conditions. These ‘atmospheric windows’ are defined by the transmittance of the constituents
of the Earth’s atmosphere. There are some gases, which absorb all electromagnetic radiation
in certain wavelengths preventing these areas of the EMS being used for remote sensing.
Figure 2 shows the divisions of the EMS briefly described in the next section.

Visible rays

vi
ol

et
in

di
go

bl
ue

gr
ee

n

ye
llo

w

or
an

ge

re
d

Cosmic rays X - rays Microwave

Gamma raysUltraviolet raysInfrared rays Radio and television

1 pm 1 nm 1 µm 1 mm 1 m 1 km

10 -8 10 -6 10 -4 10 -2 10 0 10 2 10 4 10 6 10 8 10 10 10 12

0.70.60.50.4 µm

Wavelength (µm)

Figure 2.  Breakup of electromagnetic spectrum. Note that the scale is logarithmic.
[Adapted from (Harrison and Jupp, 1989). Reproduced by permission of CSIRO Australia].

One basis of remote sensing is that different land covers have different spectral properties.
Figure 3 shows idealised reflectance plots for two vegetation, soils and water types,
respectively.  Different surfaces also have varying responses in the thermal and microwave
atmospheric windows of the EMS.  Image processing approaches utilise these differences to
extract information relevant for rice-based irrigation systems.
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Figure 3.  Idealised reflectance plots for different land cover types.
[Adapted from (Harrison and Jupp, 1989). Reproduced by permission of CSIRO Australia].

2.1 Reflective Remote Sensing

The reflective portion of the EMS ranges nominally from 0.4 to 3.75 micro meters (µ m).
Light of shorter wavelength than this is termed ultraviolet. The reflective portion of the EMS
can be further subdivided into the visible 0.4 to 0.7 µ m, near infrared (NIR) 0.7 to 1.1 µ m,
and mid infrared 1.1 to 3.75 µ m. It is in the visible portion of the EMS that we sense with our
remote sensing device (eyes) which allow us to see. Different surface reflective properties
allow us to distinguish colour in the visible region of the EMS.

Chlorophyll pigments that are present in leaves absorb red light. In the NIR portion, radiation
is scattered by the internal spongy mesophyll leaf structure, which leads to higher values in
the NIR channels. This interaction between leaves and the light that strikes them, often
determined by their different responses in the red and NIR portions of reflective light, see
Figure 4, is how vegetation is detected using remote sensing.  The objective of vegetation
analysis from spectral measurements, often, is to reduce the spectral data to a single number
that is related to physical characteristics of vegetation (e.g. leaf area, biomass, productivity,
photosynthetic activity, or percent cover) (Baret and Guyot, 1991, Perry and Lautenschlager,
1984, Huete, 1988), while minimising the effect of internal (e.g. canopy geometry, and leaf
and soil properties) and external factors (e.g. sun-target-sensor angles, and atmospheric
conditions at the time of image acquisition) on the spectral data (Baret and Guyot, 1991,
Chavez, 1988, Gong et al., 1992, Huete et al., 1985, Huete, 1987, Huete and Warrick, 1990,
Huete and Escadafal, 1991, Kimes, 1983, Li et al., 1993, Richardson and Wiegland, 1977,
Slater and Jackson, 1982, Singh, 1989).
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Figure 4.  Schematic reflectance of a typical green leaf in cross section; chloroplasts reflect
the green light and absorb red and blue light for photosynthesis. Near infrared light is

highly scattered by water in the spongy mesophyll cells.
[Adapted from (Harrison and Jupp, 1989). Reproduced by permission of CSIRO Australia].

Vegetation Indices (VI's) were developed in an attempt to obtain this objective from remote
sensors by taking advantage of the differences in the reflective responses of vegetation in the
red and NIR wavelengths.  Although VI’s are often hampered by limitations in dealing with
the complex nature of real-life vegetation canopy interactions (Baret and Guyot, 1991, Huete
et al., 1985, Huete, 1987, Huete and Jackson, 1987, Huete, 1988, Huete and Warrick, 1990,
Huete and Escadafal, 1991, Huete et al., 1992, Qi et al., 1993), they have gained widespread
popularity due to the benefits of remote sensing’s high spatial density and extent, and the
value added to generic, rather coarse-scale vegetation modelling.

LANDSAT Thematic Mapper (TM) and the Système pour l'observation de la Terre (SPOT)
sensors, and many other remote sensing instruments, have channels situated in the red and
NIR, see Table 1 and Figure 2.  For example, the red and NIR bands for LANDSAT TM are
band 3 (630-690 nm) and band 4 (769-900 nm), respectively.  Most vegetation indices are
combinations of these two reflective bands. The most common linear combinations are the
simple ratio (NIR/Red) and Normalised Difference Vegetation Index (NDVI) = (NIR-
Red)/(NIR+Red). Previous research has shown positive correlations exist between foliage
presence, including measurements of LAI (Tucker, 1979, McVicar et al., 1996b, McVicar et
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al., 1996c, McVicar et al., 1996a) and plant condition (Sellers, 1985), and vegetation indices
such as the simple ratio and NDVI. For a comprehensive listing of vegetation indices refer to
Tian (1989), Kaufman and Tanre (1992), Thenkabail et al. (1994b) and Leprieur et al. (1996).

TABLE 1:  GENERAL DESCRIPTION OF CURRENT AND
ANTICIPATED SATELLITE SENSORS.

Some satellite specifications are available on the internet at sites like the Canadian Centre for
Remote Sensing (CCRS) satellite details page
(http://www.ccrs.nrcan.gc.ca/ccrs/tekrd/satsens/sats/satliste.html).

Satellite: Sensor Channel

#

Spectral

Resolution

Spatial

Resolution

Sample

Swath

Repeat

Cycle

Lifetime

Current

NOAA:AVHRR1 1 580-680 nm 1100 2700 km 12 hrs 1981 - present

2 725-1100 nm "

3 3.55-3.93 µ m "

4 10.3-11.3 µ m "

5 11.5-12.5 µ m "

SPOT:VMI2 1 430-470 nm 1000 2000 km 26 days 1998- present

2 500-590 nm "

3 610-680 nm "

4 790-890 nm "

5 1.58-1.75 µ m "

LANDSAT:MSS3 4 500-600 nm 80 185 km 16 days 1972- present

5 600-700 nm "

6 700-800 nm "

7 800-1100 nm "

LANDSAT:(E)TM4 1 450-520 nm 30 185 km 16 days 1983- present

2 520-600 nm " (1999-present)

3 630-690 nm "

4 769-900 nm "

5 1.55-1.75 µ m "

7 2.08-2.35 µ m "

6 10.4-12.5 µ m 120 (60)

(8) (520-900 nm) (15)

SPOT:HRV(IR)5 1 500-590 nm 20 60 km 26 days 1986 - present

http://www.ccrs.nrcan.gc.ca/ccrs/tekrd/satsens/sats/satliste.html)
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2 610-680 nm "

3 790-890 nm "

4 510-730 nm 10

(4) (1.58-1.75 µ m) 20

(5) (610-680 nm) 10

IRS6 1 500-750 nm 5.8 70 km 22 days 1997 - present

2 520-590 nm 23 140 km

3 620-680 nm "

4 770-860 nm "

5 1.55-1.70 µm 70

6 620-680 nm 188 800 km

7 770-860 nm "

IKONOS7 1 450-520 nm 4 13 km 3 days 1999-present

2 520-600 nm "

3 630-690 nm "

4 760-900 nm "

5 450-900 nm 1

TERRA:ASTER8 1 520-600 nm 15 60 km 1-2 days 1999-present

2 630-690 nm "

3 760-860 nm "

4 1.60-1.70 µm 30

5 2.145-2.185 µm "

6 2.185-2.225 µm "

7 2.235-2.285 µm "

8 2.295-2.365 µm "

9 2.360-2.430 µm "

10 8.125-8.475 µm 90

11 8.475-8.825 µm "

12 8.925-9.275 µm "

13 10.25-10.95 µm "

14 10.95-11.65 µm "

TERRA:MODIS9 1 620-670 nm 250 2330 km 1-2 days 1999-present

2 841-876 nm "

3 459-479 nm 500

4 545-565 nm "
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5 1.23-1.25 µm "

6 1.628-1.652 µm "

7 2.105-2.155 µm "

8 405-420 nm 1000

9 438-448 nm "

10 483-493 nm "

11 526-536 nm "

12 546-556 nm "

13 662-672 nm "

14 673-683 nm "

15 743-753 nm "

16 862-877 nm "

17 890-920 nm "

18 931-941 nm "

19 915-965 nm "

20 3.660-3.840 µm "

21 3.929-3.989 µm "

22 3.989-4.020 µm "

23 4.020-4.080 µm "

24 4.433-4.498 µm "

25 4.482-4.549 µm "

26 1.360-1.390 µm "

27 6.535-6.895 µm "

28 7.175-7.475 µm "

29 8.400-8.700 µm "

30 9.580-9.880 µm "

31 10.78-11.28 µm "

32 11.77-12.27 µm "

33 13.185-13.485µm "

34 13.485-13.785µm "

35 13.785-14.085µm "

36 14.085-14.385µm "

JERS:SAR10 1 1275 MHz 18 x 18 75 km 44 days 1992-1996

JERS:OPS11 1 520-600 nm 18 x 24 75 km

2 630-690 nm "

3 760-860 nm "

4 760-860 nm "

5 1.60-1.71 µm "

6 2.01-2.12 µm "
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7 2.13-2.25 µm "

8 2.27-2.40 µm "

ERS:SAR12 1 5.3 GHz <30 80-100 km Varies 1991-present

RADARSAT13 1 5.3 GHz 28 x 25 100 km 24 days 1995-present

Anticipated

EROS:A14 1 500-900 nm 1.8 12.5 km 2 days 2000

EROS:B15 1 500-900 nm 0.82 16 km 2 days 2000

QUICKBIRD-116 1 450-900 nm 1 704 km 1-5 days 2000

2 450-520 nm 4

3 520-600 nm "

4 630-690 nm "

5 760-890 nm "

ORBVIEW-3(4)17 * Panchromatic 1 8 km 3 days 2000

* Multispectral 4

* Hyperspectral * 5 km

1 NOAA:AVHRR refers to a series of satellites operated by the United State Federal Agency, NOAA, National

Oceanographic and Atmospheric Administration. The Advanced Very High Radiometric Resolution (AVHRR) sensor

operates on this platform. From 1978 to 1981 only the first 4 channels were acquired. The NOAA series of satellites are polar

orbiting at a height of some 700km, similar to the height of the LANDSAT series of satellites. AVHRR data is acquired over

a large swath width, compared to the LANDSAT data, due to the wide scan angle, ±  55o, of the AVHRR sensor. The Local

Area Coverage (LAC) pixel size is 1100 m at the sub-satellite point, becoming 5400 m at the of edge of the swath. Global

Area Coverage (GAC) data are also recorded by the AVHRR sensor. GAC is a sub-sampling of the LAC data and nominally

has a 5 by 3 kilometre resolution. GAC data is recorded onboard the satellite and recorded at the NASA Goddard Space

Flight Centre. AVHRR/3 onboard NOAA-15 has a time shared Channel 3 referred to as 3a and 3b.  Channel 3a has a spectral

resolution from 1.58-1.64 µm and records during the day.  Channel 3b has a spectral resolution from 3.55-3.93 µn and

records at night.

