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Abstract 

Study question: Are maternal first trimester levels of serum free-beta hCG associated with the 

development of hypospadias or undescended testis (UDT) in boys? 

Summary answer: Overall, first trimester maternal levels of serum free-beta hCG are not associated with 

hypospadias or UDT. However, elevated levels were found in severe phenotypes (proximal hypospadias 

and bilateral UDT) suggesting an altered pathway of hormonal release in early pregnancy. 

What is known already: Human chorionic gonadotropin peaks in first trimester of pregnancy stimulating 

fetal testosterone production which is key to normal male genital development. Endocrine-disrupting 

insults early in pregnancy have been associated with increased risk of common genital anomalies in males 

such as hypospadias and UDT. One plausible etiological pathway is altered release of hCG.  

Study design, size, duration: We conducted a record-linkage study of two separate populations of 

women attending first trimester aneuploidy screening in two Australian states, New South Wales (NSW) 

and Western Australia (WA), in 2006 - 2009; and 2001 - 2003, respectively.   

Participants/materials, setting, methods: Included were women who gave birth to a singleton live-born 

male infant. There were 12,099 boys from NSW and 10,518 from WA included, of whom 90 and 77 had 

hypospadias; and 107 and 109 UDT, respectively. Serum levels of free-beta hCG were ascertained from 

laboratory databases and combined with relevant birth outcomes and congenital anomalies via record 

linkage of laboratory, birth, congenital anomalies and hospital data.  Median and quartile levels of 

gestational age specific free-beta hCG multiple of the median (MoM) were compared between affected 

and unaffected boys. Logistic regression was used to evaluate the association between levels of free-beta 

hCG MoM and hypospadias or UDT, stratified by suspected placental dysfunction and co-existing 

anomalies. Where relevant, pooled analysis was conducted. 

Main results and the role of chance:  There was no difference in median hCG levels amongst women 

with an infant with hypospadias (NSW=0.88 MoM, p=0.83; WA=0.84 MoM, p=0.76) or UDT 
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(NSW=0.89 MoM, p=0.54; WA=0.95 MoM, p=0.95), compared with women with an unaffected boy 

(NSW=0.92 MoM; WA=0.88 MoM). Low (<25th centile) or high (>75th centile) hCG levels were not 

associated with hypospadias or UDT, nor when stratifying by suspected placental dysfunction and co-

existing anomalies. However, there was a tendency towards high levels for severe types, although 

confidence intervals were wide. When combining NSW and WA results, high hCG MoM levels (>75th 

centile) were associated with increased risk of proximal hypospadias (odds ratio (OR) 4.34; 95%CI: 1.08-

17.4) and bilateral UDT (OR 2.86; 95%CI: 1.02-8.03). 

Limitations, reasons for caution: There were only small numbers of proximal hypospadias and bilateral 

UDT in both cohorts and although we conducted pooled analyses, results reported on these should be 

interpreted with caution. Gestational age by ultrasound may have been inaccurately estimated in small 

and large for gestational age fetuses affecting hCG MoM calculation in those pregnancies. Despite the 

reliability of our datasets in identifying adverse pregnancy outcomes, we did not have pathology 

information to confirm tissue lesions in the placenta and therefore our composite outcome should be 

considered as a proxy for placental dysfunction. 

Wider implications of the findings: This is one of the largest population-based studies examining the 

association between maternal first trimester serum levels of free-beta hCG and genital anomalies - 

hypospadias and UDT; and the first to compare specific phenotypes by severity. Overall, our findings 

does not support the hypothesis that alteration in maternal hCG levels is associated with the development 

of male genital anomalies, however, high hCG free-beta levels found in severe types suggests different 

underlying aetiology involving higher production and secretion of hCG. These findings require further 

exploration and replication.  

Study funding/competing interest(s): This work was funded by the National Health and Medical 

Research Council (NHMRC) grant APP1047263. NN is supported by a NHMRC Career Development 

Fellowship APP1067066. CB was supported by a NHMRC Principal Research Fellowship #634341. The 
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funding agencies had no role in the design, analysis, interpretation or reporting of the findings. There are 

no competing interests. 

Trial registration number: Not applicable 
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male genital anomalies,  hypospadias, undescended testis, cryptorchidism 
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Hypospadias (where the urethral opening develops on the ventral aspect of the penis, scrotum or 

perineum) and undescended testis (UDT; the absence of one or both testes from the scrotum) are the most 

common genital anomalies in males (Paulozzi, 1999). Both anomalies require surgical repair during 

childhood and have been associated with long-term adverse functional, cosmetic and fertility outcomes 

(Lee and Coughlin, 2001); and with increased risk of malignancy in adulthood (Schnack, et al., 2010).  

