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Abstract

Low emissions fossil fuel technologies are of significant importance for short and

long term global energy securities. Solvent-based post combustion CO2 capture

(PCC) is well-known as one such technology, and one that is viable and mature

for dealing with the excessive amounts of greenhouse gases (GHG) (i.e. CO2)

generated from power plants. While most countries are heading towards 'carbon

capture-ready' power plants, comprehensive managerial studies are essential for

the implementation of long-term solvent-based PCC commercial scale operations.

Such studies would need to cover holistic industrial perspectives and approaches

that consider technical, economic, social, policy, safety and environmental chal-

lenges.

A management decision-support framework for a coal-fired power plant with

solvent-based PCC technology (integrated plant) is proposed and developed in

this thesis. It is demonstrated as an appropriate systematic strategy to overcome

and tackle key challenges in commercialization of solvent-based PCC technology.

In light of the global concern (environmental and energy sustainability), the main

objective of this thesis is to provide conceivable decision support and insight to

serve the managerial level (investor and government) as well as the operational

level (engineer and operator).

This thesis is organized in seven chapters covering four interrelated top-down
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management levels including instrumentation, plant, enterprise and policy lev-

els. A brief introduction pertaining to the solvent-based PCC technology, thesis

motivations and objectives are given in Chapter 1. Chapter 2 comprises a com-

prehensive literature review of solvent-based PCC plant from the bottom level

(PCC instrumentation level) until the top level (investment and management de-

cision support of PCC system). This covers literature studies on the development

of solvent-based PCC dynamic models, application of control and optimization

strategies, economic feasibility and plant planning and scheduling.

Chapter 3 describes the development of solvent-based PCC dynamic model via

empirical methods. The solvent-based PCC dynamic model is constructed based

on actual pilot plant located from Tarong power station in Queensland, Australia.

This model is developed and simulated in Matlab's Simulink Environment (Math-

works, USA). Open-loop dynamic analyses are presented to provide a deeper

understanding of the dynamic behaviour of key variables in solvent-based PCC

plant under variable power plant load conditions.

Chapter 4 presents the design of the control architecture for solvent-based PCC

plant. Two control algorithms are proposed and developed, which utilise conven-

tional proportional, integral and derivative (PID) controller and advanced model

predictive control (MPC). Controllability analyses are presented subject to servo

and regulator problems while considering implications of constraints. These anal-

yses are performed based on actual operation of solvent-based PCC plant while

considering the integration with coal-fired power plant. Later on, the perfor-

mance comparisons between the PID and MPC algorithms are provided in this

chapter.

Chapter 5 proposes a conceptual framework for optimal operation of flexible
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solvent-based PCC system retrofitted with a coal-fired power plant. The frame-

work consists of a hybridization of control algorithm (Chapter 4) and economic

optimization (Chapter 5). The MPC controller is chosen as the control algorithm

while mixed integer non-linear programming (MINLP) using genetic algorithm

(GA) function is employed in the optimization algorithm. Both algorithms are in-

tegrated to produce a hybrid MPC-MINLP algorithm. Capability and applicabil-

ity of the hybrid MPC-MINLP algorithm is evaluated based on 24 hours operation

of power plant retrofitted with solvent-based PCC system. Subsequently, a devel-

oped hybrid MPC-MINLP algorithm is used to predict investment opportunity in

term of technical operation (investing in control strategy) based on the estimated

annual plant net operating revenue for year 2011 and forecast 2020. This invest-

ment decisions is applied for fixed and flexible operation mode of solvent-based

PCC plant associated with coal-fired power plant subject to Australia electricity

market trend and various type of climate/carbon policies.

Chapter 6 extends the scope of Chapter 5 by evaluating the relevance of solvent-

based PCC technology in the operation of black coal-fired power plant in Aus-

tralia. This chapter considers a prevailing climate policy established in Australia

namely Emission Reduction Fund (ERF) via Government's Direct Action Plan.

Future operational and financial uncertainties of black coal-fired power plant op-

eration under the ERF scheme are evaluated by estimating a feasible price of a

tonne of Australian carbon credit unit (ACCU) that can provide financial ben-

efit to the power plant throughout the contract period. A rigorous discussion

on deployment of solvent-based PCC plant into large-scale application is made

by considering the implication of climate policy (ERF project) towards plant's

revenue, national emission target and viability of the solvent-based PCC plant at

commercial scale. The analysis is demonstrated via multi-objective constrained

optimization problem.
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Finally, the concluding remarks and future extensions of this research are pre-

sented in Chapter 7.

vi



Journal papers

[J1] N. A. Manaf, A. Qadir, and A. Abbas, “The hybrid MPC-MINLP algo-

rithm for optimal operation of coal-fired power plant with solvent based

post-combustion CO2 capture.” Petroleum, Accepted. 2016.

[J2] N. A. Manaf and A. Abbas, “Temporal multiscalar decision support frame-

work for flexible operation of carbon capture plants targeting low-carbon

management of power plant emissions.” Journal of Applied Energy, vol. 169,

pp. 912–926, 2016.

[J3] N. A. Manaf, A. Cousin, P. Feron, and A. Abbas, “Dynamic modelling,

identification and preliminary control analysis of an amine-based post-

combustion CO2 capture pilot plant.” Journal of Cleaner Production, vol.

113, pp. 635–653, 2016.

[J4] M. T. Luu, N. A. Manaf, and A. Abbas, “Dynamic modelling and control

strategies for flexible operation of amine-based post-combustion CO2 cap-

ture systems.” International Journal of Greenhouse Gas Control, vol. 39, pp.

377–389, 2015.

[J5] N. A. Manaf, A. Cousin, P. Feron, and A. Abbas, “Control analysis of post

combustion carbon dioxide capture process (PCC).” International Journal

of Chemical and Environmental Engineering, vol. 5, pp. 250–254, 2014.

vii



Conference papers

[C1] N. A. Manaf and A. Abbas, “Financial and operational uncertainties of

Australian black coal electricity generation under Emission Reduction

Fund policy.” in Australasia’s Premier Chemical Engineering Conference

(CHEMECA), Sept 25 - 28, 2016, Adelaide.

[C2] N. A. Manaf, A. Qadir, and A. Abbas, “Agile control of CO2 capture

technology for maximum net operating revenue.” in The 11th IFAC Sym-

posium on Dynamics and Control of Process System, including Biosystems

(DYCOPS-CAB), June 6 - 8, 2016, Norway.

[C3] N. A. Manaf and A. Abbas, “Off-line optimisation and control of carbon

capture operations.” in The 26th European Symposium on Computer Aided

Process Engineering (ESCAPE 26), June 12 -15, 2016, Slovenia.

[C4] N. A. Manaf, M. F. Zanil, M. A. Hussain, and A. Abbas, “Application of

hybird PID-ANFIS controller for post combustion CO2 capture process.” in

Asia Pacific Confederation of Chemical Engineering Congress incorporating

Chemeca (APCChE), Sept 27 - Oct 01, 2015, Melbourne.

[C5] N. A. Manaf, A. Cousins, P. Feron, and A. Abbas, “Dynamic modelling and

simulation of post combustion CO2 capture plant.” in Australasia’s Premier

Chemical Engineering Conference (CHEMECA), Sept 28 - Oct 01, 2014,

Western Australia.

viii



[C6] N. A. Manaf, A. Cousin, P. Feron, and A. Abbas, “Control analysis of

post combustion carbon dioxide capture process,” in The 2nd International

Renewable Energy and Environment Conference (IREEC), July 4 - July 6,

2014, Kuala Lumpur.

ix



Table of Contents

Statement of Originality i

Acknowledgement ii

Abstract iii

Journal Papers vii

Conference Papers viii

Table of Contents x

List of Figures xv

List of Tables xxiv

List of Appendix xxvi

Glossary xxvi

1 Introduction 1

1.1 Global warming and climate change . . . . . . . . . . . . . . . . . 1

1.2 Link between energy security and climate change policy . . . . . . 5

1.3 The evolution of Australia’s policy on climate change . . . . . . . 6

1.4 CO2 mitigation technology: Amine-based solvent post-combustion

CO2 capture (PCC) . . . . . . . . . . . . . . . . . . . . . . . . . . 8

x



1.5 Thesis motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature review 15

2.1 Process modelling, control and optimization of CO2 capture plant 15

2.2 Management decision support of electricity generation associated

with carbon capture system . . . . . . . . . . . . . . . . . . . . . 22

2.3 Thesis novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Non-linear system identification of solvent-based PCC plant 32

3.1 System identification approach . . . . . . . . . . . . . . . . . . . . 33

3.2 PCC plant NLARX model development . . . . . . . . . . . . . . . 37

3.3 Model validation of individual units . . . . . . . . . . . . . . . . . 38

3.4 A 4 x 3 system model for PCC plant . . . . . . . . . . . . . . . . 42

3.5 Validation of 4 X 3 system model . . . . . . . . . . . . . . . . . . 43

3.6 Model solution: Implementation in Simulink . . . . . . . . . . . . 45

3.7 Open loop dynamic analysis . . . . . . . . . . . . . . . . . . . . . 45

3.7.1 Step changes in flue gas flow rate . . . . . . . . . . . . . . 49

3.7.2 Step changes in CO2 concentration in flue gas . . . . . . . 50

3.7.3 Step changes in lean solvent flow rate . . . . . . . . . . . . 52

3.7.4 Step changes in reboiler heat duty . . . . . . . . . . . . . . 53

3.8 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Key performance metrics of PCC plant . . . . . . . . . . . . . . . 56

3.10 The PCC-NLARX model application range . . . . . . . . . . . . . 65

4 Control strategies for flexible operation of solvent-based PCC

plant 67

4.1 Controllability analysis: Methodology . . . . . . . . . . . . . . . . 68

4.2 Multivariable control analysis . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Proportional, integral and derivative (PID) control design . 70

xi



4.2.2 Model predictive control (MPC) design . . . . . . . . . . . 72

4.3 Closed-loop analysis . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Control implementation strategy . . . . . . . . . . . . . . . . . . . 76

4.5 Control performance evaluation . . . . . . . . . . . . . . . . . . . 78

5 Techno-economic analysis of PCC system associated with coal-

fired power plant 84

5.1 Development of the hybrid MPC-MINLP algorithm (control-optimization

algorithm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Capability and applicability of the hybrid MPC-MINLP algorithm 91

5.2.1 A 24-hour operation analysis based on carbon pricing mech-

anism (fixed carbon price) . . . . . . . . . . . . . . . . . . 94

5.2.1.1 Fixed operation mode: Year 2011 and 2020 . . . 95

5.2.1.2 Flexible operation mode: Year 2011 . . . . . . . . 98

5.2.1.3 Flexible operation mode: Year 2020 . . . . . . . . 103

5.2.1.4 Financial benefit: Revenue comparison . . . . . . 106

5.2.2 Yearly operation analysis based on emission trading scheme

(ETS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2.1 Possible operation modes for coal-fired power plant113

5.2.2.2 Fixed operation mode: Year 2011 and 2020 . . . 115

5.2.2.3 Flexible operation mode: Year 2011 . . . . . . . . 117

5.2.2.4 Flexible operation mode: Year 2020 . . . . . . . . 120

5.2.2.5 Financial benefit: Revenue comparison . . . . . . 122

5.3 Contribution of the techno-economic analysis . . . . . . . . . . . . 125

6 Optimization strategy for large-scale deployment of PCC tech-

nology in black coal-fired power plant under ERF scheme 127

6.1 ERF project: Integration of PCC technology into existing black

coal-fired power plant . . . . . . . . . . . . . . . . . . . . . . . . . 128

xii



6.2 Objective and contribution . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Multi-objective constrained optimization algorithm (an improved

hybrid MPC-MINLP algorithm) . . . . . . . . . . . . . . . . . . . 130

6.4 Application of multi-objective constrained optimization strategy

for black coal-fired power plant ERF project . . . . . . . . . . . . 133

6.4.1 Multi-objective optimization subject to dual path constraint

(Strategy 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.2 Multi-objective optimization subject to path and end-point

constraints (Strategy 2) . . . . . . . . . . . . . . . . . . . 144

6.5 Optimization limitation of the multi-objective constrained opti-

mization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.1 Resolution analysis (time interval/optimization interval) . 150

6.5.1.1 Time interval: 30-minute . . . . . . . . . . . . . . 152

6.5.1.2 Time interval: 24-hour . . . . . . . . . . . . . . . 153

6.5.2 Computational complexity: Pareto optimal solution . . . . 156

6.6 The contemporary relevance of ERF scheme towards black coal-

fired power plant . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusion and future work 162

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix 167

Bibliography 176

xiii



List of Figures

1.1 World CO2 emission by sector [1]. . . . . . . . . . . . . . . . . . . 2

1.2 World primary energy demand by fuel [2]. . . . . . . . . . . . . . 3

1.3 Total NEM installed capacity by technology in Australia [3] . . . 4

1.4 Process flow diagram for post-combustion CO2 capture with MEA

solvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 A schematic diagram of coal-fired power plant associated with

amine-based PCC system with storage system. . . . . . . . . . . . 10

1.6 The management decision-support framework for coal-fired power

plant retrofitted with PCC (PP-PCC). . . . . . . . . . . . . . . . 14

3.1 A simplified PCC process flow diagram. . . . . . . . . . . . . . . . 34

3.2 Process input output variables for the key PCC process units. . . 35

3.3 Absorber model validation. . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Heat exchanger model validation. . . . . . . . . . . . . . . . . . . 40

3.5 Desorber model validation. . . . . . . . . . . . . . . . . . . . . . . 41

3.6 A simplified 4 x 3 PCC system. . . . . . . . . . . . . . . . . . . . 42

3.7 PCC model block diagram. . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Validation of the simplified 4 x 3 PCC model. . . . . . . . . . . . 44

3.9 Simulink user defined model for dynamic PCC process. . . . . . . 47

3.10 The NLARX model structure for (a) absorber, (b) heat exchanger

and (c) desorber in Simulink workspace. . . . . . . . . . . . . . . 48

xiv



3.11 Output responses (y1, y4, y5) due to a± 10% step change in flue gas

flow rate (solid line: base case; dotted line: positive step change;

dashed line: negative step change). . . . . . . . . . . . . . . . . . 50

3.12 Output responses (y1, y4, y5) due to a ± 10% step change in CO2

concentration in flue gas (solid line: base case; dotted line: positive

step change; dashed line: negative step change). . . . . . . . . . . 51

3.13 Output responses (y1, y4, y5) due to a ± 10% step change in lean

solvent flow rate (solid line: base case; dotted line: positive step

change; dashed line: negative step change). . . . . . . . . . . . . . 53

3.14 Output responses (y1, y4, y5) due to a ± 10% step change in re-

boiler heat duty(solid line: base case; dotted line: positive step

change; dashed line: negative step change). . . . . . . . . . . . . . 55

3.15 Key performance metrics during ±10% step tests in flue gas flow

rate (solid line: base case; dotted line: positive step change; dashed

line: negative step change). . . . . . . . . . . . . . . . . . . . . . 61

3.16 Key performance metrics during ±10% step tests in CO2 concen-

tration in flue gas (solid line: base case; dotted line: positive step

change; dashed line: negative step change). . . . . . . . . . . . . . 62

3.17 Key performance metrics during ±10% step tests in lean solvent

flow rate (solid line: base case; dotted line: positive step change;

dashed line: negative step change). . . . . . . . . . . . . . . . . . 63

3.18 Key performance metrics during ±10% step tests in reboiler heat

duty (solid line: base case; dotted line: positive step change;

dashed line: negative step change). . . . . . . . . . . . . . . . . . 64

4.1 Methodology to perform the controllability analysis. . . . . . . . . 69

4.2 A simplified PCC process flow diagram. . . . . . . . . . . . . . . . 70

4.3 A general PCC control structure. . . . . . . . . . . . . . . . . . . 71

4.4 A PID control architecture. . . . . . . . . . . . . . . . . . . . . . 72

xv



4.5 The MPC architecture. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Actual profile of power plant gross load, CO2 concentration in flue

gas and flue gas flow rate in the coal-fired power plant. . . . . . . 75

4.7 Profile of daily electricity price and dispatch in NSW on 28 August

2014 obtained from AEMO. . . . . . . . . . . . . . . . . . . . . . 76

4.8 Perturbation profile for flue gas flow rate (u1) and CO2 concentra-

tion in flue gas (u2.) . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Set point changing profile for CO2 capture efficiency (CC ) and

energy performance (EP). . . . . . . . . . . . . . . . . . . . . . . 79

4.10 The controller performance (PID controller and MPC) for CO2

capture efficiency (CC ) and energy performance (EP) under set

point tracking and disturbance rejection cases. . . . . . . . . . . . 82

4.11 Response of lean solvent flow rate and reboiler heat duty from PID

controller and MPC. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 The control-optimization algorithm (the hybrid MPC-MINLP) for

power plant integrated with PCC plant. . . . . . . . . . . . . . . 87

5.2 A rate transition block function connected between control and

optimization algorithms in PCC model in Simulink workspace. . . 91

5.3 The electricity prices (regional reference price, RRP) for 2011. . . 95

5.4 The electricity prices (regional reference price, RRP) for 2020. . . 96

5.5 Power plant load generations at respective carbon price rates. (a)

$AUD 5/tonne-CO2 (b) $AUD 25/tonne-CO2 and (c) $AUD 50/tonne-

CO2 (dashed line: fixed mode operation (constant CO2 capture

rate,CC at variable power plant loads); continuous line: flexible

mode operation (variable in CO2 capture rate,CC and power plant

loads)) for 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Real time-based power plant gross load profile inputted to the op-

timization algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 98

xvi



5.7 Control responses for fixed operation mode under three carbon

prices (($AUD 5, 25, 50 tonne-CO2) (black line: CC ideal; red bar:

CC actual)) for 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 A techno-economic analysis for year 2011 at carbon price (a) $AUD

5/tonne-CO2 (b) $AUD 25/tonne-CO2 and (c) $AUD 50/tonne-

CO2 (black line: CC ideal; red bar: CC actual). . . . . . . . . . . . . 102

5.9 A techno-economic analysis for year 2020 at carbon price (a) $AUD

5/tonne-CO2 (b) $ 25/tonne-CO2 and (c) $AUD 50/tonne-CO2

(black line: CCideal; red bar: CCactual). . . . . . . . . . . . . . . . 105

5.10 Comparison between ideal/actual net operating revenue for fixed

operation mode, ideal revenue for flexible operation mode and ac-

tual revenue for flexible operation for year 2011 and 2020. . . . . . 107

5.11 Breakdown of actual plant net operating revenue for flexible oper-

ation mode for scenario under carbon prices of $AUD 5, $AUD 25

and $AUD 50 per tonne CO2 (A: plant revenue generated through

selling of electricity, B: cost of CO2 emission (carbon price paid),

C : power plant operational cost and D: PCC operational cost). . . 109

5.12 Actual revenue composite of power plant retrofitted with PCC sys-

tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.13 The electricity and carbon prices for one year at every 30 minute

time intervals, (a) 2011 and (b) 2020. . . . . . . . . . . . . . . . . 113

5.14 Three possible generation modes for coal-fired power plant. . . . . 114

5.15 Control-optimization responses from fixed operation mode for year

2011 and 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.16 Unit turndown operation of power plant for year 2011 at selected

period in January. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.17 Control-optimization responses from flexible operation mode for

year 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xvii



5.18 Control-optimization responses from flexible operation mode for

year 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.19 Power plant load and CO2 capture rate for year 2020 at selected

month (April). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.20 Revenue breakdown for power plant retrofitted with PCC for year

2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.21 Revenue breakdown for power plant retrofitted with PCC for year

2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Breakeven analysis to determine the feasibility of ACCU price. . . 130