2 SPOT:VMI refers to the Vegetation Monitoring Instrument (VMI) aboard the Système pour l'observation de la Terre 4

(SPOT4) satellite. The satellite has been functional from March 24, 1998 to present.

3 LANDSAT:MSS refers to the MultiSpectral Sensor (MSS) onboard the LANDSAT series of satellites. From 1972 to 1983,

for LANDSAT 1 - 3 the repeat cycle was 18 days. LANDSAT is a polar orbiting sun synchronous satellite, which passes a

given latitude at the same solar time, it operates at a height of 700 km.

4 LANDSAT:(E)TM refers to the Thematic Mapper (TM) sensor onboard LANDSAT 4 and 5 and the Enhanced Thematic

Mapper (ETM) sensor onboard LANDSAT 7. Channel and wavelengths are not ascending due to the late inclusion of

channel 7. In LANDSAT 7, the addition of a panchromatic band with a 15 meter spatial resolution is a notable change to
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previous LANDSAT sensors as is the increase in the thermal channel (6) spatial resolution to 60 meter.  Daytime passes are

at about 10:00 am local time, whereas night time passes are at about 10:45 pm.

5 SPOT:HRV(IR) refers to the Haute Resolution Visible (HRV) sensor aboard the Système pour l'observation de la Terre

(SPOT) satellites 1-3 and the Haute Resolution Visible Infrarouge (HRVIR) aboard the SPOT 4 satellite. SPOT 1 lifetime is

from February 22, 1986 to present.  SPOT 2 has been transferring data from January 21, 1990 until present, and SPOT 3 was

functional from September 26, 1993 to November 14, 1996 when the satellite was declared lost.  There has been an addition

of a new Channel between 1.58-1.75 µm with a 20 m spatial resolution and a change of the 10 m panchromatic Channel from

510-730 nm in SPOT 1-3 to 610-680 nm in SPOT 4. The satellite has been functional from March 24, 1998 to present. Text

inside parenthesis represent the changes in SPOT 4.

6 IRS refers to the Indian Remote Sensing (IRS) satellite 1-D.  The IRS-1D was launched into polar orbit on the 29th of

September, 1997.  It’s payload has been activated since October, 1997.  This satellite contains a panchromatic sensor, a LISS-

III sensor detecting  VIS, NIR, and SWIR, and a WiFS sensor collecting red and NIR.

7 IKONOS refers to Space Imaging’s IKONOS satellite launched September 24, 1999

8 TERRA:ASTER refers to the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer instrument

aboard the TERRA (EOS AM-1) satellite.  ASTER is designed to obtain detailed maps of land surface temperature,

emissivity, reflectance and elevation.  ASTER is the only high spatial resolution instrument on the TERRA platform.

9 TERRA:MODIS refers to the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the TERRA

(EOS AM-1) satellite.  MODIS will view the Earth’s surface every 1-2 days in 36 spectral bands.  Spatial resolution varies

from 250m to 1000m.  MODIS is geared to global change models.

10 JERS:SAR refers to the Synthetic Aperature Radar (SAR) sensor on-board the Japan Earth Resources Satellite 1 (JERS-1)

satellite.  Satellite life was from February 11, 1992 to October 12, 1998. The first SAR image was recived on April 21, 1992.

A cooling device failed in January of 1994 disrupting steady state transmission.

11 JERS:OPS refers to the Optical Sensors (OPS) on-board the Japan Earth Resources Satellite 1 (JERS-1) satellite.  Channel

4 is for forward viewing (15.53°). Channel 3 and 4 make a stereo pair.  Satellite life was from February 11, 1992 to October

12, 1998. The first SAR image was recived on April 21, 1992.  A cooling device failed in January of 1994 disrupting steady

state transmission.

12 ERS:SAR refers to the Active Microwave Instrumentation (AMI) sensor aboard the European Remote Sensing (ERS) 1

and 2 satellites. The information given in the table is for Synthetic Aperture Radar (SAR) in image mode (5.3 GHz C-Band).

Repeat cycle has been variable: 3 day cycle from July 17, 1991 to March 1, 1992,  35 day cycle from  March 2, 1992 to

December 22, 1993,  3 day cycle from  December 23, 1993 to April 9, 1994, 168 day cycle from April 10, 1994 to March 20,

1995, 35 day cycle from March 21, 1995 to present.

13 RADARSAT refers to the Canadian Space Agency’s RADARSAT satellite in standard mode.  RADARSAT collects

Synthetic Aperature Radar (SAR) in the C-Band at an incidence angle of 20-49°, nominal spatial resolution of 30m, and

swath of 100 km. There are 5 other operating modes including wide swath (20-45°, 30m, 150 km), fine resolution (37-47°,

8m, 45 km), extended coverage (52-58°, 18-27m, 75 km), scanSAR narrow (20-49°, 50m, 300 km), and scanSAR wide (20-

49°, 100m, 500 km)

14 EOS:A refers to the 1.8 meter panchromatic satellite due to be launched in 2000 by West Indian Space.
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15 EOS:B refers to the 0.82 meter panchromatic satellite due to be launched in 2000 by West Indian Space.

16 QUICKBIRD-1 refers to EarthWatch Inc.’s satellite due to be launched sometime in this year (2000).  QuickBird is

designed to have 1 meter panchromatic and 4 meter multispectral spatial resolution.

17 ORBVIEW-3(4) refers to Orbital Imaging’s Orbview-3 and Orbview-4. Also meant to launch sometime in 2000, both will

gather 1 meter panchromatic and 4 meter multispectral.  Orbview-4 will also collect hyper spectral data in 200 wavebands.

Some specific spectral and spatial information is unknown at this time (*).

While the amount of leaf is one determinant of the signal strength in the reflective portion of
the EMS there are several other important factors which control the acquired value. These
include the sun-target-sensor geometry. This will control the amount of shadow contributing
to the signal; the shadow may be driven by insolation effects due to regional topography and
may also be influenced by vegetation shadowing. This effect, termed the bidirectional
reflectance distribution function (BRDF) (Burgess and Pairman, 1997, Deering, 1989), is
characteristic of vegetation structure. Other effects in the reflective portion of the EMS
include changes in soil colour and changes in the observed signal due to changes in the
atmospheric component of the signal, including atmospheric precipitable water (Choudhury
and DiGirolamo, 1995, Hobbs, 1997), atmospheric aerosols (e.g., dust), and changes in the
response of the sensor over time.

Primarily, the reflective portion of the EMS has been used for:
1. identification of rice;

2. area estimation of rice;

3. estimation and prediction of crop yield; and

4. crop damage assessment

These are discussed more fully in section 3.1, 3.2, 3.3 and 3.4, respectively.

2.2 Microwave Remote Sensing

The microwave portion of the EMS ranges nominally from 0.75 to 100 centimetres. Radio
signals have wavelengths that are included in these bands. These systems can either be active
(the sensor sends its own signal) or passive (the background signal from the Earth’s surface is
observed). There are five smaller sections of this range which are used for remote sensing.
These are :

P band 100 - 30 cm;
L band 30 - 15 cm;
S band 15 - 7.5 cm;
C band 7.5 - 3.75 cm; and
X band 3.75 - 2.4 cm.

RADAR (RAdio Detection And Ranging), is an active system based upon sending a pulse of
microwave energy and then recording the strength, and sometimes polarisation, of the return
pulses. The way the signal is returned provides information to determine characteristics of the
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landscape. RADAR has been used in the determination of near surface soil moisture, and the
identification of rice crops based on the presence of standing water.

Primarily, the microwave portion of the EMS has been used in agriculture for:
1. identification of rice

2. area estimation of rice; and

3. estimation and prediction of crop yield.

These are discussed more fully in sections 3.1, 3.2, and 3.3, respectively.

2.3 Thermal Remote Sensing

The thermal portion of the EMS ranges nominally from 3.75 to 12.5 micro meters. The
radiant energy observed by sensors is emitted by the surface, be it land, ocean or cloud top,
and is a function of surface temperature. Models have been developed to allow surface
temperature to be extracted from thermal remote sensing. Prata et al. (1995) review the
algorithms and issues involved in the calculation of land surface temperatures, denoted Ts.

Thermal remote sensing is an instantaneous observation of the status of the surface energy
balance (SEB). The SEB is driven by the net radiation at the surface. During the daytime this
is usually dominated by incoming shortwave radiation from the sun, the amount reflected
depending on the albedo of the surface. There are also up and down welling longwave
components. At the ground surface, the net allwave radiation is balanced between the
sensible, latent and ground heat fluxes. Over long periods of time the ground heat flux
averages out, and the SEB represents the balance with the sensible and latent heat fluxes.
During the day the measured surface temperature at the Earth’s surface is, in part, dependent
on the relative magnitude of the sensible and latent heat fluxes.

The surface energy balance at any instant is given by:

nR  = λE+H+G (1)

where:

Rn is net all wavelength radiation (Wm-2);

λE is the latent heat flux (of evapotranspiration (ET)) (W m-2);
H is the sensible heat flux (W m-2), or the energy involved in the movement of the air and its
transfer to other objects (such as trees, grass etc); and
G is the ground heat flux into the soil or other storages (W m-2).

λE denotes the amount of energy needed to change a certain volume of water from liquid to
vapor, either by transpiration or evaporation. The combination of these two fluxes is called
evapotranspiration. The net available energy (AE) at the Earth's surface, which is available for
conversion to other forms, can be written as:

nAE=R -G=λE+H (2)

where the terms are defined as above. A key factor determining the observed surface
temperature is the partitioning of the AE into the latent and sensible heat fluxes. This is
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governed by the amount of water available and the ease with which it is transferred from the
surface to the atmosphere, via λλλλE. See Eymard and Taconet (1995), and the reference list
therein, for a review of methods to infer surface fluxes from satellite data. These techniques
provide the opportunity to map the actual λλλλE flux, denoted λλλλEa. For given meteorological
conditions there will also be a potential λλλλE, denoted λλλλEp, which could occur if water was not
limiting. The ratio of λλλλEa to λλλλEp is termed the moisture availability (ma).

Thermal remotely sensed data can also be recorded at night. During the night the SEB is
dominated by the release of heat from the ground, which was absorbed during the daylight
hours. The release of heat during the night is governed by how much was absorbed during the
day and, the rate at which it is released after sunset. This is a function of the environment’s
capacity to store heat, which also depends on the amount of water stored in the environment.

The thermal portion of the EMS has been used to determine:
1. surface temperature estimation (including water temperature); and

2. moisture availability (ma) mapping.

These are discussed more fully in sections 3.4 and 3.5.

2.4 Integrating Remote Sensing with other Data Types in a Geographic Information System
(GIS)

Remotely sensed data (visible, thermal, microwave), GIS data layers (soils, geology), point
based measurements (rainfall, soil moisture, biomass) or model outputs (biomass, soil
moisture) all have spatial and temporal attributes associated with the data attribute, and can be
integrated. Economic situations and social indicators will have a time and may have a space
associated with the data attribute and can also be integrated. The integration of several data
types will allow factors such as crop types, yield estimates, and water use to be determined
more objectively.

