Copyright and use of this thesis
This thesis must be used in accordance with the provisions of the Copyright Act 1968.

Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright.

Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study.

The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity.

You may infringe the author's moral rights if you:
- fail to acknowledge the author of this thesis if you quote sections from the work
- attribute this thesis to another author
- subject this thesis to derogatory treatment which may prejudice the author's reputation

For further information contact the University's Copyright Service. sydney.edu.au/copyright
A BIOSTRATIGRAPHY OF THE LATE PERMIAN
AND TRIASSIC OF THE SYDNEY BASIN
(PLATES)
Figures 19, 23 Microspores extracted from fertile remains of *Todites narrabeenensis* Burges.

Fig. 19 Todites Slide/1 28.2 108.7
Fig. 23 Todites Slide/1 24.5 107.5

Figures 20, 21, 24, 25 *Retusotrilletes radiatus* (Kara Murza) comb. nov.

Fig. 20 Slide 563/1 28.5 108.5
Fig. 21 Slide 553/1 32.0 115.7
Fig. 24 Slide 553/1 35.2 108.3
Fig. 25 Slide 556/3 34.5 106.0
<table>
<thead>
<tr>
<th>Figure(s)</th>
<th>Name</th>
<th>Genus/Species</th>
<th>Authors</th>
<th>Slide</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>Leiotrilletes directus</td>
<td>Balme & Hennelly</td>
<td>Slide 985/5 34.5 110.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>Cyathidites breviradiatus</td>
<td>Helby</td>
<td>Slide 530/2 37.0 119.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Slide 530/2 32.8 119.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Slide 530/1 34.0 108.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Slide 530/1 27.0 111.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-8</td>
<td>Punctatisporites sp. 1</td>
<td></td>
<td>Slide 522/1 24.0 118.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Slide 522/1 22.0 114.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Slide 522/1 19.8 103.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,10,13,14</td>
<td>Dictyophyllidites mortoni (de Jersey)</td>
<td>Playford & Dettmann</td>
<td>Slide 628/3 21.2 118.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>Slide 940/2 36.5 102.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>Slide 524/2 15.8 108.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>Slide 940/2 36.5 100.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Punctatisporites subtritus</td>
<td>Playford & Helby</td>
<td>Slide 991/1 32.4 120.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,15-17</td>
<td>Phyllothecotriletes nigritellus (Luber)</td>
<td>Luber</td>
<td>Slide 981/2 37.0 107.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>Slide 986/2 30.9 107.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>Slide 985/3 21.1 107.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>Slide 985/3 28.5 120.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,22</td>
<td>Dictyophyllidites harrisii</td>
<td>Couper</td>
<td>Slide 457/2 28.2 116.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>Slide 457/2 35.0 105.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figures 15, 16, 19-21 *Granulatisporites trisinus* Balme & Hennelly

Fig. 15 Slide 628/3 23.4 107.7, distal focus.

Fig. 16 Slide 628/3 23.4 107.7, proximal focus showing folding of raised labrae.

Fig. 19 Single species mount 647/1 23.4 108.9

Fig. 20 Single species mount 647/1 24.0 108.8, proximal focus showing auriculate bosses at termini of the laesurae.

Fig. 21 Single species mount 647/1 24.0 108.8, distal focus.
Plate 2

x 700

Figures 1-8
Apiculatisporis bulliensis Hennelly

Fig. 1 Slide 985/3 17.3 99.5, proximal focus showing relatively short, weakly developed laesurae.

Fig. 6 Slide 985/3 17.3 99.5, distal focus showing conate sculpture.

Fig. 2 Slide 985/4 39.8 103.7, proximal focus.

Fig. 7 Slide 985/4 39.8 103.7, distal focus.

Fig. 3 Slide 985/4 43.8 110.4, proximal focus showing labrate laesurae and outline of spine attenuation.

Fig. 4 Slide 985/3 40.5 110.7, distal focus.

Fig. 5 Slide 985/3 40.5 110.7, proximal focus.

Fig. 8 Slide 986/2 23.0 117.0, lateral view.

Figure 10
Cyclogranisporites sp.

Figures 9,13,14,17,18
?Granulatisporites micronodosus
Balme & Hennelly

Fig. 9 Slide 985/5 36.4 102.5, lateral view showing disposition of sculptural elements.

Fig. 13 Slide 989/5 30.5 108.2, distal focus.

Fig. 14 Slide 989/6 30.8 112.2, distal focus.

Fig. 17 Slide 985/4 39.4 104.5, proximal focus.

Fig. 18 Slide 985/4 39.4 104.5, distal focus.
Plate 3.
\[x \times 700\]

Figures 1-3, 5-7 \textit{Apiculatisporis globosus} (Leschik) Playford & Dettmann

Fig. 1 Slide 787/2 31.0 100.8, proximal focus.
Fig. 5 Slide 787/2 31.0 100.8, distal focus.
Fig. 2 Slide 522/4 19.5 106.5, proximal focus.
Fig. 6 Slide 522/4 19.5 106.5, distal focus.
Fig. 3 Slide 786/2 21.0 103.0, proximal focus.
Fig. 7 Slide 786/2 21.0 103.0, distal focus showing extreme variation of sculptural elements.

Figures 4, 8, 11 \textit{Apiculatisporis} sp. 2

Fig. 4 Slide 522/1 21.5 115.0, proximal focus.
Fig. 8 Slide 522/1 21.5 115.0, median focus.
Fig. 11 Slide 522/1 21.5 115.0, distal focus.

Figures 9-11, 13 \textit{Apiculatisporis carnarvonensis} (de Jersey) comb. nov.

Fig. 9 Slide 787/2 43.3 117.0, distal focus.
Fig. 10 Slide 522/3 32.5 107.5, proximal focus.
Fig. 12 Slide 787/2 43.6 116.8, proximal focus.
Fig. 13 Slide 429/1 38.2 116.0, distal focus displaying conate-verrucate end member of sculptural range.
Figures 12, 13, 16, 17 *Acanthotrilletes hennellyi* sp. nov.

- **Fig. 12** Slide 992/2 38.5 104.2, distal focus.
- **Fig. 16** Slide 992/2 38.5 101.2, proximal focus.
- **Fig. 13** Slide 992/1 25.4 118.7, distal focus.
- **Fig. 17** Slide 992/1 25.4 118.7, proximal focus.

Figures 18-20 *Didecitrilletes ericianus* (Balme & Hennelly) Venkatachala & Kar

- **Fig. 18** Slide 985/4 29.0 120.0, distal focus.
- **Fig. 19** Slide 985/4 29.0 120.0, proximal focus showing raised labrae and diminishing size of sculptural elements approaching the proximal pole.
- **Fig. 20** Slide 989/1 23.9 109.9, distal focus on oblique compression.
Plate 4.
x 700

Figures 1.10,14 \textit{Apiculatisporis} sp. 2

\begin{itemize}
 \item Fig. 1 Slide 394/1 33.0 118.0, proximal focus.
 \item Fig. 10 Slide 394/1 33.0 118.0, median focus showing blunted sculptural elements on equator.
 \item Fig. 14 Slide 394/1 33.0 118.0, distal focus.
\end{itemize}

Figures 2,3 \textit{Acanthotriletes tereteangulatus} Balme & Hennelly

\begin{itemize}
 \item Fig. 2 Slide 985/4 30.5 100.5, proximal focus showing attenuate spines.
 \item Fig. 3 Slide 1006/1 32.0 110.5, median focus.
\end{itemize}

Figures 4,5,8,9 \textit{Acanthotriletes prospectensis} sp. nov.

\begin{itemize}
 \item Fig. 4 Slide 760/1 35.5 107.0, median focus.
 \item Fig. 5 Slide 760/1 33.0 104.0, proximal focus.
 \item Fig. 8 Slide 760/1 30.5 117.0, proximal focus.
 \item Fig. 9 Slide 760/1 33.0 104.0, distal focus.
\end{itemize}

Figures 6, 7 \textit{Apiculatisporis} sp. 1

\begin{itemize}
 \item Fig. 6 Slide 628/5 19.0 108.5, proximal focus.
 \item Fig. 7 Slide 628/5 19.0 108.5, distal focus.
\end{itemize}

Figures 11, 15 \textit{Didectitriletes} sp. cf. \textit{D. dentatus} Balme & Hennelly

\begin{itemize}
 \item Fig.11 Slide 985/5 33.0 106.5, proximal focus showing smooth interradial area and folded labrate laesurae.
 \item Fig.12 \textit{distal focus}.
\end{itemize}
Plate 5.

x 700

Figures 1, 2 cf. Raistrickia sp.

g. 1 Slide 985/4

38.2 109.0, proximal focus.

Slide 985/4

38.2 109.0, distal focus.

Figures 3,4,7,10,11 Lophotriletes novicus Singh

g. 3 Slide 982/4

29.5 115.0, proximal focus showing darkening of proximal exine adjacent to laesurae.

Fig. 4 Slide 981/3

34.5 119.7, proximal focus.

Fig. 7 Slide 764/1

26.3 111.0, proximal focus showing open trilete mark with thickened, darkened exine adjacent to laesurae.

Fig. 10 Slide 348/1

34.0 103.3, proximal focus.

Fig. 11 Slide 348/1

34.0 103.3, distal focus.

