Metal-Catalysed Hydroamination

A thesis submitted in partial fulfilment of the requirements for admission to the degree of

Doctor of Philosophy

by

Adelle Shasha

School of Chemistry The University of Sydney November 2006

Preface

This thesis is a report of original research undertaken by the author and is submitted for admission to the degree of Doctor of Philosophy at the University of Sydney. The work was completed in the School of Chemistry at the University of Sydney during the period March 2003 to November 2006. The work and results presented in this thesis are those of the author, unless otherwise acknowledged.

Sections of this work have been published:

Cyclization of Acetylenic Amides Using a Cationic Rhodium(I) Complex S. Burling, L. D. Field, H. L. Li, B. A. Messerle, A. Shasha *Australian Journal of Chemistry*, **2004**, 57, 677-680.

Sections of this work have been presented at Scientific Conferences:

Catalysed Synthesis of Pyrrolines, Pyrrolidines and Indoles

S. Burling, L. D. Field, <u>B. A. Messerle</u>, A. Shasha, and S. Wren *Southern Highlands Conference on Heterocyclic Chemistry 13*, Moss Vale, Australia September **2002**. Poster Presentation.

Synthesis of N-Heterocycles Using Cationic Metal Catalysts

S. Burling, L. D. Field, B. A. Messerle, A. Shasha, <u>S. Wren</u> *Cornforth Foundation for Chemistry Symposium*, University of Sydney, Sydney,
30th September-1st October 2002. Poster Presentation.

Metal-Catalysed Hydroamination of Alkynes

L. D. Field, B. A. Messerle, <u>A. Shasha</u> 4th Reactive Organometallics Symposium, UNSW, Sydney, 22nd May **2003**. Oral Presentation.

Organometallic Catalysts for the Synthesis of Heterocycles

L. D. Field, B. A. Messerle, A. Shasha

4th DrSpoc, Sydney University, Sydney, 2nd October **2003**. Oral Presentation.

Organometallic Catalysts for the Synthesis of Heterocycles

S. Burling, L. D. Field, H. L. Li, B. A. Messerle, S. Rumble, <u>A. Shasha</u> and H. van Heyden

2nd Australia and New Zealand Symposium on Organometallic Chemistry (OZOM2), Adelaide, Australia, 11th-14th January **2004**. Poster Presentation, Poster T6.

Metal-Catalysed Hydroamination of Alkynes

L. D. Field, B. A. Messerle, <u>A. Shasha</u>
5th Reactive Organometallics Symposium, Sydney University, Sydney, 28th May
2004. Oral Presentation.

Organometallic Catalysts for the Synthesis of Heterocycles

S. Burling, L. D. Field, H. L. Li, B. A. Messerle, S. Rumble, <u>A. Shasha</u> and H. van Heyden *XXIst International Conference on Organometallic Chemistry*, Vancouver, Canada, 25th-30th July **2004**. Poster Presentation, Poster 155.

Organometallic Catalysts for the Synthesis of Heterocycles

L. D. Field, B. A. Messerle, <u>A. Shasha</u> 5th DrSpoc, Sydney University, Sydney, 1st October **2004**. Oral Presentation.

Exploring New Metal Catalysts for Hydroamination

L. D. Field, B. A. Messerle, <u>A. Shasha</u> 7th Reactive Organometallics Symposium, ANU, Canberra, 11th February **2005**. Oral Presentation.

Exploring New Metal Catalysts for Hydroamination

L. D. Field, B. A. Messerle, A. Shasha

12th The Royal Australian Chemical Institute Convention (RACI Connect 2005),
Sydney Convention and Exhibition Centre, Darling Harbour, Sydney, 3rd-7th July,
2005. Oral Presentation, Abstract 125.

Exploring New Metal Catalysts for the Synthesis of Heterocycles via Hydroamination

S. Burling, L. D. Field, H. L. Li, B. A. Messerle, S. Rumble and <u>A. Shasha</u>
13th IUPAC International Symposium on Organometallic Chemistry Directed
Towards Organic Synthesis (OMCOS 13), Geneva, Switzerland, 17th-21st July
2005. Poster Presentation, P 399.