6.2 A multi-objective constrained optimization framework for the man-

agement decision-making of coal-fired power plant integrated with

PCC plant under ERF scheme. . . . . . . . . . . . . . . . . . . . 134

6.3 The ideological touchstone of the black coal-fired power genera-

tors considering the deployment of ERF scheme. A: Revenue from

selling electricity, PERF : Incentive gained from ERF project . . . 136

6.4 The electricity prices and historical power plant gross loads for

7-year of crediting period from 2016 to 2022 at every 30 minute. . 139

6.5 Profile of input and output variables from the multi-objective con-

strained optimization algorithm. (a) Multi-objective constrained

optimization output responses (power plant load and CO2 capture

rate) from flexible operation mode of PCC plant retrofitted with

existing black coal-fired power plant subject to ERF scheme from

year 2016 to 2022. (b) Profile of electricity prices (RRP), power

plant load and CO2 capture rate at selected period from 2016 to

2022. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.6 Performance of the environmental constraint via CO2 emission over

the planning horizon. . . . . . . . . . . . . . . . . . . . . . . . . . 143

xviii



6.7 Revenue breakdown for power plant retrofitted with PCC system

for 7-year of crediting period (2016 - 2022) at 30-minute time interval.144

6.8 GA optimization error via vectorize optimization architecture (122

646 x 2 of input variables at 30-minute time interval for 7-year of

planning horizon). . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 The electricity prices and historical power plant gross load for 7-

year of crediting period from 2016 to 2022 at weekly time interval. 146

6.10 Multi-objective constrained optimization responses (power plant

load and CO2 capture rate) from flexible operation mode of PCC

plant retrofitted with existing black coal-fired power plant subject

to ERF scheme from year 2016 to 2022. . . . . . . . . . . . . . . . 148

6.11 Profile of electricity prices (RRP), power plant load and CO2 cap-

ture rate at selected period from 2016 to 2022. . . . . . . . . . . . 149

6.12 Performance of the environmental constraint via CO2 emission over

the planning horizon. . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.13 Revenue breakdown for power plant retrofitted with PCC system

for 7-year of crediting period (2016-2022). . . . . . . . . . . . . . 151

6.14 The electricity prices and historical power plant gross loads for

7-day of planning horizon at 30-minute time interval. . . . . . . . 152

6.15 Multi-objective constrained optimization responses (power plant

load and CO2 capture rate) from flexible operation mode of PCC

plant retrofitted with existing black coal-fired power plant subject

to ERF scheme for 7-day of planning horizon at 30-minute time

interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.16 Revenue breakdown for power plant retrofitted with PCC system

for 7-day of planning horizon at 30-minute time interval. . . . . . 155

6.17 The electricity prices and historical power plant gross loads for

7-day of planning horizon at 1-hour time interval. . . . . . . . . . 156

xix



6.18 Multi-objective constrained optimization responses (power plant

load and CO2 capture rate) from flexible operation mode of PCC

plant retrofitted with existing black coal-fired power plant subject

to ERF scheme for 7-day of planning horizon at 1-hour time interval.157

6.19 Revenue breakdown for power plant retrofitted with PCC system

for 7-day of planning horizon at 1-hour time interval. . . . . . . . 158

xx



List of Tables

2.1 An overview of literature survey on PCC plant modelling, control

and optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A summary of previous studies on the management decision-making

(planning and scheduling) of various energy generations retrofitted

with CO2 mitigation strategies. . . . . . . . . . . . . . . . . . . . 23

3.1 Sensitivity analysis of input-output PCC model. . . . . . . . . . . 56

3.2 Summary of the CC% and EP at different operating points. The

quoted deviations are in comparison with experimental/pilot plant

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Key input-output performance metrics. . . . . . . . . . . . . . . . 65

4.1 The result of multivariable control analyses of PCC using Simulink

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Operating and maintenance costs assumptions for the power plant

and PCC system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Operation modes for power plant retrofitted with PCC system. . . 92

5.3 The average deviations of triplicate optimizations in CCideal and

power plant net load for flexible operation mode. . . . . . . . . . 93

5.4 Net operating revenue deviation for fixed and flexible operation

(actual) modes at respective carbon prices ($AUD 5/tonne-CO2,

$AUD 25/tonne-CO2, $AUD 50/tonne-CO2). . . . . . . . . . . . . 107

xxi



5.5 Net operating revenue and its individual costs for year 2011 and

2020 subject to fixed and flexible operation modes. . . . . . . . . 124

6.1 Optimization strategies of flexible operation of PCC plant associ-

ated with black coal-fired power plant subject to ERF scheme. . . 137

xxii



List of Appendix

A A simplified 4 x 3 PCC linearized transfer function model.......169

xxiii



Glossary

ABS Absorber.

ACCU Australian carbon credit unit.

AEMO Australian energy market operator.

ARX Autoregressive with exogenous input.

AWS Ammonia wet scrubbing.

BAU Bussiness as usual.

CC CO2 capture rate.

CCS Carbon capture and storage.

CER Clean Energy Regulator.

CFI Carbon Farming Incentive.

CO2 Carbon dioxide.

CPRS Carbon Pollution Reduction Scheme.

CT Concentration transmitter.

CV Controlled variable.

DEA Diethanolamine.

DES Desorber.

xxiv



DGA Diglycolamine.

DIPA Diisopropanolamine.

EP Energy performance.

ERF Emission Reduction Fund.

ETS Emission Trading Scheme.

EU European Union.

FAE Forward abatement estimate.

FT Flow transmitter.

GA Genetic algorithm.

GAMS General algebraic modeling system.

GHG Greenhouse gas.

GPC Generic Predictive Control.

GW Gigawatt.

Gg Giga-grams.

HE Heat-exchanger.

ICSM Inexact management model.

IChemE Institution of Chemical Engineers.

IEA International Energy Agency.

IGCC Integrated gasification combined cycle.

MEA Monoethanolamine.

MIC Morari integral contollability index.

MILP Mixed integer linear program.

xxv



MIMO Multiple input multiple output.

MINLP Mixed integer non-linear programming.

MPC Model predictive controller.

MS Membrane separation.

MV Manipulated variable.

MW Megawatt.

NDC Nationally Determined Contributions.

NEM National Electricity Market.

NEPP National Energy Productivity Plan.

NGCC Natural gas combined cycle.

NGT Natural gas turbine.

NLARX Non-linear autoregressive with exogenous input.

NMPC Nonlinear Model Predictive Control.

NPV Net present value.

NSW New South Wales.

OXY Oxy-fuel combustion.

O&MPCC Operation and maintenance costs of PCC plant.

O&MPP Operation and maintenance costs of power plant.

PCC Amine based (MEA) post combustion CO2 capture otherwise stated.

PID Proportional, integral and derivative.

PP Power plant.

RE Solar and biomass energies.

xxvi



RET Renewable Energy Target.

RGA Relative gain array.

RRP Regional reference price.

SS Solid sorbents.

i.e. example.

vs integrate with.

xxvii



Chapter 1

Introduction

1.1 Global warming and climate change

Low emissions fossil fuel technologies are of significant importance for short and

long term global energy securities. Post combustion CO2 capture (PCC) is well-

known as one such technology, and one that is viable and mature for dealing with

the excessive amounts of greenhouse gases (GHG) (i.e. CO2) generated from

power plants. While most countries are heading towards 'carbon capture-ready

'power plants, comprehensive managerial studies are essential for the implemen-

tation of long-term PCC commercial scale operations. Such studies should cover

holistic industrial perspectives and approaches that consider technical, economic,

social, policy, safety and environmental challenges.

Global warming and climate change are arguably attributed to the elevation of

GHGs particularly CO2 with an approximate concentration of up to 80% from

the total GHGs emissions in the atmosphere [4]. Based on the International

Energy Agency (IEA) reports, energy sector (from the consumption of fuels for

electricity and heat generation) accounts for more than 40% of CO2 emissions as
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compared to the other sectors as shown in Figure 1.1. From this fraction, coal-

based energy is responsible for emitting the highest amount of energy-related

CO2 emissions (at the point of combustion) followed by natural gas and oil. This

shapes the world forecast primary energy demand as illustrated in Figure 1.2. It

shows that there is high possibility that the demand for coal power plants will

rise towards year 2040. Relatively, oil will keep dominating the major energy

demand by fuel throughout the coming decades. Though, energy-related CO2

emissions from oil are less than those derived from coal and natural gas, its price

which is relatively more expensive and its uncertainty in resource supply in part

of the world contributes to the operation limit. Thus, it is realistically possible

that coal-based energy will be the most viable electricity generation in the near

future.

Energy 
42% 

Road  
transport 

16% 

Other  
transport 

6% 

Industry 
20% 

Residential 
6% 

Other 
 sectors 

10% 
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71% 

Oil 
7% 
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21% 

Other 
1% 

Figure 1.1: World CO2 emission by sector [1].
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Figure 1.2: World primary energy demand by fuel [2].

In line with the Paris Climate Conference, Australia as one of the conference

parties pledged to reduce its national GHGs emissions to 5% below 2000 levels

by 2020. Based on the National Greenhouse Gas Inventory, Australia emitted

about 550 000 Gg CO2 in 2012 with an imperceptible reduction compared to the

previous reported years [5]. From this value, the energy sector was identified as

the largest CO2 emitter which accounted for 76% of Australia total emissions. On

the other hand, Figure 1.3 illustrates the historical and forecast trends of fossil-

fuel power plants (energy sector) installed capacity in Australia [3]. In 2015,

Australia had 19 GW installed capacity of black coal power plants which made

up 40% of overall total installed power capacity [3]. Although coal-fired power

installed capacity shows a large stagnant over the outlook period, it is expected

that black-coal will be the major source of energy at least in the ten years ahead

surpassing all other power technologies.

3



1.1. Global warming and climate change

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

2
0

1
4

-1
5

2
0

1
5

-1
6

2
0

1
6

-1
7

2
0

1
7

-1
8

2
0

1
8

-1
9

2
0

1
9

-2
0

2
0

2
0

-2
1

2
0

2
1

-2
2

2
0

2
2

-2
3

2
0

2
3

-2
4

2
0

2
4

-2
5

2
0

2
5

-2
6

2
0

2
6

-2
7

2
0

2
7

-2
8

2
0

2
8

-2
9

2
0

2
9

-3
0

2
0

3
0

-3
1

2
0

3
1

-3
2

2
0

3
2

-3
3

2
0

3
3

-3
4

2
0

3
4

-3
5

2
0

3
5

-3
6

2
0

3
6

-3
7

2
0

3
7

-3
8

2
0

3
8

-3
9

In
s
ta

lle
d

 c
a

p
a

c
it
y
 (

M
W

) 

Year 

Black coal Brown coal Natural gas Liquid fuel Total (fossil fuel and renewable technologies)

Figure 1.3: Total NEM installed capacity by technology in Australia [3]

To date, Australia has relatively high per capita annual emissions approximately

19 tonnes CO2-e/person in New South Wales (NSW), compared to other devel-

oped countries, which have average per capita emissions around 12 tonnes CO2-

e/person [6]. One of the main factors influencing this high value is due to the

large recoverable coal reserves resulting in dependency on coal-based electricity

generation now and in a near future [6, 7]. This scenario indirectly compromises

the national and global environmental and energy sustainability hence increases

Australia’s carbon footprint. Therefore, it is of significant importance for Aus-

tralia to develop sound and effective CO2 abatement technologies in line with

concerted international action on climate change and energy policy to overcome

this situation.
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1.2 Link between energy security and climate

change policy

Energy security refers to the uninterrupted availability of energy sources at an

acceptable cost in terms of economic and environmental perspectives [8]. It can

be divided into two dimensions, which are short-term, and long-term energy secu-

rities. Short-term energy security emphasizes on the robust and flexible operation

of energy systems towards abrupt perturbation within the supply-demand bal-

ance. While, long-term energy security focuses on the perpetual energy supply

consistent with the economic enhancement while satisfying environmental sus-

tainability [8].

Essentially, energy security plays a vital role towards the growth of world eco-

nomic activities. However, the introduction of existing and new climate change

policy that stresses energy sustainability (i.e. via Carbon capture storage (CCS)

and renewable energy technologies) is impacting on the structure and efficiency of

the global energy system. Generally, climate change policy is manifested to con-

trol the excessive increment of GHGs emissions (i.e. CO2) produced from energy

sectors by implementing various measures, for instance, through fuel switching

and demands reduction. Apparently, these measures provide negative impacts to

the national and international energy portfolios in terms of fuel and technology

mix. While, the security of energy system is always associated with the unprece-

dented risks such as monopoly/oligopoly of energy market prices, depletion of

fossil fuel resource supplies and inadequate market structure [9], therefore effi-

cient interaction and bilateral understanding between government and industry

are imperative. This is to ensure that the objectives of climate change policy and

security of the energy system are achievable and working commendably.
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At present, CCS installation is part of the predominant EU climate change policy

as a measure to tackle the national energy insecurity [9]. The directive aims to

sustain the overall consumption of fossil fuels in power generation technologies

in a near future by incentivizing various CO2 mitigation technologies. Subject

to this directive, it is expected that more coal-based power generations will be

operated beyond 2020 as compared to oil and gas due to the coal’s invulnerability

towards natural and technical hazards and no pipeline transportation is required.

This scenario not only applies to European Union (EU) but may be extended to

other countries which use coal as their primary energy generation.

1.3 The evolution of Australia’s policy on cli-

mate change

The Carbon Pollution Reduction Scheme (CPRS) is one of the earliest climate

legislations enacted in Australia on December 2008 after several political con-

tentions. It featured the Government’s initial thinking on the establishment of

an Australian Emission Trading Scheme (ETS) with the main objective to reduce

greenhouse gas emissions [10]. However, the CPRS collapsed in 2009 due to po-

litical transition. On July 2012 under the Gillard Labor Government, Australia

employed a new climate change policy via the carbon pricing mechanism. This

policy employed fixed price period by providing emission permit or carbon tax

at the $AUD 23/tonne of CO2-e with a 2.5% increment each year. Following

that, Gillard planned to make a transition from carbon pricing mechanism to

ETS (adapted from the EU climate change policy), which was scheduled to be

launched on 1st July 2014.

However, after the end of the electoral cycle, a new climate policy replacing the

6



1.3. The evolution of Australia’s policy on climate change

carbon price scheme emerged through the Direct Action Plan of the then new

Liberal Government. In Australia, financial support to reduce emissions is avail-

able from various sources for instance, the Clean Energy Finance Corporation,

the Australian Renewable Energy Agency and the Emissions Reduction Fund

(ERF).

The ERF provides an incentive to businesses to reduce their emissions by pur-

chasing Australian Carbon Credit Units (ACCUs). It operates through a reverse

auction where organisations can bid their existing and future ACCUs and the

Australian Government selects only those bidders that offer low cost ACCUs.

Financial support is also available via the Safeguard Mechanism, where large

greenhouse gas emitters are required to keep emissions below a defined baseline

through the purchase and surrender of offsets such as ACCUs. ACCUs are cre-

ated by undertaking certain activities that reduce emissions. Activities include

avoided clearing of native forest protection project, reforestation, changes in land

management, early savannah burning, fuel savings in the transport sector and

industrial electricity and fuel efficiency [11]. Few industrial businesses have been

involved in the creation of ACCUs or bidding in an ERF auction.

The ERF and Safeguard Mechanism are key components of the Australian Gov-

ernment's climate change policy suite. The related Carbon Farming Initiative

(CFI) is the mechanism for creating ACCUs. Other elements of government pol-

icy that contribute to emission reduction include the Renewable Energy Target

(RET) and the National Energy Productivity Plan (NEPP) [12]. The objective

of these instruments is to support national efforts to meet Australia's Nationally

Determined Contributions (NDC) of a 26 to 28% reduction in emissions rela-

tive to 2005 by 2030. The ERF establishes a market for ACCUs through the

use of public funds to purchase ACCUs, with an initial AUD 2.55 billion being

7
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made available up to 2020. It is anticipated that the Safeguard Mechanism will

eventually drive the market for ACCUs as facilities whose emissions exceed their

baselines are required to purchase ACCUs to offset their excessive emissions. All

coal-fired generators are covered by the Safeguard Mechanism, and the proposed

ERF project acts either to reduce the emissions of the power station so that emis-

sions do not exceed its baseline or allows the power station to create ACCUs if

emissions fall below the baseline.

1.4 CO2 mitigation technology: Amine-based sol-

vent post-combustion CO2 capture (PCC)

By far, CCS technology is a mature and promising technology in capturing and

mitigating the CO2 emissions. One of the reliable technologies for reforming the

carbon intensity in coal-fired power plants is PCC. To date, the most reliable

process for CO2 recovery from flue gas in PCC is by using conventional chemi-

cal absorption/desorption via aqueous solvents. The most widely used of aque-

ous solvents are alkanolamine, such as Monoethanolamine (MEA),Diglycolamine

(DGA), Diethanolamine (DEA) and Diisopropanolamine (DIPA). Among them,

MEA-based solvent gives more advantages in term of higher absorption rate,

enhanced CO2 capture efficiency and low cost.

In the PCC process (Figure 1.4), the resulting flue gas from the primary fuel

combustion (coal-fired power plant) is treated to separate CO2 in a PCC process

which typically consists of two columns; absorber and desorber (known as strip-

per or regenerator columns). In the absorber column, the flue gas is contacted

counter-currently with aqueous MEA, at 40 - 60oC, atmospheric pressure where

the MEA solvent is fed from the top of the column. The amine solvent absorbs

8
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CO2 via chemical absorption mechanism. Subsequently, a gas with reduced CO2

content is exhausted at the top of the absorption tower (vent gas/off-gas) while

CO2-rich amine solution leaves from the bottom to pass through a cross heat

exchanger before entering the desorber column at 1.5 - 2 atm and 100 - 120oC.

The rich stream loading is typically 0.4 - 0.5 mole CO2/mole MEA. Regenera-

tion of solvent by application of heat in the desorber releases the CO2 gas. The

regenerated amine solution is passed through cross heat exchanger and cooled to

40oC before returning to the absorber. The CO2 that is captured is then purified

via various methods and transported for storage and utilization.

Stripper

 

 

 

 

 

 

Rich solvent Lean solvent

Reboiler

Low pressure 

steam

 

 

 

CO2 rich  

Absorber

 

 

Flue gas

Vent gas

Cool water

MEA and water

Figure 1.4: Process flow diagram for post-combustion CO2 capture with MEA
solvent.

Generally, PCC plant involves the addition of a downstream process to a conven-

tional coal-fired power plant as illustrated in Figure 1.5. The integration involves

low-pressure steam turbine (in power plant) and the reboiler system (in PCC

9
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plant). Whereby, the steam extraction from the turbine system is utilized for

solvent regeneration process in PCC plant.

Figure 1.5: A schematic diagram of coal-fired power plant associated with amine-

based PCC system with storage system.

1.5 Thesis motivation

The intriguing window in mitigating the GHGs (to limit global warming to 2oC)

and promoting sustainable energy has been a topic of debate globally. This

challenge entails acceleration of decarbonisation of industrial emissions especially

in electricity production where deployment of CCS can offer a robust solution to

decouple the strong linkage between fossil fuel and climate change.

As of now, only few CCS technology (i.e. PCC plant) have been developed and

commercialized to reduce CO2 emission from the coal-fired power plant for in-
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stance, one located in Regina, Canada [13]. However, operation of this technology

back in 2011 had led to severe financial damage and a miniature environmental

benefit to the power plant company thus jeopardized the long-term viability of

PCC system. This situation was influenced by the operational and technical chal-

lenges particularly when PCC system is retrofitted into coal-based power plant.

This might includes large energy and capture penalties, space constraints for car-

bon sequestration and the absence of robust climate change mitigation policy

[14]. Additionally, uncertainty in economic (high operating and capital costs)

and financial viability of PCC plant have also influenced and thus likely hindered

the investment of the PCC plant into large-scale deployment. This is swayed

by the volatility of national and international markets such as in CO2 emission

allowance, commodity prices (fuel and coal) and electricity price.

Essentially, integration of PCC into coal-fired power plants demands efficient

control system and operational flexibility which particularly occur at the opera-

tion level (plant and instrument levels). This is due to the dynamic nature of the

coal-fired power plant operation whereby plant particularly operates in a full load

during peak hours (higher prices) and part load in off-peak hours (lower prices).

