Cognitive Abilities & Learning Styles in Design Processes and Judgements of Architecture Students

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Ellina Yukhina

Key Centre of Design Computing and Cognition
School of Architecture, Design Science and Planning
Faculty of Architecture
The University of Sydney

2007
Table of Contents

Summary... iii
Acknowledgements.. iv
Chapter 1. Introduction... 1
1.1 Motivation .. 1
1.2 Subject, Research Areas and Structure ... 1
1.4 Hypothesis .. 3
1.5 Aims and Objectives .. 3
1.6 Organisation of Thesis ... 5
Chapter 2. Theoretical Framework: Areas of Research... 6
2.1 Design Ability.. 6
2.1.1 Cognitive Styles & Learning Strategies in Design Ability ... 8
2.1.2 Cognitive & Learning Styles in Design and Academic Performance 10
2.1.3 Cognitive Abilities & Skills in Design Ability ... 12
2.1.4 Cognitive Abilities in Design and Academic Performance 14
2.2 Design Process.. 19
2.2.1 Design Process in Present Study ... 22
2.2.2 Design Ability in Design Process .. 23
2.3 Design Product .. 24
2.3.1 Design Drawings in Design Process ... 25
2.3.2 Design Ability in Design Drawings .. 27
Chapter 3. Theoretical Framework: Methods of Research... 30
3.1 Design Ability.. 30
3.1.1 Evaluation of Cognitive & Learning Styles ... 30
3.1.2 Evaluation of Cognitive Abilities .. 33
3.2 Design Process.. 36
3.2.1 Protocol Analysis .. 36
3.2.2 Introspective, Retrospective Self-Reports and Questionnaires 38
3.3 Design Product .. 40
3.3.1 Analysis of Design Drawings ... 40
3.3.2 Design Product Assessment .. 43
Chapter 4. Method & Experimental Design.. 45
4.1 Cognitive Abilities Assessment ... 45
4.2 Learning Styles Assessment ... 48
4.3 Analysis of Protocol Sessions .. 51
4.4 Analysis of Introspective Reports and Questionnaires .. 52
4.5 Assessment of Design Solutions and Academic Performance 54
5.1 Cognitive Abilities ..56
 5.1.1 Experiments I/a & III/a: Assessment, Analyses and Findings56
 5.1.2 Conclusions..67
 5.1.3 Experiments I/b-II/III/b: Assessment, Analyses and Findings69
 5.1.4 Conclusions..81
5.2 Learning Styles ..83
 5.2.1 Experiments II/b-III/b: Assessment, Analyses and Findings ...83
 5.2.2 Conclusions..99
5.3 Cognitive Abilities, Learning Styles & Academic Performance Judgements102
 5.3.1 Analysis and Findings ..103
 5.3.2 Conclusions..106
 6.1 Experiments IV/b-VI/b: Procedure, Areas & Structure of Analysis107
 6.2 External and Internal Representations as an Object..110
 6.2.1 Analysis of Design Drawings and Annotations ..110
 6.2.2 Analysis of Introspective Reports & Questionnaires ..138
 6.2.3 Conclusions..153
 6.3 External and Internal Representations as a Process..157
 6.3.1 Method and Preliminary Analysis ..157
 6.3.2 Analysis of Design Drawings and Annotations ..172
 6.3.3 Analysis of Retrospective Reports ..179
 6.3.4 Conclusions..189
 6.4 Design Solutions Assessment...191
 6.4.1 Experiment VI/b: Assessment, Analysis and Findings ..191
 6.4.2 Conclusions..209
Chapter 7. Overview of Results & Future Research...213
 7.1 Ability factors in design process and product..213
References ..231
Appendix A – Data from Experiments I-III ..256
Appendix B – Data from Experiments IV-VI ..265
Appendix C - Questionnaires ..267
Appendices D1, D2, D3 – Sample dataset for S13(V)..274
Appendix E – Test materials ..287
Summary

The main aim of this research is the exploration of relationships and correlations between thinking styles of student designers, their personal aptitudes, and design education. It involves discovering the role/s several groups of learning styles and cognitive abilities may play in problem solving during administered design tasks; and the influence they may have on academic performance and quality of produced design solutions.