Abstract

This thesis describes the synthesis of terminal and internal amino- and amidoalkynes and their hydroamination (cyclisation) catalysed by the complex (*bis*(*N*-methylimidazol-2-yl)methane)dicarbonylrhodium(I) tetraphenylborate (1). A series of analogous palladium complexes were also prepared and investigated for catalytic hydroamination.

The scope of the rhodium(I) complex (1) for the intramolecular hydroamination of more complex amino- and amidoalkyne substrates was investigated. This was made possible with the synthesis of aliphatic substrates, namely, 4-pentyn-1-amide (3) and 5-hexyn-1-amide (4) and a number of aromatic substrates, namely, 1, 4-diamino-2, 5-diethynylbenzene (5), 1, 4-diamino-2, 5-bis(phenylethynyl)benzene (6), 2, 3-diamino-1, 4-diethynylbenzene (7), 2, 3-diamino-1, 4-bis(phenylethynyl)benzene (8), 1, 5-bis(acetamido)-2, 4-diethynylbenzene (9), N-(acetyl)-2-ethynylbenzylamine (10) and N-(acetyl)-2-(phenylethynyl)benzylamine (11).

The rhodium(I) complex (1) catalytically cyclised the aliphatic 4-pentyn-1-amide (3) regioselectively to the 6-membered ring, 3, 4-dihydro-2-pyridone (64) as the sole product. Attempts to cyclise 5-hexyn-1-amide (4) to produce either the 6- or 7-membered ring were unsuccessful. Compounds 5, 6, 7 and 8 were doubly cyclised to 1, 5-dihydro-pyrrolo[2, 3-*f*]indole (71), 1, 5-dihydro-2, 6-diphenyl-pyrrolo[2, 3-*f*]indole (73), 1, 8-dihydro-pyrrolo[2, 3-*g*]indole (74) and 1, 8-dihydro-2, 7-diphenyl-pyrrolo[2, 3-*g*]indole (75) respectively.

The aromatic amides with terminal acetylenes 9 and 10 cyclised to give 1, 7-diacetyl-pyrrolo[3, 2-f]indole (76) and *N*-(acetyl)-1, 2-dihydroisoquinoline (77) respectively. However, attempts to cyclise 11 were unsuccessful. Thus the

rhodium(I) complex (1) successfully catalysed *via* hydroamination both terminal and internal acetylenic amine and amide substrates, to give pyridones, indoles and isoquinolines.

Cationic and neutral palladium complexes incorporating the bidentate heterocyclic nitrogen donor ligand *bis*(*N*-methylimidazol-2-yl)methane (bim; **2**) were synthesised: $[Pd(bim)Cl_2]$ (**15**), $[Pd(bim)_2][BF_4]_2$ (**17**) $[Pd(bim)(Cl)(CH_3)]$ (**14**), $[Pd(bim)(CH_3)(NCCH_3)][BF_4]$ (**16**). All of the complexes were active as catalysts for the intramolecular hydroamination reaction, using the cyclisation of 4-pentyn-1-amine (**21**) to 2-methyl-1-pyrroline (**22**) as the model test reaction. Percentage conversions, turnover numbers and reaction profiles for each complex were compared to the rhodium(I) complex (**1**). These studies have shown that the catalytic activity was not significantly dependent on the bim donor ligand or the choice of metal. Substitution of the bim (**2**) ligand with the COD ligand and the use of methanol as the solvent did impact significantly on the efficiency of the hydroamination reactions.

Acknowledgements

I would like to begin with thanking my family, Mum, Dad, Michael and Simon, for their love, patience and constant support throughout this project. Words cannot express my gratitude for the kindness you have shown me.

I wish to also thank my supervisor Professor Les Field, for giving me the opportunity to undertake this project.

I would especially like to thank Dr Hsiu Lin Li, for her guidance, encouragement, friendship, and for giving me the determination needed to complete this project. I wish to also thank Dr Ian Luck for teaching me everything I know about NMR spectroscopy and for being a great boss.