The development of the male genital tract is highly dependent on testosterone production by Leydig cells 

and the function of their receptors (Blaschko, et al., 2012).  The placental hormone human chorionic 

gonadotropin (hCG), which peaks in production during early gestation, is secreted into both the maternal 

and foetal circulations, and has important roles in both pregnancy maintenance and testosterone 

production in the foetal testis (Molsberry, et al., 1982, Scott, et al., 2009). The peak in production during 

early gestation is critical for the normal fusion of the urethral fold. Thus, alteration in foetal hCG 

concentrations in early pregnancy might disrupt foetal testosterone production and result in abnormal 

gonadal development. Animal studies suggest that androgen blockage with flutamide occurring during the 

masculinization programming window between 8-14 weeks gestation results in the development of 

hypospadias and UDT (Welsh, et al., 2008). Human studies have also reported an association between 

prenatal exposures to endocrine disruptive chemicals and male genital anomalies (Kalfa, et al., 2015, 

Koskenniemi, et al., 2015). hCG is also presumed to play a key role in optimal placental function with 

studies suggesting altered release in pregnancies affected by adverse outcomes such as preeclampsia and 

fetal growth restriction (Krantz, et al., 2004, Norris, et al., 2011). Adverse pregnancy outcomes have also 

been associated with hypospadias and UDT, implicating a possible role of an altered release of hCG to the 

developing fetus (Aschim, et al., 2004, Biggs, et al., 2002, Fujimoto, et al., 2008). 

Limited studies have assessed the association between maternal levels of hCG in early pregnancy 

with subsequent development of hypospadias and/or UDT, although results have been inconclusive. This 

in in part due to small numbers (Bernstein, et al., 1988, Burton, et al., 1987, Chedane, et al., 2014, Kiely, 

et al., 1995) and heterogeneous clinical settings including different pathophysiological pathways and 
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phenotype severity such as the presence of other congenital anomalies (Brouwers, et al., 2010) or adverse 

pregnancy outcomes, indicative of poor placental development or function (Krantz, et al., 2004, Norris, et 

al., 2011).  

The aim of the study was to investigate the association between maternal first trimester levels of 

serum hCG with hypospadias and UDT, and assess whether hCG levels are associated with specific 

phenotypes. 

Materials and Methods 

Ethics approval 

Ethics approval for access and linkage of data was obtained from the NSW Population and Health 

Services Research Ethics Committee and the Department of Health WA Human Research Ethics 

Committee. 

Study population and laboratory information 

We conducted a record-linkage study of two separate populations of women attending first 

trimester screening in two Australian states, New South Wales (NSW) and Western Australia (WA), 

between July 2006 and December 2009; and between August 2001 and October 2003, respectively.  

Included were women who gave birth to a singleton live-born male infant. Information on free-beta hCG 

levels was collected as part of the Down syndrome serum screening test and were ascertained from the 

Pacific Laboratory Medicine Services (PaLMS) database in NSW and from laboratory databases 

accredited by the Fetal Medicine Foundation in WA.  An Immulite 2000 assay system (Siemens 

Healthcare Diagnostics, Deerfield, IL, USA) was employed to measure free-beta hCG levels and the intra 

and inter assay variability was 6-8% and 8-10%, respectively. Laboratory data included free-beta hCG 

expressed as multiple of the medians (MoM) which accounts for differences in free-beta hCG by 
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gestational week at testing and maternal weight (Wald, et al., 1992). Gestational week at the time of hCG 

testing was recorded in laboratory data and assessed by ultrasound using the crown-rump length. 

Health data sources  

Maternal information, pregnancy and male infant outcomes in NSW were obtained via record 

linkage of information from the PaLMS laboratory database to the NSW Perinatal Data Collection (PDC) 

and Admitted Patient Data Collection (APDC). The PDC is a statutory surveillance system of all live 

births and stillbirths in NSW of at least 20 weeks gestation or 400 g birth weight. It includes information 

on maternal demographic information, pregnancy conditions, birth factors, and infant outcomes. The 

APDC is a census of all in-patient hospital admissions from NSW public and private hospitals which 

collects demographic and clinical information, with records for both mothers and live-born infants. All 

diagnoses and procedures for each admission are coded according to the 10th revision of the International 

Classification of Diseases, Australian Modification (ICD10-AM) and the Australian Classification of 

Health Interventions (ACHI), respectively. Demographic and health information in WA was obtained via 

record linkage of laboratory data to the Western Australian Midwives Notification System (MNS) and the 

Western Australia Registry of Developmental Anomalies (WARDA). The MNS is a routinely collected 

database of all births in WA, including similar information to the PDC from NSW. The WARDA is a 

population-based notification system of anomalies diagnosed in children up to 6 years of age (Western 

Australian Register of  Developmental Anomalies, 2016). Congenital anomalies are coded according to 

the British Paediatric Association International Classification of Diseases, 9th revision system (BPA-

ICD9). Record linkages were conducted separately for each state by the NSW Centre for Health Record 

Linkage and by Data Linkage Western Australia independent of the research.  