Figures 5,6,8,9 Verrucosisporites sp. cf. V. trisecatus Balme & Hennelly

Fig. 5 Slide 981/3

30.2 113.5, proximal focus showing apparent layering of exine at laesurae.

Fig. 6 Slide 981/6

40.5 105.5, proximal focus.

Fig. 8 Slide 981/3

30.2 113.5, distal focus.

Fig. 9 Slide 981/6

40.5 105.5, distal focus.
Plate 6.
x 700

Figures 1,2
Clavatrilletes sp. cf. *C. hammenii* Herbst

Fig. 1 Slide 661/5 35.0 103.5, proximal focus.

Fig. 2 Slide 429/1 38.5 115.0, distal focus.

Figure 3
Raiistriokia radios Playford & Helby

Slide 991/5 26.0 105.0, distal focus.

Figures 4,5,8,10,11
Baculatisporites wianamattaense sp. nov.

Fig. 4 Slide 429/1 32.3 108.5, median focus showing darkened outline of contact area.

Fig. 5 Slide 429/1 28.3 110.5, median focus showing equatorial sculptural elements.

Fig. 8 Slide 429/1 28.5 117.8, distal focus.

Fig. 10 Slide 429/1 39.6 108.0, proximal focus.

Fig. 11 Slide 429/1 28.5 117.3, proximal focus showing raised laesurae and contact rim.

Figures 6,7,9
Camptotrilletes sp. cf. *C. warhchiana* Balme

Fig. 6 Slide 1006/2 38.0 117.0, slightly oblique compression, distal focus.

Fig. 7 Slide 1006/2 38.0 117.0,

Fig. 9 Slide 1006/1 27.8 111.4, median focus.

Figure 12
Raiistriokia accinota Playford & Helby

Slide 991/4 36.5 113.5, distal focus.

Figure 13
Verrucosisporites sp. cf. *V. gobbettii* Playford

Slide 992/3 35.5 100.0, proximal focus.
Plate 7
x 700

Figures 1 - 6

Guttatisporites grandis sp. nov.

Fig. 1 Slide 726/2 38.6 116.8, median focus.

Fig. 2 Slide 726/2 47.0 118.0, low distal focus showing negative reticulum.

Fig. 3 Slide 726/2 48.0 99.4, proximal focus - holotype.

Fig. 4 Slide 726/2 45.5 115.0, median focus showing equatorial sculptural elements.

Fig. 5 Slide 726/2 48.0 99.4, median focus - holotype.

Fig. 6 Slide 726/1 21.5 107.0, proximal focus.
Plate 8
x 700

Figures 1 - 19

Representatives of the *Neoraistrikkia taylori* Playford & Dettmann - *Converru-cosisporites cameroni* (de Jersey) Playford & Dettmann complex.

Fig. 1 Slide 1005/2 42.4 113.5, proximal focus.

Fig. 2 Slide 1005/2 17.0 106.0, proximal focus.

Fig. 3 Slide 391/1 35.0 120.0, proximal focus.

Fig. 4 Slide 1005/1 26.0 112.5, proximal focus.

Figs. 5-8 distal focus of specimens listed above displaying gradual increase in size of sculptural elements from left to right.

Fig. 9 Slide 1005/2 38.0 111.0, proximal focus.

Fig. 10 Slide 1005/2 38.0 111.0, median focus.

Fig. 11 Slide 1005/2 38.0 111.0, distal focus.

Fig. 12 Slide 1005/2 36.0 104.2, distal focus.

Fig. 13 Slide 1005/2 44.0 101.4, distal focus.

Fig. 14 Slide 760/2 38.8 100.5, proximal focus.

Fig. 15 Slide 1005/1 17.5 106.2, proximal focus.

Fig. 16 Slide 1005/1 17.5 106.2, distal focus.

Fig. 17 Slide 429/2 30.3 116.3, distal focus showing concentrations of large sculptural elements in vicinity of the corners.

Fig. 18 Slide 787/2 27.0 115.5, proximal focus.

Fig. 19 Slide 787/2 27.0 115.5, distal focus.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Slide</th>
<th>Width</th>
<th>Height</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>985/5</td>
<td>33.5</td>
<td>113.5</td>
<td>showing bifurcation of projecting elements.</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>991/1</td>
<td>33.5</td>
<td>113.5</td>
<td></td>
</tr>
<tr>
<td>Fig. 2</td>
<td>522/4</td>
<td>32.0</td>
<td>104.6</td>
<td>proximal focus.</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>787/2</td>
<td>38.7</td>
<td>116.0</td>
<td>proximal focus.</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>391/2</td>
<td>34.6</td>
<td>120.5</td>
<td>proximal focus - holotype.</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>522/4</td>
<td>32.0</td>
<td>104.6</td>
<td>median focus.</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>787/2</td>
<td>38.7</td>
<td>116.0</td>
<td>median focus.</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>391/2</td>
<td>34.6</td>
<td>120.5</td>
<td>median focus - holotype.</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>522/1</td>
<td>28.7</td>
<td>116.0</td>
<td>proximal focus.</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>522/4</td>
<td>32.0</td>
<td>104.6</td>
<td>distal focus.</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>787/2</td>
<td>38.7</td>
<td>116.0</td>
<td>distal focus.</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>391/2</td>
<td>34.6</td>
<td>120.5</td>
<td>distal focus - holotype.</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>524/3</td>
<td>31.2</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>Fig. 15</td>
<td>524/3</td>
<td>31.2</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>Figure 13</td>
<td>991/5</td>
<td>23.4</td>
<td>114.0</td>
<td></td>
</tr>
</tbody>
</table>
Plate 10
x 700

<table>
<thead>
<tr>
<th>Figures 1-3</th>
<th>Tigrisporites playfordi de Jersey & Hamilton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Slide 985/5 43.0 102.0</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Slide 627/8 26.2 100.5</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Slide 522/4 18.8 110.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figures 4,5,8-11</th>
<th>Convolutispora sp. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4</td>
<td>Slide 786/1 36.5 117.0</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Slide 546/2 25.4 111.2</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Slide 95/1 29.2 103.8, proximal focus.</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Slide 95/1 29.2 103.8, distal focus.</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Slide 546/1 25.4 111.2, median focus.</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Slide 546/2 25.4 111.2, distal focus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figures 6, 7</th>
<th>Foveosporites sp. cf. F. moretonensis de Jersey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 6</td>
<td>Single specimen Slide 744/1 27.5 109.5 distal focus.</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Single specimen Slide 744/1 27.5 109.5 proximal focus.</td>
</tr>
</tbody>
</table>
Plate 11
x 700

Figures 1-5 *Dictyotriletes playfordi* sp. nov.

Fig. 1 Slide 726/2 46.5 112.3, proximal focus - holotype.

Fig. 2 Slide 726/2 46.5 112.3, distal focus - holotype.

Fig. 3 Slide 726/1 25.5 120.0, distal focus.

Fig. 4 Slide 726/3 22.5 110.0, distal focus.

Fig. 5 Slide 726/3 22.5 110.0, proximal focus.

Figures 7,8,10,14 *Reticulatisporites horribilis* sp. nov.

Fig. 7 Slide 744/2 44.5 107.7

Fig. 8 Slide 744/2 44.5 107.7

Fig. 10 Slide 521/1 36.0 115.0, proximal focus - holotype.

Fig. 14 Slide 521/1 36.0 115.0, distal focus - holotype.

Figures 11,12 *Foveosporites* sp. cf. *F. moretonensis* de Jersey

Fig. 11 Slide 760/2 43.0 111.0, proximal focus.

Fig. 12 Slide 760/2 43.0 111.0, distal focus.

Figures 9,13,15 *Microfoveolatispora raniganjensis* Bharadwaj

Fig. 9 Slide 981/3 36.0 121.0, proximal focus.

Fig. 13 Slide 981/2 33.3 104.0, showing extremely large foveae.

Fig. 15 Slide 981/3 46.2 117.8, compression parallel to polar axis showing shape of proximal and distal surfaces.
Figure 13 ?Dulhuntyispora sp. cf. D. dulhuntyi
Potonié

Fig. 13 Slide 964/3 38.2 112.5
Plate 12
x 700

Figures 1-3
Lycopodiumsporites sp. cf. *L. reticulumsporites* (Rouse) Dettmann

Fig. 1 Slide 391/6 33.0 119.5, proximal focus.

Fig. 2 Slide 391/6 33.0 119.5, distal focus.

Fig. 3 Slide 391/1 16.5 107.0, proximal focus.

Figures 4-6, 9-12, 14-17 *Indospora clara* Bharadwaj

Fig. 4 Slide 985/3 33.3 101.0, distal focus.

Fig. 5 Slide 1006/1 32.5 103.6, distal focus showing weakly developed, incomplete reticulum.

Fig. 6 Slide 764/2 28.7 112.2, median focus.

Fig. 9 Slide 764/1 34.5 118.5, distal focus showing expanded termini of baculae and extension of distal crassitude beyond corners to simulate auricular development.

Fig. 10 Slide 764/2 28.7 112.7, distal focus showing triangular distal crassitude on which reticulum is developed.

Fig. 11 Slide 764/3 36.0 104.2, distal focus showing breakdown of reticulum beyond the limits of triangular distal area.