There are many friends, past and present, from the LDF research group who have all contributed, in some way, to my research and education (and sanity in the labs). I wish to thank Ruth Guest, my fellow Ph.D. student in the group, for her support, words of encouragement and friendship over the years. Thank you Jackie Morgan, Suz Burling, Guy Clentsmith, Barbara Messerle, Adrian George, Chris Griffith, Nilay Hazari, Tim Shearer, Khuong Vuong, Olivia Allen, Alison Magill, Amaruka Hazari, Ashley Tronoff and Alistair Fray. It was an honour to work with you all.

Many friends, inside and outside of uni, have supported me these past few years (especially the last six months). Thank you for being there, for listening to me, the great nights out, and for taking my mind off my thesis. Particular thanks to Joumana Manjah, Catherine Oh, Ojia Skaff, Maxine Sintic, Graciel Gonzaga, and Iain Blake. I would also like to thank Erin Doyle, my flatmate, for your kindness.

Finally, I want to give a special thanks to my best friend Jarrod Amoore, who I value more and more as each day passes. Thank you for your love, friendship, support, tramping trips and rock climbing adventures.

Adelle Shasha November 2006

List of Abbreviations

Ac	Acetate
app	apparent
aq	aqueous
Ar	aromatic
ATI	aminotroponiminate
$(B(Ar^F)_4)^-$	$(B(3, 5-C_6H_3(CF_3)_2)_4)^-$
bik	bis(N-methylimidazol-2-yl)ketone
bim	bis(N-methylimidazol-2-yl)methane
bpm	bis(1-pyrazolyl)methane
bs	broad singet (NMR)
Bu	Butyl
COD	η^4 -1, 5-cyclooctadiene
СОТ	1, 3, 5, 7-cyclooctatetraene
Ср	η ⁵ -cyclopentadienyl
Cp*	η^5 -pentamethylcyclopentadienyl
Су	cyclohexyl
δ	chemical shift (ppm)
d	deutero
d	doublet (NMR)
dec.	decomposed
DIPAMP	1, 2-bis[(o-methylphenyl)(phenyl)phosphino]ethane
DMF	N, N-dimethylformamide
EI	Electron Impact Ionisation
ESI	Electrospray Ionisation
Et	Ethyl
Et ₂ NH	diethylamine

Et ₃ N	triethylamine
EtOH	ethanol
h	hours
HRMS	High Resolution Mass Spectrometry
Hz	hertz (s^{-1})
Im	<i>N</i> -methylimidazol-2-yl
IR	Infrared
J	scalar coupling constant (NMR)
L	Ligand
m	multiplet (NMR)
т	meta
m.p.	melting point
m/z.	mass to charge ratio
Me	Methyl
min	minutes
Morpho-CDI MS	<i>N</i> -Cyclohexyl- <i>N'</i> -(2-morpholinoethyl)carbodiimide methyl- <i>p</i> - toluenesulfonate Mass Spectrometry
NMR	Nuclear Magnetic Resonance
N-N	bidentate nitrogen donor ligand
$N_t(h^{-1})$	turnover number (moles of product produced per mole of catalyst used per hour)
0	ortho
OII	trifluoromethanesulfonate
р	pentet (NMR)
p =:	para
Ph	Phenyl
ppm	parts per million
ру	pyridine
pz	1-pyrazolyl
q	quartet (NMR)
R _f	thin layer chromatography retention factor

S	singlet (NMR)
t	triplet (NMR)
<i>t</i> -Bu	t-Butyl (-C(CH ₃) ₃)
THF	tetrahydrofuran
TLC	Thin Layer Chromatography
TMS	trimethylsilyl
Tos	tosyl (<i>p</i> -toluenesulfonyl)
Triphos	bis(diphenylphosphinoethyl)phenylphosphine

Table of Contents

Prefa	ce	i
Abstr	act	iv
Ackno	owledgements	vi
List of Abbreviations		viii
Table	of Contents	xi
List o	f Figures	xviii
List of Tables		XX
Chap	ter 1 - Introduction	
1.1	Transition Metal Complexes as Homogeneous Catalysts	1
1.1.1	Homogeneous and Heterogeneous Catalysis	3
1.1.2	2 Catalysis	4
1.1.3	Metal-Catalysed Formation of Carbon-Nitrogen Bonds	8
1.1.4	The Importance of Organo-Nitrogen Compounds	11
1.2	Objectives	12
1.3	Structure of this Thesis	13
1.4	References	16