These circumstances contribute to the fluctuation of flue gas emitted from the

power plant consequently affecting the subsequent process, the PCC plant. Ad-

ditionally, external interruptions from power plant and auxiliary systems can also

contribute to the unstable operation of power plant. Thus resulting in transient

behavior of PCC plant where eventually the overall performance of PCC plant is

reduced.

Uncertainty in energy demand, electricity and carbon prices may cause interrup-

tion in the operation of coal-fired power plant with PCC system. Where, these un-

certainties are usually unpredictable because they depend on the socio-economic

11
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and political structure/status of the related countries. This can be featured dur-

ing the abolishment of existing climate change policy due to the major political

transition, fluctuation of electricity and carbon prices due to power outage and

volatility on commodity markets (abrupt change in carbon/fuel prices).

These combined hurdles require effective interaction between the operational and

management levels of coal-fired power plants if PCC plant is to be considered for

a large scale deployment on site. In light of these circumstances, it is of crucial

importance to explore and fill in the technological and knowledge gaps available

in this area. This may include a comprehensive and holistic study focusing on

the technical, economic, social, political, safety and environmental perspectives

subject to different management levels (plant, instrument, government and policy

levels).

This thesis has been motivated by the tremendous demands in clean-coal tech-

nologies by constructing an overarching computational framework consisting of

multiscale modelling of the integrated plant (coal-fired power plant associated

with PCC facility) embedded with an advanced plant-wide control and optimiza-

tion algorithm at high temporal resolution. Moreover, this thesis fills in the

gap in the existing research studies by utilizing real-time data subject to rele-

vant scenario for targeting the low-carbon management of power plant emissions

and yet still consider substantial plant revenue. This motivation is in sync with

one of methodologies for CCS deployment as reported by the IChemE, where

they proposed development of computational framework to forecast the effects of

socio-economic and energy market when deploying the CCS technology [15].
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1.6 Research objective

The management decision-support framework presented in this thesis encompass-

ing of coal-fired power plant integrated with PCC technology (integrated plant).

It is an appropriate strategy to overcome and tackle the challenges in commercial-

ization of PCC technology. Concurrently, to ensure feasibility and profitability

of coal-fired power plants when considering this technology. In light of the global

concern (environmental and energy sustainability), the main objective of this the-

sis is to provide a conceivable decision and idea to the managerial (investor and

government) and operational (engineer and operator) personnel pertaining to the

future value of CCS technology (flexible retrofit PCC system) rather than pro-

viding a solution or methodology for the deployment of CCS technology. Where,

eventually, this thesis may be able to answer the current predicament:

"Is CCS technology (flexible retrofit PCC system) financially and tech-

nically worth doing in order to achieve future clean coal technology

and how is CCS technology to be operated to attain the low-carbon

energy generation in real-time situation?"

The developed management decision support framework consists of four interre-

lated levels which include policy, enterprise, plant and instrumentation levels as

illustrated in Figure 1.6. The scope of each level is briefly explained below.

1. Instrumentation level: Development of PCC dynamic model using actual

pilot plant data via system identification method (empirical method). This

level provides a deeper understanding of the behaviour of key variables in

PCC plant under variable power plant load conditions.

2. Plant level: Development of control algorithm for flexible operation of PCC

plant subject to upstream perturbation from the coal-fired power plant.
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Figure 1.6: The management decision-support framework for coal-fired power
plant retrofitted with PCC (PP-PCC).

This level exhibits actual plant-wide control operation of PCC plant by

combining three aspects which include emission constraint, optimal energy

and economic benefit.

3. Enterprise level: Development of the optimization algorithm integrated

with control algorithm (from Plant level) for optimal operation of coal-fired

power plant associated with PCC system. This level predicts power plant

load trends and CO2 capture rates subject to real-time electricity prices and

various climate change policies.

4. Regulatory/Policy level: Evaluating the implication of prevailing climate

change policy towards country’s emission reduction and financial outcome

of coal-fired power plant associated with PCC system.
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Chapter 2

Literature review

In this chapter, a comprehensive literature survey of previous works is presented.

It covers dynamic modelling and control of CO2 capture system, not limited

to only PCC process, optimization of capture system which include manage-

ment decision-making (planning and scheduling) of various energy generations

retrofitted with multi-technique of CO2 capture system.

2.1 Process modelling, control and optimization

of CO2 capture plant

Many studies have focused on the development of steady state model of CO2

capture plant including standalone column models and whole plant models. Nev-

ertheless, steady state models convey limitations in imitating the actual PCC

process (i.e. process dynamics), which exhibits highly nonlinear behavior. This

features by the intricate interaction between process variables that are inher-

ently impacted by numerous process uncertainties due to impulsive disturbances,

particularly those coming from the power plant. Thus, development of a PCC

dynamic model is of significant importance to overcome those limitations and
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shortcomings.

For the past few years, several dynamic studies corresponding to amine-based

PCC plant have been demonstrated, either it involves individual unit operation

or complete PCC unit operation, for instance in [17-38]. In solvent-based PCC

process, flue gas flow rate is considered as one of the critical variables in the

absorber column and CO2 capture plant as a whole. Since PCC plant will be

integrated with power plant, which may suffer load fluctuation concomitant with

the current electricity demand, many studies pertaining to the dynamic flue gas

flow rate, have been conducted and published. For example, disturbance of flue

gas in ramp-change[16], step change [17, 18, 19, 20], sinusoidal change [16] and

linear perturbations [21, 22, 23]. According to the aforementioned studies, per-

turbation in flue gas flow rate (regardless of the disturbance configuration) in

escalating magnitude will lead to a deficiency in PCC plant performance and ul-

timately to a reduction in Liquid/Gas (L/G) ratio. However, due to the fact that

PCC variables have intricate relationships, inconsistencies in predicted dynamic

behaviour are expected to emerge. This is underpinned by studies conducted by

[24, 25], in which they perceived that the efficiency of PCC plant (or they named

CCS%) is highly effected by the solvent flow rate. This is contrary to the work of

[17] where they state that solvent flow rate did not have any significant impact

on CO2 removal efficiency.

Previously, Lawal et al.[26] determined L/G ratio as an important variable com-

pared to flue gas and solvent flow rate in terms of PCC efficiency. They observed

that the efficiency of the absorber was influenced by the L/G ratio and the effi-

ciency of the regenerator by the reboiler heat duty. In a separate study, Gaspar

and Cosmos [27] found that desorber feed stream temperature and column feed

stream loading had more impact on CO2 capture efficiency than L/G ratio. Posch

16



2.1. Process modelling, control and optimization of CO2 capture
plant

and Haider [22] also revealed another different outcome where they noticed that

low absorber temperatures might influence the efficiency of CO2 separation per-

formance. On the other hand, other studies [23, 28, 29] concluded that to sustain

the PCC plant performance and inventory, maintaining water balance or mois-

ture content is critical. Besides that, Harun et al. [16] introduced a sinusoidal

disturbance to the flue gas flow rate whereby, at the maximum flue gas flow rate,

CO2 removal efficiency decreased to 83% whilst at the minimum flue gas flow rate

CO2 removal efficiency reached a maximum of 99%.

Additionally, plant wide control strategy is employed to sustain a process at the

desired operating conditions, securely and efficiently, while providing adequate

environmental and product quality requirements. CO2 capture plant specifi-

cally amine-based absorption PCC plant involves multifaceted process interac-

tions (highly non-linear process) and thus requires understanding of the dynam-

ics operation of the plant. Moreover, external interruptions from the power plant

and auxiliary systems can contribute to the unstable operation of the plant. Thus

resulting in transient behavior of PCC facility (as a downstream process) where

eventually diminish the overall performance of the integrated plant (coal-fired

power plant with PCC plant). A flexible operation of PCC plant features a po-

tentiality to cope with those uncertainties and concurrently it can be benefited

from the process control strategies in the face of process set point changes and

disturbance rejections.

For instance, control strategies for flexible operation of power plant with CO2

capture plant were demonstrated by Lin et al. [26]. Two dynamic strategies were

analyzed to obtain the best strategy thus to enhance the flexibility of the capture

plant by restricting the hydraulic fluctuations. The respective strategies were

variation of lean solvent flow rate (VLSF) and variation of lean solvent loading
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2.1. Process modelling, control and optimization of CO2 capture
plant

(VLSL). Based on that study, they concluded that the VLSL strategy outper-

formed the VLSF strategy in terms of plant flexibility and performance. Posch et

al. [23] employed conventional PID controller in their dynamic simulation study,

which was implemented on the absorber system. Ramp and continuous load

changes were introduced to the system model and their work indicated that L/G

ratio and CO2 removal rate took substantial time to achieve the set point targets.

A similar study was conducted by Lawal et al. [19]; five loops of P/PI controllers

were deployed to regulate each respective variable which involved condenser tem-

perature, reboiler temperature, reboiler level, water ratio in lean solvent, CO2

capture level in absorber and condenser heat duty.

A reboiler model with a control strategy based on Generic Predictive Control

(GPC) was presented by Arce et al. [29] while Akesson et al. [25] employed a

Nonlinear Model Predictive Control (NMPC) strategy which was integrated with

an optimization strategy [29, 25]. The study by Arce et al. was carried out on a

reboiler with 78 kW capacity with circulation rate up to 690 kg/hr. The objective

of their study was to determine energy and CO2 costs by means of minimizing the

operating cost concomitant with solvent regeneration. The control objective of

the strategy developed by Akensson et al. was to regulate the PCC performance

by minimizing the amount of steam required in the reboiler. They proposed

NMPC with two degree of freedom which involves two manipulated variables; heat

flow to reboiler and solvent flow. In their study, a trade-off between efficiency

losses and capture rate within economic boundary conditions was considered.

Table 2.1 shows the overview of literature survey on PCC research area (i.e.

modelling, control and optimization), input-output variables employed for model

development and type of modelling implementation tools used in the studies.
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Table 2.1: An overview of literature survey on PCC plant modelling, control and optimization.

Ref. Model
section

Model/Control
implementation tool

Application CO2 Efficiency Input variable Output variableModelling Control Optimization

[30] CO2 capture plant gPROMS X X 90% & 95% 1. Lean solvent temperature 1. CO2 removal rate
2. Reboiler heat duty
3. Temperature reboiler
4. Flue gas flow rate
5. Temperature condenser
3. Temperature reboiler

[24] CO2 capture plant gPROMS X 90% 1. Flue gas flow rate 1. CO2 removal rate
2. Steam rate
3. Lean solvent temperature
4. Lean solvent flowrate

[31] CO2 capture plant gPROMS X 1. Flue gas flowrate 1. Lean loading
2. Reboiler heat duty 2. L/G (lean solvent/flue gas)

3. CO2 removal rate

[22] Absorber and desorber Fortran X 90% 1. Lean solvent flow rate 1. CO2 removal rate
2. Reboiler heat duty

[32] Absorber and desorber gPROMS X 96% 1. Flue gas molar flowrate 1. Lean loading
2. V/L fraction of reboiler 2. Rich loading
3. Lean solvent volume rate 3. CO2 removal rate

[33] Absorber and desorber Aspen Plus X X 1. Reboiler heat duty 1. CO2 removal rate
2. Lean solvent flowrate
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Table 2.1: An overview of literature survey on PCC plant modelling, control and optimization (cont.).
Ref. Model

section
Model/Control

implementation tool
Application CO2 Efficiency Input variable Output variable

Modelling Control Optimization

[17] Absorber and desorber gPROMS X 1. Lean solvent flowrate 1. CO2 removal rate
2. Flue gas molar flowrate

[21] Absorber and desorber gPROMS X 1. CO2 concentration in flue gas 1. CO2 mass fraction in treated gas
2. Flue gas temperature 2. Reboiler heat duty
3. Lean solvent flowrate

[25] Absorber and desorber Modellica X X X 90% 1. Flue gas flowrate 1. CO2 removal rate
2. Reboiler heat duty 2. Reboiler temperature
3. Lean solvent flowrate
4. Flue gas molar composition

[26] Absorber and desorber Aspen Plus X X X 90% 1. Flue gas flowrate 1. CO2 removal rate
2. CO2 composition in flue gas 2. Lean loading
3. H2O composition in flue gas 3. Reboiler heat duty
4. Lean solvent flowrate

[16] Absorber and desorber Matlab X 1. Power plant load 1. Rich stream temperature
2. CO2 removal rate

[27] Absorber and desorber gPROMS X X 1. Water balance control 1. Lean loading
2. Flue gas flowrate 2. CO2 removal rate
3. Reboiler heat duty
4. CO2 concentration in flue gas

[23] Absorber Aspen Custom Modeller X X 90% 1. Flue gas temperature 1. L/G (lean solvent/flue gas)
2. Flue gas volume rate 2. CO2 removal rate
3. Lean solvent temperature
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Table 2.1: An overview of literature survey on PCC plant modelling, control and optimization (cont.).
Ref. Model

section
Model/Control implementation

tool Application CO2
Efficiency Input variable Output variable

Modelling Control Optimization

[34] Absorber gPROMS X 95% 1.Flue gas temperature 1. L/G (lean solvent/flue gas)
2.Flue gas pressure
3. Flue gas molar flowrate
4.Flue gas molar composition

[18] Absorber Matlab X 1. Flue gas flowrate 1. CO2 removal rate
2. Lean solvent flowrate

[20] Absorber Matlab X 90% 1. Column’s feedstream loading 1. L/G (lean solvent/flue gas)
2. CO2 removal rate

[35] Absorber Matlab X 1. Flue gas flowrate 1. CO2 removal rate
2. Lean solvent flowrate

[36] Absorber Matlab X 1. Flue gas flowrate 1. CO2 removal rate
2. Rich loading

[19] Absorber Aspen Plus X 1. Power plant load 1. Lean loading

[28] Absorber gPROMS X 1. Flue gas flowrate 1. L/G (lean solvent/flue gas)
2. Flue gas temperature
3. Lean solvent temperature
4. Lean solvent flowrate

[37] Desorber Aspen Custom Modeller X X 1. Reboiler heat duty 2. Lean loading
3. CO2 removal rate

[29] Reboiler gPROMS X X 1. Solvent inlet flowrate 1. CO2 removal rate
2. Reboiler level
3. Reboiler temperature
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associated with carbon capture system

2.2 Management decision support of electricity

generation associated with carbon capture

system

The implementation of flexible low emissions technologies such as amine-based

PCC at coal-fired power generations is of significant importance for the long

term and short term global energy securities. Achieving this requires system-

atic carbon emissions control and planning in power generations (retrofitted with

PCC system) which involves implementation of optimal techno-economic strate-

gies (plant planning and scheduling) and highly flexible operations. Table 2.2

summarizes the studies that have been conducted in the management decision-

making (planning and scheduling) of various energy generations retrofitted with

multi-technique of CO2 capture systems.
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy genera-
tions retrofitted with CO2 mitigation strategies.

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

[38] Coal PP +
Petroleum
PP + Steel
plant vs
CCS (AWS
+ SS +
ABS +
MS)

ICSM 1.To minimize to-
tal system cost of
CCS.

30
years

1.With carbon emission
trading (CO2 emission
permits for each source are
tradable within the entire
CCS system rather than be-
ing set at a pre-determined
level).

1.Total system cost under
a trading mechanism is less
than without trading mech-
anism.

2.To develop op-
timal strategies
for CCS which
involved multiple
emission sources,
capture technolo-
gies and project
time span.

2.Without carbon emission
trading.

[39] Coal PP
vs PCC (2
trains)

MILP
(GAMS)

To maximize total
income.

1
month

1.Company has no con-
straint in carbon manage-
ment approach and prede-
fine maintenance schedule.

Strategy 1:Guarantee max-
imum income for the com-
pany.

2.Company has no con-
straint in carbon manage-
ment approach and let pro-
gram define the mainte-
nance schedule.

Strategy 2:Improve power
plant income by 9.5% and
require carbon permit to be
secured.
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy
generations retrofitted with CO2 mitigation strategies (cont.).

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

3.Same as Strategy 2 but gov-
ernment provides one free per-
mit for every tonne of CO2
captured.

Strategy 3:The benefit of sav-
ing in carbon taxes outweighs
the loss due to the net power
load reduction.

4.Same as Strategy 2 but the
company want to capture 1
million tonne of CO2 per an-
num.

Strategy 4:Feature uneconom-
ical operation schedule.

5.Same with Strategy 2 with
the difference that the com-
pany desires to study the im-
pact of projected carbon and
electricity prices at -20%, -
10%, +20%, +10%.

Strategy 5:Increased electric-
ity prices makes it beneficial
for the coal PP to generate
more electricity and capture
less CO2 (regardless of carbon
price rate).

[40] Coal PP vs
PCC

MILP
(GAMS)

To maximize net
present value by
either investing in
PCC or pay carbon
tax.

25
years

1.The government introduces
free emission permits with
CO2 emission intensity of
higher than 1.2 tonnes/MWh.
Annual escalation factor for
the electricity price and carbon
permit price are escalated by
5% annually.

Strategy 1:Not suggested to
install PCC plant but rather
paying the tax.
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy
generations retrofitted with CO2 mitigation strategies (cont.).

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

2.The government pro-
vides certain amount of
free emission to the com-
pany. Annual escalation
factor for the electricity
price and carbon permit
price are 0.05 and 0.10 re-
spectively.

Strategy 2:Suggested to
install PCC plant.

3.The company sets a
plan for certain amount
of CO2 capture over the
planning horizon. An-
nual escalation factor for
the electricity price and
carbon permit price is
0.05.

Strategy 3:Suggested to
install PCC plant.

[41] Coal PP
+ Solar
PP vs
PCC

MINLP
(MAT-
LAB)

To maximize
profit

1
month
(Jan-
uary)

1. PP vs PCC Strategy 1:Increased elec-
tricity prices would result
in decreased of capture
rate. The lowest cumu-
lative operational revenue
compare to all four cases.
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy
generations retrofitted with CO2 mitigation strategies (cont.).

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

2.PP vs solar assisted PCC Strategy 2:Cumulative rev-
enue for Strategy 2 is more
than Strategy 1, but less
than revenue for Strategy 3.

3.PP vs PCC vs solar repow-
ering (power boosting: vari-
able net electricity output)

Strategy 3:Increased elec-
tricity generation would re-
sult in increment of plant
revenue. The most prof-
itable strategy with the low-
est carbon emissions.

4.PP vs PCC vs solar repow-
ering (load matching: fixed
net electricity output)

Strategy 4:Cumulative oper-
ational revenue is almost the
same as Strategy 3 for a car-
bon price $25/tonne-CO2.

[42] Coal PP vs
PCC

Not
available

To maximize
power plant′s
short run marginal
cost profitability

24
hours

1.Base case:Load following
operation of the power plant.

All strategy were compared
with the base case (Strategy
1).

2.Exhaust gas venting. Strategy 2:Unikely to be a
cost effective strategy.
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy
generations retrofitted with CO2 mitigation strategies (cont.).

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

3.Solvent storage. Strategy 3:Provide marginal
benefit.

4.Times varying solvent re-
generation.

Strategy 4:The most prof-
itable.

[43] Coal PP +
New Coal
PP + RE
+ IGCC
+ NGT +
NGCC vs
PCC

MILP
(GAMS)

To minimize
cost of the en-
ergy generating
system with fol-
lowing constraints:
1.CO2 emission.
2.Energy demand.
3.Capacity of
the power plant′s
boilers.

20
years

1.BAU (Base case study). 1.Increment of CO2 avoid-
ance could lead to the in-
crease of electricity cost.

2.BAU and fulfill targeted
energy demand regardless of
CO2 emission limit.

2.NGCC + PCC and new
coal PP + CCS are more
favorable for improving the
CO2 avoidance.

3.Variability CO2 emissions
(20%, 30%, 40% and 50%
from the projected CO2
emission)
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy
generations retrofitted with CO2 mitigation strategies (cont.).