The main hypothesis is that differences in designers’ individual problem solving strategies and, ultimately, products of their expertise – designed artefacts – can be correlated with the differences in their learning styles and cognitive abilities. We suggest the following. (a) Designers with different styles adopt different approaches to design situations and use different strategies during problem solving. It is possible to find the supporting evidence by investigating their performance on design tasks. (b) Individual differences in design reasoning and problem solving could be correlated with the differences in individual cognitive abilities. (c) It may be possible to find correlations between cognitive styles and cognitive abilities. (d) It is likely that a number of visible or measurable qualities of students’ design drawings, would in some way reflect different characteristics of the above individual styles and abilities.

The methodological approach draws on theoretical and empirical knowledge from several domains, including: design studies, psychology, cognitive science and study of creativity. This study is concerned with selecting and substantiating the input – a number of cognitive styles and abilities chosen for evaluation; and their subsequent assessment. It involves administering design sessions and exploring them as a process to see whether and how the above abilities and styles are reflected in problem solving. It also deals with the assessment of the product i.e. produced design solutions, and their relation to the academic performance reports. And, finally, it explores correlations between the input, the process and the product to help finding explanations for the students’ preferences in adopting particular problem solving strategies in designing. This study is based upon the analysis of six major datasets from (1) an electronic test assessing individual positions on four dimensions (two dichotomies) of learning styles; (2) tests of cognitive abilities chosen on the basis of their relevance to designing; (3) design sessions, administered individually under retrospective protocol guidelines; (4) questionnaires, containing summaries of design sessions, and introspective reports of imagery use and problem-solving styles and strategies; (5) judgements of academic performance from course supervisors based on marks and grades; and (6) assessments of design drawings by professional architects.

The analysis revealed fundamentally different ways by which students approach design situations; they are positively correlated with their learning styles. Students’ approaches to problem situations change with the task and within the task. However, eighty percent of the first year and half of the final year subjects showed various degrees of inflexibility in dealing with design problems; this may have decreased the quality of performance. Learning styles proved important in predicting the process and the outcome of problem solving. They may account for moderate to low quality of design solutions in cases with either style (from both dichotomies explored) being of low development. Styles were also observed to may have a moderate to strong influence on the students’ academic performance. Correlations between the measured cognitive abilities and academic performance were moderate to significant for the first year and similar but marginally lower for the final year students. At the same time, final year students scored higher on the ability tests and showed better results on the learning styles assessments. One of the likely reasons for this is the enhancement of abilities and styles during the course of study. No significant linear correlations between preferred learning styles and most of the measured cognitive abilities have been observed. The probable inference is that abilities are among many other factors affecting the development of learning styles. It has been, however, possible to establish a number of important correlations between the measurements of learning styles, cognitive abilities, observed problem solving behaviour, and students’ design solutions.

Overall, it has been demonstrated that the applied methodology, although requiring further refinement, does enable examining and elucidating the influence of learning styles and cognitive abilities on design problem solving and academic performance.
Acknowledgements

First, I thank my supervisor John S. Gero, for his continuous support in the PhD program. He has exhibited a lot of patience and good will throughout the ups and downs in my research, and his academic and personal advice have always been invaluable.

I would also like to express my deepest love and gratitude to my parents, Yukhina Yulia and Yukhin Vassily, who have encouraged me to continue with my studies, showed a great deal of patience, and whose unconditional love and support allowed me to persevere without the pressures for timing or achievement. They will always be the two people I owe everything to.

My close friends Veda Baliga, Peter Bubalo, Jacqui Hunt, Safdar Ghafoor and others have also been there for me at all times, and especially when I needed help or advice. I would like to thank them as well, for their kindness, patience and understanding.

My sincere ‘thank you’ to all the wonderful people from the University of Sydney, such as Ayling Rubin from the International Office, and the Faculty of Architecture staff, including Martin Hesse, who provided the best of assistance whenever I needed it.

My appreciation also goes to all other friends and acquaintances who have been kind, patient and supportive of me during my studies in Australia, I will always keep in mind everything they have done for me.