Chapter 2 - Synthesis of Substrates

2.1	Synthesis of Amino- and Amido-alkynes	18
2.1.1	Introduction	18

2.2	S	ynthesis of Aliphatic Alkynamides	20
2.	2.2	4-Pentyn-1-amide (3)	23
2.	2.3	4-Pentyn-1-amide (3) via Acid Chloride Intermediate (28)	25
2.	2.4	5-Hexyn-1-amide (4)	25
2.3	S	ynthesis of Aromatic Alkynamines	27
2.	3.2	1, 4-Diamino-2, 5-diethynylbenzene (5)	29
2.	3.3	1, 4-Diamino-2, 5-bis(phenylethynyl)benzene (6)	29
2.	3.4	2, 3-Diamino-1, 4-diethynylbenzene (7)	30
2.	3.5	2, 3-Diamino-1, 4-diethynylbenzene (7)	36
2.	3.6	2, 3-Diamino-1, 4-bis(phenylethynyl)benzene (8)	40
2.4	S	ynthesis of Aromatic Alkynamides	41
2.	4.1	1, 5-Bis(acetamido)-2, 4-diethynylbenzene (9)	41
2.	4.2	1, 5-Bis(acetamido)-2, 4-diethynylbenzene (9)	45
2.	4.3	N-(Acetyl)-2-ethynylbenzylamine (10)	47
2.	4.4	N-(Acetyl)-2-(phenylethynyl)benzylamine (11)	49
2.5	A	ttempted Synthesis of 1, 3, 5-Triamino-2, 4, 6-tribromobenzene	50
2.	5.1	1, 3, 5-Tribromo-2, 4, 6-trinitrobenzene (52)	51
2.6	S	ummary of the Synthesis of Substrates	54
2.7	R	teferences	55

Chapter 3 - Hydroamination of Substrates

3.1	Introduction	58
3.2 1	Metal-Catalysed Intramolecular Hydroamination of Aminoalkynes	60
3.2.1	General procedures for catalytic reactions	60
3.3	[Rh(bim)(CO) ₂][BPh ₄] (1)	60
3.4	Intramolecular Cyclisation	61
3.4.1	Cyclisation of 4-Pentyn-1-amide (3) to 3, 4-Dihydro-2-pyridone (64)	62
3.5	Cyclisation of Aromatic Aminoalkynes	66
3.5.1	Cyclisation of 1, 4-Diamino-2, 5-bis(ethynyl)benzene (5) to	
	1, 5-Dihydro-pyrrolo[2, 3- <i>f</i>]indole (71)	66

3.7	References	83
3.6	Summary of the Catalysed Intramolecular Hydroamination of Aminoalkynes	80
	<i>N</i> -(Acetyl)-1, 2-dihydroisoquinoline (77)	75
3.5.	7 Cyclisation of <i>N</i> -(Acetyl)-2-ethynylbenzylamine (10) to	
	1, 7-Diacetyl-pyrrolo[3, 2- <i>f</i>]indole (76)	73
3.5.	6 Cyclisation of 1, 5- <i>Bis</i> (acetamido)-2, 4-diethynylbenzene (9) to	
	1, 8-Dihydro-2, 7-diphenyl-pyrrolo[2, 3-g]indole (75)	72
3.5.	5 Cyclisation of 2, 3-Diamino-1, 4- <i>bis</i> (phenylethynyl)benzene (8) to	
	1, 8-Dihydro-pyrrolo[2, 3-g]indole (74)	72
3.5.	4 Cyclisation of 2, 3-Diamino-1, 4-diethynylbenzene (7) to	
3.5.	X-ray Crystal Structure of 1, 5-Dihydro-2, 6-diphenyl-pyrrolo[2, 3- <i>f</i>]indole (73)	71
	1, 5-Dihydro-2, 6-diphenyl-pyrrolo[2, 3-f]indole (73)	69
3.5.	2 Cyclisation of 1, 4-Diamino-2, 5- <i>bis</i> (phenylethynyl)benzene (6) to	