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

[44] Coal PP
+ Gas
fired PP +
Petroleum
fired PP vs
CCS

Inexact
Two-
Stage
Chance-
Constrained
Program-
ming
Approach

To maximize
system benefits
through allocating
the electricity gen-
eration under the
policy of emission
trading.

15
years

1.Emission allowances are free
for power plants.

1.Increased restrictions on
CO2 emission would result in
decreased system benefits.

2.Emission allowances are free
at 90%, 40%, and 10% of
CO2 emissions generated in a
power plant during period 1,
2, and 3.

2.The optimized electricity
generated by the coal-fired
power plant would reduce as
free emission allowances di-
minish.

3. Emission allowances are
free in period 1, 2, and 3 at
all 10% of CO2 generated in
each power plant.

[45] Coal PP vs
PCC

MILP
(GAMS)

To maximize NPV
and optimize CO2
capture capacity.

30
years

1.Invest in PCC plant (in-
clude operating cost and ini-
tial investment cost).

1.PCC plant might make dif-
ferent capture capacity selec-
tion depending on their ex-
pected CO2 price and their
value for flexibility.
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy
generations retrofitted with CO2 mitigation strategies (cont.).

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

2.Not invest in PCC plant
but paying the carbon tax.

2.Capturing at low capac-
ity is less expensive and not
capture at full scale may en-
able a faster development of
CCS.

[46] Coal PP
vs PCC +
OXY

MINLP
(GAMS)

To minimize cost
of electricity.

1
year

1.Buying or selling emission
allowances.

1.Oxyfuel combustion is
more cost effective than
PCC in a cap and trade
framework.

2.Reducing emission by
investment in abatement
technology.

[47] Coal PP
+ Oil PP
+ Nuclear
PP + NG
PP + Hy-
droelectric
PP vs CCS

MILP
(GAMS)

1.Economic mode:
To satisfy a CO2
emissions reduc-
tion target while
maintaining and
enhancing power
to the grid.

Not
avail-
able

2 Options:
1.Fuel balancing
2.Fuel switch

1.Fuel balancing con-
tributes to the reduction
of the amount of CO2
emission by up to 3%.
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Table 2.2: A summary of previous studies on the management decision-making (planning and scheduling) of various energy
generations retrofitted with CO2 mitigation strategies (cont.).

Ref. Plants Technique Objective function/
constraint

Planning
horizon Strategy Outcome

2.Environmental
mode:To minimize
the CO2 emissions
while maintaining
and enhance power
to the grid.

Operation mode: 1.Economic
mode 2.Environmental mode
3.Integrated mode

2.The optimal CO2 mitiga-
tion decision are found to be
highly sensitive to coal price.

3.Integrated
mode:Combine
above objective
functions

Under 4 planning scenarios:
1.Base load demand
2.A 0.1% growth rate in
demand 3.A 0.5%
growth rate in demand
4.A 1.0% growth rate in
demand
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2.3 Thesis novelty

The innovative features of this thesis compare to previous literatures are that it

offers a temporal multiscalar decision support framework critical for top-down

management decision making of coal-fired power plant integrated with PCC sys-

tem. It focuses on the perspective of the plant manager (enterprise level) to the

operator/engineer viewpoint (instrumentation level) by integrating a superstruc-

ture optimization-based algorithm (apply to a power plant) with an advanced

control strategy embedded into nonlinear empirical PCC model. Whereby, most

of the previous studies (as listed in the Table 2.1 and Table 2.2) focused on the

management decision (planning and scheduling) at the single level (e.g. enter-

prise and policy levels respectively) without considering responses arising from

the integrated process. Another key distinction of this thesis is that real data is

used for electricity and carbon prices based on Australian Energy Market Oper-

ator (AEMO) and EU ETS data, respectively. Moreover, futuristic data is fore-

casted based on historical profile of electricity prices and environmental stability

of present level of greenhouse gas emission in Australia (Government estimates

of the future carbon price). Even though several studies have employed real elec-

tricity prices, the carbon prices have remained fixed in all previous studies, while

this thesis incorporates the dynamic profile of electricity and carbon prices. This

thesis therefore demonstrates a management tool to support the decision-making

in power generation in a carbon-constrained situation. This helps to overcome

significant challenges imposed on coal-fired power plants when considering the

installation of PCC technology. The decision support framework develops in this

thesis accommodates economic, technical, and environmental aspects while in-

directly provides futuristic insight in the investment and financial risks of PCC

associated with power plant.

31



Chapter 3

Non-linear system identification

of solvent-based PCC plant

This chapter demonstrates the development of PCC dynamic model via black box

system identification technique (purely empirical). System identification tech-

nique builds mathematical model of dynamical system based on the actual pilot

plant or experimental data. In this chapter, the PCC empirical model is devel-

oped based on the pilot plant data located at Tarong power station in Queensland.

The development of this empirical model requires much less effort and less time

consuming, however the model only valid at best for the range of data used in its

development.

This chapter contains material published in [48].
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3.1 System identification approach

A mathematical model of PCC plant with a 30 wt% MEA solvent is attempted

by employing a multivariable non-linear autoregressive with exogenous input

(NLARX) model. A standard parametric form of a NLARX discrete time model

with one-step-ahead prediction can be described as follows:

ym(t) = f[ym(t− 1), ym(t− 2), ..., ym(t− na), ur(t), ..., (3.1)

ur(t− nk), ..., ur(t− nk − nb) + 1] + em(t)

where m and r are the output and the input systems respectively. The na and

nb are matrices of the past outputs and inputs included in the system, nk is a

matrix of the time delay in each input to output, em(t) represents the modelling

error, and t the is time step. The function f [ ] represents an unknown nonlinear

function where the modelling error generated from this model is neglected.

Since PCC plant is characterized as a multiple input multiple output system

(MIMO) and a non-linear process, this black box structure can be an alternative

way to develop a robust process model to be substituted with the first princi-

ple approach. A simplified PCC process flow diagram consisting of an absorber

(ABS), a heat-exchanger (HE) and a desorber (DES) columns is shown schemat-

ically in Figure 3.1. Input-output variables for the development of the PCC

model via a system identification tool are illustrated in Figure 3.2. The variables

were selected according to the literature studies and based of the available data

generated from a pilot plant. A comprehensive description of this pilot plant is

available elsewhere [49].
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ABS DES

Flue gas 
flow rate, u1

CO2 concentration 
in flue gas, u2

Lean solvent 
flow rate, u3

HE

CO2 concentration at
off gas, y1

Reboiler heat
 duty, u7

CO2 concentration at
top desorber, y4

Top stripper 
flow rate, y5

Lean solvent 
temperature, u4

Lean solvent 
temperature, y3

Rich solvent 
temperature, y2

Rich solvent 
flow rate, u5

Rich solvent 
temperature, u6

Figure 3.1: A simplified PCC process flow diagram.
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3.1. System identification approach

Figure 3.2: Process input output variables for the key PCC process units.

The PCC-NLARX model structure with the input-output model ranges can be

described by Equation 3.2.



y1(t)

y2(t)

y3(t)

y4(t)

y5(t)


=



y1(t− 1), .....

y2(t− 2), .....

y3(t− 3), .....

y4(t− 4), .....

y5(t− 5), .....





u1(t), .....

u2(t), .....

u3(t), .....

u4(t), .....

u5(t), .....

u6(t), .....

u7(t), .....


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3.1. System identification approach

ym(t) =



y1(t)

y2(t)

y3(t)

y4(t)

y5(t)


, ur(t) =



u1(t)

u2(t)

u3(t)

u4(t)

u5(t)

u6(t)

u7(t)



(3.2)

where limits for ym and ur are as follows:

y =



1 ≤ y1 ≤ 99(mass%)

10 ≤ y2 ≤ 120(oC)

10 ≤ y3 ≤ 120(oC)

85 ≤ y4 ≤ 99(mass%)

30 ≤ y5 ≤ 90(kg/hr)



u =



400 ≤ u1 ≤ 700(kg/hr)

10 ≤ u2 ≤ 18(mass%)

10 ≤ u3 ≤ 80(L/min)

20 ≤ u4 ≤ 40(oC)

10 ≤ u5 ≤ 60(L/min)

50 ≤ u6 ≤ 40(oC)

50 000≤ u7 ≤550 000(kJ/hr)



(3.3)
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3.2 PCC plant NLARX model development

The PCC-NLARX model is applied to a set of real data collected from PCC pilot

plant located in Tarong power station, Queensland, Australia. A dynamic data

subject to the perturbation in steam pressure into reboiler system are used for

model development. This PCC model consists of an absorber, a rich/lean heat

exchanger and a desorber linked together. The significant contribution of this

chapter is an innovative approach to model a PCC plant incorporating a rich/lean

heat exchanger unit via input-output measured data. Since the rich/lean heat

exchanger unit makes a major contribution to capital and operating costs [50],

the involvement of this auxiliary system in the present PCC model development

can provide assistance for future research work, for instance in flexible operation

with a techno-economic strategy.

To avoid excess computation in the PCC system identification, three unit oper-

ation models were developed; the absorber, heat exchanger and desorber models

respectively. The dynamic data excluding plant start-up and shut down data were

collected from the actual pilot plant where the time interval for each sample was

10 s. Data were then segregated into two subsets, one for model estimation and

one for model validation. All data involved in this PCC model development went

through the data pre-treatment method which involved removing the biases and

outliers. After the validation process, the three models (with best-fit percentage

at one-step-ahead prediction output with 95% confidence level) were exported to

the Simulinkr workspace. Subsequently, each model was linked together to pro-

duce a PCC-NLARX dynamic model, combining an absorber, a rich/lean heat

exchanger and a desorber. At the end, the Simulink environment was used to run

a transient simulation of the PCC system for about ten hours of simulation time.
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3.3 Model validation of individual units

Experimental data from the pilot plant and predicted output of the NLARX

models for the absorber, heat exchanger and desorber are depicted in Figure 3.3 -

Figure 3.5. For the absorber model, the outputs are CO2 concentration in the off

gas (y1), rich solvent flow rate (u5) and rich solvent temperature (u6), while for the

desorber model the outputs are lean solvent temperature (y3), CO2 concentration

in the stripper top (y4) and top stripper flow rate (y5). Additionally, the heat

exchanger outputs are based on the temperature streams connected between the

absorber and the desorber as depicted in Figure 3.2.

From Figure 3.3, it can be observed that the NLARX model and experimental

outputs (y1, u5 and u6) match well. Whereas, in Figure 3.4 and Figure 3.5, the

model under predicts the value for y2 and over predicts the value of y4, though

the trend of the model responses are in agreement with the experimental data.

The significance of this model validation is to ensure the developed PCC model

of each unit can predict and mimic actual responses so as to reduce model error

when the individual units are combined in a simplified model as is described in

the next section.
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Figure 3.3: Absorber model validation.
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Figure 3.4: Heat exchanger model validation.
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Figure 3.5: Desorber model validation.
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3.4 A 4 x 3 system model for PCC plant

A simplified model of the PCC plant can be described by a 4 x 3 system as

illustrated in Figure 3.6. A simplified block diagram for this process can be

seen in Figure 3.7. A simplified 4 x 3 PCC model structure can be described

by Equation 3.4, while the transfer function of the PCC model is delineated

Appendix A.

 

Figure 3.6: A simplified 4 x 3 PCC system.
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Figure 3.7: PCC model block diagram.


y1(t)

y4(t)

y5(t)

 =


y1(t− 1), .....

y4(t− 2), .....

y5(t− 3), .....





u1(t), .....

u2(t), .....

u3(t), .....

u7(t), .....



ym(t) =


y1(t)

y4(t)

y5(t)

 , ur(t) =



u1(t)

u2(t)

u3(t)

u7(t)


(3.4)

3.5 Validation of 4 X 3 system model

Figure 3.8 demonstrates the successful validation of the PCC output variables

consist of CO2 concentration in the off gas (y1), CO2 concentration in the desor-

ber top (y4) and top desorber flow rate (y5). It can be seen that, the PCC-NLARX

model is capable of predicting the dominant dynamics of the PCC experimen-

tal measurements which lends credence to the proposed model. Moreover, the

development of this dynamic model does not involve a complex model structure
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3.5. Validation of 4 X 3 system model

providing a higher execution speed.
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Figure 3.8: Validation of the simplified 4 x 3 PCC model.
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3.6 Model solution: Implementation in Simulink

The decisive step in developing a PCC model in the Simulink workspace is to

export the NLARX model system identification functions into the Simulink en-

vironment. To circumvent the complexity of the Matlab programming language

and nonlinear differential equations, a Nonlinear ARX model block function was

chosen to imitate the NLARX data driven model. The individual process model

(absorber, heat exchanger and desorber) was exported to the Simulink workspace

via a Nonlinear ARX model block function. The individual models are then linked

together as shown in Figure 3.9. The details of the Simulink PCC model structure

with z-functions are illustrated in Figure 3.10. The advantage of the Simulink

workspace is its capability to integrate different dynamic models as long as each

system has similar input or output variables.

3.7 Open loop dynamic analysis

The objective of this dynamic analysis is to assess the behavior of the PCC

process when dealing with process uncertainty such as set-point changes and

disturbances. Furthermore, the dynamic analysis can provide an insight into the

transient behaviour of the absorption and desorption processes in PCC plant,

providing information on dynamic parameters such as time constants which are

important for process controllability, start-up and shutdown. The open loop

dynamic behaviour of the PCC process is analysed using step changes in the

input variables: flue gas flow rate, CO2 concentration in flue gas, lean solvent

flow rate and reboiler heat duty. These step changes reflect the actual operation

of a power plant retrofitted with a PCC process. To run the open loop dynamic

simulation, the process model was initialized using nominal values referring to

Cousins’s paper [49] and based on the frequency analysis of pilot plant data.

45



3.7. Open loop dynamic analysis

These include flue gas flow rate at 550 kg/hr, CO2 concentration in flue gas at

16 mass %, lean solvent flow rate at 26 L/min and reboiler heat duty at 342 000

kJ/hr (100 kW). The perturbations were introduced one at a time during ten

hours of simulation time and have been altered independently, where one input

is varied and the others remain constant.
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Figure 3.9: Simulink user defined model for dynamic PCC process.
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(a)

(c)

(b)

Figure 3.10: The NLARX model structure for (a) absorber, (b) heat exchanger

and (c) desorber in Simulink workspace.
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3.7.1 Step changes in flue gas flow rate

The variation of flue gas flow rate (u1) typically associated with the change in

power plant load at off-peak and high-peak hours, may contribute to operational

challenges for the PCC system. To demonstrate the performance of PCC plant

towards upstream operation volatility, independent step tests are introduced to

the u1 with respect to the base case model trajectory as illustrated in Figure 3.11

by assuming CO2 concentration, lean solvent flow rate and reboiler heat duty are

at constant values.

Based on Figure 3.11, the output responses changed rapidly at the onset of the

disturbances, revealing an immediate effect from the step change. It can be seen

that the output response for CO2 concentration in the off gas (y1) increase steeply

when subjected to the positive step change. Conversely, CO2 concentration at

the top of the stripper (y4) and top stripper flow rate (y5) decreased gradually

when the flue gas flow rate (u1) was increased, which then caused a reduction

in total CO2 gas flow at the top of the desorber column. However, the variation

of both variables (y4, y5) during increase/decrease flue gas flow rate has only

small deviation at approximately 0.03%. This possibly occurred because of the

short contact time between vapour and liquid in the desorber column. For a

negative step change in flue gas flow rate (u1), CO2 concentration in the off gas

(y1) reduced steadily along with a concomitant increase in CO2 concentration

at the top of desorber. Based on this specific analysis, the nonlinearity evident

in the three outputs varies as shown by the asymmetric profiles of the responses

resulting from the input step changes. This is due to the various ranges of process

time constants; 2-3 minutes for the fastest dynamics (u1-y1 relationship) to 20-25

minutes for the slowest dynamics (u1-y4 relationship).
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Figure 3.11: Output responses (y1, y4, y5) due to a ± 10% step change in flue

gas flow rate (solid line: base case; dotted line: positive step change; dashed line:

negative step change).

3.7.2 Step changes in CO2 concentration in flue gas

Changes in CO2 concentration in the flue gas (u2) commonly occurs due to the

complete or incomplete combustion of the fossil fuel. It is also influenced by the

composition of coal (i.e. carbon) and the coal usage per unit electricity generated

from the power plant. Furthermore, a drop in power plant load may sometimes

require plants to ‘co-fire’ (i.e. with oil) in order to maintain stable operation in

the boiler.

As illustrated in Figure 3.12, the step changes did not affect the CO2 concentra-
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tion in the off gas (y1). This is in contrast to the other two output variables,

where significant changes occurred at the onset of the disturbance. For a positive

step change of CO2 concentration in the flue gas (u2), CO2 concentration at the

top of the stripper (y4) and the top stripper flow rate (y5) increased slightly. This

consequently elevates the CO2 gas flow rate at the top of the desorber column.

From these results, it appears that only y4 and y5 have significant open loop dy-

namic responses while y1 does not show a significant response. Different ranges

of process time constants were observed; 6− 8 minutes for the fastest dynamics

(u2 -y5 relationship) to 20− 24 minutes for the slowest (u2 -y4 relationship).
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Figure 3.12: Output responses (y1, y4, y5) due to a ± 10% step change in CO2

concentration in flue gas (solid line: base case; dotted line: positive step change;

dashed line: negative step change).
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3.7.3 Step changes in lean solvent flow rate

The third experiment performed was used to determine the effect of lean solvent

flow rate on PCC performance. The results of this evaluation are presented in

Figure 3.13. It was observed that for a negative step change in lean solvent flow

rate (u3), CO2 concentration at the top of the stripper column has increased

significantly. This possibly occurred because at this specific condition, CO2 lean

loading is also increased which consequently elevates the CO2 equilibrium partial

pressure. Hence, less steam is required for stripping process which then leading to

higher CO2 concentrations at the exit to the stripper column. The nonlinearity

of the output responses due to the step changes are similar with the outcome in

Section 3.7.2. The process time constants for this dynamic response are 5− 7

minutes for the fastest dynamics (u3 -y5 relationship) to 22− 24 minutes for the

slowest (u3 -y4 relationship).
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Figure 3.13: Output responses (y1, y4, y5) due to a ± 10% step change in lean

solvent flow rate (solid line: base case; dotted line: positive step change; dashed

line: negative step change).

3.7.4 Step changes in reboiler heat duty

Reboiler heat duty plays a significant role in the solvent regeneration process

which in turn affects the economics (operating cost) of PCC plant. This vari-

able also represents the performance of the desorber column [51]. The changes

in reboiler heat duty illustrate the interruption of heat supply from a power

plant or external auxiliary system [31]. Fluctuation in steam extraction from the

power plant low-pressure steam supply can also contributes to the variation in

reboiler heat duty [52, 53]. A positive step change in reboiler duty represents a

larger steam flow entering the reboiler system which could happen during off-peak
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3.7. Open loop dynamic analysis

hours (lower electricity prices). A negative step change imitates a disruption in

heat supply from the power plant or a reduction of steam entering the reboiler

during peak hours (high electricity prices). The reboiler heat duty (expressed

in kJ/hr) was determined by the measurement of the steam flow rate in the re-

boiler circuit coupled with the heat of condensation of the steam by assuming all

steam condensed in the reboiler. However, this computation method may feature

a drawback as it will include heat loss to the environment (weather dependant)

and reliability of the data itself. Therefore, to improve the desorber model per-

formance, additional data pre-treatment for steam flow rate to the reboiler has

been conducted by removing the zero/negative values of flow rate.

As illustrated in Figure 3.14, the perturbations did not affect CO2 concentration

in the off gas (y1). For a positive step change in reboiler heat duty, the top stripper

flow rate increased gradually (y5). This is in contrast to the decrease observed in

the CO2 concentration in stripper gas flow. At this perturbation, the calculated

time constants are approximately 6− 15 minutes for the fastest dynamics (u4-y5

relationship) to 8− 27 minutes for the slowest (u3y4 relationship).
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Figure 3.14: Output responses (y1, y4, y5) due to a ± 10% step change in reboiler

heat duty(solid line: base case; dotted line: positive step change; dashed line:

negative step change).