Fig. 12 Slide 522/4 21.0 107.3, distal focus showing crassitude and its extension to the corners where it projects as auriculae.

Fig. 14 Slide 786/2 39.0 119.4, median focus showing extreme development of projecting sculptural elements.

Fig. 15 Slide 786/2 39.0 119.4, distal focus showing distal crassitude as single reticulum unit.

Fig. 16 Slide 761/2 18.0 117.2, proximal-median focus.

Fig. 17 Slide 761/2 18.0 117.2, distal focus.
Fig. 13	Slide 991/4	38.0	102.0	proximal focus.
Fig. 14	Slide 991/4	38.0	102.0	distal focus.
Fig. 15	Slide 628/4	23.5	110.7	proximal focus showing development of raised labrae accompanying laesurae.
Fig. 16	Slide 992/2	32.3	100.7	median focus showing typical development of interradial, equatorial blisters.
Plate 13
x 700

Figures 1-12, 17-19 *Leschikisporis mutabilis* (Balme) comb. nov.

Fig. 1 Slide 978/1 34.2 111.5, proximal focus.

Fig. 2 Slide 978/1 34.2 111.5, distal focus, both surfaces displaying verru- cate - rugulate elements.

Fig. 3 Slide 978/1 32.4 114.0, proximal focus, showing verrucate - rugulate sculptural elements.

Fig. 4 Slide 978/1 32.4 114.0, distal focus, sculptural elements rugulate with coalescing bases, starting to form pseudo-foveolate pattern.

Fig. 5 Slide 530/1 43.0 105.8, proximal focus showing foveo-microreticulate sculpture, labrate, eccentric laesurae.

Fig. 6 Slide 530/1 43.0 105.8, distal view.

Fig. 7 Slide 530/X 25.0 117.5, lateral focus.

Fig. 8 Slide 530/X 25.0 117.5, proximal focus.

Fig. 9 Slide 978/2 28.0 116.0, proximal focus.

Fig.10 Slide 978/1 32.5 103.2, proximal focus.

Fig.11 Slide 530/1 31.0 114.5, proximal focus.

Fig.12 Slide 978/1 32.5 102.8, proximal focus.

Fig.17 Slide 978/1 34.5 113.5, proximal-lateral view, almost monolete laesura.

Fig.18 Slide 530/1 30.0 109.1, median focus.

Fig.19 Slide 798/1 34.0 108.0, proximal focus.
Figures 14, 15 \(?Polycingulatisporites \) sp.

Fig. 14 Slide 429/2 32.3 108.5, proximal focus.

Fig. 15 Slide 429/2 32.3 108.5, distal focus.
Plate 14
x 700

Figures 1-5
Limatulasporites brunkeri sp. nov.

Fig. 1 Slide 555/2 25.4 120.5, proximal focus showing thick, wrinkled labrae (holotype).

Fig. 2 Slide 555/2 25.4 120.5, distal focus showing nature of thin circumpolar incision in distal patina (holotype).

Fig. 3 Slide 555/2 24.4 113.6, distal focus.

Fig. 4 Slide 555/2 24.4 105.5, median focus.

Figures 6 - 13
?Contignisporites sydneyensis sp. nov.

Fig. 6 Slide 522/1 19.5 104.5, proximal focus showing folded raised labrae.

Fig. 7 Slide 522/1 19.5 104.5, distal focus showing sinuous ridge pattern and cingulum development.

Fig. 8 Slide 522/2 35.0 102.0, proximal focus.

Fig. 9 Slide 522/1 31.3 102.5, distal focus showing reticulate ridge pattern (holotype).

Fig. 10 Slide 522/1 31.3 102.5, proximal focus (holotype).

Fig. 11 Slide 522/2 38.2 104.8, median focus.

Fig. 12 Slide 777/1 34.0 104.8, proximal focus.

Fig. 13 Slide 777/1 34.0 104.8, distal focus.
Figures 13, 14
Annullispora sp. cf. *A. folliculosa* (Rogalska) de Jersey

Fig. 13 Slide 744/1 28.0 102.0, proximal focus.

Fig. 14 Slide 744/1 28.0 102.0, distal focus.

Figures 15, 16, 18-20 *Duplexisporites problematicus* (Couper) Playford & Dettmann

Fig. 15 Slide 782/1 46.2 103.1, distal focus.

Fig. 16 Slide 522/2 43.2 114.3, distal focus.

Fig. 18 Slide 744/3 37.5 106.0, median focus.

Fig. 19 Slide 744/1 25.8 115.5, proximal focus.

Fig. 20 Slide 744/1 15.8 115.5, distal focus.

Figure 17 *Azonotriletes intertextus* (Naumova) var. *triassica* Kara Murza

Slide Olenek/l 46.5 109.8 (material supplied by Drs. Tschalyschev and Varyukhina).
Plate 15
x 700

Figures 1 - 6 *Limatulasporites fossulatus* (Balme) comb. nov.

Fig. 1 Slide 570/2 35.0 113.2, proximal focus

Fig. 2 Slide 563/1 25.4 108.3, proximal focus

Fig. 3 Slide 563/1 25.4 108.3, distal focus

Fig. 4 Slide 556/1 33.0 99.5, median focus

Fig. 5 Slide 557/2 27.0 107.0, proximal focus

Fig. 6 Slide 570/2 30.0 105.8, proximal focus

Figures 7 - 9 *Tripartites proratus* (Balme) comb. nov.

Fig. 7 Slide 327/1 31.5 115.4, showing indentation and radial plication of auriculae. Note very small auricular "spurs". This specimen is fairly typical.

Fig. 8 Slide 628/5 33.2 106.4, proximal focus showing radial plication of auriculae and well developed auriculate extensions ("Spurs").

Fig. 9 Slide 511/1 27.8 117.5, distal focus showing finely granulate exine.

Figures 10-12 *Limatulasporites* sp.

Fig. 10 Slide 595/1 32.5 108.5, proximal focus.

Fig. 11 Slide 555/1 29.0 108.8, proximal focus.

Fig. 12 Slide 570/1 40.5 120.0, proximal focus.
Fig. 13 Slide 744/1 28.6 101.0, proximal focus, specimen with fine proximal sculpture, cingulum scarcely developed and lacking distal polar crassitude.

Fig. 14 Slide 760/1 25.0 110.0, median focus on small specimen.

Fig. 15 Slide 726/1 19.5 111.5, proximal focus showing well developed cingulum and verrucate sculptural elements.

Fig. 16 Slide 726/2 28.0 110.0, partial tetrad showing cingulum development.

Fig. 17 Slide 774/1 26.7 107.5, proximal focus showing cingulum development, but lacking distal polar crassitude.

Fig. 18 Slide 522/1 19.0 115.2, proximal focus - typical preservation.
Plate 16
x 700

Figures 1-9

Polycingulatisporites dejersyini sp. nov.

Fig. 1 Slide 556/3 32.8 105.8, proximal focus showing typical broad labrae - Holotype.

Fig. 2 Slide 556/3 32.8 105.8, distal focus showing two incisions in patina forming cingulum, circumpolar ridge and distal polar crassitude - Holotype.

Fig. 3 Slide 556/1 40.8 101.0, distal focus.

Fig. 4 Slide 547/1 33.0 114.5, median focus showing raised terminal boss.

Fig. 5 Slide 547/1 42.5 111.5, proximal focus with typical broad, flat labrae, narrowing slightly approaching terminal boss.

Fig. 6 Slide 557/1 37.0 119.0, proximal focus.

Fig. 7 Slide 557/2 32.5 112.0, distal focus showing two narrow incisions in distal patina with slight radial puckering of exine.

Fig. 8 Slide 557/1 31.5 102.5, median focus, slightly oblique compression.

Fig. 9 Slide 547/3 19.4 115.4, lateral compression showing pyramidal shape of proximal surface and hemispherical shape of distal surface.

Figures 10 - 18. Limatulasporites limatulus (Playford) comb. nov.

Fig.10 Single specimen slide 647/7 27.3 116.0, proximal focus showing perfect curvature. Cingulate development is not evident in this particular specimen.

Fig.11 Single specimen slide 647/7 27.3 116.0, high proximal focus, surface raised due to compression onto distal polar crassitude.

Fig.12 Slide 787/2 32.0 110.4, proximal focus, poorly preserved specimen.
Figures 7-9
Cadargasporites senectus de Jersey & Hamilton

Fig. 7 Slide 429/1 36.0 105.0, proximal focus showing well developed, membranous, raised labrae.

Fig. 8 Slide 429/1 38.5 104.0, lateral compression, showing contact murus and junction of contact murus and labrae.

Fig. 9 Slide 429/1 35.3 116.4, proximal focus.
Figures 1-6,10-14 *Cadargasporites wattsae* sp. nov.

Fig. 1 Slide 726/1 23.4 106.3, lateral view showing cavate exine and relation of intexine to exoexine at contact murus. Note also thickening of exine to form auriculate boss at intersection of lae­surae and contact murus.

Fig. 2 Slide 726/2 40.0 106.3, proximal view of detached intexine showing scar at point of exoexine attachment on inside of contact murus.

Fig. 3 Slide 726/2 34.5 113.5, sub lateral compression, proximal focus showing development of auriculate boss.