Many GIS data layers cover entire regions. However, these are often produced from the
spatial interpolation of point samples; this is especially the case for some meteorological
surfaces. Some physical parameters, such as soil water holding capacity, which are assumed
to be time in-variant, only need to be mapped once. Remote sensing provides repeated
measurements, at a particular spatial scale and electromagnetic wavelength, which allows
dynamic environmental conditions, such as soil moisture and vegetation cover, to be
monitored.

The data structure in the GIS can be conceptualised as being pancakes of remotely sensed data
(TM or SPOT), which are intersected at right angles by skewers of point based data (Bureau
of Meteorology (BOM) rainfall and air temperatures). In the data, two dimensions (the
pancakes) are spatial, latitude and longitude, and the third (the skewer) is time. For some
issues (e.g., groundwater monitoring) it can be important to include elevation (or depth) as
another dimension in the data structure. Both data sets (point based BOM and remotely
sensed) often have vastly different spatial and temporal scales. For example, TM data are
spatially dense, with a 30 metre spatial resolution, and are recorded over large areas in a
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matter of seconds at a specific time for specific wavelengths.  This means, for the extent of
the image, remotely sensed data are a ‘census’ (high spatial density) at a particular spatial
scale recorded at a specific time.  Depending on the amount of cloud coverage and the
satellite repeat characteristics, optical remotely sensed data may only be available monthly
(low temporal density).  On the other hand, meteorological data are recorded at specific
points, which may be separated by tens to hundreds of kilometres (low spatial density).
Meteorological variables are usually recorded daily (high temporal density), as either integrals
(e.g., rainfall and wind-run totals), or extremes (e.g., maximum and minimum air
temperatures).  Thus, remotely sensed data are spatially dense but temporally sparse, while
meteorological data are spatially sparse but temporally dense.

Data of varying degrees of spatial and temporal density can be incorporated into a GIS.
Spatial and temporal resolutions of the data will vary, depending on, among other things, the
issues being addressed. See Langran (1992), Peuquet (1994), Peuquet (1995) and Mitasova et
al. (1995), for detailed discussions of both the theoretical and the technical aspects of data
integration arising from the inclusion of time in GIS.

The advantages of using time series of several data sets, including those not observed
remotely, is illustrated in the following example from Barrs and Prathapar (1994) and Barrs
and Prathapar (1996). An irrigation company may want to estimate crop area in order to plan
for the marketing of specific crops.  To get an early estimate of rice production, a November
image was acquired, in which standing water was used to estimate rice area.  Standing water
can be easily identified in the NIR portion of the EMS where it has a low reflectance (see
Figure 3).  In order to map other crop types and to delineate standing water areas on which
rice was not grown, a March image well into the rice growing season was then acquired.  This
image was used to refine the end of season yield prediction by ‘fine-tuning’ the irrigated area
estimation from the first image. By determining areas that were still standing water, they
could ascertain that these were either failed crops or permanent water bodies.  The later image
was also used to classify other summer crop types, with varying confidence.  Other GIS data,
like field delineations and known water bodies, could also have been used to adjust the
classification.  Errors of omission as well as errors of commission can be corrected, increasing
classification accuracy.  For example, in a land use map, if 90% of a known field is classified
as rice, it makes sense to assume the whole field is rice, thus fixing some errors of omission.
However, in a land cover map, knowing, for example, that 10% of the paddock planted with
rice did not grow successfully can be valuable information for estimating yields, thus fixing
some possible errors of commission.  The difference between land use and land cover should
be noted as these should not be combined in thematic classes.

It should be noted that some data likely to be used in spatial modelling will not have a precise
spatial reference associated with it, for example economic factors such as interest rates and
grain prices. However, the temporal nature of these variables can be incorporated into larger
information systems, of which remotely sensed data are but one component.
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3 REMOTE SENSING IN RICE-BASED AGRICULTURE

A basic understanding of rice physiology is essential to the success of remote sensing
applications in rice-based agricultural systems.  This knowledge can play a critical role in the
planning stages of a remote sensing project (e.g., identifying optimum acquisition dates for
the purchase of imagery) as well as in the final stages of analysis (e.g., aiding in the
delineation of rice paddies or the estimation of growth stages) (Ribbes and Toan, 1999, Le
Toan et al., 1997).  The growing cycle of rice can be separated into two stages with respect to
most analyses of remotely sensed data: vegetative and reproductive (Casanova, 1998, Ribbes
and Toan, 1999).

The vegetative stage includes the part of the growth cycle where the plant develops and
grows, starting after sowing and ending when the plants start to reproduce.  This stage is
characterised by a steady increase in plant height and biomass.  The reproductive stage starts
when the plant stops growing taller and ends after maturity and includes panicle and grain
development (Ribbes and Toan, 1999).  It may be beneficial at times to further split the
reproductive stage into two categories: reproductive pre-heading and reproductive post-
heading.  Reproductive pre-heading defines the period from panicle primordia initiation to
heading and post-heading refers to the period from heading to maturity (Casanova, 1998).

The length of the growth cycle of rice can vary from 3 to 6 months for different varieties
(Casanova, 1998), and can also be categorised into two main groups for many remote sensing
applications: tropical and temperate.  Growth cycles for tropical rice varieties last about 110-
120 days, while those of temperate varieties usually last around 140-150 days (Le Toan et al.,
1997).  However, this duration can vary based on cultivar.  For example, short duration
varieties have been bred with growth cycles less than 90 days (Senanayake et al., 1994).
These differences in growth cycle length are due to differences in vegetative stage duration:
the vegetative stage can be anywhere from 40 to 120 days in length (Senanayake et al., 1994).

Irrespective of cultivar, reproductive pre-heading duration is about 23-25 days, while
reproductive post-heading duration lasts 30-35 days (Senanayake et al., 1994).  During the
reproductive stage, plant height and biomass typically remain stable at around 100 cm and
2000 gm-2, respectively (Ribbes and Toan, 1999).  The vertical characteristics of the rice plant
also change as the plants grow, with stem inclination decreasing and the leaf angle increasing
(Ribbes and Toan, 1999).

For different locations, the timing of the growth cycle of rice varies depending on local
climate, management, and cultivar planted.  Consequently, the timing of rice for a particular
site of interest should be known.  Australian rice varieties have changed over the past 40 years
with Caloro dominating the 1960’s, Calrose in the 1970’s to mid 1980’s and Amaroo from the
mid 1980’s into the 1990’s (Brennan et al., 1994).  This has been associated with
development of long-grain, fragrant and Spanish varieties to meet higher priced markets
(Brennan et al., 1994). Short duration varieties are generally desirable because they can be
competitive with weeds, require less pesticides and herbicides, utilise less irrigation water,
and allow for double cropping in tropical environments (Khush, 1987).  In a temperate
environment like southern NSW, short duration varieties are also desirable because they can
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allow more leeway for sowing and harvesting between the limitations of cold springs and
autumns (Reinke et al., 1994). Timing of rice in southern NSW is summarised as:
        1. placed under permanent flood and aerially sown in late September/early November;
        2. canopies emerging during late October/late November;
        3. flowering by late January/early February;
        4. de-watered in late February/March; and
        5. harvested in March/May.
Other summer crops in NSW include corn, sorghum, and soybeans, while winter crops
include wheat, barely, oats, and canola.  Pasture is grown in both seasons.  Citrus, stone fruits,
and grapes are also grown in the area.  Some of these crops may use remnant soil moisture
after a flooded rice crop, whereas others are furrow or drip irrigated.

There is an interest in monitoring other crops than rice within the irrigation areas of southern
NSW from remote sensing.  Of these other crops, there is a good potential for remote
monitoring of corn and soybeans.  The spectral reflectance characteristics of corn and
soybeans along the EMS are slightly different in shape and amplitude (Thenkabail et al.,
2000) allowing for differentiation between these two crops (Badhwar et al., 1982).
Multitemporal remote sensing data has been used to estimate soybean and corn crop
characteristics such as yield, LAI, biomass, plant height (Thenkabail et al., 1994a, Thenkabail
et al., 1994b), development stage (Badhwar and Henderson, 1985), and crop proportion
(Badhwar, 1984b, Badhwar, 1984a).  For single date imagery, however, the timing of image
acquisition can greatly influence classification results since confusion between spectral
signatures can occur due to differences in crop growth stages.  That is, on the day of image
acquisition, the two crops could look spectrally similar.

Moderately high correlations (from 0.7 to 0.85) have been reported between several soybean
and corn crop characteristics when related to VI’s.  Soybean was correlated to standard NIR
and red-based VI’s , whereas corn crop characteristics were more highly correlated with VI’s
that include at least one MIR band (Thenkabail et al., 1994b, Thenkabail et al., 1994a).
Mature soybean crops have higher reflectance in the NIR and lower reflectance in the red
portions of the EMS than corn, resulting in detectably higher standard VI values for soybeans
(Tucker et al., 1979).  This means that three of the main summer crops (rice, corn, and
soybeans) can potentially be discriminated from each other using remote sensing.  However,
to do this, more than one image throughout the growing season might be needed in order to
take advantage of spectral differences due to the phenology of these crops.

Remote sensing based applications, then, will not only take advantage of both the
characteristics and timing of growth cycle, but will also consider the spectral reflectance of
different crops.  Since rice is the focus of this report, the basic spectral patterns of rice must
be understood.  The reflectance from rice, like all green vegetation, can be summarised by a
generalised vegetation response as seen in Figure 3.  It is the differences in this basic
vegetation response that allow discrimination between vegetation types.  However, these
vegetative-type responses are harder to differentiate between each other than a non
vegetative-type response like soil or water.  This is true since non vegetative-type features
usually reveal drastically different response curves when compared to vegetation (Figure 3).

As irrigated rice fields are flooded, the spectral characteristics of water can be used to
distinguish potential rice paddocks and provide an early estimate of rice area (Barrs and
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Prathapar, 1996, McCloy et al., 1987).  Inaccuracies result, however, when this early estimate
is not adjusted by a later image, which can aid in elimination of permanent water bodies and
other irrigated crops from the classification (Barrs and Prathapar, 1996, McCloy et al., 1987).
The visible and near infrared wavelength response of rice, once the vegetation starts to cover
the water in flooded paddocks, is much the same as other crops (Martin and Heilman, 1986).
However, rice was found to be more distinguishable from other crops due to its water
absorption characteristics by including middle infrared (MIR) wavelengths  in the crop
discrimination(Martin and Heilman, 1986, Thenkabail et al., 1994b).

It is also very important to understand the interaction of the reflectance of vegetation in key
bandwidths of the EMS to relevant vegetation characteristics such as biomass or leaf area
index (LAI).  Since most studies relating vegetation to biomass or LAI use VI’s of NIR and
red EM portions, these interactions, specifically should be understood.  NIR reflectance of
rice is directly related to green biomass.  It continues to increase from early tillering, where
NIR reflectance is about 15%, to heading where it reaches a maximum of about 50%
(Casanova, 1998).  Post-heading NIR reflectance decreases to about 33% as rice crop green
biomass decreases due to death and loss of leaves (Casanova, 1998).  Red reflectance of rice
is inversely related to green biomass, where it decreases from about 10% at emergence to 2%
at flowering, and then increases to about 18% at maturity due to senescence (Casanova,
1998).  Some VI’s perform better than others, but in general, these interactions result in better
correlations between VI’s and biomass in the vegetative and pre-heading stages than in the
post-heading stage, where VI’s tend to saturate (Casanova, 1998).