3.8 Sensitivity analysis

Local sensitivity analysis via a variable perturbation method was carried out to

identify the relative importance of input model parameters on the model out-

put. Information on the sensitivity of the dynamic PCC-NLARX model will aid

understanding the model’s predictive capability and uncertainty in output corre-

sponding to possible changes in input parameters. Sensitivity analysis also offers

information in the dynamics of the process [30]. Positive/negative step changes

of input variables have been considered to determine the sensitivity of the output

variables towards input changes. In each run of the model, in each step, one of
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the inputs is changed and the rest of the inputs were kept constant. The input

variables affecting the output are summarized in Table 3.1 along with their sen-

sitivity index (process gain). According to the results, output y1 is not sensitive

to the input variables u2, u3 and u7. While, u7 is the most influential variable

towards outputs y4 and y5 followed by the inputs u3, u2 and u1. This supports

the open loop dynamic analysis presented in Section 3.7.

Table 3.1: Sensitivity analysis of input-output PCC model.

Input (ui)
Step change Sensitivity index (4yi/4ui)

(in ui) Output (yi)
y1 y4 y5

u1 (kg/hr) 10% 0.99 -0.004 -0.004
-10% 0.99 -0.015 -0.006

u2 (mass %) 10% 0.00 0.035 0.019
-10% 0.00 0.027 0.025

u3 (L/min) 10% 0.00 -0.037 -0.01
-10% 0.00 -0.056 -0.019

u7 (kJ/hr) 10% 0.00 -0.608 0.99
-10% 0.00 -0.274 0.981

3.9 Key performance metrics of PCC plant

Two key metrics, CO2 capture efficiency(CC ) and energy performance(EP), are

evaluated. Both keys are appraised in order to measure the performance of PCC

plant. The value of the key metrics at nominal conditions are selected to be

around 80% and 4.0 MJ per kg CO2 captured for the CO2 capture efficiency and

energy performance respectively. The key metrics can be calculated as follows:
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3.9. Key performance metrics of PCC plant

Carbon capture efficiency, CC (mass %) = (y4/100)y5

u1(u2/100)x 100%

(3.5)

Energy performance, EP (MJ/kg) = u7

y5(y4/100) ÷ 1000

(3.6)

Previously, Section 3.7 presented validation of the developed PCC model via the

predicted outputs profiles. While, here, to ensure the accuracy of the model and

its reliability to represent the actual PCC process, experimental and simulation

data for CC and EP are evaluated and compared. Table 3.2 delineates data

validation at different operating conditions. It can be seen that the deviations are

less than 4% for carbon capture efficiency and less than 7% for energy performance

which providing reliability of the developed PCC model.

Figures 3.15 - 3.17 show the dynamic responses of PCC key performance index

resulting at ± 10% step tests of respective inputs (u1, u2, u3, u7). The step

changes were introduced one at a time in certain period and have been altered

independently, where one input is varied and the others remain constant.

As depicted in Figure 3.15, a decrease in flue gas flow rate causes a sudden increase

in CC%. An opposite response occurs from an increase in flue gas flow rate. These

outcomes are similar to the study conducted by [31, 23, 54, 27]. Concomitantly,

EP has slightly increased when flue gas flow rate was increased which resulted

from the low CO2 flow rate at the top of the desorber column (Figure 3.11). This

is proven by the equation of EP (Equation 3.6) where, increasing of CO2 gas
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Table 3.2: Summary of the CC% and EP at different operating points. The
quoted deviations are in comparison with experimental/pilot plant data.

Condition Operating point CC EP
Simulated Deviation Simulated Deviation

(%) (%) (MJ/kg) (%)
1 u1: 489 kg/hr 67.3 -3.4 2.18 1.2

u2: 10%
u3: 38 L/min
u7: 581 686 kJ/hr

2 u1: 512 kg/hr 99 0 3.78 2.2
u2: 10%
u3: 40 L/min
u7: 550 284 kJ/hr

3 u1: 505 kg/hr 99 0 3.85 6.4
u2: 10%
u3: 39 L/min
u7: 236 566 kJ/hr

4 u1: 507 kg/hr 99 0 8.56 5.5
u2: 10%
u3: 39 L/min
u7: 537 822 kJ/hr

flows at the top of the stripper will reduce the amount of EP. Similar responses

resulted from step changes in CO2 concentration in flue gas for CC% as shown

in Figure 3.16. However, the EP has reduced significantly at the positive step

change of CO2 concentration as governed by the Gibbs energy of mixing.

Changes in the lean solvent flow rate significantly influence both key metrics as

depicted in Figure 3.16. The CC% reduced when the lean solvent flow rate was

increased and consequently caused an increment in EP. Generally, the effect of

lean solvent flow rate (increase or decrease) to the PCC output profiles relate to

the lean loading range. Based on this specific study, increasing the lean solvent

flow rate resulted in a reduction of CO2 total gas flow rate emitted at the top

stripper column (Figure 3.17). This underpinned by the Equation 3.5 where, a

reduction in CO2 total gas at top stripper column (y4 ∗ y5) caused a decrement
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3.9. Key performance metrics of PCC plant

in CC%.

Typically, the desorber column involves complex physical and chemical reactions

due to the unstable nature of the heat balance along the column and the reversibil-

ity of the CO2 absorption reaction which consequently affects the performance

of the column [55, 56]. Based on Figure 3.18, a reduction in reboiler heat duty

contributes to the reduction of CC% and EP values. Whereas, the opposite per-

formance occurred for a positive step change of reboiler heat duty. For a positive

perturbation, it can be seen that at the onset of the disturbance, CC% and the

EP were slightly increased before reducing to new conditions (higher than the

nominal condition). These scenarios occur because at the sudden increase of re-

boiler heat duty, more CO2 gas flows at the top of the desorber column which then

reduces the amount of CO2 emitted in the off gas stream in the absorber column.

However, in this case, the CO2 concentration in off gas did not change through-

out the simulation process (as illustrated in Figure 3.12). Therefore, based on

these combined effects, i.e elevation of reboiler heat duty followed by a constant

concentration of CO2 at the absorber’s outlet stream produces the corresponding

pattern as shown in Figure 3.18. A similar pattern of the energy performance

during a negative perturbation of reboiler heat duty was found in [31].

According to the aforementioned responses, the CC% and EP concurrently changed

when there were perturbations in lean solvent flow rate and reboiler heat duty.

These can be explained as follows: An amine solvent (lean solvent) flows in the

absorber column countercurrent to the flue gas containing CO2. A chemical ab-

sorption reaction takes place between the CO2 and the amine solvent whereby

the lean amine solvent absorbs the CO2 and enters the desorber column as a

CO2-rich solvent. Essentially, the CO2 concentration level in the rich solvent is

dependent on the solvent circulation rate, contact time and temperature of the
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3.9. Key performance metrics of PCC plant

column. This eventually affects the efficiency of CO2 capture rate at the desorber

column. On the other hand, EP is defined as the energy required to capture a

kg of CO2 which inherently has a linear relationship with the reboiler heat duty

(refer Equation 3.6). These mechanisms suggest why changes in lean solvent flow

rate and reboiler heat duty result in significant simultaneous changes to CC%

and EP.

Based on the open loop dynamic analysis, the highest CC% can be obtained at a

negative step change in flue gas flow rate (u1) at 83% capture. On the other hand,

the lowest EP can be obtained for a negative step change in reboiler heat duty, u7

at 5.07 MJ/kg. However, the aforementioned outcomes are only applicable for an

identical operating range of PCC plant and not necessary refer as the optimum

conditions. The sensitivity analysis for CC% and EP is tabulated in Table 3.3.

It can be seen that the lean solvent flow rate (u3) provides significant influence

towards CC% and EP. Therefore, it is suitable to be one of the manipulated

variables in the control strategy. Flue gas flow rate and CO2 concentration in

flue gas are inherently behaved as a process disturbance to PCC process and

therefore it is impractical to choose them as a manipulated variable. In this

work, reboiler heat duty is selected as one of the manipulated variables together

with the lean solvent flow rate. Several PCC control literatures have selected

reboiler heat duty as one of the manipulated variables [30, 25].
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Figure 3.15: Key performance metrics during ±10% step tests in flue gas flow

rate (solid line: base case; dotted line: positive step change; dashed line: negative

step change).
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Figure 3.17: Key performance metrics during ±10% step tests in lean solvent

flow rate (solid line: base case; dotted line: positive step change; dashed line:

negative step change).
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Figure 3.18: Key performance metrics during ±10% step tests in reboiler heat

duty (solid line: base case; dotted line: positive step change; dashed line: negative

step change).
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3.10. The PCC-NLARX model application range

Table 3.3: Key input-output performance metrics.

Input (ui) Step change Sensitivity index (4yi/4ui)

(in ui) Output (yi)

EP (MJ/kg) CC (%)

u1 (kg/hr) 10% 0.004 -0.913

-10% 0.019 -1.128

u2 (mass %) 10% -0.038 -0.872

-10% -0.038 -1.06

u3 (L/min) 10% 0.057 -0.094

-10% 0.077 -0.04

u7 (kJ/hr) 10% 0.67 0.309

-10% 0.287 0.738

3.10 The PCC-NLARXmodel application range

The developed PCC-NLARX empirical model has limited applicability whereby

its validity is for within the range of data used in the model development as de-

lineated in Section 3.1 (limits for ym and ur). Where, the operational data used

in the development of empirical model are influenced by the design and configu-

ration of the plant. Thus, small discrepancy might apparent if this model is used

to predict the response of different size/configuration of PCC plant. Moreover,

the quality and quantity of the historical data are of significant importance to

ensure the accuracy of the model. Whereby, in many cases, there are limitations

in obtaining a good operational data. Based on the open loop dynamic analyses
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3.10. The PCC-NLARX model application range

conducted in this chapter, the PCC-NLARX model predicts responses of a real

and specific PCC plant subject to input plant operating conditions. Scale-up

of this empirical model is theoretically possible but requires exhaustive informa-

tion from different sources for instance basic (laboratory) research, mathematical

modelling, pilot plant studies and experience gained from commercial PCC unit

operations [57]. This empirical model is practical for incorporation with control

strategies to assess the potential economic viability of implementation the large

scale PCC plant. Nevertheless, careful attention should be made when using this

model for scale up or for other PCC plants since the predicted responses may

be radically different depending on size and the configuration of any new plant

[58].
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Chapter 4

Control strategies for flexible

operation of solvent-based PCC

plant

This chapter demonstrates the development and design of control architecture

based on the multivariable control analysis. The objective is to assess the flex-

ibility of the control strategy in PCC control performance that would lead to

higher capture rates and enhanced PCC energy performance. At the same time,

to accommodate with different PCC constraints for instance environmental, eco-

nomic and operational constraints. Closed-loop analyses are conducted to assess

the controllability performance of the PCC plant with simulated upstream upsets

in power plant subject to servo and regulator problems.

This chapter contains material published in [59, 60].
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4.1. Controllability analysis: Methodology

4.1 Controllability analysis: Methodology

This section describes the methodology to develop and implement a conventional

PID and an advanced MPC strategies to be embedded into the PCC system.

The procedure followed to perform the controllability analysis is presented in

Figure 4.1.

Essentially, the objective of the controllability analysis is to develop a flexible

control strategy to accommodate with different PCC constraints for instance en-

vironmental, economic and operational constraints. Concurrently, to lead, to the

enhancement of PCC energy performance and CO2 capture rate, in response to

power plant part-load, electricity and carbon prices. To represent those demands,

a specific scenario was created. It includes set point tracking scenario (servo prob-

lem) of PCC key performance metrics which are CC and EP, and disturbance

rejection scenario (regulator problem) which are perturbation in flue gas flow

rate and CO2 concentration in flue gas. Here, the environmental constraint is

indicated via CC and is controlled in a range between 75 - 90 %. While, EP

is controlled in a range between 3.6 - 4.5 MJ/kg CO2 to characterize the eco-

nomic constraint via steam consumptions from power plant intermediate turbine

to reboiler system.

4.2 Multivariable control analysis

From the 4 x 3 PCC system, two further output states are defined being CC and

EP (as described in Section 3.9). The 4 x 3 PCC system is then collapsed into a 4

x 2 PCC system as illustrated in Figure 4.2, where, here, the CO2 concentration

at the off-gas (y1), is defined as a secondary output variable (embedded into the
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Control Objectives  

CO2 capture , 75 % ≤ CC ≤ 90 % 
Energy performance,  3.6 ≤ EP ≤ 4.5 MJ/kg CO2 

 
 
 

MV and CV selections 
RGA and MIC analyses 

 
  

 
PID control 
structure 

 

 
MPC control 

structure 
 

 
Set tuning proportional (P), 
integral (I) and derivative 
(D) parameters via auto-

tuning method 
 

Set tuning weights, control 
and prediction horizons 

 
 

Performance evaluation 
1. Sinusoidal change in the flue gas flow rate and 

stepwise change of CO2 mole fraction in flue gas 
2. Stepwise set point tracking of CC and EP within 

control objective 
 

  Figure 4.1: Methodology to perform the controllability analysis.

PCC model subsystem in Simulink environment).

As mentioned in the previous chapter, the inputs consist u1,u2, u3 and u7. The

latter two variables (u3 and u7) were selected as the manipulated input vari-

ables while u1 and u2 were indicated as disturbance variables. The multivariable

control analyses were then conducted via this reduced 4 x 2 PCC system. Anal-

yses conducted include relative gain array (RGA) and Morari index of integral

controllability (MIC). The results are provided in Table 4.1.
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4.2. Multivariable control analysis

Figure 4.2: A simplified PCC process flow diagram.

Table 4.1: The result of multivariable control analyses of PCC using Simulink
model.

Parameter Result
u3 u7

RGA EP [0.2185 0.7815]
CC [0.7815 0.2185]

MIC 0.1830

Based on the RGA analysis, it suggested that CC is best controlled using the

lean solvent flow rate (CC -u3) and EP can be controlled via the reboiler heat

duty (EP-u7). Similar findings were presented by others [30, 61, 33, 26]. On the

other hand, the MIC calculation revealed positive eigenvalues which shows that

the process gains have produced a stable diagonal control structure and therefore

the structures are integral controllable, which suggests that the proposed variable

pairing can suitability tune without jeopardizing the robustness and stability of

existing closed loop system [62, 63]. Figure 4.3 shows a simplified PCC control

structure based on the RGA result.

4.2.1 Proportional, integral and derivative (PID) control

design

PID controller is a control loop feedback mechanism widely used for industrial

application. A PID controller works by minimizing the error between a measured

process variable and a desired set point. A typical control law for a PID controller
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4.2. Multivariable control analysis

Figure 4.3: A general PCC control structure.

is expressed in Equation 4.1.

u(t) = Kpe(t) + Ki

∫ τ

0
e(τ)dτ +Kd

d

dt
e(t) (4.1)

In the above equation, e(t) represents the error which is the difference between

the current input and the desired set point. The u(t) is the output of the al-

gorithm that is attempting to control the input. While, Kp, Ki and Kd are the

proportional, integral and derivative gains respectively.

Control architecture of this feedback control system is graphically presented in

Figure 4.4. Based on the RGA results, the CC -u3 control loop is indicated by PID

1 while the EP-u7 control loop is indicated by PID 2. In this analysis, an advanced

PID control based on anti-wind-up scheme is employed to prevent integration

wind-up in the controllers. Two anti-windup methods are selected in the controller
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4.2. Multivariable control analysis

design, where PID 1 applies clamping method at respected controller parameters;

P = 0.64, I = 0.00014 and D = 521.15. While, for PID 2, back-calculation method

is chosen at respected controller paramteres; P = 48.28 and I = 9.65.

u7

ABS DES

u1 ,  u2

 u3

HE

y4 ,    y5

FT CT 

PID1
FT CT 

PID2

FT 

y1

Figure 4.4: A PID control architecture.

4.2.2 Model predictive control (MPC) design

MPC represents a controlled algorithm by explicitly use a process model to fore-

cast the process output at future time instants (horizon). It works by optimizing

the future plant behavior (future estimation error) through computing a present

control signal (present estimation error) using the process model. Contrary to

PID controller, MPC capable to have multiple outputs (multiple control actions)

in response to the changes in the input measurements. The advantage of MPC

strategy over the conventional feedback control loop (PID) is its capability to

handle with multifaceted processes with unstable poles and large time-delays,
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4.3. Closed-loop analysis

such as a PCC process. Another key advantage of MPC is that it can explicitly

handle constraints on the inputs and outputs.

In this analysis, MPC scheme is designed and tuned using the controller design

toolbox within Simulinkr workspace. Both manipulated variables (lean solvent

flow rate and reboiler heat duty) are simultaneously manipulated to achieve both

control objective; CC and EP. In the MPC algorithm, a large output weight was

set for EP compared to CC. While, identical input weight was adjusted for lean

solvent flow rate and reboiler heat duty. The purpose of tuning the inputs/out-

puts weights are to predetermine the most influential variable for the closed-loop

performance (control analysis). Therefore, based on this control algorithm set-

ting, the MPC will work by prioritizing the EP set point control performance

rather than the CC set point control performance. This is to ensure that no sub-

stantial energy will be imposed to the power plant concurrently to optimize the

economic operation of the integrated plant (power plant with PCC). The control

objectives with manipulated and disturbance variables were incorporated into the

MPC architecture as illustrated in Figure 4.5.

4.3 Closed-loop analysis

Fundamentally, integration of PCC plant into coal-fired power plant acquires ap-

proximately 10 − 40% extra energy compare to an existing plant without PCC

system [64]. To circumvent this energy burden, PCC plant should operate flexi-

bly corresponds with the electricity demand, carbon and electricity market prices.

Hence, considering those transient operations and volatile market trends, an in-

telligent and robust control strategy is required to acclimatize with the dynamic

scenarios occurred in PCC operation.
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u7

ABS DES

u1 ,  u2

 u3

HE

y4 ,    y5

FT CT 

FT 

y1

MPC

EP

TT 

FT CT 

CC

Figure 4.5: The MPC architecture.

Figure 4.6 illustrates the actual 660 MW coal-fired power plant profile data which

includes gross power plant load from minimum (200 MW) to maximum capacity

(660 MW), flue gas flow rate exhausted from the power plant and CO2 concen-

tration in flue gas throughout 2 hours operation. It can be seen that the flue

gas flow rate increased with the increment of power plant gross load and vice

versa. The variation of flue gas flow rate (increase and decrease) represents the

high-peak and off-peak hours respectively [60]. While, CO2 concentration varies

randomly based on completeness or incomplete combustion of the fossil fuel. It is

also influenced by the composition of the coal (i.e. carbon) and the coal usage per

unit electricity generated from the power plant. Furthermore, a drop in power

plant load may sometimes require plants to ‘co-fire’ (i.e. with oil) in order to

maintain stable operation in the reboiler system [48, 60]. Based on the actual

profile of power plant operation (Figure 4.6), flow rate of flue gas will increase

(approximately 20 - 25%) with an increment of power plant gross load (increased
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4.3. Closed-loop analysis

4%) while, the CO2 concentration are varied between 0.05 - 0.1%.

Figure 4.6: Actual profile of power plant gross load, CO2 concentration in flue
gas and flue gas flow rate in the coal-fired power plant.

Figure 4.7 shows a profile of daily electricity prices based on the regional reference

price, RRP ($/MWh) and total electricity demand (MW) at NSW on January

2014 for 24 hours duration [65]. Two peaks are spotted throughout the period

between 6 to 8 pm (around 10 500 MW) and 7 to 9 am (around 9 500 MW).

These two periods are categorized as high-peak hours. On the other hand, off-

peak hour is translated by minimum electricity dispatch exhibited between 2 to 5

pm (6 500 MW). Based on these combined profile (in Figure 4.6 and Figure 4.7), a

hypothetical control scenario is developed to imitate the actual operation of PCC

plant associated with coal-fired power plant. Detail of the scenario is explained

in the next section.
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Figure 4.7: Profile of daily electricity price and dispatch in NSW on 28 August
2014 obtained from AEMO.