Fig. 4 Slide 726/1 25.0 106.5, proximal focus showing typical broad labrate development (holotype).

Fig. 5 Slide 726/2 46.0 111.3, proximal focus showing breakdown of exoexinal layer on contact area.

Fig. 6 Slide 726/2 46.0 111.3, distal focus.

Fig. 10 Slide 726/2 44.0 109.3, lateral compression, median focus showing cavation of exine layers.

Fig. 11 Slide 726/2 44.0 109.3, lateral compression, focussed on contact area.

Fig. 12 Slide 726/3 22.0 101.0, distal focus showing granulate sculptural elements.

Fig. 13 Slide 726/3 22.0 101.0, proximal focus showing contact area with typical labrate development. Note exoexine beginning to break down immediately adjacent to labrae.

Fig. 14 Slide 726/2 33.7 100.5, proximal focus.
Fig. 13 Slide 786/2 31.0 102.0, showing equatorial sculptural elements.

Fig. 14 Slide 522/4 32.8 117.0, proximal focus.

Fig. 15 Slide 522/4 32.8 117.0, distal focus.

Fig. 16 Slide 522/1 31.5 101.5, proximal focus.

Fig. 17 Slide 522/1 31.5 101.5, distal focus.

Fig. 18 Slide 394/1 29.5 108.3, proximal focus, showing detached intexine.

Fig. 19 Slide 394/1 29.5 108.3, distal focus showing gemmate sculptural elements at the equator.

Fig. 20 Slide 522/1 28.5 110.0, proximal focus.

Fig. 21 Slide 522/1 28.5 110.0, distal focus exhibiting coarser sculptural elements.

Figures 22, 23 Cadargasporites senectus de Jersey & Hamilton

Fig. 22 Slide 744/2 44.5 110.2, proximal focus.

Fig. 23 Slide 744/2 44.5 110.2, distal focus.
<table>
<thead>
<tr>
<th>Figures 1-8</th>
<th>Lycospora goulburnensis sp. nov.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Slide 327/4 18.0 113.0, proximal focus - Holotype.</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Slide 327/4 18.0 113.0, median focus.</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Slide 327/4 18.0 113.0, distal focus showing discrete verrucae.</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Slide 327/4 23.5 106.5, median focus.</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Slide 327/4 23.5 106.5, proximal focus.</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Slide 327/3 40.2 102.0, proximal focus.</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Slide 327/3 40.2 102.0, distal focus.</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Slide 327/4 33.8 102.7, lateral compression.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figures 9-11</th>
<th>Uvaesporites bullatus (Balme & Hennelly) comb. nov.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 9</td>
<td>Slide 964/2 32.0 118.5, distal focus.</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Slide 964/2 32.0 118.5, median focus.</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Slide 964/2 32.0 118.5, proximal focus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figures 12-21</th>
<th>Uvaesporites verrucosus (de Jersey) comb. nov.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 12</td>
<td>Slide 786/2 31.0 102.0, lateral compression, focused to show distribution of sculptural elements on proximal and distal surfaces.</td>
</tr>
</tbody>
</table>
Plate 19
x 700

Figures 1-7

Perotriletes raniganjensis (Bharadwaj) comb. nov.

Fig. 1
Slide 992/1 34.0 106.0, distal focus.

Fig. 2
Slide 992/1 34.0 106.0, proximal focus.

Fig. 3
Slide 992/1 33.7 104.0, distal focus.

Fig. 4
Slide 985/4 38.7 118.5, lateral compression focussed on equatorial sculpture.

Fig. 5
Slide 985/4 38.7 118.5, lateral compression focussed on raised labrae.

Fig. 6
Slide 992/3 27.5 117.3, distal focus, showing well developed spinose sculpture.

Fig. 7
Slide 992/3 27.5 117.3, proximal focus, showing folded, detached intexine.

Figures 8, 9

Perotriletes kuttungensis (Playford & Helby) comb. nov.

Fig. 8
Slide 991/5 27.0 112.8, proximal focus showing detached intexine.

Fig. 9
Slide 991/5 27.0 112.8, equatorial focus showing denser exoexine of cingulum and nature of spinose elements.
Plate 20
x 700

Figures 1-4
Lundbladispora brevicula Balme

Fig. 1
Slide 728/1 34.5 101.5, distal focus.

Fig. 2
Slide 728/1 34.5 101.5, proximal focus.

Fig. 3
Slide 634/6 32.3 114.4, distal focus.

Fig. 4
Slide 634/6 32.3 114.4, proximal focus showing detached, folded intexine.

Figures 5-7
Perotriletetes differens Helby (comb. nov.)

Fig. 5
Single specimen slide 647/4 21.5 105.6, proximal focus.

Fig. 6
Single specimen slide 647/4 21.5 105.6, distal focus.

Fig. 7
Single specimen slide 647/35 27.0 110.9, distal focus.

Figures 8-11
Perotriletetes cuspidus (Balme) comb. nov.

Fig. 8
Slide 75/2 29.3 112.6, lateral compression, focussed to show detachment of exine layers and spongyous nature of exoexine.

Fig. 9
Slide 75/2 29.3 112.6, lateral compression focused on equator showing sculptural elements.

Fig. 10
Slide 75/2 39.8 109.3, proximal focus.

Fig. 11
Slide 75/2 39.8 109.3, distal focus.
Fig. 13 Slide 985/4 26.3 106.4, median focus showing detached intexine and marginal disintegration (swelling) of exoexine.

Fig. 14 Slide 985/4 26.3 106.4, distal focus showing small spinose sculptural elements.

Fig. 15 Slide 985/4 33.5 103.0, proximal focus showing shadow of intexinal papillae.

Fig. 16 Slide 985/4 33.5 103.0, median focus.

Fig. 17 Slide 985/4 33.5 103.0, distal focus.
Plate 21
x 700

Figures 1-4

Perotriletes pallidus (de Jersey) comb. nov.

Fig. 1 Slide 786/1 39.0 104.0, proximal focus, showing smooth exoexine and raised labrae accompanying laesurae.

Fig. 2 Slide 786/1 39.0 104.0, distal focus, showing scattered, irregular verrucae.

Fig. 3 Slide 940/1 37.5 101.0, proximal focus showing membranous cingulum and folded detached intexine.

Fig. 4 Slide 940/1 37.5 101.0, distal focus showing coarser sculptural elements in vicinity of equator.

Figures 5-17

Lundbladispora fibulata (Hennelly) comb. nov.

Fig. 5 Slide 985/ , proximal focus showing exoexine denuded of spines.

Fig. 6 Slide 985/4 26.5 105.5, slightly oblique compression showing sphericity of distal hemisphere with very much reduced projecting sculpture as outer layer of exoexine swells.

Fig. 7 Slide 985/5 27.0 110.0, lateral compression showing cingulum development.

Fig. 8 C.S.I.R.O. T.S. 364 29.5 113.8 - specimen figure by Hennelly (1958, pl.5 fig.9).

Fig. 9 Slide 985/4 29.8 112.5, proximal focus showing slightly raised labrae and shadows of intexinal apical papillae. Note long branching projections.

Fig. 10 Slide 985/4 29.8 112.5, median focus showing pilate elements (no examples of branching are in focus) at the equator.

Fig. 11 Slide 985/4 29.8 112.5, distal focus.

Fig. 12 Slide 985/4 26.3 106.4, proximal focus showing raised labrae.
Fig. 16	Slide 548/4	36.0	114.8, sub-lateral compression.
Fig. 17	Slide 642/2	21.5	104.2, proximal focus.
Fig. 18	Slide 555/2	40.7	107.0, proximal focus - Holotype.
Fig. 19	Slide 555/2	25.0	116.3
Plate 22
x 700

Figures 1 - 11

?Cirratriradites bulgoensis sp. nov.

Fig. 1 Slide 453/2 39.0 113.2, proximal focus showing denticulate outline.

Fig. 2 Slide 453/2 39.0 113.2, distal focus showing extreme development of foveo-retticulate sculpture.

Fig. 3 Slide 453/2 39.5 102.6, proximal focus - Holotype.

Fig. 4 Slide 453/2 39.5 102.6, distal focus - Holotype.

Fig. 5 Slide 453/2 44.0 113.0, sub-lateral compression.

Fig. 6 Slide 539/2 18.5 121.0, proximal focus.

Fig. 7 Slide 539/2 18.5 121.0, distal focus.

Fig. 8 Slide 453/2 37.0 115.5, proximal focus.

Fig. 9 Slide 453/2 37.0 115.5, distal focus.

Fig. 10 Slide 539/3 34.5 106.8, proximal focus.

Fig. 11 Slide 539/3 34.5 106.8, distal focus.

Figures 12-14

Densoisporites playfordi (Balme) Dettmann

Fig. 12 Slide 556/3 42.0 102.4, sub-lateral compression showing cingulum, proximal pyramid and distal hemisphere.

Fig. 13 Slide 556/1 28.2 110.5, proximal focus.

Fig. 14 Slide 556/1 22.3 109.8, proximal focus.

Figures 15-19

Densoisporites narrabeenensis sp. nov.

Fig. 15 Slide 555/2 37.0 103.5, proximal focus showing extension of exoexine at corners simulating auriculae.
Plate 23
x 700

Figures 1-9

Densosporites conollyi sp. nov.