Chapter 4 - Palladium Complexes and the Cyclisation of 4-Pentyn-1-amine

4.1		Transition Metal-Catalysed Hydroamination	85
4.	1.1	Intramolecular Hydroamination	85
4.2		Structure of Target Metal Complexes	97
4.	2.1	Imidazole ligands	98
4.	2.2	Synthesis of <i>Bis</i> (<i>N</i> -methylimidazol-2-yl)methane (bim; 2)	100
4.3		Synthesis of Palladium(II) Complexes with a Nitrogen Donor Ligand	102
4.	3.1	$[Pd(bim)Cl_2] (15)$	102
4.	3.2	X-ray Crystal Structure of [Pd(bim)Cl ₂] (15)	103
4.	3.3	$[Pd(bim)_2][Cl]_2(98)$	104
	4.	3.3.1 DOSY	105
4.	3.4	[Pd(bim)(Cl)(CH ₃)] (14)	107
4.	3.5	[Pd(bim)(CH ₃)(NCCH ₃)][BF ₄] (16)	107
	4.	3.5.1 Attempted Synthesis of [Pd(bim)(CH ₃)CO] ⁺	109
4.4		Palladium Catalysed Cyclisation of 4-Pentyn-1-amine (21) to 2-Methyl-1-Pyrroli	ne
		(22)	110
4.4	4.1	General Procedure for the Metal-Catalysed Cyclisation of 4-Pentyn-1-amine (21)	111

4.5 Catalysis by Palladium(II) Complexes

114

4.5	1 Cyclisation Catalysed by [Pd(bim)(Cl)(CH ₃)] (14)	114
4.5	2 Cyclisation Catalysed by $[Pd(bim)Cl_2]$ (15), $[Pd(bim)(CH_3)(NCCH_3)][BF_4]$ (16) a	ind
4.5	$[Pd(bim)_2][BF_4]_2(17)$	116
4.5.	3 Cyclisation Catalysed by $[Rh(bim)(CO)_2][BPh_4](1)$	118
4.5.4 Cyclisation Catalysed by $[Pd(COD)Cl_2]$ (18), $[Pd(COD)(Cl)(CH_3)]$ (19) and		120
	$[Pd(COD)Cl]_2[BF_4]_2 (20)$	120
4.6	Summary of the Synthesis of Palladium Complexes and the Cyclisation of	
	4-Pentyn-1-amine	121
4.7	References	123
Chap	oter 5 - Summary, Conclusions and Suggestions for Further Work	
5.1	Summary and Conclusions	128
5.2	Suggestions for Further Work	131
5.3	References	135
Chap	oter 6 - Experimental	
6.1	General Procedures	136
6.2	NMR Spectroscopy	138
6.3	Synthesis of Aliphatic Substrates	140
6.3	1 3-Butynoic Acid (23)	140
6.3	2 The Attempted Synthesis of 3-Butynoic Acid (23)	140
6.3	3 4-Pentynoic Acid (26)	141
6.3	4 5-Hexynoic Acid (27)	142
6.3	5 4-Pentyn-1-amide (3)	143
6.3	6 Synthesis of 4-Pentyn-1-amide (3) via Acid Chloride Intermediate	144
6.3	7 Synthesis of 5-Hexyn-1-amide (4)	144
6.4	Synthesis of the Aromatic Substrates	146
6.4	1 1, 4-Diamino-2, 5- <i>bis</i> (trimethylsilylethynyl)benzene (29)	146
6.4	2 1, 4-Diamino-2, 5-diethynylbenzene (5)	147
6.4	3 1, 4-Diamino-2, 5- <i>bis</i> (phenylethynyl)benzene (6)	148
	viv	