4.4 Control implementation strategy

To evaluate controller robustness and its capability to adapt with the dynamic

operation of PCC plant retrofitted into coal-fired power plant, two control scenar-

ios were developed by combining actual trends in Figures 4.6 - 4.7. The control

scenarios were designed to simulate approximately 24 hours of PCC operation

which starts from 3 pm and ends at 3 pm of the following day.

Scenario 1 (in Figure 4.7) represents high-peak period illustrated by the elevation

of electricity demand (increased in power plant load and electricity price). At this

condition, PCC plant may necessary to launch a transitory decrement of CC%.

This can be done by reducing the amount of steam delivering to the reboiler

system (at PCC plant) since this steam can be used in the high/intermediate
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4.4. Control implementation strategy

turbine to meet the increased in power demand. Therefore, for this scenario, a

controller is responsible to reduce the capture rate concurrently minimizing the

EP at 3.6 MJ/kg CO2.

Scenario 2 (in Figure 4.7) features off-peak period demonstrated by low electricity

demand which usually translated by the low electricity prices (cheap). At this

condition, more low-pressure steam from the steam turbines can be dedicated

for the PCC plant. Under this scenario, a control algorithm should be able to

capture CO2 at the maximum rate but at the same time maintaining optimal

energy performance of PCC plant at 4 MJ/kg CO2.

To illustrate the actual operation of integrated power plant and PCC facility, the

sinusoidal changes of flue gas flow rate and random stepwise of CO2 concentra-

tion in flue gas were introduced to PCC plant (Figure 4.8). Essentially, flue gas

flowrate increases during high-peak period and vice versa during off-peak period.

In this analysis, the sinusoidal pattern is chosen to imitate an extreme opera-

tion of power plant under the unprecedented situation. Where, the sinusoidal

perturbation of flue gas flowrate will demonstrate a combination of normal and

irregular operations of power plant. This is to challenge the robustness of pro-

posed controllers not only at anticipated operation (off-high peak hours) but also

under the unprecedented operation. On the other hand, set point changes for CC

and EP are elucidated by combining Scenarios 1 and 2 (Figure 4.7) as projected

in Figure 4.9.
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4.5. Control performance evaluation

Figure 4.8: Perturbation profile for flue gas flow rate (u1) and CO2 concentration
in flue gas (u2.)

4.5 Control performance evaluation

To evaluate the limitation and capability of the proposed control strategies (PID

and MPC), simultaneous extreme perturbations were introduced into the flue gas

flow rate and CO2 concentration in flue gas as illustrated in Figure 4.8, concurrent

with the set point changes of CC and EP (depicted in Figure 4.9).

The simulation results for control performance evaluation are shown in Figures

4.10 - 4.11. Figure 4.10 represents the controller performance for CC and EP,

while Figure 4.11 features the responses from the manipulated variables (reboiler

heat duty and lean solvent flow rate) towards the set point tracking and distur-

bance rejection cases over the simulation horizon. It can be seen that, the MPC

strategy exhibits satisfactory set point tracking and disturbance rejection for CC
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4.5. Control performance evaluation

Figure 4.9: Set point changing profile for CO2 capture efficiency (CC ) and energy
performance (EP).

compared to PID controller. This can be demonstrated by the response of lean

solvent flowrate. Where, sudden and large transitions of lean solvent flow rate

were appeared at every 3 to 4 hours in order to ensure the best CC performance.

This scenario evident the robustness of MPC scheme in handling with the ex-

treme set point tracking and disturbance rejection scenarios. Nevertheless, an

instant reaction of lean solvent flowrate could jeopardize the overall performance

of PCC process. Since practically, PCC system will take some time to react

with any changes/perturbations in the process. This condition could be one of

the biggest challenges if MPC scheme is to be considered for large-scale installa-

tion/deployment. Similarly, for EP, MPC outperformed the PID control strategy

by providing excellent set point tracking and disturbances rejection throughout

the simulation period.
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4.5. Control performance evaluation

As shown in Figure 4.10, under the extreme perturbations, PID controller is

incapable to reach the CC and EP set points efficiently. For instance, in CC

performance, PID controller unable to track each set point changes throughout

the simulation horizon (under-resumed the set point changes). This performance

can be translated with the response of lean solvent flow rate. Where, under the

extreme perturbations and unprecedented set point changes, PID 1 unable to

maximize the lean solvent flow rate (depicted in Figure 4.10) in order to capture

high amount of CO2. Similar responses exhibited in reboiler heat duty. Interest-

ingly, satisfactory control performance was showed in EP between 4 pm to 9 pm

and between 9 pm to 3 am. This possibility occurs because under the Scenario 1,

both CC and EP are at minimum level therefore it is easy for PID 2 to manipu-

late reboiler heat duty in order to attain the EP set point. It is noticeable that

both PID controllers started to violating the set point target (reach it capability’s

limit - after 3 am) under the extreme changes of CC, u1 and u2. Moreover, the

spikes evident in the CC and EP PID control signals at time between 7 am to 11

pm were caused by aggressive proportional and derivative response towards the

disturbances and abrupt changes in set points.

MPC controller has shown satisfactory and excellent control performances for CC

and EP respectively. Based on Figure 4.10, it can be seen that there are slight

deviations at the time when the PCC plant launched a transitory increment of

CC where it took approximately one hour for CC to reach it new set point. This

can be explained by the fact that the reaction in amine-based PCC process is not

instantaneous [21] and therefore it requires some time for the reaction to com-

plete. Random fluctuations of lean solvent flow rate and reboiler heat duty were

resulted from the extreme perturbations and unprecedented pattern of set points

introduced to the PCC system. Where, as CC increased, more CO2 needed to be

recovered, therefore the lean solvent flow rate was increased accordingly in order
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to attain the respective CC new set points. It can also be observed, through-

out the simulation period, optimal reboiler heat duty has been utilized. Which

characterized the economic and technical (operation) benefits of PCC system em-

bedded with MPC strategy. The fluctuations of manipulated variables evident an

active/progressive responses of manipulated variables towards those conditions in

handling with the set point tracking and disturbance rejection problems. On the

other hand, an excellent control performance of EP was featured by the capa-

bility of MPC to track the EP set points consistently throughout the simulation

horizon.

Based on these analyses, PID controller reaches its control limitations where it

fails to perform efficiently under the extreme and unprecedented operations of

power plant retrofitted with PCC facility. Contrariwise, MPC provides highly

reputable performance by its ability to capture maximum CO2 without much

consumption of reboiler heat duty (PCC plant operated at the optimal energy

performance). Thus characterizes the flexibility of the PCC plant when embedded

with suitable control strategy such as MPC. Since, the response represent 24 hours

of plant operation, thus careful attention should be taken into consideration while

interpret this control responses.
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1

2

Figure 4.10: The controller performance (PID controller and MPC) for CO2

capture efficiency (CC ) and energy performance (EP) under set point tracking

and disturbance rejection cases.
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1

2

Figure 4.11: Response of lean solvent flow rate and reboiler heat duty from PID

controller and MPC.
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Chapter 5

Techno-economic analysis of PCC

system associated with coal-fired

power plant

This chapter presents an algorithm that combines MINLP (optimization algo-

rithm) with MPC (control algorithm) and demonstrates its application for coal-

fired power plant retrofitted with PCC plant. The objective of the optimization

algorithm is to maximize net operating revenue of the plant by forecasting op-

timal power plant load and CO2 capture rate. While, the MPC algorithm is

used to control the performance of PCC plant by ensuring the robustness of

PCC control strategy under real-time perturbation pattern from the upstream

process. This chapter focuses on the development, capability and application

of the control-optimization algorithm in the operation of power plant retrofitted

with PCC system. The advantage of this integrated algorithm is its capability to

capture financial benefits hidden in the dynamics of electricity and carbon price

trends, and does so applicable for a real-time carbon trading.

This chapter contains material published in [66, 67].
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(control-optimization algorithm)

5.1 Development of the hybrid MPC-MINLP

algorithm (control-optimization algorithm)

Two independent algorithms are integrated to perform a control-optimization

study of PCC retrofitted to the coal-fired power plant which incorporates four

levels; regulatory/policy, enterprise, plant and instrumentation levels. Briefly, the

algorithm interfaces multiple time scales (temporal) from seconds represented

by instrumentation level to years represented by regulation/policy level, while

considering size scales (multiscalar) transcending across from control actuators

to equipment all the way to multi-plant superstructure (the power plant and

capture plant are effectively described by integrated dynamic models).

At the top level, the optimization process uses a genetic algorithm (GA) function

for mixed integer non-linear programming (MINLP) problems. In this analysis,

GA is selected as a solver because of its capability to handle large number of

parameters, easily distributed and suitable for nonlinear integer. Moreover, GA

searches in parallel from the population points thus it can prevent being trapped

in local minima solution like conventional solvers. It optimizes the dynamic model

superstructure encompassing of a 660 MW coal-fired power plant and PCC plant.

Both models were constructed via reduced model and were validated against real

power plant data. This superstructure models were employed and adopted from

[68] while the optimization formulation was adopted from [41]. Here, the net load

matching mode has been chosen as the optimization formulation. Both works

[68, 41], were conducted by fellow colleagues in my research group and thus not

a genuine contribution of this thesis. On the other hand, the bottom algorithm

involves an advanced control strategy of the PCC plant employing the MPC

control law. The development of PCC dynamic model at the instrumentation

level has been explained in Chapter 3. While, the MPC control strategy (at the
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plant level) was designed based on the controllability study elucidated in Chapter

4. The two algorithms (control and optimization algorithms) are then integrated

to demonstrate a control-optimization algorithm (the hybrid MPC-MINLP) as

illustrated in Figure 5.1.

86



5.1. Development of the hybrid MPC-MINLP algorithm
(control-optimization algorithm)

PP + PCC flowsheet models

Calculate revenue, net load 
and CO2 capture

Net load matched ?

Y/N

Profit maximized ?

Y/N

Adjust gross load

 (Fuel uptake)

Carbon priceConstraints

N

Y

N

Y

MPC

Optimal  values of CO2 
capture rate, CCideal

Power plant net load

Constraints

u2u1

CCactual

Calculate actual and ideal 
profits 

Perform N simulation case 

studies

Response Surface Modelling 

A technical nonlinear prediction of the PCC 
process                                                       

Qreb = f (Xi), Aux = f (Xi) 

Input real time-based power 
plant gross load (t) 

Input real time-based                  
electricity price (t)

Evaluation of control-

optimization study based on 

PP-PCC revenue

Economic study via  optimization 

with GA based on real-time based 

plant/data

CC EPu3 u7

PCC process

INSTRUMENTATION LEVEL

PLANT

 LEVEL

ENTERPRISE LEVEL

Technical study via NARX-

MPC data-based model 

Operating 

variables (xi
n
)

Initial carbon 

capture rate 

guess

CCideal

Figure 5.1: The control-optimization algorithm (the hybrid MPC-MINLP) for

power plant integrated with PCC plant.
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(control-optimization algorithm)

According to Figure 5.1, at the enterprise level, the optimization algorithm is used

to assist decision making of a power plant retrofitted with PCC system. The main

objective and concern at this level is to ensure maximum net operating revenue

at optimal power plant load and CO2 capture rate (CC ). The objective function

of the optimization algorithm is to feature the system net operating revenue as

described in Equation 5.1.

MaxRevenue =
∫
Pe ∗ (Power plant net load− PCC penalty) ∗ dt− (5.1)

−
∫
Ct ∗ CO2 emitted ∗ dt− PPP − PPCC

Where Pe is the price of electricity and C t is the carbon price. The net operating

revenue composite consists of three individual costs which include PP P as the

power plant operational cost, PPCC as the PCC operational cost and finally,

the cost of CO2 emission (indicated in the second integration term). The first

integration term in the above equation represents the revenue generated through

selling of electricity. The capital costs for the power plant and PCC plant are

not considered by assuming the size of both have been fixed for all cases. The

operating cost are evaluated through Equations 5.2 - 5.3 and magnitude of the

cost terms are tabulated in Table 5.1.

PPP = O&MPP,coal ∗ sizePP/8760 (5.2)

PPCC = (FCIPCC ∗ 0.12) + (solloss ∗ solcost) (5.3)
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Where, O&MP P ,coal is operation and maintenance costs of power plant ($/MW),

sizeP P is size of power plant, FCIPCC is fixed capital investment, solloss is solvent

lost (kg/tonne-CO2 captured) and solcost is cost of solution ($AUD /kg).

Table 5.1: Operating and maintenance costs assumptions for the power plant and

PCC system.

Variable Assumption

O&MP P ,coal $AUD 50 000/MW/year [69]

Coal specific cost $AUD 1.5/GJ

Power plant capacity/size 660 MW

O&MPCC Eq. 2 from Li et al. [70]

Solvent loss 1.5 kg MEA/ tonne-CO2 captured

Solvent cost $AUD 2/kg MEA

Sequestration cost $7/tonne-CO2 captured

At the enterprise level, the optimization algorithm generates three inputs and two

outputs. The inputs are power plant gross load(t), electricity price(t) and carbon

price(t), where the inputs are in a function of time, t. While the outputs are

optimal CO2 capture rate (CCideal) and net power plant load. The optimization

algorithm observes the prevailing situation in the plant based on the real-time

inputs to make timely decisions of the outputs. The optimization algorithm

then dispatches the outputs to the bottom layer. This level exhibits process

optimization under dynamic operation with 30 minutes time intervals.

Subsequently, at the plant level, a control algorithm is implemented in conjunction

with the data-based PCC dynamic model to control the PCC plant performance.

Here, the control algorithm receives a signal (CCideal) from the optimization al-

gorithm. At the same time, MPC scheme regulates u3 and u7 (act as manipulated
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variables) to ensure that the plant meets the control objective by tracking the set

point of CCideal. Here, the output response of the MPC scheme is actual CO2

capture rate (CCactual). Where, the CCactual represents the actual output of CO2

capture based on the response from the MPC algorithm.

At the instrumentation level, a 4 x 2 PCC system is employed. The inputs

consist of u1, u2, u3 and u7, while the outputs are CC and EP. As mentioned

before, the u3 and u7 are played as the manipulated variables while the u1 and u2

are constant at 500 kg/hr and 14 mass% respectively. Here, the EP represents the

amount of energy required to capture a kg of CO2, which then being controlled

at 4 MJ/kg. The values for those two inputs (u1, u2) are selected based on the

nominal operating conditions of actual pilot plant. While, the value of energy

performance is set at 4 MJ/kg in order to ensure the PCC plant is operated within

the optimal energy requirement. Both levels (plant and instrumentation levels)

exhibit plant wide control operation under dynamic operation with 10 seconds

time intervals.

Since both algorithms (optimization and control algorithms) have difference sam-

ple time, a rate transition block function was used as a medium to transfer the

output signal from the MINLP algorithm (enterprise level) to MPC controller

(plant level) to ensure the sample time is coordinated as shown in Figure 5.2. In

this case, a rate transition will transmit the optimization output signal from 30-

minute interval time to 10-second interval time. Another advantage of this block

function is its capability to ensure integrity of the traded data and to guarantee

deterministic data transfer. Figure 5.2 depicts the simulation model for control

algorithm executed in Simulink workspace.
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Rate transition  
Block diagram 

Figure 5.2: A rate transition block function connected between control and opti-
mization algorithms in PCC model in Simulink workspace.

5.2 Capability and applicability of the hybrid

MPC-MINLP algorithm

The capability (in term of sensitivity and best-response algorithm) of the devel-

oped control-optimization algorithm (hybrid MPC-MINLP) is evaluated based on

the 24-hour operation of integrated plant. While, the application of developed al-

gorithm is demonstrated based on the yearly operation of integrated plant. Both

are evaluated based on the historical and future scenarios in Australia.

Two techno-economic scenarios represent by fixed operation mode and flexible

operation mode were developed. The fixed operation mode was initiated by con-

straining the lower and upper bounds of CO2 capture rate at 90% while maintain-

ing the objective function (maximize plant net operating revenue) at correspond-
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ing power plant loads. Whereas, in the flexible operation mode, CO2 capture

rate was allowed to vary along with the power plant loads in order to maximize

plant net operating revenue. The general optimization formulation for fixed and

flexible operation modes is given in Table 5.2.

Table 5.2: Operation modes for power plant retrofitted with PCC system.

Fixed operation mode Flexible operation mode
Objective function: Maximize revenue (t, Pe, x1 = 90%, Maximize revenue (t, Pe, x1,

x2, Ct) x2, Ct)
s.t. s.t.

Process model: Qreb (x1,x2), EAux (x1,x2)

Initial conditions: x1= CRI , x2= PPLI ,

Process variables bounds: CRMin <x1 <CRMax

PPLMin <x2,<PPLMax

Constraints: h(x1,x2) <0

Where x1 and x2 are the capture rate (%) and power plant load (MW Gross)

respectively. The CRI , CRMin and CRMax are the initial, lower bound and up-

per bound carbon capture rates and PPLI , PPLMin and PPLMax are the initial,

minimum and maximum power plant loads. The h denotes the process inequality

constraints that means the net electricity output of the power plant does not

exceed the historical net load of the power plant at any particular time. While,

the Qreb and EAux represent the reboiler heat duty and auxiliary electrical energy

requirement respectively as presented in Equations 5.4 and 5.5. These non-linear

reduced models were developed via response surface methodology to the data

obtained from the sensitivity analyses using the commercial software MODDE

(Umetrics, Sweden). The models were created by first performing a sensitivity

analysis (model simulation) of the independent variables and recording the re-

sultant response variable values. The response variable results were then used

in the regression process, and all data were scaled into the interval of [-1, 1] in

order to provide a universal tolerance of error to all the factors in the regression

92



5.2. Capability and applicability of the hybrid MPC-MINLP
algorithm

process. For comprehensive explanation on these reduced model development,

one can refer to [68].

Qreb = 168.4 + 117x′1 + 78.12x′2 + 20.64x′21 + 43.4x1x2 + 3.53x′22 (5.4)

Eaux = 28.97 + 16.06x′1 + 2.392x′2 − 1.85x′21 + 1.87x1x2 − 0.75x′22 (5.5)

The hybrid MPC-MINLP algorithm was implemented in Matlab (Mathworks,

USA) and solved using a PC with a dual core i7 processor and 16 GB RAM. For

each scenario, the optimization algorithm was executed three times to ensure the

reliability and consistency of the generated outputs (ideal CO2 capture rate and

power plant net load). Table 5.3 lists the average deviation for each simulation

cycle for flexible operation mode (24-hour operation). It can be seen that the

average deviations for all scenarios are relatively small and can therefore be ig-

nored. Therefore, for this work, the last generated outputs were reported (third

simulation cycle) as the final optimization outputs.

Table 5.3: The average deviations of triplicate optimizations in CCideal and power

plant net load for flexible operation mode.

CO2 capture rate, CCideal Power plant net load

$AUD 5/tonne CO2 0.01% 0.001%

$AUD 25/tonne CO2 0.06% 0.004%

$AUD 50/tonne CO2 0.03% 0.021%
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Initial conditions optimization variable bounds for minimum and maximum power

plant loads and carbon capture rates for running the power plant associated with

PCC plant were taken to be:

CRMin = 25%

CRMax = 90%

CRI = 50%

PPLMin = 0 MW

PPLMax = 700 MW

PPLI = 500 MW

Here, the algorithm consists of two conditions which are ideal and actual con-

ditions. The top-down section (enterprise level) represents the ideal operation

of power plant associated with PCC facility (integrated plant) by demonstrating

a slow-time scale to attain a close to optimal economic operation. While, the

bottom-up section (plant and instrumentation levels) illustrates the actual oper-

ation of integrated plant corresponding to the inputs/responses despatch from the

ideal operation. This section (plant and instrumentation levels) illustrates a ro-

bust fast-time scale regulatory control subject to all uncertain condition imposed

by the enterprise level.