Study outcomes and explanatory variables  

Study outcomes were defined as any male infant with a recorded diagnosis of hypospadias or 

UDT requiring corrective surgery; and identified from relevant infant hospital admissions in NSW and 
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WARDA records in WA. Boys without a relevant recorded diagnosis were considered as the unaffected 

comparison group. Hypospadias cases were identified from the APDC using the ICD-10-AM code Q54 

and from WARDA using the BPA-ICD9 code 7526. Cases were categorized by severity according to the 

classification by Duckett,1996 (Duckett, 1996) into four phenotypical types: 1) Anterior: which included 

balanic (Q54.0) or glanular hypospadias (7526.3); 2) Middle: penile (Q54.1) or subcoronal hypospadias 

(7526.4), 3) Proximal: penoscrotal (Q54.2; 7526.5) and perineal hypospadias (Q54.3; 7526.8) and 4) 

Unspecified: other (Q54.8) or unspecified hypospadias (Q54.9, 7526.0, 7526.6 and 7526.9). For those 

boys with more than one recorded hypospadias diagnosis, the most severe was used. Boys with UDT 

were identified from the APDC if they had a relevant ICD-10-AM code Q53 and underwent corrective 

surgery; either an orchidopexy (ACHI codes 37803, 37804, 37806 and 37812) or an orchidectomy 

(30641). Boys with UDT were identified from WARDA using the BPA-ICD9 code 7525.  Only those 

UDT cases requiring corrective surgery are notified and recorded in the WARDA. All UDT cases were 

categorized by phenotypical type characterized by severity into unilateral or bilateral UDT according to 

the relevant diagnosis codes. Boys diagnosed with co-existing anomalies, excluding minor anomalies 

such as tongue-tie, naevus, skin tags, unstable hip and feet defects, were also differentiated from isolated 

cases. We excluded 16 boys from NSW and 13 from WA with recorded diagnosis of chromosomal 

anomalies as these are more likely to have abnormal levels of hCG. 

 

The key explanatory variable for this study was first trimester free-beta hCG serum levels 

expressed as multiples of the median (MoM) of the total population of women attending first trimester 

screening in each state. Due to non-normality of free-beta hCG MoM distribution, these were expressed 

as medians and also categorized by quartile cut points at the 25th, 50th and 75th centiles. Covariates 

included in the analysis were maternal age, weight (kilograms) ascertained at the time of first trimester 

screening, parity (nulliparae or multiparae), smoking during pregnancy and adverse pregnancy outcomes 

considered as potential markers of placental dysfunction (Odibo, et al., 2014, Vinnars, et al., 2014). A 
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composite variable of markers of placental dysfunction was developed comprising the occurrence of 

preterm birth (<37 weeks gestation), small for gestational age (SGA) defined as birth weight <10th 

percentile of the nationwide distribution of birth weight by gestational age and infant sex (Dobbins, et al., 

2012) or preeclampsia. Gestational age at birth was reported in the PDC data in completed weeks of 

gestation and determined by the best clinical estimate, including early ultrasound (97%) and last 

menstrual period. Preeclampsia was determined either by the relevant box being checked in the PDC or 

MNS record, or if any maternal APDC record had a diagnosis of preeclampsia (ICD-10-AM: O11 and 

O14) or eclampsia (O15). As maternal weight was missing in 1,736 (14.3%) and 998 (9.5%) of the NSW 

and WA records, respectively, multiple imputation was applied to predict missing values using existing 

values from other variables (Schafer and Olsen, 1998). There were 5 (0.5%) women from WA with 

missing hCG information and these were excluded from the analysis.  

 

Statistical analysis 

Overall median and interquartile range (IQR) for 25th and 75th percentile cut points of free-beta 

hCG MoM levels by maternal characteristics and infant study outcomes were examined and differences 

assessed using the Kruskal-Wallis test. The characteristics of boys with hypospadias and UDT were 

compared with unaffected boys using Chi-squared test. Wilcoxon rank sum test was used to assess the 

median difference in maternal serum levels of free-beta hCG MoM between boys with hypospadias or 

UDT and unaffected boys. Differences in free-beta hCG MoM levels by phenotypical types of 

hypospadias and UDT, isolated versus co-existing congenital anomalies and women with suspected 

placental dysfunction versus those without were also assessed. Multivariable logistic regression analysis 

was performed to examine the association between low (<25th centile) and high (>75th centile) serum 

levels of free-beta hCG MoM with hypospadias and UDT, with the reference being levels between the 

25th and 75th centiles. Potential confounder variables were only retained in the models if they were 

significant at p<0.05 and changed the association estimates by 10% or more. Secondary analyses were 
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also conducted by restricting to severe phenotypes of proximal hypospadias or bilateral UDT, those with 

co-existing congenital anomalies or women with suspected placental dysfunction. Where relevant, pooled 

odds ratio and corresponding 95% confidence intervals were calculated to combine results from NSW and 

WA. P-value <0.05 was considered statistically significant and all analyses were performed using SAS, 

9.4 (SAS Institute, Cary, NC, USA). 