Fig. 1
Slide 774/1 38.0 113.0, proximal focus showing recessed contact area and relatively smooth exoexine.

Fig. 2
Slide 95/1 32.2 119.5, median focus showing detached, folded intine.

Fig. 3
Slide 95/1 24.0 99.4, median focus showing detached, folded intine and spinose sculptural elements on exoexine.

Fig. 4
Slide 774/2 45.0 117.5, proximal focus showing smooth contact area, with slightly raised labrae.

Fig. 5
Slide 774/2 45.0 117.5, distal focus showing verrucate-rugulate sculptural projections.

Fig. 6
Slide 94/2 23.0 118.0, sub-lateral compression showing relationship of distal and proximal surfaces.

Fig. 7
Slide 94/1 30.5 114.4, proximal focus showing smooth contact area detached folded intine, terminal bosses at junction of laesurae and contact rim - Holotype.

Fig. 8
Slide 94/1 30.5 114.4, distal focus showing finely spongeous exoexine and bizonate cingulum.

Fig. 9
Slide 95/1 39.0 111.4, proximal focus.

Figures 10-12

Lundbladispora willmottii Balme

Fig.10
Slide 985/4 41.0 113.0, proximal focus.

Fig.11
Slide 985/5 38.9 109.5, proximal focus showing detached folded intine with distinct apical papillae.

Fig.12
Slide 985/5 38.9 109.5, distal focus showing abundant small spinules.
Plate 24
x 700

Figures 1 - 6

Endosporites radiatus (Hennelly) comb. nov.

Fig. 1
C.S.I.R.O. T.S. 367 36.0 113.4 - specimen illustrated by Hennelly (1958, pl. 2 fig. 12).

Fig. 2
C.S.I.R.O. T.S. 368 39.0 100.8 - specimen illustrated by Hennelly (1958, pl. 2 fig. 10), designated here as lectotype.

Fig. 3
Slide 985/3 21.0 116.5, proximal focus showing opening of laesurae.

Fig. 4
Slide 985/3 21.0 116.5, distal focus.

Fig. 5
Slide 1006/1 33.8 107.2, single exoexine layer showing polygonal outline of reticulation lumens.

Fig. 6
Slide 985/4 30.3 113.0, proximal focus.
Fig. 32 *Aratrisporites tenuispinosus* Playford, Slide 471/2 19.8 118.0, proximal focus, typical of preservation of carbonised samples.

Fig. 33 *Aratrisporites tenuispinosus* Playford, Slide 647/2 34.6 101.0, lateral compression showing boat like shape.

Fig. 34 *Aratrisporites tenuispinosus* Playford, Slide 471/2 22.0 110.5

Fig. 35 *Tuberculatosporites modicus* Balme & Hennelly, Slide 981/6 39.8 110.0

Fig. 36 *Laevigatosporites vulgaris* Ibrahim, Slide 985/3 28.5 102.5

Fig. 37 *Aratrisporites tenuispinosus* Playford, Slide 647/1 30.7 115.0, proximal focus, showing raised labrae.

Fig. 38 *Aratrisporites tenuispinosus* Playford, Slide 647/1 30.7 115.0, distal focus.

Fig. 39 *Aratrisporites tenuispinosus* Playford, Single Specimen Slide 647/10 12.2 111.8, proximal focus showing folded intexine.
Fig. 22 Sculptatomonoleti indet. Slide 391/6
27.5 113.5, distal focus, showing basic rugulate sculptural elements in low focus.

Fig. 23 Sculptatomonoleti indet. Slide 391/6
27.5 113.5, median focus.

Fig. 24 ?Polypodiisporites ipsviciensis (de Jersey) Playford & Dettmann
Slide 95/1 41.0 102.0, proximal focus

Fig. 25 ?Polypodiisporites ipsviciensis (de Jersey) Playford & Dettmann
Slide 95/1 41.0 102.0, distal focus showing rugulate elements forming imperfect reticulum. This form is closely similar to specimens of Leschiki-sporis mutabilis (Balme) comb. nov., although laesura is distinctly monolet.

Fig. 26 ?Polypodiisporites hamatus (Balme & Hennelly) comb. nov.
Slide 964/1 34.5 112.5, proximal focus

Fig. 27 ?Polypodiisporites hamatus (Balme & Hennelly) comb. nov.
Slide 964/1 34.5 112.5, distal focus

Fig. 28 Microspore extracted from Cylostrobus sydneyensis (Walkom) Helby & Martin. Cylostrobus sydneyensis Slide/1 31.3 102.5

Fig. 29 Aratrisporites tenuispinosus Playford, Slide 647/x 29.2 121.0, median focus showing extreme development and unusually good preservation of spinose sculptural elements.

Fig. 30 Microspore extracted from Cylostrobus sydneyensis (Walkom) Helby & Martin. Cylostrobus sydneyensis Slide/1 35.0 118.7

Fig. 31 Polypodiisporites sp. cf. P. cicatricosus (Balme & Hennelly) comb. nov.
Slide 986/1 31.2 102.5
Fig. 11 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 35.0 111.5, distal focus.

Fig. 12 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 35.0 111.5, median focus.

Fig. 13 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 35.0 111.5, proximal focus.

Fig. 14 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 26.0 100.0

Fig. 15 \textit{Sculptatamonoleti indet.}
Slide 511/2 50.0 116.4

Fig. 16 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 42.0 117.3, proximal focus.

Fig. 17 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 42.0 117.3, distal focus.

Fig. 18 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 24.2 111.0, oblique compression.

Fig. 19 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 95/1 24.2 111.0, oblique compression.

Fig. 20 \textit{Polypodiisporites ipsviciensis} (de Jersey) Playford & Dettmann
Slide 395/1 27.0 113.3

Fig. 21 \textit{Sculptatamonoleti indet.}
Slide 391/6 27.5 113.5, proximal focus showing fine spines surmounting rugulate elements.
Figures 1 - 15

Fig. 1

Tuberculatusporites abadarensis de Jersey
Slide 395/2 28.5 112.0

Fig. 2

Tuberculatusporites abadarensis de Jersey
Slide 95/1 29.0 100.0

Fig. 3

Tuberculatusporites abadarensis de Jersey
Slide 395/2 27.0 117.0

Fig. 4

Tuberculatusporites abadarensis de Jersey
Slide 760/2 41.6 120.0, showing reduced spines. This specimen could be assigned alternatively to *Punctatusporites walkomi* de Jersey.

Fig. 5

Tuberculatusporites abadarensis de Jersey
Slide 511/2, showing well developed spinose elements. However, other specimens on this slide lack distinct spines and could be assigned to *P. walkomi* de Jersey.

Fig. 6

Sculptatomonoleti indet. Slide 985/4
28.5 120.6, proximal focus showing foveo-reticulate sculpture.

Fig. 7

Sculptatomonoleti indet. Slide 985/4
28.5 120.6, distal focus showing verrucate - rugulate sculptural elements similar to *Polypodiisporites ipsviciensis* (de Jersey) Playford & Dettmann.

Fig. 8

Sculptatomonoleti indet. Slide 347/1
36.5 115.0, proximal focus.

Fig. 9

Sculptatomonoleti indet. Slide 347/1
36.5 115.0, distal focus, showing closely spaced rugulate, verrucate and conate sculptural elements.

Fig. 10

Punctatusporites walkomi de Jersey,
Slide 391/6 35.0 107.0, proximal focus with scattered coni.
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Slide 556/1</th>
<th>23.2</th>
<th>112.0, distal focus showing spongeous (pseudogranulate) exoexine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.12</td>
<td>Slide 556/1</td>
<td>30.7</td>
<td>117.3, proximal focus showing laesura limited to extent of intexine.</td>
</tr>
<tr>
<td>Fig.13</td>
<td>Slide 556/1</td>
<td>30.7</td>
<td>117.3, median focus.</td>
</tr>
<tr>
<td>Fig.14</td>
<td>Slide 556/1</td>
<td>30.7</td>
<td>117.3, distal focus.</td>
</tr>
</tbody>
</table>
Plate 26
x 700

Figures 1 - 8 *Aratrisporites coryliseminis* Klaus

Fig. 1 Slide 530/1 33.7 104.6, lateral compression showing relative shape of proximal and distal surfaces.

Fig. 2 Slide 530/1 28.0 110.0, lateral compression showing small intexine attached to exoexine along laesura.

Fig. 3 Slide 530/x 44.0 101.0, median focus showing detached, folded intexine and projecting pseudocingulate exoexine on right lateral extremity.

Fig. 4 Slide 530/x 41.0 100.5, displaying foldover of exoexine at lateral extremity.

Fig. 5 Slide 530/x 44.0 118.2, distal focus showing spinose development and folding of exoexine onto right proximal surface.

Fig. 6 Slide 530/x 42.2 106.0, lateral compression showing boat like shape of grain and upward (towards centre of tetrad) projection of lateral exoexine.

Fig. 7 Slide 530/x 45.5 118.8, median focus showing pseudocingulum surrounding grain beyond exine cavity.

Fig. 8 Slide 530/x 45.5 118.8, proximal focus showing raised labrae.

Figures 9-14 *Aratrisporites granulatus* (Klaus) Playford & Dettmann

Fig. 9 Slide 556/1 23.2 112.0, proximal focus showing raised labrae accompanying laesura.