5.2.1 A 24-hour operation analysis based on carbon pric-

ing mechanism (fixed carbon price)

In a 24-hour scenario, two techno-economic scenarios were developed based on

the historical (year 2011) and futuristic electricity prices (year 2020) at three

different rate of carbon prices ($AUD 5, 25, 50/tonne-CO2). The electricity

prices for both scenarios are illustrated in Figures 5.3 - 5.4 respectively. The
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computation time required for execution of MINLP algorithm for one scenario

(24-hour) was approximately 5 hours. While, at the plant level, the computation

time required for MPC controller was about 10 minutes.

Figure 5.3: The electricity prices (regional reference price, RRP) for 2011.

5.2.1.1 Fixed operation mode: Year 2011 and 2020

Figure 5.5 shows power plant net loads generated from the MINLP algorithm

for year 2011 and 2020 for fixed and flexible operation modes. The results were

combined to illustrate a comparative study between both modes. During fixed

operation mode, at corresponding electricity and carbon prices, optimizer forced

power plant to generate more energy at each time interval compared to the flexible

operation mode as depicted in Figure 5.5. For instance, in year 2011 and 2020,

at $AUD 5/tonne-CO2 of carbon price, fixed operation required additional 60

MW (from the loads generated via flexible mode) at every half hour in order for
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Figure 5.4: The electricity prices (regional reference price, RRP) for 2020.

plant to obtain maximum net operating revenue. Contrary, an initial ramp up

was generated for flexible operation mode in year 2011 (at carbon price of $AUD

25/tonne CO2 and $AUD 50/tonne CO2) in order for plant to gain maximum

operating revenue. Interestingly, for flexible operation mode, a positive spike

featured at all rates of carbon prices between hour of 22 and 24. The spike

featured due to the sudden change (increase) of power plant gross loads that

have been fed to the optimization algorithm (MINLP algorithm) as illustrated

in Figure 5.6 (dashed circles). This response evident that the MINLP algorithm

is well performed by trying to imitating the historical gross loads of power plant

subject to maximum net operating revenue.

The output responses from the controller are depicted in Figure 5.7 and appeared

to be identical under three different carbon price rates. Here, only control per-

formance for year 2011 is illustrated, since similar performance appeared in year
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Figure 5.5: Power plant load generations at respective carbon price rates. (a)
$AUD 5/tonne-CO2 (b) $AUD 25/tonne-CO2 and (c) $AUD 50/tonne-CO2
(dashed line: fixed mode operation (constant CO2 capture rate,CC at variable
power plant loads); continuous line: flexible mode operation (variable in CO2
capture rate,CC and power plant loads)) for 2011.
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Figure 5.6: Real time-based power plant gross load profile inputted to the opti-
mization algorithm.

2020. In Figure 5.7, the black line indicates the CCideal which was calculated

from the economic optimization algorithm, while the red bar is the actual CO2

captured based on responses from the MPC controller in the PCC process. Since

the MPC controller is capable to track the CCideal perfectly, there is no deviation

in ideal and actual revenues for this specific operation mode.

5.2.1.2 Flexible operation mode: Year 2011

Figure 5.8 shows that the techno-economic analysis based on year 2011 with

the aims to generate maximum plant revenue for a given duration. Figure 5.8

(a-i, b-i, c-i) illustrate the power plant loads generated from the optimization

algorithm in conjunction with the optimal CO2 capture in Figure 5.8 (a-ii, b-ii,

c-ii). It can be seen, at the highest carbon price ($AUD 50/tonne-CO2), CO2
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Figure 5.7: Control responses for fixed operation mode under three carbon prices
(($AUD 5, 25, 50 tonne-CO2) (black line: CC ideal; red bar: CC actual)) for 2011.
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was captured at almost maximum plant capacity, 90% and opposite performance

occurred at low carbon price. Where, PCC plant operated at minimum capacity

between 20% - 30%. Moreover, during high-peak demand where high electricity

prices were induced $AUD (2500 - 4000/MWhe), the capture rate was observed

to decrease and at low electricity prices $AUD (100 - 200/MWhe, the capture

rate appeared to increase as illustrated in Figure 5.8 (b-ii) and (c-ii) respectively.

These behaviours are comparable to the study conducted by [41, 71]. It is evident

that there are trade-offs between the power plant load and CO2 capture rate in

order to obtain maximum plant revenue.

At the plant level (Figure 5.8(a-ii, b-ii, c-ii)), the control responses are represented

by the black line and red bar respectively. It can be seen in Figure 5.8 (b-ii) and

(c-ii), there is a slight deviation at the time when the PCC plant launched a

transitory increment (hours 4 - 8). This is explained by the fact that in the

PCC process, the reaction of CO2 absorption in amine solvent is fast, but not

instantaneous [21], and therefore it affects the performance of CCactual to track

the CCideal consistently. Furthermore, the dynamic nature of PCC plant itself

caused a process to take some time to attain a new steady state point [71].

Besides that, two spikes have been spotted in the CCideal at 13 hours and 14

hours (Figure 5.8 b(ii)). The spike at both times is due to the abrupt reduction

of electricity prices (refer Figure 5.3). Since the optimization aims at achieving

maximum net operating revenue, an ideal carbon capture rate is calculated every

half hour based on the power plant load and electricity price. Therefore, drops

in electricity price, coupled with moderate to high carbon prices lead to spikes in

the carbon capture rate in order to maximize net operating revenue. Conversely,

a sudden drop in the ideal carbon capture rate is observed in Figure 5.8 c(ii) at 10

hours, which can be attributed to sudden jump in electricity price at that time.
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It can be observed, based on these two circumstances, the optimization algorithm

is sensitive to rapid and high magnitude changes in electricity prices.

On the other hand, Figure 5.8(a-iii-iv, b-iii-iv, c-iii-iv) illustrates the response of

PCC manipulated variables, which are u3 and u7. The responses show that the

u3 was compensating with the u7 in order to tracking the CO2 capture set point

(CCideal). In other words, both manipulated variables showed proactive reactions

in handling unprecedented changes of the PCC plant. This performance featured

the robustness of MPC scheme where at the same time can substantially enhance

the efficiency and flexibility of the PCC process. It can also be observed that the

reboiler heat duty decreased when maximum power plant load was imposed. This

condition elucidates that less steam is provided to the stripper column of PCC

plant due to more steam use in the power plant to generate more electricity. This

inverse correlation between the power plant load and reboiler heat duty (steam)

has been deeply explained by Van der Wijk et al. [72] in their study.
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Figure 5.8: A techno-economic analysis for year 2011 at carbon price (a) $AUD

5/tonne-CO2 (b) $AUD 25/tonne-CO2 and (c) $AUD 50/tonne-CO2 (black line:

CC ideal; red bar: CC actual).
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5.2.1.3 Flexible operation mode: Year 2020

The forecast techno-economic analysis for year 2020 is illustrated in Figure 5.9.

Figure 5.9(a-i, b-i, c-i) shows the power plant loads generated from the optimiza-

tion algorithm corresponds with the optimal CO2 capture in Figure 5.9 (a-ii, b-ii,

c-ii). While, Figure 5.9(a-iii-iv, b-iii-iv, c-iii-iv) features the control algorithm

responses which are u3 and u7. It can be seen under high carbon price ($AUD

50/tonne-CO2) scenario, the optimizer has suggested to capture high percentage

of CO2 (90%) throughout the day even during high electricity prices (hours 8

- 12). Same outcome was indicated in Qadir’s work [41] under same trial year

(2020) when solar repowering technology was injected to the power plant asso-

ciated with PCC. This is showed that in case of intermittently of solar sources

and seasonal changes, the integration of power plant with PCC alone is still yet

capable to capture maximum rate of CO2. Furthermore, even at a stagnant

CO2 capture rate (90%), imposing a fix carbon rate ($AUD 50/tonne-CO2) may

give significant impact to the total net revenue as illustrated in the next section

(Financial benefit). This is commensurate with the study conducted by [42].

Identical control performance occurred when PCC plant launched a transitory

increment from low to high capture rate (hours 18 - 23) as illustrated in Fig-

ure 5.9(c-ii). Where, it took approximately 4 hours for actual CO2 capture rate

(CCactual) to reach the set point (CCideal). Interestingly, this relatively longer

settling time able to reduce the operational burden of PCC process, since a rapid

set point tracking of CO2 capture in response to dynamic operation of power

plant entails operational distress to the process [42]. As expected, MPC per-

formed an excellent set point tracking of CO2 capture under carbon price rate,

$AUD 50/tonne-CO2 and satisfactory tracking performance at $AUD 5/tonne-

CO2 and $AUD 25/tonne-CO2 of carbon tax respectively. These reflect by the

diminutive deviation between ideal and actual total revenues generated from the
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system (less than 1% error per day) as tabulated in Table 5.4 in the next section.

Moreover, MPC capable to reduce the utilization of reboiler heat duty conse-

quently minimizing the amount of energy penalty associated with the solvent

regeneration.
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Figure 5.9: A techno-economic analysis for year 2020 at carbon price (a) $AUD

5/tonne-CO2 (b) $ 25/tonne-CO2 and (c) $AUD 50/tonne-CO2 (black line:

CCideal; red bar: CCactual).
105



5.2. Capability and applicability of the hybrid MPC-MINLP
algorithm

5.2.1.4 Financial benefit: Revenue comparison

Normalised ideal and actual total net operating revenues are illustrated in Fig-

ure 5.10. Normalising was carried out via a ratio of revenue in the range 0 to

1, by dividing revenue of each scenario by the maximum revenue among all the

scenarios (fixed and flexible operation modes). Here, ‘1’ illustrates the highest/-

maximum cost incurred while ‘0’ indicates minimum/lowest cost incurred. The

key reason of this 0 to 1 scale is to provide reference to the investor/plant manager

on the potential plant revenue possible when installation of PCC system is taken

into consideration. Due to the extensive demand in the implementation of large-

scale PCC plants (in the present and future), this scalable plant (power plant

integrated with PCC system) revenue can provide a quick and practical guide-

line/reference to the investor/plant manager. The right hand side of Equation

5.1 was segregated into four individual terms as given in Equation 5.6.

(PP+PCC)Rev = A - B - C - D

(5.6)

Where A represents the plant revenue generated through selling of electricity,

B is cost of CO2 emission (carbon price paid), C and D are the power plant

and PCC operational costs respectively. Table 5.4 tabulates the net operating

revenue deviation for each operation mode at three different carbon prices. As

expected, net operating revenue generated from fixed operation mode is much

lower compared to that in flexible operation (actual) with an average difference

of 7% for three different rates of carbon price for year 2011 and 2020 as illustrated

in Figure 5.10.
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Figure 5.10: Comparison between ideal/actual net operating revenue for fixed
operation mode, ideal revenue for flexible operation mode and actual revenue for
flexible operation for year 2011 and 2020.

Table 5.4: Net operating revenue deviation for fixed and flexible operation (ac-
tual) modes at respective carbon prices ($AUD 5/tonne-CO2, $AUD 25/tonne-
CO2, $AUD 50/tonne-CO2).

Plant mode Plant net operating revenue ($)
Deviation (%) $AUD 5/tonne-CO2 $AUD 25/tonne-CO2 $AUD 50/tonne-CO2

2011 10.7 5.1 3.5

2020 21.0 3.1 0.0

This outcome occurs because, during fixed operation mode, when maximum cap-

ture rate is required, the PCC plant is forced to increase its operational capacity,
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thus affecting the power plant operation. To clarify this result, net operating rev-

enue breakdown is illustrated for both operation modes ($AUD 25/tonne CO2)

in year 2011 as showed in Figure 5.11. It can be seen, for fixed operation mode,

a huge cost is imposed on the integrated plant due to the substantial amount

of power plant and PCC operating costs (C and D), resulting in reduction of

revenue for fixed operation mode. Moreover, this type of operation mode (fixed

mode) can be an operational burden on the integrated plant, and thus reduce

plant performance in the long term. It is anticipated that only a small total

cost of CO2 emission (B) needs to be paid for fixed operation mode compared to

flexible mode.

On the other hand, the surplus revenue generation is caused by a small decrement

in actual PCC operating cost, as illustrated in Figure 5.11 (for case at carbon

price of $AUD 25/tonne CO2). This surplus revenue is influenced by the flex-

ibility of integrated plant where consequently generate optimal plant operation

and optimal plant operating costs. To illustrate the impact of individual cost

towards plant net operating revenue, the actual net operating revenue compos-

ite for flexible operation mode for three different carbon prices is illustrated in

Figure 5.12.

5.2.2 Yearly operation analysis based on emission trading

scheme (ETS)

In a yearly scenario, similar two techno-economic scenarios were developed based

on the historical (year 2011) and futuristic electricity prices (year 2020). This

section extends the scope of previous section by imposing real-time carbon prices

(carbon-trading scheme, EU ETS) and evaluating maximum revenue for an entire

year. The forgoing section focused on the development and capability of the
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Figure 5.11: Breakdown of actual plant net operating revenue for flexible oper-
ation mode for scenario under carbon prices of $AUD 5, $AUD 25 and $AUD
50 per tonne CO2 (A: plant revenue generated through selling of electricity, B:
cost of CO2 emission (carbon price paid), C : power plant operational cost and
D: PCC operational cost).

hybrid MPC-MINLP algorithm in the operation of power plant retrofitted with

PCC process with an objective function to maximize plant revenue for a 24-hour

planning horizon. While, the current section presents a low-carbon management

framework founded on the hybrid MPC-MINLP algorithm and employing real-

time electricity load and price trends (representing Australian energy market) as

well as variable carbon price trends for the duration of an entire year in 2011.

This section also extends to the use forecast electricity and carbon price trends

for the entire year of 2020. Significant learning is gained for the role of optimal

operation of PCC processes in enhancing the efficiency of the PCC technology

and in enhancing its economics towards full-scale commercial implementations.
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Figure 5.12: Actual revenue composite of power plant retrofitted with PCC sys-
tem.

The innovative features of this work are that it offers a temporal multiscalar

decision support framework critical for top-down management decision making

of coal-fired power plant integrated with PCC system. Another key distinction of

this analysis is that real data is used for electricity and carbon prices (for the full

year 2011) based on AEMO and EU ETS data, respectively. Moreover, futuristic

data (for the full duration of the year 2020) forecast based on historical profile

of electricity prices and environmental stability of present level of greenhouse gas

emission in Australia (Government estimates of the future carbon price).

Figure 5.13 shows the profile of electricity and carbon prices for both years.

For 2011, electricity prices (RRP) were obtained from [73] for one whole year

with data points for every 30 minutes. Whereas, for year 2020, the projected

electricity prices were calculated by assuming 5% yearly increment from the base
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year 2008 with an identical time interval as 2011. In year 2011, negative wholesale

electricity prices were observed between the month of May and June. This fall

occurred during the time where electricity prices in Queensland were higher than

in NSW, which caused electricity to flow counter-price (flow from higher-priced

region across interconnector into lower-priced region) into NSW. These counter-

price flows were influenced by the disorderly bidding associated with network

congestion [74].

To provide some relevance and realism to this study, carbon price trend have

been adapted and extracted based on EUA historical data [75]. For year 2020, a

hypothetical carbon price trend was calculated by assuming 5% yearly increment

and 3% inflation rate induced yearly from the base year 2008. This estimation is

based on the core policy scenario proposed by the Treasury Department, Australia

[76]. Besides that, the carbon prices for 2011 were adapted and normalized from

the EUA historical data. Here, we consider carbon prices as one of the significant

variables in the optimization study since it can influence the profitability of power

plant integrated with PCC [77].

As depicted in Figure 5.1, the first step involves execution of an optimization

algorithm via a parallel computational technique. The computation time required

for one scenario (one year) via parallel computations were approximately 4 - 6

days. While, the computation time required for MPC controller to perform one

scenario (one year) is about one hour.
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Figure 5.13: The electricity and carbon prices for one year at every 30 minute

time intervals, (a) 2011 and (b) 2020.

5.2.2.1 Possible operation modes for coal-fired power plant

Integration of coal-fired power plant with PCC involves three general operating

modes; load following, base load and unit turndown [78] as illustrated in Fig-

ure 5.14. The flexibility of output corresponds with the seasonal and diurnal

fluctuations in electricity demand (electricity prices) and is also based on the
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prevailing environmental policy regulated by the responsible authorities. Load

following mode requires the ability to accommodate different ramp rates that are

reflected in changes in flue gas flow rate and composition [78], while baseload

is the minimum amount of energy produced (usually at constant outputs) at a

low cost during all hours of the year [79]. In contrast, unit turndown occurs due

to thermal transience in boiler and turbine components resulting in decrease of

thermal efficiency at low load (high turndown) [79]. In this study, we consider

these three operation modes based on the nameplate capacity of power plant load

without considering the actual load factor exhibited by the plant for a given pe-

riod. This study is more to predict plausible power plant operation modes when

retrofitted with PCC plant with the objective to attain maximum plant net op-

erating revenue and provide information for making future investment decisions.

Figure 5.14: Three possible generation modes for coal-fired power plant.
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5.2.2.2 Fixed operation mode: Year 2011 and 2020

Figure 5.15 shows the hybrid MPC-MINLP algorithm output for fixed operation

mode for the years 2011 and 2020. Based on year 2011, the optimization output

suggests power plant to operate at unit turndown in order to obtain maximum

plant net operating revenue. To improve the visibility, the trend of power plant

load (2011) under the prevailing electricity prices at a selected period in January

were magnified as illustrated in Figure 5.16. It can be seen that unit turndowns

are frequently implemented during the period of low electricity prices (low de-

mand). Whilst, at the same time, load following mode is operated throughout

the year to balance the overall annual energy production and consumption. Con-

trarily, for year 2020, power plant operated at irregular alternation of generation

modes with chaotic dynamics (an abrupt change) of unit turndown and load fol-

lowing in order to attain maximum plant net operating revenue. Apparently, in

both years, periodic plant shutdowns for maintenance execution were proposed

by the optimizer to imitate/match with the actual operation of coal-fired power

plant based on the gross loads inputted to the algorithm.

At the control level, the output responses from the controller (u3 and u7) appeared

to be constant throughout the planning horizon for years 2011 and 2020. Based

on Figure 5.15, the black line indicates the CCideal which was calculated from the

optimization algorithm (at enterprise level), while the red bar is the actual CO2

captured through responses from the MPC controller in the PCC process (at the

plant level). The benefit of employing MPC algorithm in terms of achieving ideal

net operating revenue is explained in the next section. Since the MPC controller

is capable to track the CCideal perfectly, there is no deviation in ideal and actual

net operating revenues for this specific mode.
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Figure 5.15: Control-optimization responses from fixed operation mode for year

2011 and 2020.
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Figure 5.16: Unit turndown operation of power plant for year 2011 at selected

period in January.

5.2.2.3 Flexible operation mode: Year 2011

Figure 5.17 shows results obtained with hybrid MPC-MINLP algorithm. Fig-

ure 5.17(a-b) illustrates the power plant load and ideal CCideal generated by run-

ning the MINLP algorithm at the corresponding electricity and carbon prices.

Whereas, Figure 5.17(b-d) displays the CCactua1, u3 and u7 responses produced

from the action of MPC algorithm.

As can be observed in Figure 5.17(a), the power plant operated in load following

for a high proportion of the time throughout the year. This reflects that during

load following operation, power plant combined with PCC generated low cost

generation corresponding to its prevailing electricity and carbon prices. The

117



5.2. Capability and applicability of the hybrid MPC-MINLP
algorithm

power plant unit turndown mode is implemented as per the real power plant

operation as shown in Figure 5.17(a). Short-term maintenance (shutdown) plans

were observed in the months of May, June, July and December. This decision is

due to the low electricity prices observed during those four months (Figure 5.13).

This meant that the extended shutdown periods (March and September) imparted

influence on the optimizer output as the optimizer algorithm attempted to match

the actual power plant loads as per constraint equation in Table 5.2. With such

a high occurrence of the mixed operation modes, it is evident that in the future,

uninterrupted operation of coal-fired power plant in baseload will not be feasible

and will virtually disappear from the market [78].