 

Results 

Population characteristics 

A total of 12,099 and 10,518 boys in NSW and WA, respectively, whose mother underwent first 

trimester screening and with recorded serum free-beta hCG levels were included. The majority of samples 

were collected between 10 and 13 weeks gestation (NSW, n=10,484, 87%; WA, n=10,465, 99.5%).  

There were 90 (0.7%) and 77 (0.7%) male infants with a recorded diagnosis of hypospadias; while 107 

(0.9%) and 109 (1.0%) had UDT in NSW and WA, respectively. Of those with hypospadias, 42 (46.7%), 

18 (20%), 6 (6.7%) and 24 (26.7%) in NSW and 43 (55.8%), 27 (35.1%), 3 (3.9%) and 4 (5.2%) in WA 

had recorded diagnosis of anterior, middle, proximal and unspecified hypospadias, respectively. There 

were 97 boys (90.7%) in NSW and 102 (93.6%) in WA with a recorded diagnosis of unilateral; and 10 

boys (9.3%) and 7 (6.4%) with bilateral UDT, respectively. Table I compares the maternal characteristics 

and infant outcomes for cases and unaffected boys. There was no overall difference in maternal age and 

smoking between cases and unaffected boys in either NSW or WA, although, higher maternal weight and 

multiparity was associated with increased rates of UDT in NSW but not in WA. Boys with hypospadias 

and UDT were more likely to be born to mothers with suspected placental dysfunction and to have co-

existing congenital anomalies in both populations (Table I). 
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Maternal free-beta hCG and genital anomalies 

 Table II presents maternal free-beta hCG levels by maternal characteristics and by phenotypical 

type of hypospadias and UDT. Median (IQR) levels of free-beta hCG MoM in NSW and WA decreased 

with increasing maternal weight; and differed by parity and smoking status, while levels were not affected 

by maternal age in either population. The association between free-beta hCG levels with hypospadias and 

UDT is presented in Table III for NSW and Table IV for WA. There were no differences in median free-

beta hCG MoM for mothers with boys with recoded diagnosis of hypospadias or UDT versus unaffected 

boys. Results did not change restricting analyses to those with co-existing congenital anomalies or 

suspected placental dysfunction and there was no association between low (<25th centile) or high (>75th 

centile) maternal serum free-beta hCG MoM levels for these factors and hypospadias or UDT.  

 When comparing results for women having boys with milder hypospadias types in NSW (n=84; 

median 0.87 MoM; IQR: 0.67-1.27) and in WA (n=74; median 0.93 MoM; IQR: 0.62-1.30), free-beta 

hCG MoM levels among women who had boys with proximal hypospadias were higher (NSW: n=6; 

median 1.38 MoM IQR: 0.90-1.51; p=0.21; WA: n=3; median 1.36 MoM IQR: 0.56-4.55; p=0.34). 

Similar results were obtained comparing unilateral with bilateral UDT (NSW: n=10; median 1.17 MoM; 

IQR: 0.71-1.75; p=0.43; WA: n=7; median 1.18, IQR: 0.33-1.79; p=0.77). Compared with milder types of 

hypospadias and unilateral UDT, high free-beta hCG MoM (>75th centile) was associated with proximal 

hypospadias (NSW: odds ratio (OR) 3.38; 95%CI: 0.52-21.8; WA: OR 7.25; 95%CI: 0.62-85.2) and 

bilateral UDT (NSW: OR 2.41; 95%CI: 0.55-10.5; WA: OR 2.31; 95%CI: 0.48-11.0). An analysis 

pooling results for NSW and WA revealed that mothers giving birth to boys with severe types of 

hypospadias or bilateral UDT were more likely to have higher levels of free-beta hCG MoM in early 

pregnancy (proximal hypospadias: OR 4.34; 95%CI: 1.08-17.4 and bilateral UDT: OR 2.86; 95%CI: 

1.02-8.03). Although numbers of cases were small, confidence intervals excluded unity.  
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Discussion 

This is one of the largest population-based studies examining the association between maternal 

first trimester serum levels of free-beta hCG and genital anomalies, hypospadias and UDT. Overall, we 

found that maternal levels of free-beta hCG were not associated with subsequent development of 

hypospadias or UDT among male infants. However, levels of free-beta hCG tended to be higher among 

women who had boys with more the severe phenotypical types of proximal hypospadias or bilateral UDT. 