Fig. 10 Slide 556/1 23.2 112.0, median focus showing relation of intexine to exoexine.
Figures 1-4

Aratrisporites granulatus (Klaus)
Playford & Dettmann

Fig. 1 Slide 556/3 26.0 100.0, median focus showing boatlike shape of grain and slight cingulum development.

Fig. 2 Slide 556/3 26.0 100.0, proximal focus showing detached intine.

Fig. 3 Slide 556/1 30.0 116.5, distal focus showing detached intine.

Fig. 4 Slide 556/1 30.0 116.5, median proximal focus.

Figures 5-15

Aratrisporites parvispinosus Leschik
emend. Playford.

Fig. 5 Slide 490/1 34.5 108.3, partial tetrad.

Fig. 6 Slide 786/1 23.0 115.5, proximal focus showing small detached intine. Also exhibits irregular, almost pilate sculptural elements.

Fig. 7 Slide 786/1 23.0 115.5, distal focus showing irregular distribution of sculptural elements on distal surface.

Fig. 8 Single specimen Slide 647/12, proximal focus.

Fig. 9 Single specimen Slide 647/12, distal focus.

Fig. 10 Slide 429/2 26.5 111.2, proximal focus showing greatly expanded exoexine, with much reduced sculptural projections.

Fig. 11 Slide 429/1 31.2 119.0, proximal focus showing raised, thickened labrae. Note fold over of distal exoexine at extremity of laesura.

Fig. 12 Slide 661/4 20.0 113.0, distal focus showing granulate appearance of exoexine.

Fig. 13 Slide 661/4 20.0 113.0, proximal focus showing detached intine.

Fig. 14 Slide 429/1 26.5 101.0, proximal focus.

Fig. 15 Slide 429/1 26.5 101.0, distal focus.
Figure 4 *Protohaploxipinus amplus* (Balme & Henne-

lly) Hart

Slide 981/5 32.9 113.0, proximal focus. This specimen displays a similar organisation to *P. microcorpus* (Schaarschmidt) Clarke but is distinguished by the strongly developed taeniae.

Figures 5, 6 *Parasaccites* spp.

Fig. 5 Slide 985/5 42.8 118.5, proximal focus showing darkly stained circular area in vicinity of the proximal apex.

Fig. 6 Slide 985/5 39.5 111.3, proximal focus, faint trace of laesurae visible.

Figures 7, 8 *Bascanisporites undosus* Balme & Henne-

lly.

Fig. 7 Slide 981/3 46.4 108.9, proximal focus showing outline of eccentric trilete mark.

Fig. 8 Slide 981/2 20.8 107.6

Figure 9. *Striomonosaccites morondavensis* Goubin

Slide 75/4 41.3 113.5, proximal focus showing typical preservation in which the cappa has been extensively damaged.
Plate 29
x 700

Figures 1–4 ?Crustaesporites sp.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Slide</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>634/1</td>
<td>35.5</td>
<td>114.2</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>581/2</td>
<td>36.0</td>
<td>115.5</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>634/1</td>
<td>40.5</td>
<td>116.2</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>75/4</td>
<td>35.5</td>
<td>111.4</td>
</tr>
</tbody>
</table>
Plate 30
x 700

Figures 1, 2 Protohaploxyypinus microcorpus (Schaarschmidt) Clarke

Fig. 1 Slide 346/1 42.0 104.8, proximal focus showing typical preservation.

Fig. 2 Slide 76/1 35.2 113.5, proximal focus showing lateral detachment of exoexine approaching monosaccate organisation.

Figure 3 Striomonosaccites morondavensis Goubin

Slide 733/2 23.5 105.0, proximal focus.
Plate 31
x 700

Figures 1-4

Protohaploxypinus reticulatus Hennelly comb. nov.

Fig. 1
C.S.I.R.O. T.S.375 42.5 119.0, median focus showing straight cappula edge, cappa extensively damaged. Lectotype specimen illustrated by Hennelly (1958 pl. 6 fig. 17).

Fig. 2
Slide 75/4 25.0 116.0, median focus showing typical straight edged cappula.

Fig. 3
Slide 581/1 29.0 120.5, proximal focus showing typical cappa preservation.

Fig. 4
Slide 76/1 28.2 116.0, distal focus showing typical cappula development.
Plate 32
x 700

Figures 1–5
Lunatisporites pellucidus (Goubin)
comb. nov.

Fig. 1 Slide 634/2 37.0 105.0
Fig. 2 Slide 634/2 46.0 117.0
Fig. 3 Slide 570/2 44.0 120.0
Fig. 4 Slide 634/1 44.2 112.0, showing arrangement of cappa into five taeniae.
Fig. 5 Slide 634/3 33.0 116.0, showing multitaeniate cappa.

Figures 6–9
Lunatisporites sp. cf. *L. puntii* Visscher

Fig. 6 Slide 555/3 11.5 119/4, distal focus showing distinctive cappula.
Fig. 7 Slide 557/1 43.0 109.7, proximal focus showing extensively damaged cappa. This specimen shows the average preservation of the populations encountered.
Fig. 8 Slide 548/2 20.7 117.7, distal focus showing distinctive folds bordering the cappula.
Fig. 9 Slide 548/2 20.7 117.7, proximal focus showing faint traces of taeniate organisation of the cappa.
Plate 33

x 700

<table>
<thead>
<tr>
<th>Figures 1-10</th>
<th>Lunatisporites noviaulensis (Leschik) comb. nov.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Slide 726/1 27.5 109.5, proximal focus.</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Slide 581/4 47.0 113.3, proximal focus showing elongate rent in intexine between central taeniae.</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Slide 726/1 26.5 114.0, proximal focus showing irregular disposition of taeniae in compressed state, suggesting that they were originally inflated.</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Slide 726/2 35.8 115.0, proximal focus.</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Slide 726/2 36.5 100.2, proximal focus.</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Slide 733/X 22.5 106.0, proximal focus.</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Slide 570/2 41.5 117.2, proximal focus.</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Slide 726/2 35.8 108.0, proximal focus.</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Slide 570/4 44.0 102.5, proximal focus.</td>
</tr>
<tr>
<td>Fig.10</td>
<td>Slide 634/2 24.0 112.0, proximal focus.</td>
</tr>
</tbody>
</table>
Plate 34
x 700

Figures 1-7

Lunatisporites transversundatus (Jansonius) comb. nov.

Fig. 1 Slide 570/1 32.5 118.0, proximal focus showing ? monolete mark on intexine between central taeniae.

Fig. 2 Slide 570/1 32.5 118.0, distal focus showing smooth cappula.

Fig. 3 Slide 726/1 24.0 107.0, proximal focus showing typical wrinkled taeniae and heavily carbonised corpus.

Fig. 4 Slide 570/4 45.9 99.2, proximal focus.

Fig. 5 Slide 776/1 40.0 116.5, proximal focus.

Fig. 6 Slide 570/2 32.5 104.5, proximal focus of typical diploxylonoid specimen, showing monolete mark between central taeniae.

Fig. 7 Slide 570/2 32.5 104.5, distal focus.

Figures 8, 9, 13-15

Range of specimens assigned to Protohaploxypinus sewardi (Virkki) Hart complex.

Fig. 8 Slide 981/6 37.0 118.7, distal focus showing relatively thin cappula.

Fig. 9 Slide 981/6 37.0 118.7, proximal focus.

Fig. 13 Slide 981/2 28.5 103.3, proximal focus of typical specimen.

Fig. 14 Slide 981/5 38.0 110.0, median focus showing specimen with reduced sacci which are characterised by elongated colu-
mellae.

Fig. 15 Slide 981/5 29.1 105.2, proximal focus.

Figures 10-12

Pollen extracted from sporangia referred to Arberiella Pant & Nautiyal 1960.

Fig. 10 Arberiella Slide 1 37.9 111.5

Fig. 11 Arberiella Slide 1 37.0 111.0

Fig. 12 Arberiella Slide 1 37.0 111.0
Plate 35
× 700

<table>
<thead>
<tr>
<th>Figures 1-3</th>
<th>Protohaploxypinus jacobi (Jansonius) Hart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Slide 744/1 23.3 112.0, proximal focus.</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Slide 522/2 40.0 113.0, proximal focus.</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Slide 522/1 31.0 100.8, proximal focus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figures 4 - 8</th>
<th>Protohaploxypinus sp. cf. P. samoilovichii (Jansonius) Hart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4</td>
<td>Slide 634/2 46.3 118.0, proximal focus.</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Slide 726/2 42.0 108.7, proximal focus.</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Slide 76/2 48.0 108.5, proximal focus.</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Slide 75/4 32.2 114.8, proximal focus.</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Slide 75/4 32.2 114.8, distal focus.</td>
</tr>
</tbody>
</table>
Plate 36
x 700

Figures 1-3 *Strotersporites* sp.

Fig. 1 Slide 726/2 27.0 103.0, proximal focus.

Fig. 2 Slide 726/2 35.4 111.3, median focus.

Fig. 3 Slide 726/1 31.2 115.6, proximal focus.

Figure 4 *Striatopodocarpidites* sp.