6.4.4	1, 4-Dibromo-2, 3-dinitrobenzene (35)	149
6.4.5	2, 1, 3-Benzothiadiazole (37)	149
6.4.6	4, 7-Dibromo-2, 1, 3-benzothiadiazole (38)	150
6.4.7	2, 3-Diamino-1, 4-dibromobenzene (34)	151
6.4.8	2, 3-Bis(acetamido)-1, 4-dibromobenzene (39)	151
6.4.9	2, 3-Bis(acetamido)-1, 4-bis(trimethylsilylethynyl)benzene (40)	152
6.4.10	4, 7-Bis(trimethylsilylethynyl)-2, 1, 3-benzothiadiazole (41)	153
6.4.11	4, 7-Bis(ethynyl)-2, 1, 3-benzothiadiazole (42)	154
6.4.12	2, 3-Diamino-1, 4-diethynylbenzene (7)	155
6.4.13	4, 7-Bis(phenylethynyl)-2, 1, 3-benzothiadiazole (43)	156
6.4.14	2, 3-Diamino-1,4-bis(phenylethynyl)benzene (8)	157
6.4.15	1, 5-Dibromo-2, 4-dinitrobenzene (44)	158
6.4.16	The Attempted Synthesis of 1, 5-Dibromo-2, 4-dinitrobenzene (44)	158
6.4.17	1, 5-Diamino-2, 4-dibromobenzene (45)	159
6.4.18	The Attempted Synthesis of 1, 5-Diamino-2, 4-dibromobenzene (45)	160
6.4.19	The Attempted Synthesis of 1, 5-Diamino-2, 4-dibromobenzene (45)	161
6.4.20	1, 5-Bis(acetamido)-2, 4-dibromobenzene (50)	161
6.4.21	1, 5-Bis(acetamido)-2, 4-bis(trimethylsilylethynyl)benzene (12)	162
6.4.22	1, 5-Bis(acetamido)-2, 4-diethynylbenzene (9)	163
6.4.23	N-(Acetyl)-2-bromobenzylamine (51)	164
6.4.24	N-(Acetyl)-2-(trimethylsilylethynyl)benzylamine (13)	165
6.4.25	N-(Acetyl)-2-ethynylbenzylamine (10)	166
6.4.26	N-(Acetyl)-2-(phenylethynyl)benzylamine (11)	166
6.4.27	1, 3, 5-Tribromo-2, 4-dinitrobenzene (53)	167
6.4.28	2, 4-Diamino-1, 3, 5-tribromobenzene (55)	168
6.4.29	1, 3, 5-Tribromo-2, 4, 6-trinitrobenzene (52)	169
6.4.30	2, 4, 6-Tribromo-3, 5-dinitroaniline (54)	170
6.5 N	Ietal-Catalysed Intramolecular Hydroamination Reactions	171
6.5.1	General Procedures for Catalytic Reactions	171
6.6 C	yclisation of Aliphatic Aminoalkynes	172
6.6.1	Cyclisation of 4-Pentyn-1-amide (3) to 3, 4-Dihydro-2-pyridone (64)	172
6.7 C	yclisation of Aromatic Aminoalkynes	173
6.7.1	Cyclisation of 1, 4-Diamino-2, 5-bis(ethynyl)benzene (5) to	
	1, 5-Dihydro-pyrrolo[2, 3- <i>f</i>]indole (71)	173
6.7.2	Cyclisation of 1, 4-Diamino-2, 5-bis(phenylethynyl)benzene (6) to	
	2, 6-Diphenyl-1, 5-dihydro-pyrrolo[2, 3- <i>f</i>]indole (73)	174