There have been four previous studies examining the association between maternal levels of free-

beta hCG and hypospadias or UDT and findings are summarized in Table V. Our results are consistent 

with three studies that reported no difference in first trimester maternal levels of free-beta hCG with 

hypospadias or UDT, compared to controls (Bernstein, et al., 1988, Burton, et al., 1987, Kiely, et al., 

1995). In contrast,  a recent study found lower levels of free-beta hCG MoM in women who had a boy 

with UDT (Chedane, et al., 2014), however, the differences reported were small. First trimester maternal 

levels of free-beta hCG are currently used for screening to detect Down syndrome fetuses and the 

reported differences in free-beta hCG levels between Down syndrome and controls are considerably 

larger (cases: median free-beta hCG MoM 1.70 versus controls: median 1.01; P < 0.0001) (Koster, et al., 

2011). Differences in hCG MoM levels were not evident in our overall findings for hypospadias and 

UDT.  Our results suggest that the majority of these genital anomalies develop in the setting of normal 

maternal serum hCG levels. Perhaps these cases are associated with altered expression of the androgen 

receptor in gonadal fetal tissue (Drabik, et al., 2015) or altered secretion or metabolism of foetal hCG that 

is not reflected by maternal hCG levels. 

To our knowledge this is the first study comparing maternal levels of free-beta hCG in specific 

phenotypical types of hypospadias or UDT. We did find that for boys with severe types, their mothers had 

higher levels of free-beta hCG but due to small sample size, our results were imprecise. In a previous 

study including women with severe placental dysfunction and intrauterine growth restriction (n=30), 62% 

had boys with proximal hypospadias, and authors reported a high mean hCG of 2.5 MoM (Yinon, et al., 
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2010). Although the study did not include a comparative control group, their mean levels are consistent 

with levels of hCG above the 95th percentile reported in population-based studies (Krantz, et al., 2004). 

These results suggests that severe hypospadias phenotypes may have different underlying aetiology 

involving higher production and secretion of hCG, similar to that which occurs in Down syndrome 

pregnancies (Eldar-Geva, et al., 1995).  Additionally, high gonadotropins may be associated with bilateral 

UDT due to deficient androgenic negative feedback, representing an affected hypothalamic-pituitary axis 

(Thorup, et al., 2012) or disrupted hCG receptors in the fetal testis (Lei, et al., 2001).  Limited androgen 

stimulation may also be a possible factor for the nearly three quarters of severe idiopathic hypospadias 

cases occurring in the absence of genetic alterations (Boehmer, et al., 2001).  However, we had no 

information in our data to suggest a reduced fetal testosterone secretion in proximal hypospadias or 

bilateral UDT, nor of the ability of fetal testosterone to inhibit placental hCG secretion. Indeed, placental 

aromatase might be expected to inactivate fetal testosterone as it enters trophoblast cells (Pasqualini, 

2005). Further research is needed to explore the consistency of these findings and potential diagnostic 

accuracy of maternal hCG in detecting proximal hypospadias or bilateral UDT. 

The main strength of this study was the use of large record-linked population-based cohorts of 

women and boys across NSW and WA. The health datasets used are accurate and reliable with high 

agreement with medical records (Lain, et al., 2012). Furthermore, our rates of hypospadias and UDT were 

similar and consistent with population estimates in NSW and WA (Nassar, et al., 2007, Schneuer, et al., 

2015). One limitation of the study was the small numbers of proximal hypospadias and bilateral UDT in 

both cohorts. Although we conducted pooled analyses, results reported on these should be interpreted 

with caution. Another limitation was that since we assessed gestational age by ultrasound, the hCG 

concentrations from mothers with fetuses who were small or large for gestational age may have been 

inaccurately adjusted in MoM calculations. Despite the reliability of our datasets in identifying adverse 

pregnancy outcomes, we did not have pathology information to confirm tissue lesions in the placenta and 

therefore our composite outcome should be considered as a proxy for placental dysfunction. Moreover, 



14 
 

 

we could not differentiate between congenital and acquired UDT cases due to poor reporting of UDT at 

birth in our data. Congenital and acquired UDT may also have different etiology, although, the proportion 

of acquired cases in both study cohorts is likely to be low due to limited follow-up information. 