The saturation of VI’s results in a notable limitation to the usefulness of remote sensing in
estimating crop biomass, LAI, and, therefore, yields in rice-based irrigated agricultural
systems.  This saturation is mainly due to the inability to detect the accumulation of biomass
that takes place well after crop canopy cover reaches 100% (Thenkabail et al., 2000).  After
canopy closure, NIR reflectance continues to increase significantly, while red reflectance may
only change slightly, resulting in minimal changes in a VI (Thenkabail et al., 2000).  Since
NIR is typically the numerator of a VI ratio, and red is the denominator, it takes an
inordinately large increase in NIR to increase the overall VI after heading (Thenkabail et al.,
2000).  This is demonstrated in the saturation of NDVI above LAI’s of 2.5 to 3 (Thenkabail et
al., 2000) and fraction of intercepted photosynthetically active radiation ( fPAR ) above 94%
(Casanova, 1998).  In irrigated agriculture, LAI’s often exceed 3, which decreases the
accuracy of yield measurements from remote sensing.  However, this is somewhat offset by
the fact that growth stage information received from remote sensing is often useful and that
microwave remote sensing measurements can provide structural measurements after LAI’s
exceed 3.

The applications of remote sensing relevant to this discussion can be separated into 6 main
categories as determined by the bulk of the current rice-based remote sensing literature.
These are:

1. crop type identification;
2. crop area measurement;
3. crop yield;
4. crop damage;
5. water use/ moisture availability (ma) mapping; and
6. water use efficiency.
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A discussion of each follows.

3.1 Crop Type Identification

The most commonly practiced application in remote sensing of agriculture is mapping land
cover to identify crop types.  This process primarily uses the spectral information provided in
the remotely sensed data to discriminate between perceived groupings of vegetative cover on
the ground.  The spatial (Atkinson and Lewis, 2000) and temporal information included in
single date and time series data, respectively, usually play a secondary role, but can also aid in
the classification procedure.  Discrimination of crops is usually performed with ‘supervised’
or ‘unsupervised’ classifiers.  The basic difference between these types of classification is the
process by which the spectral characteristics of the different groupings are defined.  Common
clustering algorithms include maximum likelihood, minimum distance to mean, and parallel
piped (Jensen, 1986).

Unsupervised classification relies upon a computer algorithm to define natural groupings of
the spectral properties of the pixels in an image.  After initial classification, the analyst
attempts to assign the perceived groupings a posteriori (after the fact).  Problems arising from
using this methodology are related and include classification of meaningless groupings,
idiosyncratic definition of initial number of classes, and subjectivity involved in combination
of similar classes.  However, if land cover classes are spectrally well separated, adequate
results may be obtained.

Because the unsupervised classification algorithm will automatically output the often
arbitrarily defined number of classes input to it, the resulting classes are frequently non-
representative or meaningless.  That is, the initial classification can be drastically different
based on the number of classes the analyst originally requests.  Some of the classes generated
may have little meaning with respect to reality because they contain more than one functional
or ‘on the ground’ class.  Others are too specific (i.e., several spectral classes form one
functional class) and need to be recombined.  Spectral classes that contain more than one
functional class are frequently harder to deal with because the analyst will need to reprocess
them.  The recombination of overly specific classes can also be problematic since the process
is often subjective.  This subjectivity is regularly expressed by results that are not easily
duplicated and non-standardised (often represented by abrupt land cover changes at
management boundaries).

The advantage of an unsupervised approach, however, is that no a priori (before the fact)
knowledge is needed.  This can be beneficial when every crop type in a study site may not be
known, or when attempting to discriminate between groups of crop vigour (Barrs and
Prathapar, 1994).  Unsupervised classification also avoids problems with the user biasing the
classification with improper or poorly represented training data, which can be the case in
supervised classification.

Supervised classification, which is the most common classification method in agricultural
areas, requires a priori knowledge.  It relies on the analyst to define the perceived groupings
by identifying homogeneous areas, called training sites, from either in situ collection or
directly from the image.  These training sites are statistically analysed and then used to assign
every pixel in the image to the group in which it has been determined a member.  Problems
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may arise when defined training sites are a poor representation of the group’s spectra.  For
example, training data with multiple modes in the training class histogram suggests that there
are at least two different types of land cover within the training area.  Also, positive spatial
autocorrelation exists among pixels that are contiguous or close together (i.e., adjacent pixels
have a high probability of having similar brightness values), which can cause a reduction in
variance between adjacent pixels (Campbell, 1981).  This reduction in variance can make
large clumps of contiguous training pixels less representative of a particular cover type over
the extent of an entire image and is why several single-pixel training sites located spatially
apart from each other can result in better classifications than large clumps of contiguous
training pixels (Medhavy et al., 1993, Campbell, 1981).  Spatial autocorrelation also means
that pixels in a remotely sensed image should not be thought of as entirely discrete features
independent of their neighbours, but rather a set of continuos features influenced by their
neighbours (Campbell, 1981).

Therefore, care must be taken to collect representative and non-autocorrelated training data.
When such care is taken, classification for crop identification can be quite effective.  Many
authors report classification accuracies exceeding 90% for rice identification and other crops
(Aplin et al., 1998, Barbosa et al., 1996, Le Hegarat-Mascle et al., 2000, McCloy et al., 1987,
Medhavy et al., 1993, Kurosu et al., 1997, Panigrahy et al., 1999).  However, the map user
should be aware that not all accuracy assessments are equivalent.

In general, classification accuracy assessment involves sampling classes of the thematic map
to summarise the amount of overlap between the classified map and what is present on the
ground, although the performance of the classifier can also provide information on map
accuracy (Richards, 1996).  The ‘ground truth’ information is usually gathered from existing
maps, aerial photography, or field surveys using any number of sampling schemes (e.g.,
simple random sample, stratified random sample, or systematic sample to name a few).
However, because of differences in the accuracy of the ‘ground truth’ source and the sampling
scheme used to gather the information, a certain amount of ambiguity is present in any
classification accuracy summarisation.

Certainly, the resulting accuracy assessment will be influenced by the reliability of the
‘ground truth’ source.  Validation data might be less reliable than the classification itself, yet
is used as ‘ground truth’ because it has been traditionally the standard by which management
decisions have been made.  For example, agricultural census’ of large areas in rural-based
countries may be extremely generalised, yet are often used to ‘ground truth’ a classification of
fine spatial scale (e.g., 30 metre) satellite imagery.  In this case, the classified map is probably
more accurate than the ‘ground truth’ making unclear as to what the discrepancies between
the classified map and the ‘ground truth’ are attributed to.

Another source of confusion introduced by classification accuracies is the way in which the
accuracies are reported.  It is advisable to differentiate between what is loosely known as
producer’s accuracy and user’s accuracy (Story and Congalton, 1986).  Producer’s accuracy,
here, is a strict comparison of the number correctly classified on the map versus the number
of that same class determined by the ‘ground truth’ (i.e., per cent correct).  This measurement
only considers errors of omission (‘ground truth’ points that were left out in the
classification).  User’s accuracy, on the other hand, considers both errors of omission and
commission (i.e., those that were misclassified by being wrongly omitted as well as wrongly
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included) (Story and Congalton, 1986, Congalton, 1991).  User’s accuracy is usually lower
than producer’s accuracy, which is why producer’s accuracy is usually reported.  This can be
potentially problematic when comparing results of classifications between different studies,
especially when classification accuracy methodologies are not explained well in publications
or reports (which is often the case).

To achieve high classification accuracy, multitemporal (Kurosu et al., 1997, Panigrahy et al.,
1997), multi-sensor (Le Hegarat-Mascle et al., 2000, Okamoto and Kawashima, 1999) or GIS
(Aplin et al., 1998) data is often integrated into the classification procedure.  However,
incorporating these data into a classification does not necessarily improve all crop type
accuracies.  For example, Barbosa et al. (1996) attained higher accuracies for several crop
types using single date imagery as opposed to multitemporal imagery.  These results
depended on both the timing of the single date image as well as the accuracy assessment
methodology used (Barbosa et al., 1996).  For example, rice crop identification using one
single date spring image produced equivalent or higher accuracy than the multitemporal
classification (Barbosa et al., 1996).  This specific example could be related to the ease by
which the water in flooded rice fields can be separated from other areas at the time of image
acquisition.  In contrast, some authors believe that the early (spring) estimate of rice crops can
be improved by use of a later image, which can aid in elimination of permanent water bodies
and other irrigated crops from the classification (Barrs and Prathapar, 1996, McCloy et al.,
1987).  The ‘law of diminishing returns’ is most likely at work in this situation; slight
increases in the accuracy of rice crop identification may not be worth the cost of purchasing
another remotely sensed image unless the impact of the assessment on management is
relatively high or potentially costly (Pax-Lenney and Woodcock, 1997b).

The performances of different sensors for crop identification have been tested over varied
geographic areas and crop types.  These most commonly include broadband optical (e.g.,
LANDSAT, SPOT, and AVHRR), and microwave (e.g., ERS, RADARSAT, JERS) used
alone or in combination in the form of either single or multiple date imagery.  In general,
multitemporal microwave imagery results in roughly equal classification accuracies as single
date optical imagery when specifically considering rice (i.e., about 90%) (Kurosu et al., 1997)
or other crops (Le Hegarat-Mascle et al., 2000).  Because of the complementarity of the data,
the fusion of both optical and microwave imagery has resulted in higher overall and
individual crop classification accuracies (> 95%) than either produce alone (Le Hegarat-
Mascle et al., 2000).

Higher crop classification accuracies have also been achieved by the combination of GIS and
remotely sensed data (Aplin et al., 1998).  This method of classification depends on accurate
GIS data and is sensitive to missing boundary lines.  By using GIS data, Aplin (1998)
achieved greater classification accuracies in ‘constrained’ areas having well-defined
boundaries (e.g., agricultural fields and urban areas).  Conversely, the inclusion of GIS data
decreased classification accuracy in ‘unconstrained’ areas or those areas having poorly
defined boundaries (e.g., grassland and bare soil areas) (Aplin et al., 1998).  Similarly, others
have improved classification accuracy using the contextual or landscape information inherent
in the imagery (Moody, 1997, Stuckens et al., 2000).  These techniques require no a priori
knowledge, and therefore, are more flexible because they do not rely on an updated and
accurate GIS layer. However, the user has more control when using GIS data, which can
result in very accurate results.
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Finally, hyperspectral remote sensing allows for the classification of imagery using many
narrow bands along the EMS.  These narrow bandwidths permit the use of very specific
spectral characteristics for optimising the categorisation of agricultural properties such as
biomass and leaf area index (Thenkabail et al., 2000) as well as classification of crops and
crop stress (Lelong et al., 1998).  The narrow bands in hyperspectral data are often ordered
sequentially along a wide bandwidth (e.g., every 10 nm from 470 – 2500 nm) providing
continuos spectral information over that EM portion.  This continuos nature of hyperspectral
data can provide very valuable information that can increase classification accuracy and is
why this data source will be frequently used in the future.  However, the tremendous spectral
information comes at a cost; the datasets are much larger than broadband datasets and thus are
harder to maintain in terms of data management and processing.  Also, in multi-temporal
analysis, accurate atmospheric correction of the hyperspectral data will be more critical than
for broadband data.