6.	7.3	Cyclisation of 2, 3-Diamino-1, 4-diethynylbenzene (7) to	
		1, 8-Dihydro-pyrrolo[2, 3-g]indole (74)	175
6.	7.4	Cyclisation of 2, 3-Diamino-1, 4-bis(phenylethynyl)benzene (8) to	
		1, 8-Dihydro-2, 7-diphenyl-pyrrolo[2, 3-g]indole (75)	176
6.	7.5	Cyclisation of 1, 5-Bis(acetamido)-2, 4-diethynylbenzene (9) to	
		1, 7-Diacetyl-pyrrolo[3, 2- <i>f</i>]indole (76)	178
6.	7.6	Cyclisation of N-(Acetyl)-2-ethynylbenzylamine (10) to	
		N-(Acetyl)-1, 2-dihydroisoquinoline (77)	179
	6.7.	6.1 Isoquinoline (79)	180
6.8	A	ttempted Cyclisation	181
	6.8.	1.1 The Attempted Cyclisation of 5-Hexyn-1-amide (4).	181
	6.8.	1.2 The Attempted Cyclisation of	
		1, 5-Bis(acetamido)-2, 4-bis(trimethylsilylethynyl)benzene (12)	181
	6.8.	1.3 The Attempted Cyclisation of <i>N</i> -(Acetyl)-2-(phenylethynyl)benzylamine (11)	182
	6.8.	1.4 The Attempted Cyclisation of	
		N-(Acetyl)-2-(trimethylsilylethynyl)benzylamine (13)	182
6.9	N	itrogen Donor Ligand	183
6.	9.1	Bis(N-methylimidazol-2-yl)ketone, (bik) (91)	183
6.	9.2	Bis(N-methylimidazol-2-yl)methane, (bim) (2)	184
6.10	R	hodium(I) Complex	185
6.	10.1	$[Rh(bim)(CO)_2][BPh_4] (1)$	185
6.11	P	alladium Complexes	186
6.	11.1	$[Pd(bim)Cl_2]$ (15)	186
6.	11.2	$[Pd(bim)_2][BF_4]_2$ (17)	187
6.	11.3	[Pd(bim)(Cl)(CH ₃)] (14)	187
6.	11.4	[Pd(bim)(CH ₃)(NCCH ₃)][BF ₄] (16)	188
6.	11.5	$[Pd(COD)Cl]_2[BF_4]_2(20)$	189
6.12	С	yclisation of 4-Pentyn-1-amine (21) to 2-Methyl-1-pyrroline (22)	190
6.	12.1	Cyclisation of 4-pentyn-1-amine (21) in methanol- d_3 and methanol at 60 °C	190
6.13	R	eferences	192

Appendix 1 - X-ray Crystallographic Data

A1.1	X-ray Crystal Structure of 1, 5-Dihydro-2, 6-dipher	yl-pyrrolo[2, 3-f]indole (73) A1-1
A1	1.1.1 Results	A1-2
A1.2	X-ray Crystal Structure of [Pd(bim)Cl ₂] (15)	A1-10
A1	.2.1 Results	A1-11
A1.3	References	A1-18

Appendix 2 - Hydroamination Kinetic Data

A2.1	Cyclisation of 4-Pentyn-1-amine (21) to 2-Methyl-1-pyrroline (22)	A2-1
A2.	1.1 Catalysed by Palladium Complexes	A2-1
A2.	1.2 Catalysed by Rhodium(I) Complex (1)	A2-9

List of Figures

methanol- d_3 .