 

Conclusions 

First trimester maternal serum levels of free-beta hCG are not associated with subsequent 

development of hypospadias or UDT. However, high maternal levels of free-beta hCG were found in 

more severe types of male genital anomalies and suggest an altered pathway of hormonal metabolism in 

early pregnancy. These findings require further exploration and replication. 
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Table I: Maternal characteristics and outcomes of cases of hypospadias and undescended testis (UDT) 
compared with unaffected boys in New South Wales (NSW) and Western Australia (WA) 

 

 

* p<0.05;  a Includes preterm birth (<37 weeks gestation), small for gestational age (<10th centile) or preeclampsia;  
-NA: not applicable 
 

 

 

 

 

 

 

 

 

 

 

 NSW WA 
Maternal 
Characteristics 

Hypospadias   
N=90 

UDT 
N=107 

Unaffected 
N=11,904 

Hypospadias   
N=77 

UDT 
N=109 

Unaffected  
N=10,333 

Age (years)      

     <25  7 (7.8) 7 (6.5) 691 (5.8) 9 (11.7) 12 (11.0) 1,043 (10.1) 
     25 - 35  48 (53.4) 59 (55.1) 7,014 (58.9) 49 (63.6) 70 (64.2) 6,845 (66.2) 
     35+  35 (38.9) 41 (38.3) 4,198 (35.3) 19 (24.7) 27 (24.8) 2,445 (23.7) 
Weight (kg)       

     <55  12 (15.2) 9 (9.6)* 1,826 (17.9) 9 (13.0) 10 (10.5) 1,274 (13.6) 
     55 - 75  46 (58.2) 59 (62.8)* 6,316 (62.0) 44 (63.8) 71 (74.7) 6,038 (64.5) 
     75+  21 (26.6) 26 (27.7)* 2,050 (20.1) 16 (23.2) 14 (14.7) 2,045 (21.9) 
Parity      

     Nulliparae 48 (53.3) 38 (35.5)* 5,489 (46.1) 22 (28.6) 28 (25.7) 3315 (32.1) 
     Multipara 42 (46.7) 69 (64.5)* 6,415 (53.9) 55 (71.4) 81 (74.3) 7018 (67.9) 
Smoking during 
pregnancy 

8 (8.9) 9 (8.4) 686 (5.8) 7 (9.1) 12 (11.0) 1,132 (11.0) 

Suspected placental 
dysfunctiona 34 (37.7)* 30 (28.0)* 1,681 (14.1) 22 (28.6)* 23 (21.1) 1,531 (14.8) 

Congenital anomalies       
      Isolated 44 (48.9) 83 (77.6) NA 29 (37.7) 98 (90.0) NA 
      Coexisting anomalies 46 (51.1)* 24 (22.4)* 533 (4.5) 48 (62.3)* 11 (10.0)* 309 (3.0) 
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Table II: Serum hCG multiple of median levels by maternal characteristics and phenotypical types in women who had first trimester Down 
syndrome screening in New South Wales (NSW) and Western Australia (WA) 

 

 

* Comparison between proximal hypospadias and other types 

 

 

 NSW  WA 

Characteristics n (%) 25th 50th 75th  n (%) 25th 50th 75th

All women (N) 12,099 0.63 0.92 1.38  10,518 0.59 0.88 1.30

Maternal characteristics          

Maternal age (years) p=0.42   p=0.82  
     <25  705 (5.8) 0.60 0.92 1.37  1,064 (10.1) 0.61 0.89 1.34
     25 - 35  7,120 (58.8) 0.63 0.92 1.37  6,968 (66.2) 0.60 0.87 1.29
     35+  4,273 (35.3) 0.64 0.93 1.39  2,491 (23.7) 0.59 0.88 1.31
Maternal weight (kg) p<0.001   p<0.001  
     <55  1,847 (15.3) 0.67 0.97 1.49  1,294 (13.6) 0.64 0.94 1.38
     55 - 75  6,420 (53.1) 0.63 0.92 1.36  6,155 (64.6) 0.60 0.88 1.28
     75+  2,096 (17.3) 0.59 0.89 1.35  2,076 (21.8) 0.57 0.85 1.27
Parity p<0.001   p<0.01  
     Nulliparae 5,575 (46.1) 0.64 0.95 1.41  3,366 (32.0) 0.61 0.91 1.31
     Multipara 6,524 (53.9) 0.62 0.90 1.35  7,157 (68.0) 0.59 0.86 1.29
Smoking p=0.04   p<0.01  
     Yes 703 (5.8) 0.57 0.88 1.37 1,151 (10.9) 0.54 0.85 1.30
     No 11,396 (94.2) 0.63 0.92 1.38  9,372 (89.1) 0.60 0.88 1.30
Phenotypical type          
Hypospadias   p=0.34*     p=0.21*  
     Anterior 42 (46.7) 0.66 0.89  1.19  43 (55.8) 0.68 0.90 1.28
     Middle 18 (20.0) 0.71 0.91  1.44  27 (35.1) 0.63 0.73 1.29
     Proximal 6 (6.7) 0.90 1.38  1.51  3 (3.9) 0.56 1.36 4.55
     Unspecified 24 (26.7) 0.64 0.81  1.19  4 (5.2) 0.35 0.56 0.84
UDT   p=0.43     p=0.77  
     Unilateral 97 (90.7) 0.65 0.85  1.31  102 (93.6) 0.62 0.93 1.30
     Bilateral 10 (9.3) 0.71 1.17  1.75  7 (6.4) 0.33 1.18 1.79
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Table III: Univariate association between serum first trimester free-beta hCG multiple of median (MoM) levels with hypospadias and 
undescended testis (UDT) in New South Wales (NSW) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# No relevant confounder variables were retained in the models 