3.2 Crop Area Measurement

Crop area measurement is a very common practice in agriculture.  Remote sensing is often
used for this purpose because of its strengths in regard to spatial extent, temporal density,
relative low costs, and potential for rapid assessment of spatial features.  Many of the same
issues concerning crop type identification also affect crop area measurement from remotely
sensed data.  This is because crop type identification is a necessary first step to area
estimation.  In many cases, though, crop type identification is more concerned with
classifying all crop types from each other, where area estimation often is concerned with only
a few target crops.  In either case, these two applications are frequently performed in
sequence: first crop identification and then area estimation.  There are a few issues that are not
exclusively related, but tend to more specifically pertain to crop area estimation, including
positional accuracy, mixed pixels and pixel size, and a mismatch between individual and
overall accuracies of the results.

Positional accuracy, here, can be defined as the difference in the position of a feature on a
map compared to the feature’s real world or ‘true’ position.  As such, the position of boundary
lines on the map, for instance, are most likely not where they are in the real world, but are
more accurately represented as a belt or swath around that boundary line on the map.  This
swath contains the ‘true boundary line’ and has a width that is inversely related to the scale of
the source (Van Niel and McVicar, 2000).  For example, as the scale of the source gets
smaller (area representation gets larger) the width of the swath around the line generally
represents a larger distance, making the positional accuracy decrease (Van Niel and McVicar,
2000).  In other words, as the swath gets wider, the relative certainty of the position of the
‘real boundary’ gets smaller and the error likely increases.  Therefore, when attempting to
estimate crop areas accurately, considerable thought should be given to achieving high
positional accuracy of crop boundary lines if GIS data are used in conjunction with remote
sensing.  Ground validation points are extremely important, in this case, to quantify positional
accuracy and thus spatial uncertainty.  Knowledge of spatial uncertainty is essential in making
appropriate managerial decisions on crop area measurements (Van Niel and McVicar, 2000).
For example, if crop area estimation is performed in an attempt to monitor year-to-year land
use, it is extremely important to know how much potential error is included in the estimate
solely due to uncertainties.  With this knowledge, the manager has a better idea if the year-to-
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year difference in area is reliably measured from the remotely sensed data or if it is ‘absorbed’
by the inaccuracies of the dataset itself.
Pixel size of the remotely sensed data also affects positional accuracy of boundary lines in
crop area estimates, and therefore should be considered for its appropriateness to a particular
application.  One prominent issue is the relation of the pixel size to the paddock size (or
feature element) being measured (Woodcock and Strahler, 1987, Pax-Lenney and Woodcock,
1997a).  Although for large areas AVHRR data is very attractive due to its spatial extent and
high repeat cycle, the 1 km pixel size is often disproportionately larger than paddock sizes.
This may not be an unsurmountable problem when monitoring areas with many contiguous
smaller fields of the same crop type (Quarmby et al., 1993b), but at the same time, must be
considered.  In an attempt to either compensate for mismatched pixel-to-field sizes or to
increase the accuracy of area estimations, the spectral characteristics of impure or ‘mixed’
pixels can be ‘unmixed’ by linear mixture modelling.

In linear mixture modelling, the analyst assumes that any mixed pixel’s spectral signature is
made up of a combination of pure spectral signatures of all the separate land cover types
contained in that pixel in proportion to the area of which that cover type is found in the pixel
(van Leeuwen et al., 1997, Maas, 2000, Quarmby et al., 1992).  The spectral signatures
resulting from a pixel containing only one cover type (pure pixel) are known as end members.
Proper unmixing of mixed pixels relies upon the identification of good end member spectra
(Quarmby et al., 1992).  Different combinations and proportions of the end members are
combined to best match the signature of the mixed pixel, supposedly allowing for a better
estimate of crop areas.  Problems can arise when end members are either not a good
representation of a particular land cover class, or when a land cover class’ end member is not
collected.  Even when numerous and representative end members are gathered, results can
still be spurious due to confusion caused by mixed pixel spectra being explained by multiple
possibilities of end member combinations.  Also, green crops can produce very similar end
members at certain times of the year, resulting in erroneous unmixing in agricultural systems.

As with identification of crop types, ground validation is also very important in area
estimation.  Traditional estimates of crop area have come from census data over rather large
areas, and are usually rather gross and usually contain little specific spatial context. This
means that there is often no explicit locational knowledge contained in the ‘ground truth’.
This leads to very ambiguous results where overall values may be closely related, but the
analyst often has no idea what sort of spatial variation exists between the ‘ground truth’ and
the estimates from the remotely sensed data, leaving the comparison less meaningful.  It is
important, then, to make sure that the ‘ground truth’ data is defensibly more reliable than the
observation as well as spatially explicit, wherever possible.

Often, there exists in the validation of area estimations, a mismatch between reported overall
and individual accuracies.  Many authors represent areal accuracy as an overall summation of
several paddocks or districts.  This tends to reveal extremely accurate results, often exceeding
99% (McCloy et al., 1987, Quarmby et al., 1992, Fang et al., 1998, Okamoto and Kawashima,
1999).  However, this can be misleading because there often exists large areal errors in the
individual paddocks or districts that were added together to generate this statistic.
Unfortunately, this mismatch between overall and individual areal accuracy is rarely
discussed, revealing a perceived dichotomy in the results.
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The discrepancy between the overall accuracy and individual district- or paddock-level
accuracy is due to errors of underestimation and overestimation cancelling each other out
(Van Niel and McVicar, 2000).  That is, when several areas are added together, the
overestimates are often almost exactly offset by the underestimates, resulting in a good
overall estimation of area even though individual error is much larger (McCloy et al., 1987,
Quarmby et al., 1992, Fang et al., 1998, Okamoto and Kawashima, 1999).

In a study at the CIA in southern NSW, this individual areal error was seen to drop
considerably when just two areas were added together, and continued to approach zero as
more areas were summed (Van Niel and McVicar, 2000).  This phenomenon can be exploited
for management purposes, but care must be taken to ensure that proper interpretation of areal
accuracy is achieved for specific management situations (Van Niel and McVicar, 2000).  That
is, it is only appropriate to use the summed or overall areal accuracy when the overall area is
the specific concern.

3.3 Crop Yield

Crop yield forecasts can greatly influence farm-level management decisions, such as fertiliser
applications and water delivery, as well as provide a means for farm income assessment.
Consequently, individual farmers and district-level land managers show great interest in
producing rapid and accurate estimates of crop yield, both locally and regionally.  In the past,
the standard yield estimation procedure included the analysis of crop cuttings at randomly
sampled ground plots during harvest (Murthy et al., 1996), or meteorological regression
models using rainfall and past yield data (Karimi and Siddique, 1992).  These methods often
produce results that are either not timely nor spatially explicit.  Though still used, these
methods are being replaced by estimation of crop yields using remote sensing because of its
ability to produce results quickly and spatially.  Using this technology, it was found that
spatially meaningful estimates of yield can be made as early as 1 to 3 months prior to harvest
(Quarmby et al., 1993b, Rasmussen, 1997), thus impacting management reaction time to yield
forecasts.

Positive correlations exist between measurements of LAI (Curran et al., 1992, Tucker, 1979,
Nemani and Running, 1989a, McVicar et al., 1996a, McVicar et al., 1996b, McVicar et al.,
1996c), plant condition (Sellers, 1985), and VI’s.  Based on this relationship, and assuming
that LAI (or biomass) is related to yield, there are 3 main approaches used to forecast yield.
These are: 1) correlate yield with NDVI (Maselli et al., 1992, Smith et al., 1995); 2) correlate
yield with integration under the NDVI curve, denoted ∫NDVI (Benedetti and Rossini, 1993,
Quarmby et al., 1993a, Rasmussen, 1997, Rasmussen, 1998a, Rasmussen, 1998b, Pinter Jr. et
al., 1981, Honghui et al., 1999); or 3) simulate yield with crop models (sometimes using
remotely sensed inputs) (Rosenthal et al., 1998, Inoue et al., 1998, Maas, 1988).  For a
detailed review of crop yield modelling using remote sensing, see McVicar and Jupp (1998).
A brief summary of all three approaches follows.

Both regressions of VI and ∫NDVI studies generally attempt to estimate yield using remotely
sensed data alone.  A direct comparison of VI response to yield can result in highly correlated
regression equations.  For example, Harrison et al. (1984) achieved correlation coefficients (r)
as high as 0.9 for calrose rice and 0.79 for Inga at the CIA using the greenness ratio of
MSS7/MSS5.  This study developed the yield model based on imagery acquired when the
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crop was at booting stage, the time when rice displays green leafy surfaces (Harrison et al.,
1984).  Promising correlation coefficients were also shown between reflective bands of TM
imagery and harvested grain yield (up to 0.92 for band 7) (Tennakoon et al., 1992).  These
relationships can be used to estimate rice yield at district levels with reasonable success.  For
example, Patel et al. (1991) was able to estimate district rice yield with an accuracy ranging
from 86% to 98%.

Likewise, ∫NDVI studies have produced similar results with relation to rice yield.  Rice yields
have been estimated within 3% of official values for 3 consecutive years in one study
(Quarmby et al., 1993b), while correlation coefficients have been reported as high as 0.93 for
millet yield in another (Rasmussen, 1992).  However, the ∫NDVI method is highly sensitive to
remotely sensed data availability, which can result in gross yield underestimates when
portions of the growing season are missing (Quarmby et al., 1993b).  Until just recently, the
only operational satellite sensor with a repeat cycle sufficient for ∫NDVI studies of crop yield
has been NOAA AVHRR (Rasmussen, 1992).  The most notable additions to this list are the
TERRA (ASTER and MODIS sensors), and Ikonos satellites both launched in 1999 (Table 1).
Anticipated sensors could also impact the usefulness of ∫NDVI studies by increasing the
number of satellites with relevant repeat cycles.  These include Quickbird-1, and Orbview 3
and 4 (Table 1).  The definition of the proper time interval for ∫NDVI studies has been
disputed, but shown to only be significant when integrated over the reproductive stage (for
millet) (Rasmussen, 1992).  For rice, where LAI usually exceeds 5, VI’s saturate, limiting the
usefulness of this approach, and suggesting that different methods might achieve better
results.  To date, the ∫NDVI method has mostly been used in dryland farming. In an attempt to
achieve highly accurate yield estimates, many models have been developed which aim to
simulate plant growth.  Such plant growth models need to be validated to ensure that they
meet a desired level of predictive capability.  Plant growth models can be validated by
comparing simulated and in situ measurements of vegetation parameters (e.g., biomass or
yield).  However, plant growth models may also be validated by comparing simulated
reflectance with that measured by remote sensing.  This can be achieved by inverting either
empirically-based relationships, or physically-based radiative transfer models.  This means
that a plant growth model estimate of cover can be converted, through a radiative transfer
model, to an estimate of reflectance, or recalibrated through the estimation of key crop
variables like LAI or above ground biomass (Inoue et al., 1998, Fischer et al., 1996, Fischer et
al., 1997, Maas, 1988).  This recalibration of crop variables links well to simple growth
models because they can be directly related to fPAR , a key variable in most of these models
(Inoue et al., 1998).