Slide 981/2 34.8 114.5

Figure 5 *Striatopodocarpidites* sp. cf. *S. cancellatus*
(Balme & Hennelly) Hart

Slide 522/4 43.4 107.0

Figures 6-11 *Striatopodocarpidites cancellatus* (Balme
& Hennelly) Hart

Fig. 6 Slide 981/4 35.6 116.0, distal focus.

Fig. 7 Slide 981/4 35.6 116.0, proximal focus.

Fig. 8 Slide 991/6 39.0 113.0, proximal focus.

Fig. 9 Slide 981/2 20.2 112.3, proximal focus.

Fig. 10 Slide 981/4 26.2 104.5, proximal focus.

Fig. 11 Slide 981/4 26.2 104.5, distal focus.

Fig. 12 Slide 981/5 29.0 116.0, proximal focus showing division of cappa into four taeniae. This form could be assigned alternatively to *Lunatissporites*.

Figures 13, 14 *Striatopodocarpidites pantii* (Jansonius) Balme

Fig. 13 Slide 570/1 30.5 115.4, proximal focus.

Fig. 14 Slide 570/1 30.5 115.4, distal focus.
Fig. 15 Slide 981/6 39.5 101.5, proximal focus showing nature of exoexine development.

Fig. 16 Slide 981/6 39.5 101.5, distal focus showing incipient saccus development and smooth exine of cappula.

Figure 17

Aumancisporites fasciolatus (Balme & Hennelly) Hart

Slide 985/5 43.6 108.6, proximal focus.

Figures 18-21 Striatoabietites multistriatus (Balme & Hennelly) Hart

Fig. 18 Slide 981/5 31.8 115.0, proximal focus.

Fig. 19 Slide 981/5 31.8 115.0, distal focus showing broad cappula with smooth exoexine interrupted by central "keel" of structured exoexine.

Fig. 20 Slide 981/4 36.5 111.3, distal focus showing incipiently saccate specimen with central distal "keel" of structured exoexine.

Fig. 21 Slide 981/4 36.5 111.3, proximal focus.
Plate 37
x 700

Figures 1 - 11 *Marsupipollenites triradiatus* (Balme & Hennelly) *emend.*

Fig. 1 Slide 981/3 45.5 112.0, proximal focus showing detail of exoexine surrounding the trilete mark.

Fig. 2 Slide 981/3 45.5 112.0, proximal - median focus.

Fig. 3 Slide 981/3 45.5 112.0, distal focus showing smooth exine area between subparallel "distal folds".

Fig. 4 Slide 981/4 25.5 116.0, proximal - median focus showing oval outline of capulla on grain without distal folds or sacci development.

Fig. 5 Slide 981/4 20.5 101.8, sub-distal focus showing single distal fold at edge of capulla.

Fig. 6 Slide 981/2 23.7 105.6, median focus showing sub-parallel distal exine structures which I interpret as incipient sacci.

Fig. 7 Slide 981/5 30.0 113.5, proximal focus showing folds accompanying the laesurae.

Fig. 8 Slide 981/5 30.0 113.5, distal focus showing smooth exined, parallel sided capulla.

Fig. 9 Slide 981/2 21.0 105.0, proximal focus.

Fig. 10 Slide 981/2 21.0 105.0, proximal focus.

Fig. 11 Slide 981/4 26.4 110.0, median focus showing oval shaped capulla.

Figures 12-16 *Scutatipollenites scutatus* (Balme & Hennelly) comb. nov.

Fig. 12 Slide 981/6 25.8 110.5, lateral view showing differentiation of exoexinal extremities to form incipient sacci.

Fig. 13 Slide 981/6 25.8 120.5, showing smooth capulla.

Fig. 14 Slide 981/6 25.8 120.5, proximal focus showing incomplete nature of cappa.
Fig. 17 Slide 981/5 33.0 101.5, distal focus showing tear (question of significance) in exine of cappula.

Fig. 18 Slide 981/5 33.0 101.5, proximal focus showing well developed, slightly eccentric trilete mark and same evidence of contact faces.

Fig. 19 Slide 981/4 31.0 115.0, distal focus showing smooth, unstructured exine of cappula - Holotype.

Fig. 20 Slide 981/4 31.0 115.0, proximal focus showing small, slightly eccentric trilete mark. Not long columellae in cappa exoexine at edge of the grain - Holotype.

Figures 21-23 Klausipollenites sp.

Fig. 21 Slide 981/5 32.5 120.0, sub-lateral compression showing distal inclination and disposition of sacci.

Fig. 22 Slide 981/5 36.0 109.7, proximal focus.

Fig. 23 Slide 981/5 36.0 109.7, distal focus showing smooth unstructured exine of cappula.
Plate 38
x 700

Figures 1 - 5 Vesicaspora ovata (Balme & Hennelly) Hart illustrating a gradation from almost monosaccate to bisaccate organisation.

Fig. 1 Slide 981/6 36.5 117.0, distal focus.
Fig. 2 Slide 981/3 29.0 102.0, distal focus.
Fig. 3 Slide 981/6 25.2 117.8, distal focus.
Fig. 4 Slide 981/6 26.0 115.0, distal focus.
Fig. 5 Slide 985/3 23.2 111.5, distal focus.

Figures 6 - 20 Valesipollenites evansii gen. et sp. nov.

Fig. 6 Slide 981/5 22.9 110.0, lateral compression showing relatively thick cappa, elongate columellae of the sacci and smooth exoexine of the cappula.
Fig. 7 Slide 981/5 40.0 120.0, folded specimen showing gap in cappa exoexine at the trilete mark.
Fig. 8 Slide 981/3 27.0 115.8, folded specimen.
Fig. 9 Slide 981/2 19.0 106.0, distal focus.
Fig. 10 Slide 981/2 19.0 106.0, proximal focus showing well developed, slightly sinuous laesurae.
Fig. 11 Slide 981/4 26.2 104.8, distal focus.
Fig. 12 Slide 981/4 26.2 104.8, proximal focus showing small trilete mark.
Fig. 13 Slide 981/2 24.0 105.2, distal focus.
Fig. 14 Slide 981/2 24.0 105.2, proximal focus showing long almost straight laesura.
Fig. 15 Slide 981/4 31.5 101.5, distal focus showing typical smooth cappula.
Fig. 16 Slide 981/4 31.5 101.5, proximal focus showing well developed, slightly eccentric trilete mark.
Plate 39
x 700

Figures 1 - 6
Falcisporites nigracristatus (Hennelly) comb. nov.

Fig. 1 Slide 530/1 34.0 117.0, distal focus.

Fig. 2 Slide 985/4 29.5 116.0, distal focus.

Fig. 3 Slide 985/5 28.5 110.5, distal focus.

Fig. 4 Single specimen slide 647/13 21.0 111.0, lateral compression.

Fig. 5 Slide 530/1 41.0 105.0

Fig. 6 Slide 530/1 location not recorded.

Figures 7, 8. *Voltziapites balmei* sp. nov.

Fig. 7 Slide 981/3 25.0 114.0, distal focus.

Fig. 8 Slide 981/6 40.0 117.0, distal focus.

Figure 9 *Vestigisporites* sp.

Slide 981/6 25.3 112.0
Plate 40
x 700

Figures 1, 2
Vitreisporites sp. 1

Fig. 1 Slide 760/1 31.2 111.6
Fig. 2 Slide 522/5 38.0 107.0

Figures 3, 4
Vitreisporites pallidus (Reissinger) Nilsson.

Fig. 3 Slide 985/4 31.5 104.2
Fig. 4 Slide 985/4 39.3 105.5

Figure 5.
Vitreisporites sp.

Slide 985/4 43.8 102.1

Figures 6, 7
Sulcosaccispora lata de Jersey & Hamilton

Fig. 6 Slide 522/2 44.0 104.0
Fig. 7 Slide 760/1 26.2 103.3

Figure 8
Minutosaccus sp. 1

Slide 522/4 29.0 106.0

Figures 9-15
Praecolpatites sinuosus (Balme & Hennelly) Bharadwaj & Srivastava

Fig. 9 Slide 991/1 42.1 109.3
Fig.10 Slide 992/1 31.0 120.0
Fig.11 Slide 992/1 38.2 113.5
Fig.12 Slide 981/3 27.0 102.0
Fig.13 Slide 991/6 27.5 103.8
Fig.14 Slide 981/4 25.5 110.0

Figures 16-20
Falcisporites similis (Balme) comb. nov.