* Including preterm birth (<37 weeks gestation), small for gestational age (<10th centile) or preeclampsia; CI: confidence interval; IQR: interquartile range 

 

 

  Hypospadias   UDT    Unaffected 

 Serum hCG MoM 
N=90              
n (%) 

Odds ratio#   
(95% CI) 

N=107           
n (%) 

Odds ratio#     
(95% CI) 

N=11,904         
n (%) 

All cases - Median (IQR)  0.88 (0.66-1.40) p=0.83  0.89 (0.65-1.35)  p=0.54    0.92 (0.63-1.38) 
     <25th centile (<0.63) 20 (22.2) 0.87 (0.52, 1.48) 24 (22.4) 0.86 (0.54, 1.39) 2,934 (24.7) 
     25-75 centile (0.63-1.38) 47 (52.2) 1.0 (Ref) 57 (53.3) 1.0 (Ref) 6,020 (50.6) 
     >75th centile (>1.38) 23 (25.6) 1.00 (0.61, 1.65) 26 (24.3) 0.93 (0.58, 1.48) 2,949 (24.8) 
Suspected placental 
dysfunction*      
  Yes - Median (IQR) 0.97 (0.58-1.41) p=0.94 0.95 (0.70-1.40) p=0.99 0.93 (0.63-1.38) 
     <25th centile (<0.63) 10 (29.4) 1.60 (0.70-3.66) 7 (23.3) 0.91 (0.43-1.92) 415 (24.7) 
     25-75 centile (0.63-1.38) 14 (41.2) 1.0 (Ref) 15 (50.0) 1.0 (Ref) 852 (50.7) 
     >75th centile (>1.38) 10 (29.4) 1.57 (0.68-3.60) 8 (26.7) 1.09 (0.54-2.22) 414 (24.6) 
  No - Median (IQR) 0.85 (0.69-1.26)  p=0.74   0.84 (0.65-1.33) p=0.41  0.92 (0.63-1.38) 
     <25th centile (<0.63) 10 (17.9) 0.62 (0.30-1.26) 17 (22.1) 0.84 (0.45-1.56) 2,515 (24.6) 
     25-75 centile (0.63-1.38) 33 (58.9) 1.0 (Ref) 42 (54.5) 1.0 (Ref) 5,183 (50.6) 
     >75th centile (>1.38) 13 (23.2) 0.81 (0.43-1.55) 18 (23.4) 0.85 (0.45-1.58) 2,535 (24.8) 
Co-existing congenital 
anomalies          
  Yes - Median (IQR) 0.92 (0.69-1.40)  p=0.24  0.94 (0.70-1.51)  p=0.50 0.85 (0.57-1.31) 
     <25th centile (<0.63) 10 (21.7) 0.62 (0.29, 1.34)  5 (20.8) 0.62 (0.22, 1.80) 164 (30.8) 
     25-75 centile (0.63-1.38) 24 (52.2) 1.0 (Ref) 12 (50.0) 1.0 (Ref) 245 (46.0) 
     >75th centile (>1.38) 12 (26.1) 0.99 (0.45, 2.04) 7 (29.2) 1.15 (0.44, 3.00) 124 (23.3) 
  No -  Median (IQR) 0.80 (0.60 - 1.08) p=0.46 0.85 (0.65-1.33) p=0.38 0.93 (0.63-1.38) 
     <25th centile (<0.63) 10 (22.7) 0.91 (0.43-1.91) 19 (22.9) 0.85 (0.50-1.45) 2,770 (24.4) 
     25-75 centile (0.63-1.38) 23 (52.3) 1.0 (Ref) 45 (54.2) 1.0 (Ref) 5,775 (50.8) 
     >75th centile (>1.38) 11 (25.0) 0.96 (0.47-1.97) 19 (22.9) 0.87 (0.51-1.49) 2,825 (24.9) 
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Table IV: Univariate association between serum first trimester free-beta hCG multiple of median (MoM) levels with hypospadias and 
undescended testis (UDT) in Western Australia (WA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# No relevant confounder variables were retained in the models 

* Including preterm birth (<37 weeks gestation), small for gestational age (<10th centile) o preeclampsia; CI: confidence interval; IQR: interquartile range 

 

  Hypospadias   UDT    Unaffected 

 Serum hCG MoM 
N=77              
n (%) 

Odds ratio#   
(95% CI) 

N=109           
n (%) 

Odds ratio#     
(95% CI) 

N=10,338         
n (%) 