Because the radiative transfer model approach can be complicated and necessitates many
input variables, the recalibration of simple models is often preferable (Inoue et al., 1998).
Recalibration is also, very often, a better method for yield estimation than either using the
remotely sensed data as direct input to simulation models, or ∫NDVI because it is not as
limited by the availability of remote sensing data (Inoue et al., 1998).  The recalibration
approach using remote sensing has also been shown to drastically improve non-calibrated
simulation models (Inoue et al., 1998).
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3.4 Crop Damage

Of great concern in agricultural systems is the loss of productivity due to crop damage and its
negative impact on meeting the increasing demands for food globally (Fox Strand, 2000).
Rice damage and subsequent yield reduction can occur for many reasons including, various
pathogens, insects, and weeds and often possesses a complex interaction with cropping
practices (Ennaffah et al., 1997, Islam and Karim, 1997, Savary et al., 1997).  Cropping
practices such as differences in water depth and fertiliser applications have been shown to
affect crop production (Anbumozhi et al., 1998).  Likewise, irrigation with wastewater can
cause heavy metal contamination in soils, also resulting in crop damage and yield reduction
(Cao and Hu, 2000).  Natural variables, such as climate, can also cause damage from either
seasonal temperature or precipitation (drought) variations, although irrigated systems are
generally sensitive to cold temperature events only.  In southern NSW, depth of ponded water
is used to regulate plant temperature. The rice panicle is kept under water, where during the
night it remains warmer than the surrounding air temperature. Rice leaf blast epidemics may
be related to temperature as well, leading to model simulations of yield losses due to current
global warming trends (Luo et al., 1998). Crop damage research using remote sensing can be
simplified into two different categories: those that measure the source of damage (direct
measurement), and those that measure the effect of the source of damage (indirect
measurement).  In certain situations, the source of crop damage can be measured directly from
remote sensing.  These studies include assessment of salinisation, weed infestations, and
waterlogging.

Saline soils have been shown to have higher reflectance in both the visible and NIR
wavelengths than non-saline soils from both ground and satellite radiometric measurements
(Rao et al., 1995) allowing for mapping of salinisation (Sharma and Bhargava, 1988,
Dwivedi, 1992, Wiegand et al., 1996, Yu-liang, 1996).  It should be noted, though, that
successful mapping of salinisation results only when salt scalds are clearly visible on the soil
surface.  This is not the case for all salt affected soils, which means that salinisation is not
always easily mapped from remote sensing.  Detection of water from dry land is
uncomplicated spectrally leading to the classification of potentially waterlogged areas
(Sharma and Bhargava, 1988).  However, these areas should be integrated with an accurate
land use map as permanent water bodies and natural wetlands could quite easily be included
in the classification otherwise.  Ground-based electromagnetic (EM-31) surveys (Hume et al.,
1999) and airborne radiometrics (Cook et al., 1996) have also proven useful for mapping soil
attributes.

Weed infestations can also be directly measured with remote sensing if the weeds are
prevalent prior to crop emergence (Lamb, 2000).  In this case, the living vegetation (weeds) is
easily identifiable from the background soil.  These infestations are also detectable after crop
emergence if their spectra are significantly different from the background soil and crop cover
(Lamb et al., 1999).  It was found that weed detection requires high spatial resolution and is
sensitive to spatial registration and weed density, which can all affect the accuracy of the
results (Lamb et al., 1999).  This spatial resolution requirement limits the usefulness of most
current satellite platforms for weed detection and is why most of these projects make use of
airborne systems.
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In most cases, however, it is impossible to measure the source of the damage directly using
remote sensing.  For example, the measurement of ducks or insects in a rice paddock is not
feasible, whereas, the effects of these pests can potentially be detected through loss of above
ground biomass or yield.  In this sense, crop damage is almost always associated with crop
yield, and therefore, there is much overlap with the previous section.  This means that any of
the multiple techniques that have been developed for estimating yield from remotely sensed
data, can then be associated with losses due to various forms of crop damage.  In specific
cases, however, the indirect measurement is not necessarily associated with monitoring yield
or biomass losses from a particular event (e.g., an insect infestation), but rather is an attempt
to detect possible plant stress (Lelong et al., 1998) over a less discrete period of time.
It is well established that physiological stress in crops is related to incident reflectance from
crop canopies and that this altered reflectance can be detected with remote sensing (Knipling,
1970, Thenkabail et al., 1994b).  These changes in reflectance are prominent in both the
visible and NIR regions of the EMS.  An increase in leaf reflectivity in the visible light
portion as a response to stress is caused by the metabolic sensitivity of chlorophyll resulting
in less efficient absorption of light (increased reflection) (Knipling, 1970).  NIR reflectance of
leaves is more variable at the onset of stress (Knipling, 1970), but has been shown to increase
steadily as stress continues in the form of dehydration (Gausman, 1974).  NIR also looses
distinctiveness in its spectral signature, especially in the water absorption regions, as the
curve flattens (Gausman, 1974).  These individual leaf responses are often seen at the crop
level as losses in leaf area or foliar density in conjunction with increases in shadow and non-
foliar surfaces (Knipling, 1970) if the stress continues long enough.  Stresses due to
dehydration will not generally be a problem in the irrigated areas of NSW, but will affect the
surrounding dry-land agricultural systems.  Also, the irrigated crops should have similar
physiological/spectral responses to other stresses (e.g., disease).  In either case, the major
objective of such crop damage detection is the link to management decisions in a timely and
cost effective manner in order to operate agricultural systems more efficiently

This is why so much of the current crop damage literature concentrates on precision
agriculture.  Precision agriculture is a process that heavily relies on observations describing
within-paddock variability in order to implement dynamic management decisions that may
result in higher crop production (Cook and Bramley, 1998).  Another key component of
precision agriculture is its reliance on technology such as Global Positioning Systems (GPS)
and Variable Application Technology (VAT) (Cook and Bramley, 1998).  These technologies,
along with remote sensing, make the implementation of the procedure possible.

Critical spatial input to precision agriculture decision support systems include crop yield and
soil properties.  Several studies have shown how to generate these spatially variable inputs
through analysis of ground samples (Bailey et al., 2001, Gandah et al., 2000), however, most
prove to be both time and cost consuming, especially over large areas (Viscarra Rossel and
McBratney, 1998).  These limitations have made remote sensing an attractive alternate source
of this spatially variable observational data (Moran et al., 1997, Lamb, 2000).

In general terms, the main benefits to the use of remote sensing in precision agriculture are
associated with its strengths in mapping both time and space.  Seasonal (temporal) and spatial
variability of environmental characteristics, mainly crop and soil conditions (Moran et al.,
1997), can be mapped efficiently with remote sensing.  These data can then be used to
implement timely management actions as the crops develop.  Current limitations to the use of
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remote sensing in precision agriculture are mainly related to technology.  Current satellite
systems have fixed spectral bands, too coarse spatial resolutions, inadequate repeat cycles,
and long delivery times (Moran et al., 1997).  Airborne sensors overcome some of the spectral
and spatial resolution problems associated with satellites, but these systems generate
additional problems with radiometric and geometric correction making it hard to monitor
large areas (Moran et al., 1997) as well as adding difficulty and time to image processing.
Both systems (satellite and airborne) also tend to accumulate high costs associated with the
large time-series of inter annual data that has to be acquired.  Moran et al. (1997) discuss in
detail the potential role of remote sensing in precision agriculture.

Benefits of precision agriculture not necessarily associated with remote sensing are increased
efficiency, reduced risk of environmental hazards, and improved process control (Cook and
Bramley, 1998).  The limitations include cost and complexity of the system, training of users,
and delivery of appropriate input data in a timely manner.  As such, the potential usefulness of
remote sensing in crop damage management, specifically for implementation in precision
agriculture is high.  However, the limitations of precision agriculture currently make it non-
operational at a regional scale.  As seen from various paddock-level studies, the process has
merit, but is not yet routinely viable for most farmers or land managers.  This is likely to
change in the near future as some of these limitations disappear due to advances in technology
and research methodologies.

3.5 Water Use and ma Mapping

Knowing crop water use, both temporally and spatially, in irrigated areas allows water
delivery to match agricultural demands.  Crop water use can be determined either by crop
specific empirical models or use of process based models.  Both of these approaches require
access to ground based meteorological data, usually with a daily time step.  To perform either
modelling approach over large irrigation areas will require access to a network of
meteorological stations with a suitable spatial density and extent to characterise the spatial
variation in observed meteorological variables.

A commonly used method to estimate crop water use is application of the Food and
Agriculture Organisation (FAO) Guidelines for prediction of crop water use (Smith et al.,
1991, Doorenbos and Pruitt, 1977, Frere and Popov, 1979).  Class A Pan evaporation can be
measured if such facilities exist and are properly maintained, or can be estimated from
commonly observed meteorological data.  The FAO method requires modification of crop
coefficients; it does not require remotely sensed data.  However, knowledge of different land
uses are required to extend this approach spatially.  Remote sensing is seen to be a timely and
cost effective way to provide these maps to GIS models annually.  A derivate of this method
have been used by Kirk et al. (1999) to provide estimates of crop water use for farm-level
irrigation water use efficiency for irrigation areas in South Australia.  The location of
paddocks was obtained from a GIS data base of paddock level cropping.

Many other water balance/plant growth models have been developed which require
meteorological data, and soil and generic plant parameters to successfully run.  These models
can range from empirical to process based, however, as with the FAO approach, suitable
maps of land use is required to take these estimates into the spatial domain.  Given the issue
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of advection in irrigated environments (Humphreys et al., 1994a) the areal weighted up-
scaling approach using GIS strata may introduce large errors in the regional crop water use
calculation.

Regional remotely sensed Ts observations can be used in a resistance energy balance model
(REBM, Monteith and Unsworth, 1990) to provide estimates of the H.  This allows the λλλλE to
be estimated as the residual, obtained by rearranging Equ’n 1.  REBMs require effective
models for the resistances and other terms (including Rn and G).  Kustas and Norman (1996)
review the use of remote sensing to estimate λλλλE. REBMs describe the fluxes between soil and
plant canopies and the atmosphere in terms of ‘resistances’.  The models are ‘closed’ by
specified meteorological inputs defined at a reference height above the surface and some
assumptions or models defined at or below the earth’s surface.  To solve a REBM at the time
Ts is observed, several surface and near surface meteorological variables (either measured or
estimated) are required.  These include air temperature (Ta), relative humidity (h) or vapor
pressure (ea), solar radiation (Rs) and wind speed (u) at some reference height above the
surface and over a time limit of sufficient length for equilibrium to be assumed.  The
feasibility and effectiveness of providing such data when only standard daily meteorological
data are available has been demonstrated (McVicar and Jupp, 1999a).  REBMs also need
surface information such as albedo and LAI (or percent vegetation cover) which may be
obtained either from reflective remotely sensed data or in situ measurements.

During detailed experiments, when specific time-of-day meteorological data are collected,
progress in REBM parameter formulation has been made.  However, such experiments are
limited to short times for small areas (e.g. Kustas et al., 1989, Kustas et al., 1990, Zhang et al.,
1995, Raupach et al., 1997, Flerchinger et al., 1998).  For operational regional irrigation water
supply management, obtaining REBM estimates of fluxes at isolated points is of minimal use.
Either model inputs or model outputs need to be spatially interpolated to the entire region of
interest.  The issue of ‘interpolate then calculate (IC)’ or ‘calculate then interpolate (CI)’ has
received attention to spatially estimate moisture deficit (Stein et al., 1991), moisture
availability (McVicar and Jupp, 1999b, McVicar and Jupp, 2000), global solar radiation
(Bechini et al., 2000), and soil properties (Heuvelink and Pebesma, 1999, Bosma et al., 1994).