Fig.16 Slide 391/1 23.5 118.2, proximal focus.
Fig.17 Slide 391/1 23.5 118.2, distal focus.
Fig.18 Slide 391/1 19.5 106.0, distal focus.
Fig.19 Slide 391/2 36.4 110.7, proximal focus.
Fig.20 Slide 391/2 36.4 110.7, distal focus.
Plate 41
× 700

Figures 1-12 *Welwitschiapites australiensis* sp. nov.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Slide</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figs. 1,2</td>
<td>533/1</td>
<td>42.0</td>
<td>104.0</td>
</tr>
<tr>
<td>Figs. 3,4</td>
<td>533/1</td>
<td>27.8</td>
<td>105.0</td>
</tr>
<tr>
<td>Figs. 5,6</td>
<td>533/1</td>
<td>37.0</td>
<td>103.5, showing sculptural boss at lateral end of grain.</td>
</tr>
<tr>
<td>Figs. 7,8</td>
<td>533/1</td>
<td>32.0</td>
<td>106.8</td>
</tr>
<tr>
<td>Figs. 9,10</td>
<td>533/1</td>
<td>36.4</td>
<td>112.0 - Holotype.</td>
</tr>
<tr>
<td>Fig.11</td>
<td>533/1</td>
<td>40.4</td>
<td>115.5</td>
</tr>
<tr>
<td>Fig.12</td>
<td>533/2</td>
<td>24.4</td>
<td>99.4</td>
</tr>
</tbody>
</table>

Figures 13-19 *Cycadopites follicularis* Wilson & Webster illustrating gradational opening of sulcus. All specimens are from sample 522.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Slide</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.13</td>
<td>522/2</td>
<td>36.5</td>
<td>104.5</td>
</tr>
<tr>
<td>Fig.14</td>
<td>522/2</td>
<td>40.2</td>
<td>115.8</td>
</tr>
<tr>
<td>Fig.15</td>
<td>522/1</td>
<td>24.5</td>
<td>107.6</td>
</tr>
<tr>
<td>Fig.16</td>
<td>522/2</td>
<td>31.0</td>
<td>102.5</td>
</tr>
<tr>
<td>Fig.17</td>
<td>522/4</td>
<td>35.8</td>
<td>107.2</td>
</tr>
<tr>
<td>Fig.18</td>
<td>522/2</td>
<td>32.5</td>
<td>107.3</td>
</tr>
<tr>
<td>Fig.19</td>
<td>522/2</td>
<td>29.5</td>
<td>102.4</td>
</tr>
</tbody>
</table>

Figures 20-23 *Ephedripites stevesi* (Jansonius) de Jersey & Hamilton.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Slide</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.20</td>
<td>95/2</td>
<td>18.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Fig.21</td>
<td>522/4</td>
<td>17.5</td>
<td>106.5</td>
</tr>
<tr>
<td>Fig.22</td>
<td>94/1</td>
<td>18.0</td>
<td>111.0</td>
</tr>
<tr>
<td>Fig.23</td>
<td>522/4</td>
<td>33.0</td>
<td>105.5</td>
</tr>
</tbody>
</table>

Figures 24, 25 *Alisporites opii* Daugherty

<table>
<thead>
<tr>
<th>Figure</th>
<th>Location</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 24</td>
<td>Chinle/1</td>
<td>19.0</td>
<td>116.5</td>
</tr>
<tr>
<td>Fig. 25</td>
<td>Chinle/1</td>
<td>48.0</td>
<td>112.0</td>
</tr>
</tbody>
</table>

Figure 26 *Cadargasporites* sp.

<table>
<thead>
<tr>
<th>Slide</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>524/1</td>
<td>34.5</td>
<td>101.5</td>
</tr>
</tbody>
</table>
Figures 39 - 41 *Baltisphaeridium* sp. 2
 Fig. 39 Slide 429/1 29.0 107.8
 Fig. 40 Slide 489/1 28.2 99.5
 Fig. 41 Slide 489/1 28.2 99.5

Figure 42 *Gnetaceae pollenites* sp. cf. *cymbatus* (Balme & Hennelly)
 Slide 981/4 32.8 106.2

Figure 43 *Pilasporites calculus* Balme & Hennelly
 Slide 774/4 22.0 103.4

Figure 44 - 46 *Baltisphaeridium* sp. 1
 Fig. 44 Slide 391/2 31.3 117.7
 Fig. 45 Slide 391/2 31.3 117.7
 Fig. 46 Slide 391/1 17.5 104.0
Fig. 20 Slide 986/2 21.5 116.5, specimen with small fold on body wall opposite the "operculum". Radial puckering of wall quite distinct.

Fig. 21 Slide 986/2 26.5 116.5, specimen with intersecting folds dividing body wall into four fields.

Fig. 22 Slide 986/2 24.0 106.8, larger number of polygonal fields due to more intensive folding.

Fig. 23 Slide 986/2 32.0 116.2, showing "operculum".

Fig. 24 Slide 986/2 32.0 116.2, showing polygonal fields on opposite body wall.

Fig. 25 Slide 986/2 25.5 115.4

Figures 26-29 Micrhystridium sp. 2

Fig. 26 Slide 391/4 38.7 116.0

Fig. 27 Slide 391/4 38.7 116.0

Fig. 28 Slide 482/2 24.3 102.2

Fig. 29 Slide 482/2 24.3 102.2

Figure 30. Micrhystridium sp. 3

Slide 985/5 24.5 107.5

Figures 31-36 Veryhachium sp. 2

Fig. 31 Slide 993/1 24.0 118.0 (Roof of Main Lower Seam, Blackwater).

Fig. 32 Slide 993/1 22.5 112.0 (Roof of Main Lower Seam, Blackwater).

Fig. 33 Slide 963/1 30.5 104.1, multispinoform.

Fig. 34 Slide 963/1 31.2 112.5

Fig. 35 Slide 963/1 36.0 112.0

Fig. 36 Slide 963/3 36.5 102.2

Figure 37 Baltisphaeridium sp. 4

Slide 985/5 33.0 105.3

Figure 38 Baltisphaeridium sp. 3

Slide 985/3 35.9 120.5
Plate 42
x 700

Figures 1-3
? *Cycadopites* sp.

Fig. 1
Slide 482/1 22.2 101.0

Fig. 2
Slide 760/5 35.4 117.0

Fig. 3
Slide 760/5 40.2 111.8

Figures 4 - 6
Pilasporites plurigenus Balme & Hennelly.

Fig. 4
Slide 985/5 24.0 106.0

Fig. 5
Slide 985/5 24.0 110.0

Fig. 6
Slide 988/5 31.5 111.1

Figures 7-18
Micropystrydium sp. 1

Fig. 7
Slide 985/4 28.3 108.0

Fig. 8
Slide 986/2 29.2 107.0

Fig. 9
Slide 986/2 29.2 107.0, equatorial focus.

Fig. 10
Slide 985/3 23.7 105.5, showing long attenuated spines and folding around the edge of the grain. The light patch is a hole in the body wall on the other side of the grain.

Fig. 11
Slide 985/5 28.2 118.0, specimen with long hair-like projections. Trace of hole in body wall visible as light patch.

Fig. 12
Slide 985/3 36.0 115.6

Fig. 13
Slide 985/4 37.9 120.7

Fig. 14
Slide 985/5 24.0 115.2

Fig. 15
Slide 985/5 32.2 117.5, note hole in body wall.

Fig. 16
Slide 985/4 31.0 111.6

Fig. 17
Slide 985/4 33.0 110.5

Fig. 18
Slide 985/5 25.2 107.0

Figures 19-25
? *Cymatosphaera* sp.

Fig. 19
Slide 985/5 37.0 107.0, unfolded specimen with large open operculum. There is evidence of the beginning of puckering at the edge of the operculum.
Fig. 14 Slide 985/5 20.5 109.5, isolated hemisphere.
Fig. 15 Slide 986/2 22.9 119.7, unruptured specimen.
Fig. 16 Slide 774/1 25.0 117.5, equatorial focus.
Fig. 17 Slide 774/1 25.0 117.5, polar focus.

Figures 18, 19 *Tetraporina horologa* (Staplin) Playford
Fig. 18 Slide 985/3 37.0 117.5
Fig. 19 Slide 985/3 28.0 118.0

Figures 20, 21 *Quadrisporites horridus* Hennelly.
Fig. 20 Slide 988/1 29.4 103.8
Fig. 21 Slide 985/1 24.5 100.0

Figures 22, 23 *Tetraporina* sp.
Fig. 22 Slide 986/2 39.0 102.5, shows typical badly eroded specimen.
Fig. 23 Slide 986/2 39.4 108.1, a typical specimen - note inflated projections at the corners.
Veryhachium sp. 1

Fig. 1 Slide 985/4 26.0 112.6, showing specimen with "girdle" of small spines surrounding "tear" in body wall.

Fig. 2 Slide 985/4 26.0 117.6

Fig. 3 Sample 985, location not recorded.

Veryhachium sp. 3

Fig. 4 Slide 391/1 27.2 109.5

Veryhachium sp. 4

Fig. 5 Slide 482/1 41.3 109.5 (lower left hand spine has been broken off).

Baltisphaeridium sp. 3

Fig. 6 Slide 963/5 30.5 114.5

Circulisporites parvus (de Jersey) Norris

Fig. 7 Slide 1005/1 17.5 106.0, both hemispheres of body still in contact, but rupture evident.

Fig. 8 Slide 1005/1 35.0 102.0, unruptured specimen with hemispheres still partially in contact.

Fig. 9 Slide 985/4 31.8 109.0, ruptured specimen with hemispheres still partially in contact.

Fig. 10 Slide 985/4 42.8 120.0, isolated hemisphere of a ruptured specimen.

Circulisporites sp. cf. C. parvus (de Jersey) Norris.

Fig. 11 Single specimen slide 530/1 22.5 106.5, showing ruptured specimen with both sides still in contact.

Peltacystia venosa Balme & Segroves

Fig. 12 Slide 985/1 15.0 101.1, showing reticulate ornament in polar region of isolated hemisphere.

Fig. 13 Slide 985/4 38.0 100.0, equatorial focus showing girdle and ornament projections.