Figure 1.1 (+) Deputed distantin D () Dividinal () Dihydraisacadaine and (+) Manamarine 12			
Figure 2.1 Compounds 44, 46 and 47			
Figure 3.1 'H NMR spectra (400 MHz, tetrahydrofuran- d_8 , 60 °C) of the cyclisation of			
1, 4-diamino-2, 5 -bis(ethynyl)benzene (5) to 1, 5-dihydro-pyrrolo[2, 3-f]indole (71): (a)			
starting material and complex 1 only (*) (b) a mixture of starting material (5), singly (72)			
and doubly cyclised (71) products (c) complete reaction to 1, 5-dihydro-pyrrolo[2, 3-f]indole			
(71). 68			
Figure 3.2 ORTEP plot and crystal structure numbering of compound 7371			
Figure 4.1 (+)-Preussin. 85			
Figure 4.2 $(Pr_{2}^{i}ATI)_{n}Y[(N(TMS)_{2}]_{2} (n = 1, 2).$ 89			
Figure 4.3 Atom numbering scheme for imidazole (87), <i>N</i> -methylimidazole (88), histidine (89)			
and benzimidazole (90). 98			
Figure 4.4 $(\min)_2 C=O$ (bik = $bis(N-methylimidazol-2-yl)$ ketone; 91), $(\min)_2 CH_2$ (bim; 2),			
(mim) ₂ C=CH ₂ (92), (mim) ₂ CHCH ₃ (93), (py)(mim)C=O (94) and (py)(mim)CH ₂ (95) 99			
Figure 4.5 <i>bis</i> (1-pyrazolyl)methane (bpm; (96) and <i>bis</i> (<i>N</i> -methylbenzimidazol-2-yl)methane			
(mbnzim; (97)). 100			
Figure 4.6 ORTEP plot and crystal structure numbering of $[Pd(bim)Cl_2]$ (15) and the			
dimethyl sulfoxide solvate. 104			
Figure 4.7 DOSY spectrum (400 MHz, dimethyl- d_6 sulfoxide, 300 K) of [Pd(bim)Cl ₂] (15) and			
$[Pd(bim)_2][Cl]_2$ (98) as a mixture (* denotes the solvent residual, dichloromethane). 106			
Figure 4.8 Selected portion of ¹ H NMR spectra following the progress of the reaction, indicating			
the substrate (\bigstar) and product (\bullet) resonance typically integrated to calculate the percentage			
conversion (* denotes solvent, methanol). 112			
Figure 4.9 The palladium(II) complexes utilised as catalysts for the cyclisation of			
4-pentyn-1-amine (21) to 2-methyl-1-pyrroline (22). The neutral palladium complexes (15			
and 14) contain different co-ligands; cationic palladium complex (17 and 16) were stabilised			
by tetrafluoroborate counterions. COD donor ligands with different co-ligands were also			
investigated as catalysts (18, 19 and 20). 114			
Figure 4.10 Reaction profile of the [Pd(bim)(Cl)(CH ₃)] (14) catalysed cyclisation of			
4-pentyn-1-amine (21) to 2-methyl-1-pyrroline (22) with 1.5 mol% of catalyst at 60 °C in			

115

- Figure 4.11 Reaction profile of the [Pd(bim)(Cl)(CH₃)] (14) (1.5 mol%, methanol-d₃, 60 °C) catalysed cyclisation of 4-pentyn-1-amine (21) with the addition of a second aliquot of substrate to the reaction mixture at approximately 18 h.
- Figure 4.12 Reaction profile of the cyclisation of 4-pentyn-1-amine (21) to 2-methyl-1-pyrroline

 (22) catalysed by [Pd(bim)Cl₂] (15) (*), [Pd(bim)(CH₃)(NCCH₃)][BF4] (16) (■) and

 [Pd(bim)₂][BF₄]₂ (17) (●).
- Figure 4.13 Reaction profile of the cyclisation of 4-pentyn-1-amine (21) to 2-methyl-1-pyrroline(22) catalysed by rhodium(I) complex (1) at 60 °C in tetrahydrofuran- d_8 (•) and at 60 °C inmethanol- d_3 and methanol (\blacklozenge).119

List of Tables

Table 3.1	Selected bond distances and bond angles of compound 73 .	71	
Table 3.2	Summary of the rhodium(I) complex (1) catalysed intramolecular hydroamination	of	
amir	no- and amidoalkynes.	81	
Table 4.1	The regioselective catalysed cyclisation of aminoalkynes with 1 mol%	of	
[Pd(triphos)](CF_3SO_3) ₂ in toluene, 111° C.	91	
Table 4.2	Comparison of the rhodium(I) and iridium(I) (1.5 mol%) catalysed cyclisation	of	
4-pe	ntyn-1-amine (21) to 2-methyl-1-pyrroline (22) in tetrahydrofuran- d_8 at 60 °C.	94	
Table 4.3	Selected bond distances and bond angles of [Pd(bim)Cl ₂] (15).	04	
Table 4.4	Yields of 2-methyl-1-pyrroline (22) obtained from rhodium(I) (1) and palladium((II)	
complexes (14-20) catalysing the cyclisation of 4-pentyn-1-amine (21) in methanol- d_3 and			
meth	nanol at 60 °C. 1	21	