To avoid running a REBM at every point in the agricultural system, a number of methods
have been developed.  The methods are based on the link of the energy balance and water use.
For example, leaf temperature can increase when the leaf is green, as stomatal closure to
minimise water loss by transpiration results in a decreased λλλλE.  At the same time, due to the
requirement of the energy balance, H usually increases.

Idso et al. (1981), Jackson (1982) and Jackson et al. (1981, 1983) pioneered methods using
daytime Ts for assessing crop health and establishing irrigation scheduling at the field scale.
These techniques, culminated in the development of the Crop Water Stress Index (CWSI)
which has the form CWSI = 1 - mad, where the subscript d means the daily integral.  The
Normalised Difference Temperature Index (NDTI) directly maps ma regionally.  The high
spatial density present in remotely sensed data is exploited by using this data as a covariate to
spatially interpolate the NDTI in a CI approach (McVicar and Jupp, 1999b, McVicar and
Jupp, 2000).
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A number of approaches based on the negative correlation between Ts and NDVI (denoted Ts-
NDVI) to provide a measure of environmental stress have developed.  Goetz (1997) reported
that the negative correlation between Ts and NDVI, observed at several scales (25 m2 to 1.2
km2), was largely due to changes in vegetation cover and soil moisture.  For complete
canopies, the slope of the Ts versus NDVI plot has been related to canopy resistance (Sellers,
1987, Hope, 1988, Nemani and Running, 1989b).  Nemani et al. (1993) found the slope of Ts

versus NDVI plot to be negatively correlated to a crop-moisture index.  These empirical
relationships defined from the slope of Ts-NDVI plots need to be acquired over a range of
NDVI and Ts conditions, to allow the ‘warm edge’ to be calculated with any confidence.  It
also should be noted that the slope of Ts-NDVI plots is empirically related to ma.  For two
different images, with different meteorological conditions, resulting in different atmospheric
resistances, the relationship between the slope of Ts-NDVI plot and ma can be non-unique.

Advances are currently being made that use the Ts versus NDVI plot combined with process
based understanding to provide a more mechanistic interpretation of the remotely sensed data.
There are two methods currently being put forward.  The first, a progression of the slope of
the Ts versus NDVI plot approach, describes the data as falling into a ‘triangle’ (Carlson et al.,
1990, Carlson et al., 1994, Price, 1990, Gillies and Carslon, 1995, Gillies et al., 1997).  The
second, the Vegetation Index / Temperature Trapezoid (VITT) promotes the idea of data
falling into a trapezoid (Moran et al., 1994, Moran et al., 1996, Yang et al., 1997).  The VITT
is an evolution of the CWSI.  The unifying feature for both the ‘triangle’ and the ‘trapezoid’ is
the appearance of the ‘warm edge’, the line between the dry bare soil point and the fully
vegetated point (for the trapezoid its the fully vegetated stressed point).  For any point, if both
the vegetation cover and Ts can be measured, then ma can be empirically defined for that
image.  The top side of the ‘trapezoid’ may collapse, forming a ‘triangle’, as a function of the
remotely sensed spatial scale and the timing of acquisition during the growth cycle.

The main limiting factor for use of thermal remote sensing for operational management of
irrigated areas is the repeat characteristics of remotely sensed data with suitable spatial
resolution.  Another difficultly in many irrigated rice growing areas is the measurement and
specification of lateral energy flow (advection) from surrounding non-irrigated areas, which is
usually not represented in REBMs.  For example, in an advective environment, Dunin (1991,
pp 45) states “the discrepancy (between lysimeter and Bowen ratio values of λλλλEa) reached 80
Wm-2 by noon and persisted in excess of 100 Wm-2 throughout the afternoon”.  This
illustrates the difficulty in estimating λλλλEa using models that don’t include components for
lateral flow of energy (as in most REBMs).

3.6 Water Use Efficiency

With population growth comes a decrease in living space (or global land area per capita) and
thus, increased competition for land and water resources (Lund and Iremonger, 2000).  These
higher demands on water and land, among other things, result in a need for more efficient use
of the resources.  Assessing and improving Water Use Efficiency (WUE) in agricultural
systems, then, will become exceedingly important as the demand for food production on these
limited resources continues to increase.  Water savings from these systems, in particular,
could affect the regional and global water balances as the area of land placed under
agriculture is expected to increase considerably in the near future (Lund and Iremonger,
2000).
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WUE of the irrigated agricultural lands of southern NSW has become increasingly relevant,
as the Snowy Water Inquiry into the environmental issues associated with the corporatisation
of the Snowy Mountains Hydro-electric Scheme was initiated in 1998.  Ninety-nine percent of
the runoff from the Snowy Mountains is diverted inland to generate hydroelectric power, and
irrigation water for agriculture (Gale, 1999).  The Scheme provides an average of 1200 Gl per
year to the Murray River and 1210 Gl per year to the Murrumbidgee (Gale, 1999).  This water
is used in the production of approximately A$1.5 billion per year worth of irrigated
agricultural products (Gale, 1999).

Benefits of the scheme include electricity, increased urban water supply, recreation, dilution
of salinity in the Murray River, stock watering, displacement of an estimated 5 million tonnes
per year of carbon dioxide emissions to the atmosphere (the amount that would be produced if
the same quantity of electricity was generated by coal-fired thermal power stations) (Gale,
1999), as well as providing the water for, among other crops, a 1.5 million tonnes of yield per
year rice industry.  Environmental impacts from the changes in flow and discharge regimes
across these rivers include reduction in channel size, increases in groundwater levels,
salinisation, erosion of river banks, changes in wildlife habitat, weed invasion, and a
reduction of water quality (Gale, 1999).

The Snowy Water Inquiry was established by the Commonwealth, New South Wales and
Victorian governments to determine how to best balance the environmental, electricity and
irrigation interests of the region (Gale, 1999).  Environmental issues of the inquiry included
impacts on rivers, river channels, ecology, the lower Snowy River, and environmental flows
(Gale, 1999).  Economic issues included impacts on electricity generation, impacts on
agriculture, and impacts on recreation and tourism (Gale, 1999).  Social issues include the
alteration of social values of heritage, culture, and community (Gale, 1999).

The final report delivered on 23 October 1998 presented 23 options for resolution, of which,
composite option D was supported.  Option D involves increasing the flow of the Snowy
River below Jindabyne Dam to 15% of the pre-Scheme mean discharge (Gale, 1999).  This
option was chosen because it would provide environmental gains at minimal cost to
agricultural, hydroelectric, and different government agencies (Gale, 1999).  Whether the
environmental gains of this option would be significant (Seddon, 1999, Erskine et al., 1999),
or cost to agriculture minimal (Watson, 1999, Hoare, 1999) has been questioned.  Also, it is
questionable whether reducing one environmental problem is worth adding to another as
increasing environmental flows in the Snowy River will translate into greater greenhouse
emissions from subsequent thermal-powered electricity generation (Seaton, 1999).

The outcome of this inquiry will, no doubt, require irrigation managers to be more efficient
with the water that is supplied to them.  This increased WUE may occur through a
combination of technology and changing management practices, and will most likely
necessitate an analysis of WUE at different scales.  Regional-scale analysis of WUE would be
most helpful in defining gross efficiency relationships and help target areas that could
potentially benefit from changes in management practice (McVicar et al., 2000).  With this
analysis, the baseline WUE could be determined and possibly whether or not plant breeding
since the 1980’s or 1990’s has influenced WUE on a regional level.  As such, regional WUE
will be the focus of the following discussion.
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Stanhill (1986) defined water use efficiency (WUE) both hydrologically and physiologically.
Hydrological WUE is the ratio of evapotranspiration to the water potentially available for
plant growth. It is expressed as a unitless percentage or fraction (0–1). Physiological WUE is
a measure of the amount of plant growth for a given volume of water. The definition of
physiological WUE can be defined for different measures of ‘plant growth’ and ‘volume of
water’. Turner (1986) notes that care is needed when defining WUE. For example, in some
studies ‘plant growth’ has been measured in units of net biomass (including roots) (Ritchie,
1983, Tanner and Sinclair, 1983, Turner, 1997) or crop yield (Tanner and Sinclair, 1983,
Turner, 1997). In various previous studies the units of ‘volume of water’ is either the total
transpiration (Tanner and Sinclair, 1983, Turner, 1997, French and Schultz, 1984a, French
and Schultz, 1984b), total evapotranspiration (Ritchie, 1983, Tanner and Sinclair, 1983,
Turner, 1997), total water input (Sinclair et al., 1984), or the amount of precipitation plus
initial soil water at the time of sowing (French and Schultz, 1984a, French and Schultz,
1984b).

Sinclair et al. (1984) introduced different time scales for several definitions of WUE. The
temporal scales ranged from an instant, through daily, to a growing season. Intrinsically
linked to a range in temporal scale is a range of spatial scale (Table 2), which can extend from
a single leaf, through canopy, to field, farm level, and regional assessment. The scales are
linked: for example, leaf WUE (in the order of 10’s of cm2) will usually be measured over a
short time (e.g., a second to daily). On the other hand, farm-level and regional WUE (in the
order of 10’s to 1000’s of km2) will usually be measured over a longer time (e.g., a growing
season). To date, there has been very little research focussing on farm level (Kirk et al., 1999,
Tuong and Bhuiyan, 1999) or regional assessment (Schuepp et al., 1987, McVicar et al.,
2000) of WUE.

TABLE 2:  DIFFERENT SPATIAL SCALES OF PHYSIOLOGICAL WUE,
CORRESPONDING TEMPORAL SCALES, AND SOME COMMON

UNITS IN WHICH THEY ARE MEASURED.

Spatial scale Temporal scale Units

single leaf (10’s of cm2) second – day – growth stage mgCO2/gH2O or µmol/mmol

canopy (1 to 10’s of m2) second – day – growth stage mgCO2/gH2O or µmol/mmol

field (100’s of m2 to 10’s of ha) day – growth stage – season mg/gH2O or kg/ha.mm

farm (1 to 100’s of ha) growth stage – season – year kg/ha.mm or tonne/km2.TL

region (10’s to 1000’s of km2) season – year kg/ha.mm or tonne/km2.TL

Single-leaf WUE is commonly defined as the net CO2 uptake per unit of transpiration. On a
continuous basis – that is, at any instant within a day – it is expressed as the ratio of leaf net
photosynthetic rate to leaf transpiration rate, or at the daily time-step it is expressed as the
ratio of daytime CO2 uptake to daytime transpiration. Canopy (or community) WUE is
commonly defined as the ratio of the net CO2 assimilation of crop canopy to crop canopy
transpiration – that is, the ratio of the canopy CO2 flux to the H2O flux for canopy
transpiration. Canopy WUE can be expressed continuously and at a daily time-scale, as
above, and can also be calculated for specific growth stages. Field WUE can be defined as the
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ratio of grain yield per unit of water, hence the units would be kg/ha.mm; however the ‘plant
growth’ and ‘water’ terms need to be explicitly defined. Regional WUE has similar
definitions to field WUE except it applies to a larger area.