All cases - Median (IQR)  0.84 (0.63-1.28) p=0.76  0.95 (0.62-1.32)  p=0.38    0.88 (0.59-1.30) 
     <25th centile (<0.59) 17 (22.1) 0.84 (0.48-1.47) 24 (22.0) 0.87 (0.54-1.40) 2,538 (24.6) 
     25-75 centile (0.59-1.30) 42 (54.6) 1.0 (Ref) 57 (52.3) 1.0 (Ref) 5,232 (50.6) 
     >75th centile (>1.30) 18 (23.4) 0.88 (0.50-1.52) 28 (25.7) 1.00 (0.63-1.58) 2,563 (24.8) 
Suspected placental 
dysfunction*      
  Yes - Median (IQR) 0.71 (0.47- 1.28) p=0.57 0.82 (0.54-1.61) p=0.57 0.86 (0.55-1.25) 
     <25th centile (<0.59) 8 (36.4) 1.46 (0.56-3.80) 6 (26.1) 0.98 (0.35-2.71) 446 (29.1) 
     25-75 centile (0.59-1.30) 9 (40.9) 1.0 (Ref) 10 (43.5) 1.0 (Ref) 730 (47.7) 
     >75th centile (>1.30) 5 (22.7) 1.14 (0.38-3.41) 7 (30.4) 1.44 (0.54-3.81) 355 (23.2) 
  No - Median (IQR) 0.86 (0.67-1.29)  p=0.88  0.97 (0.66-1.30) p=0.46  0.88 (0.60-1.30) 
     <25th centile (<0.59) 9 (16.4) 0.59 (0.28-1.23) 18 (20.9) 0.83 (0.48-1.43) 2,092 (23.8) 
     25-75 centile (0.59-1.30) 33 (60.0) 1.0 (Ref) 47 (54.7) 1.0 (Ref) 4,502 (51.2) 
     >75th centile (>1.30) 13 (23.6) 0.80 (0.42-1.53)  21 (24.4) 0.91 (0.54-1.53) 2,208 (25.1) 
Co-existing congenital 
anomalies          
  Yes - Median (IQR) 0.86 (0.66-1.43)  p=0.84  0.83 (0.52-1.60)  p=0.77 0.91 (0.60-1.37) 
     <25th centile (<0.59) 9 (18.8) 0.83 (0.36-1.89)  3 (27.3) 2.03 (0.40-10.29) 74 (24.0) 
     25-75 centile (0.59-1.30) 23 (47.9) 1.0 (Ref) 4 (36.4) 1.0 (Ref) 150 (48.5) 
     >75th centile (>1.30) 16 (33.3) 1.28 (0.64-2.58) 4 (36.4) 2.35 (0.51-10.76) 85 (27.5) 
  No -  Median (IQR) 0.81 (0.56 - 1.01) p=0.24 0.95 (0.62-1.30) p=0.38 0.88 (0.59-1.29) 
     <25th centile (<0.59) 8 (27.6) 0.87 (0.38-1.99) 21 (21.4) 0.82 (0.49-1.36) 2,464 (24.7) 
     25-75 centile (0.59-1.30) 19 (65.5) 1.0 (Ref) 53 (54.1) 1.0 (Ref) 5,082 (50.7) 
     >75th centile (>1.30) 2 (6.9) 0.22 (0.05-0.93) 24 (24.5) 0.93 (0.57-1.51) 2,478 (24.7) 
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Table V: Summary of previous studies reporting the association between maternal first trimester serum levels of hCG with hypospadias or 
undescended testis (UDT)  

 

1 Mean (SD: standard deviation [where available]); 2 Multiple comparisons; 3 Median (interquartile range); - not measured; MoM: multiple of the median 

 

 

Study 
Hypospadias  

N 
free-beta hCG 

UDT    
N 

 free-beta hCG  
Controls    

N 
free-beta hCG 

p-value for 
difference 

Burton, et al., 1987 - - 25 35.81 ku/litre 32 35.51 ku/litre Not reported 

Bernstein, et al., 1988 - - 24 85.1 (1.9)1 IU/ml 24 74.2 (1.9)1 IU/ml 0.28 

Kiely, et al., 1995 26 Not reported 31 Not reported 96 Not reported 0.092 

Yinon, et al., 2010 30 2.5 (1.5)1 MoM - - No controls - - 

Chedane, et al., 2014 - - 51 0.81 MoM 306 1.01 MoM <0.01 

Present study        

     New South Wales 90 0.88 (0.66-1.40)3  MoM 107  0.89 (0.65-1.35)3  MoM  11,904  0.92 (0.63-1.38)3  MoM
0.83 (Hypospadias); 

0.54 (UDT) 

     Western Australia 77 0.84 (0.63-1.28)3  MoM 109 0.95 (0.62-1.32)3  MoM  10,338 0.88 (0.59-1.30)3  MoM
0.76 (Hypospadias); 

0.38 (UDT) 