There are three main approaches available to assessing WUE regionally:
1. Remote sensing, which can estimate both evapotranspiration and CO2 exchange of large

areas at specific times of day, can be used to present regional WUE estimates at specific
times (Schuepp et al., 1987). This requires access to much ancillary ground based
meteorological data and presents difficulties in extending this from the field sites to
regions. There are also difficulties in temporally extending the data from specific times to
entire growing seasons;

2. Using remotely sensed based estimates of yield and of λλλλE. However, as has been
discussed previously there is difficulty in estimating yield in irrigated environments where
LAI is high. Methods exist for providing daily λλλλE maps from specific time-of-day Ts

observations, however, reliable estimates of λλλλE are difficult to obtain in highly advective
irrigated agricultural environments.  Taking isolated daily observations to estimate
growing season λλλλE would again require access to ground based meteorological data; and

3. Regional databases of yield, precipitation, irrigation and initial soil water can be
developed allowing an ‘input-output’ (Zoebl, 2000) definition of regional WUE (McVicar
et al., 2000). ‘Input’ is the water available over the crop growing season and ‘output’ is
the yield. This approach is well suited to spatial assessment of regional WUE. Coupling
this approach with canopy and field-scale process understanding will allow identification
of the regional data bases that are required to develop` a more process constrained
regional WUE estimation.

For many of the variables that influence WUE, data are usually not regionally available, and
hence they cannot be included in the development of regional WUE estimates. Factors
varying both spatially and temporally include:
1. crop varieties, which includes plant breeding (Khush, 1987, Brennan et al., 1994, Brennan

et al., 1997) and genetic modifications;
2. soil conditions (Christen and Skehan, 1999, So and Ringrose-Voase, 2000), including soil

erosion, sodicity, salinisation, and waterlogging;
3. climate change (Loaiciga et al., 1996), including precipitation patterns and CO2

concentration (Hunsaker et al., 2000);
4. agricultural practices, including the use of fertilisers (Anbumozhi et al., 1998), irrigation

management (Pereira, 1999), crop rotation (So and Ringrose-Voase, 2000), planting
density, and the use of mulch (Tolk et al., 1999) to reduce soil evaporation.

These interactions are complex, and largely unknown at the regional scale of southern NSW,
making absolute measures of WUE difficult. The ‘input-output’ GIS definition of regional
WUE, however, is most suited to the analysis of relative trends, both spatially and temporally.
Such a GIS would rely on access to data recorded by irrigation companies and the
RiceGrower’s Cooperative, all who are industry participants in the CRC for sustainable rice
production.
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4 LIMITATIONS OF REMOTE SENSING IN RICE-BASED
AGRICULTURE

Remote sensing is a valuable source of data in rice-based agriculture, especially when
regional-scale issues are the concern.  However, there are some limitations of remote sensing
regarding agricultural applications including:
1. Data availability;
2. Length of recording period;
3. Limited mapping capability;
4. Requirement of expertise and computer facilities; and
5. Cost
A very brief discussion of these topics follows.

4.1 Data Availability

Non-availability of remotely sensed data may be due, among other things, to rocket launch,
satellite operational problems or political issues.  Events such as these will continue to occur
and operational systems must pre-determine the influence of any data stream becoming non-
available.  Satellites have different repeat cycles (Table 1).  This means that certain satellites
will provide only 2 images per month, for example, whereas others can produce an image
every
day.  This can have considerable impact on agricultural applications since repeat cycle
characteristics of satellites are one of the determinants for forecasting yield with the ∫NDVI
approach, for example.  Also, these high repeat cycle platforms usually have lower spatial
resolution, impacting the appropriateness of its data to fine-scale applications.  Another major
cause of optical data unavailability is cloud coverage.  This could be problematic when timing
of image acquisition is critical as in crop identification.  This may be avoided by using either
microwave or airborne remote sensing.  However, processing of these data can be a problem
due to the scientific expertise needed for analysis of microwave data and the data
management associated with large area airborne acquisitions.

4.2 Length of Recording Period

The period over which remotely sensed data are available has little impact on agricultural
applications.  Most agricultural research and management is interested in current or future
concerns.  However, for the few agricultural projects dealing with historical context, the
recording period could be restricting.  Remote sensing, unlike meteorological data, has not
been recorded for a century. The longest time series currently available of free to ground
remotely sensed data covering Australia at monthly time steps is AVHRR at 15 years.
LANDSAT data has been recorded since 1972, but can be quite expensive when acquiring a
long time series

4.3 Limited Mapping Capability

The limited capability of remote sensing to map certain agricultural variables has been
discussed in detail in section 3.  Specifically, remote sensing is limited to mapping single
crops to slightly higher than 90% accuracy when multi-date, multi-sensor, or GIS data is also
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used.  Remote sensing alone, however, is more limited at discrimination of multiple crops to
this level of accuracy.  Yield predictions are also limited from remotely sensed data because
of the saturation problem discussed in section 3.3.  Remote sensing is also often unable to
detect direct sources of crop damage (section 3.4).  These limitations may decrease in the
future as spatial and spectral resolutions, and repeat cycles increase.  However, the resolutions
needed for this type of detection will probably not be available for some time.  Finally,
although remote sensing from satellites has high potential for providing spatially variable data
needed for precision agriculture, the limitations of fixed spectral bands, too coarse spatial
resolutions, inadequate repeat cycles, and long delivery times (Moran et al., 1997) make it
non operational at this time.

4.4 Requirement of Expertise and Computer Facilities

Agricultural research with remote sensing requires a moderate level of expertise and
computing support. The processing of remotely sensed data requires an investment in training
of personnel as well as adequate computers and data storage. Computer hardware and
software are important, but perhaps more important is mindware to ensure the correct use of
remote sensing to assist in the decision making process.

4.5 Cost

Cost of remote sensing projects can be prohibitive, especially when fine detail is needed over
large areas.  However, this depends on the application and the appropriate remote sensing
platform.  Much agricultural research has been accomplished with free NOAA AVHRR data.
Yet, AVHRR data is not appropriate for many applications. With the launch of the TERRA
satellite in 1999, came a new era in remote sensing: no cost moderate to fine resolution data.
The spatial resolution of the ASTER and MODIS sensors is appropriate for many different
agricultural applications.  However, some remote sensing data is currently expensive for large
areas of land (e.g., 1,000 km2), including very high spatial resolution data (e.g., IKONOS or
airborne systems), and hyperspectral data.

The cost estimates for specified common commercially available remotely sensed data is
summarised in Table 3 by each irrigation area in southern NSW.  These estimates are
intended to give potential users of remotely sensed data a general idea of the costs involved,
and by no means are meant as a precise cost.  Values in this table are most useful when
viewed in the relative context of prices by sensor and by irrigation area.  Figure 5 provides the
spatial context of the extent of two popular sensors ((E)TM and SPOT) for the study site.

TABLE 3:  COST ESTIMATES FOR SPECIFIED REMOTELY
SENSED DATA

Irrigation Area TM ETM SPOT PAN SPOT X IKONOS1

CIA2 $750 $600 $1,530 $1,430 $11,172

MIA3 $2,375 $2,200 $7,600 $6,800 $63,468

MIL4 $3,025 $2,400 $9,500 $8,500 $97,176
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1 IKONOS column represents the price for either 1m panchromatic or 4m multispectral data.

2 CIA estimates for TM and ETM, were based on one prices for one ninth scene (up to 3,600
sq km) (map oriented price).  SPOT PAN and SPOT X costs are based on one half scene (up
to 1,800 sq km) (map oriented price), and IKONOS costs are based on price per area (931 sq
km * $12 AUS/sq km = $11,172).

3 MIA cost estimates for TM and ETM are based on one full scene and one ninth scene (full
scene is path image price and ninth scene is map oriented price). SPOT PAN and SPOT X
costs are based on 4 full scenes (path image price), and IKONOS estimates are based on price
per area (5,289 sq km * $12 AUS/sq km = $63,468).

4 MIL estimates for TM and ETM are based on one full scene, one ninth scene and one small
scene (path image price for full and map oriented price for ninth and small).  SPOT costs are
based on 5 full scenes (path image price), and IKONOS costs are based on price per area
(8,098 sq km * $12 AUS/sq km = $97,176).

Figure 5.  SPOT and (E)TM satellite ‘footprints’ for the study site.  TM footprints are the
large rectangles represented with heavy lines.  Selected SPOT footprints are the smaller
rectangles represented with light lines.  The ETM image on the front cover is for the top

centre ETM ‘footprint’.
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5 CONCLUSIONS

Remote sensing is a valuable source of data that can provide a synoptic perspective critical for
understanding biophysical relationships at a regional scale.  Because of this, remote sensing
has been a popular tool readily accepted into agricultural research and management.  Since the
launch of LANDSAT-1 in 1972, scientists and managers have been using remote sensing for
crop identification, area measurements, yield prediction, and crop damage assessment.  More
recently, remote sensing has been seen as a source of spatial data for precision agriculture,
although currently these systems are not widely operational.  Remote sensing along with
climate data and GIS technology can also be used for modelling λλλλE and ma for regional
analyses of water use efficiency.  As fine to moderate remotely sensed data is now available
free of cost, the use of remote sensing in agricultural management is more appealing than
ever.  The current availability of very fine spatial resolution data as well as the anticipation of
hyperspectral data also broadens the scope of remote sensing and its usefulness regarding
agricultural management.
The common thread in crop type identification applications is an attempt to achieve greater
accuracy from remotely sensed data.  In order to accomplish this, researchers have looked into
various alternatives.  Most of these alternatives have to do with the type of sensor (i.e., optical
or microwave), number of images (i.e., single-date or multi-date), timing of the imagery, or
processing technique.  Although these characteristics certainly make a difference in the results
attained, the trait that seemed to be most relevant was an appropriate use of the spatial data in
combination with process understanding.  Appropriate ground validation data and accuracy
assessment is also critical for testing and reporting results.

Area measurement of crops from remote sensing is largely straightforward.  However,
positional accuracy and pixel size can both affect the results attained in this procedure.  The
scale of the remote sensing data, therefore, should be appropriate for the level of accuracy
desired.  This means that clear management objectives should be outlined prior to areal
measurements.  Individual areal measurements may vary more widely and be less accurate
than summed (overall) measurements because errors of underestimation are offset by errors of
overestimation when a number of areas are added together.

Strong correlations can exist between single date VI’s or multi-date cumulative or integral
VI’s and crop yield.  This relationship can provide early estimates of crop yield as well as
allow for the assessment of crop damage.  However, these remote sensing techniques are
fairly limited because VI’s tend to saturate rather quickly.  They also are heavily dependant
on the timing of the imagery acquired in relation to the physiological stage of the crop and
can be influenced greatly by a lack of data due to things like cloud cover.  The alternative
crop simulation models can also provide fairly good predictions of crop yield alone.  These
models, however, usually simulate crop yield well for ‘normal’ seasons, whereas variations
from normal can create rather large errors.  This is why using remote sensing to recalibrate
simple growth models is often preferred over using either approach separately.

Thermal remote sensing can be linked with meteorological data, through resistance energy
balance models, to estimate crop water use.  For operational management of irrigated areas,
having access to data with the required spatial resolution at the required frequency is an issue.
Mapping ma prior to the irrigating of furrow or drip irrigated crops (i.e. those other than rice
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in southern NSW), would allow irrigation amounts to be better targeted.  Regional estimates
of WUE appear to be best developed using a regional GIS data ‘input-output’ definition.
Required data sets include rainfall, water application, and yields.  These data sets are
measured in NSW; for some, the main issue is their availability.
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