At the plant level, the MPC controller has shown satisfactory control performance

in tracking the CCideal. It can be seen from Figure 5.17(b) that the optimizer

suggests regular minimum capture rate from September to December, which is

due to relatively high electricity prices. On the other hand, it can be observed that

the u3 and u7 were compensating each other in responses to set point change of

CO2 capture rate. The responses show that the lean solvent flow rate is relatively

more sensitive compared to the reboiler heat duty in its reaction to the fluctuation

of CCideal. In other words, lean solvent flow rate gives a faster/ahead response

than the reboiler heat duty. This performance showed that the MPC was able to

reduce reboiler heat duty (economic wise) while achieving capture set point which

characterize the flexibility of the PCC process. It can also be observed that the

reboiler heat duty decreased when maximum power plant load was imposed. This

condition elucidates that less steam is provided to the stripper column of PCC

plant due to more steam use in the power plant to generate more electricity. The

benefit of employing MPC algorithm in terms of achieving ideal net operating

revenue is explained in the next section.

118



5.2. Capability and applicability of the hybrid MPC-MINLP
algorithm

(a) 

(b) 

(c) 

(d)  

 

Figure 5.17: Control-optimization responses from flexible operation mode for year

2011. 119
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5.2.2.4 Flexible operation mode: Year 2020

Baseload operation mode suggested a high proportion of the time for operation

of coal-fired power plant retrofitted with PCC for year 2020 as illustrated in

Figure 5.18. Where, baseload operation was run between month of January and

March. Additionally, the power plant is operated in recurrent maximum load with

intermittent narrow unit turndown and load following. This result is particularly

relevant to power plant operation since energy systems do not all operate in the

same way [77]. Moreover, these mixed operation modes of power plant in line

with scheduled shutdowns are actually assisting to reduce the running cost of

both power plant and PCC.

At the plant level, the MPC controller has shown satisfactory control perfor-

mance in tracking the ideal CO2 capture rate. It can be observed that there are

slight deviations at the time when PCC plant launched a transitory increment

as illustrated in Figure 5.18(b). This is explained by the fact that the reaction

in amine-based PCC process is not instantaneous [21] and requires a few min-

utes for the reaction to complete. This consequently affects the performance of

CCactual to track the CCideal consistently. Furthermore, the dynamic nature of

PCC plant itself causes a process to take some time to attain a new steady state

point [71]. For clarification, we magnified the response of power plant load and

CC% as illustrated in Figure 5.19. The benefit of employing MPC algorithm in

terms of plant net operating revenue is explained in the next section.
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Figure 5.18: Control-optimization responses from flexible operation mode for year

2020.
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Figure 5.19: Power plant load and CO2 capture rate for year 2020 at selected

month (April).

5.2.2.5 Financial benefit: Revenue comparison

Gross revenue costs of operation and the resultant net operating revenue of the

system are graphically illustrated in Figure 5.20 and Figure 5.21 for years 2011

and 2020 respectively by scaling the revenues from 0 to 1 which indicated by nor-

malized revenue. Based on year 2011, for the year profiles, fixed operation mode

incurred operation costs approximately 18% higher than the operation costs un-

der flexible operation (actual) mode. Whereas, in year 2020, flexible operation

(actual) mode attained 14% higher net operating revenue compared to fixed oper-

ation mode. The aforementioned results illustrate that the application of flexible

operation mode enhances plant net operating revenue and provides significant
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cost saving. This corroborates with the study conducted by [71].

In the flexible operation mode, the system subject to 2020 electricity and carbon

prices generated annual net operating revenue of approximately 12% of the gross

revenue. On the other hand, the system with 2011 electricity and carbon prices

incurred a net operating revenue loss roughly 13% of the gross revenue. This

negative net operating revenue occurred possibly because of the lower bound set

for the power plant output (0 MW) and CO2 capture rate (25%). For instance,

during times of very low electricity prices (possibly even negative), the cost of

operation of the power plant and PCC plant would exceed the revenue generated

from selling the electricity generated. Based on this outcome, it can be perceived

that the electricity prices have a significant impact on the net operating revenue

generated from the integrated plant, which consequently influences the power

plant loads projected from the algorithm as explained earlier. The individual

cost for net operating revenue for year 2011 and 2020 under fixed and flexible

operation modes are tabulated in Table 5.5.

The performance of MPC controller was evaluated based on the deviation in ideal

and actual net operating revenue (controller error). According to the calculated

net operating revenue (Figure 5.20 and Figure 5.21), MPC algorithm exhibited

superior control performance by minimizing the controller error to an average of

4%. From the results of this study, it can be concluded that, from an operational

perspective, it would be beneficial to invest in this optimization framework and

its control systems which could allow for a PCC plant retrofitted to a coal-fired

power plant to operate flexibly in the year 2020. Caution must be taken in making

investment decisions on investing in control systems to ensure that the cost does

not exceed any potential benefits of flexible operation. Contrariwise, under 2011

electricity prices, the operation costs of PCC plant retrofitted to a coal power
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plant exceed the gross revenue of the power system.
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Figure 5.20: Revenue breakdown for power plant retrofitted with PCC for year

2011.

Table 5.5: Net operating revenue and its individual costs for year 2011 and 2020
subject to fixed and flexible operation modes.

2011 2020
Fixed operation

mode
(Millions $/year)

Flexible operation
mode (actual)

(Millions $/year)

Fixed operation
mode

(Millions $/year)

Flexible operation
mode (actual)

(Millions $/year)
Net operating revenue -31 -18 48 56

Gross revenue generated
through selling of electricity 162 145 436 461

Cost of CO2 emission 3 18 18 49

Power plant operational cost 70 66 156 164

PCC operational cost 120 78 214 191
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Figure 5.21: Revenue breakdown for power plant retrofitted with PCC for year
2020.

5.3 Contribution of the techno-economic analy-

sis

The outcomes from these analyses present original contributions in the area of

low-carbon management for future power plant emissions by providing a dataset/pro-

file of power plant loads (baseload, unit turndown and load following) and CC%

(which are the outputs from the developed optimization-based control algorithm)

for integrated power plant with PCC facility. Where, the actual scale of PCC

pilot plant has been employed for this analysis. Both data are beneficial for fu-

ture insight if ‘carbon capture ready’ power plants are to become a reality. As

such, a new ‘carbon capture ready’ power plant can be built and operated based

on the technical data obtained from this study. For instance, modern coal-fired

power plants are relatively flexible [80] and require dynamic operation modes
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(traditionally only operated in baseload mode) in sensible timescale in response

to external uncertainties, which include electricity prices, carbon market prices

and electricity demand. Therefore, these analyses/data may serve as a baseline or

reference information to the contractor, engineer and plant operator. Thus, this

will shorten the design, commissioning and troubleshooting stages, concurrently

increasing the technical lifetime of the plant by adapting with future economic,

technological, environmental and safety concerns. Furthermore, those uncertain-

ties provide vital impact on the power plant output and net profit, marginal

cost of generation and the emission profile [78, 80]. Nevertheless, careful at-

tention should be made for this techno-economic analysis since the exclusion of

capital cost might radically change the forecast decision of the developed hybrid

MPC-MINLP algorithm. As such, at high capital cost, implementation of car-

bon prices might not be effective for integrated plant. Consequently, it provides

negative implication to the prevailing climate policy [81]. This scenario might

influence the accuracy in investment decision making of PCC plant with control

technology especially for countries which have different economic and political

status. Whereby, high capital cost tends to be higher in rich countries compare

to developing countries.
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Chapter 6

Optimization strategy for

large-scale deployment of PCC

technology in black coal-fired

power plant under ERF scheme

This chapter employs a previously developed management decision support tool

(the hybrid MPC-MINLP algorithm) for a real implementation in the emission

abatement activity of black coal-fired power plant in Australia. In this chapter,

future operational and financial uncertainties of power plant operation under the

ERF scheme are evaluated. This is performed by estimating a feasible price for a

tonne of ACCU that can provide financial benefit to the power plant throughout

the crediting period. This analysis accommodates economic, technical, policy and

environmental aspects while indirectly offers futuristic insight in the relevance of

commercial deployment of the PCC system at black coal-fired power plants in

Australia.
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6.1 ERF project: Integration of PCC technol-

ogy into existing black coal-fired power plant

Post combustion CO2 capture technology (PCC) is the most mature and feasi-

ble technology that can be employed by the power generation sector to reduce

emissions from the existing fleet of coal-fired power plants. This chapter evalu-

ates the feasibility of using financial support offered by policy mechanisms such

as the ERF to facilitate a PCC project at a coal-fired power plant (the ERF

project). The evaluation must account for multiple plant objectives while at the

same time considering numerous constraints, including those emerging from the

regulations associated with the funding program (i.e. the ERF). A comprehensive

explanation pertaining to the ERF scheme and its project requirement has been

explained in Section 1.3. However, it should be noted that additional requirement

and amendment in the ERF scheme may occur with time due to the political tran-

sition and electoral changes. Thus, the ERF-related information available in this

thesis may only pertinent at the time of completion this analysis. An updated

information pertaining to the ERF scheme is available in [11].

As a preliminary study, a contract period (crediting period) of 7-year is demon-

strated to determine the relevance of ERF policy towards black coal-fired power

plant in NSW, Australia. This is analysed by predicting the financial and oper-

ational uncertainties of the proposed ERF project. The actual contract period

for ERF project can be varied between 7 to 25 years depending on the project

scale. However, the implementation of longer period (more than 7 years) requires

substantially higher computational power (supercomputer) and thus for this spe-

cific analysis, a 7-year of planning horizon and emission baseline of 7 100 000

tonne/year are assumed to be able to replicate a minimal period of coal-fired

power plant ERF project. Several assumptions have been made as below.
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1. The ACCUs are valued at $AUD 50/tonne CO2., and this value is applied

whether the ACCUs are purchased by the ERF, by a business seeking to

reduce its libility under the SGM or if used by the power station to acquit

its own liability under the Safeguard Mechanism. This figure was obtained

by conducting a breakeven analysis of plant net operating revenue using

developed temporal multiscalar decision support framework (hybrid MPC-

MINLP algorithm) available in Chapter 5. Scenario for year 2020 under

flexible operation mode has been chosen for this breakeven analysis as shown

in Figure 6.1. While the figure of $50/tonne CO2 is significantly higher than

prices seen in the first few ERF auctions [11], it is not inconsistent with the

cost of some of the more expensive abatement measures that will be required

if Australian is to meet its emissions reduction target [82].

2. Applying a Safeguard Meachnism baseline of 7.1 MTCO2.

3. Assuming Government purchases 100% of the emission offered.

6.2 Objective and contribution

This analysis can be considered as a feasibility study for the proposed ERF project

as it assesses the financial viability of the project. This analysis also explores

different strategies for operating the PCC plant, and so could aid in the design of

an advanced control system that manages the operation of the power plant and

the PCC unit. This analysis also assess the suitability of financial instruments

such as the ERF for driving the uptake of retrofitted PCC on the existing fleet

of power stations.
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Figure 6.1: Breakeven analysis to determine the feasibility of ACCU price.

6.3 Multi-objective constrained optimization al-

gorithm (an improved hybrid MPC-MINLP

algorithm)

In this study, a multi-objective constrained optimization algorithm encompasses

of a 660 MW black coal-fired power plant with PCC (integrated plant) models are

simulated to determine a relevance of ERF project (PCC technology) in term of

political, financial, social and environmental perspectives and the effect of climate

change policy (ERF scheme) towards Australia's sustainable energy and climate

neutrality. The multi-objective constrained optimization algorithm was improved

and improvised to accommodate with the ERF project requirement based on the

developed hybrid MPC-MINLP algorithm available in Chapter 5. Where, a new

level namely policy level was linked with the prior three levels as depicted in
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Figure 6.2. The description of each level is briefly explained below:

1. Policy level: To evaluate the implication of ERF scheme towards Australia

emission reduction and financial outcome specifically for coal-based power

generations. At this level, the environmental constraint (emission baseline)

is introduced to establish a linkage between economic and emission abate-

ment activities. Furthermore, it is imperative for technical decision-making

of electricity generation. With the emission constraint, the NSW’s future

emissions cannot exceed the regulated emission baseline. Where, here, the

future emission from coal-fired power plant cannot surpass the designated

emission constraint (CO2 emission baseline) as given in Equations 6.1 and

6.2. Both equations represent the path and end-point constraints respec-

tively.

CO2 emitted ≤ Ebaseline (6.1)

Where, the E baseline is the emission baseline (environmental constraint) for

the black coal-fired power plant at each time instant/time interval.

tf∑
ti=1

CO2 emitted ≤ Ebaseline (6.2)

Where ti is the initial time of the contract period and tf is the final time of

the contract period. While, the E baseline is emission baseline (environmental

constraint) for the black coal-fired power plant retrofitted with PCC system

over the contract period.

2. Enterprise level: To determine the optimal operation of coal-fired power

plant retrofitted with PCC system under ERF scheme by considering eco-

nomic benefit (maximum net operating revenue) of the integrated plant

131



6.3. Multi-objective constrained optimization algorithm (an
improved hybrid MPC-MINLP algorithm)

which involves increasing the revenue of selling electricity and incentive

from ERF project as delineated in Equation 6.3.

MaxRevenue =
∫
Pe ∗ (Power plant net load− PCC penalty) ∗ dt + (6.3)

PERF − PPP − PPCC

Subject to:

Qreb(x1,x2), EAux(x1,x2)

x1= CRI , x2= PPLI

CRMin<x1<CRMax

PPLMin<x2<PPLMax

h1 (x1,x2)<0

h2 (x1,x2)<0

Where, PERF features the incentive obtained from the emission reduction in

ERF project. While, h2 illustrates the environmental constraint (CO2 emis-

sion from power plant does not exceed the emission baseline over the plan-

ning horizon (each time instant/contract period)) as delineated in Equa-

tions 6.1 and 6.2. Unless stated, all the parameters have similar definition

as available in Table 5.2. Initial conditions optimization variable bounds

for minimum and maximum power plant loads and carbon capture rates for

running the power plant associated with PCC plant were taken to be:

CRMin = 5%

CRMax = 90%

CRI = 10%

PPLMin = 10 MW
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PPLMax = 700 MW

PPLI = 200 MW

3. Plant and instrumentation levels: To evaluate actual operation of the PCC

plant embedded with advanced control strategy (MPC) retrofitted into

black coal-fired power plant by considering emission reduction, saving elec-

tricity output and operational performance (capture penalty, auxiliary con-

sumption etc.). The scope and objective of this levels are available in Chap-

ter 5. However, taking into consideration the time of this research tenure,

evaluation for this specific level cannot be pursued.

6.4 Application of multi-objective constrained

optimization strategy for black coal-fired power

plant ERF project

Previously, in Chapter 5, the hybrid framework was evaluated via path constraint

(apply for operational constraint). Where, the optimizer was executed discretely

and independently throughout the planning horizon coincided to meet the ob-

jective function (maximize net operating revenue) at each time instant. This is

called single objective optimization with single constraint strategy. However, to

demonstrate the actual requirement of ERF policy imposes to the black coal-

fired power plant in Australia, additional constraint namely end-point constraint

is introduced into the framework. The end-point constraint is applied to the

environmental constraint while path constraint is enforced for operational con-

straint. This strategy is called multi-objective optimization with multi-constraint

strategy. The multi-objective optimization refers to the revenue of selling elec-

tricity and incentive gained from the emission abatement project as delineated
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Figure 6.2: A multi-objective constrained optimization framework for the man-
agement decision-making of coal-fired power plant integrated with PCC plant
under ERF scheme.

134



6.4. Application of multi-objective constrained optimization strategy
for black coal-fired power plant ERF project

in Equation 6.3. Both terms have to be maximized in order to attain the global

objective function (maximize net operating revenue). Where, the main objective

function is linked with the two subsidiary optimization objectives. Contrariwise,

single-objective optimization strategy demonstrated in Chapter 5 focused solely

on maximizing the revenue of selling electricity as delineated in Equation 5.1.

Figure 6.3 illustrates the ideological touchstone for the black coal power genera-

tors towards economic and environmental liability in moving onto the clean energy

pathway. The main challenge of the power plants is not only in technological and

economic perspective alone, but rather on the managerial and organizational de-

cisions. Where, the power generators have to ensure that it is able to deliver a

perpetual and reliable supply of electricity generation coinciding to safeguard the

excessive amount of CO2 emission emitted from the electricity generation without

incurred significant loss in the plant revenue. This balance requires a compromise

between gaining the revenue from selling electricity and attaining incentive from

the ERF project (based on the amount of emission abatement) by satisfying the

corresponding constraints; operational and environmental constraints.

Fundamentally, coal-fired power plant's philosophy includes maximize revenue,

generate optimal peak load and sustain the stability of power plant with minimal

curtailment. While, the Government vision is to focus on the carbon emission

abatement or/and maximize social welfare. Additionally, constraints (power plant

load and CO2 capture rate) are important to ensure process optimality under the

presence of uncertainty. All these combined parameters were considered in this

optimization problem to guarantee an accurate decision can be made to evaluate

the relevance of ERF project in black coal-fired power generation.

Thus, two types of multi-objective constrained optimization strategies were de-
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Economic objective : 
Revenue from selling electricity

Operational constraint:
Power plant load

Black coal-fired
power generator 

Environmental objective : 
Incentive from emission abatement
(ERF project)

Environmental constraint:
CO2 capture rate

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑓 (𝐴, 𝑃𝐸𝑅𝐹)

Figure 6.3: The ideological touchstone of the black coal-fired power generators
considering the deployment of ERF scheme. A: Revenue from selling electricity,
PERF : Incentive gained from ERF project

veloped to elucidate a scenario/dilemma faces by the black coal-fired power gen-

erators if they are about to consider the deployment of PCC technology as the

ERF project as depicted in Figure 6.3. The strategies include multi-objective

optimization subject to dual path constraint via using non-vectorize architecture

(Strategy 1) and multi-objective optimization subject to path and end-point con-

straints via vectorize architecture (Strategy 2) as delineated in Table 6.1. As

stated beforehand, multi-objective optimization refers to the revenue of selling

electricity and incentive gains from the emission abatement. The path constraint

indicates a certain restriction (CO2 emission) that the process system (PCC plant

retrofitted into power plant) must satisfy at each time instant/interval as de-

lineated in Equation 6.1. While, the end-point constraint represents a certain

restriction (total CO2 emission) that the process system (PCC plant retrofitted
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into power plant) must satisfy at the end of the planning/optimization horizon

as delineated in Equation 6.2.

Table 6.1: Optimization strategies of flexible operation of PCC plant associated
with black coal-fired power plant subject to ERF scheme.

Strategy Strategy 1 Strategy 2
Objective function Maximize net operating revenue

Operational constraint Path constraint

Environmental constraint Path constraint End-point constraint

Optimization architecture Non-vectorization Vectorization

Interval time 30-minute 168-hour (weekly)

CPU time 36-hours 1-hour

In these strategies, different technique of optimization architectures (non-vectorize

and vectorize) are used to imitate the ERF project requirement, which is the safe-

guard mechanism. In the ERF safeguard mechanism, power plants have to ensure

that the total emission over the planning horizon is below than the regulated

emission baseline over the crediting period. This represents by the vectorization

architecture in Strategy 2. Whilst, a different hypothetical scenario from the

safeguard mechanism was demonstrated in Strategy 1. Where, the power plant

emissions cannot exceed the 30-minute emission baseline at each time interval

over the planning horizon. This is executed via non-vectorization architecture.

Essentially, the non-vectorization architecture evaluates all elements individually

and independently throughout the planning horizon at each time instant/inter-

val. While, the vectorization architecture evaluates all elements simultaneously

(in a poll) throughout the planning horizon.

It should be noted that the developed optimization problems/strategies will gen-

erate many set of optimal solutions (possibly infinite) due to the nature of multi-
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objective optimization algorithm. Since all the multi-objective optimization solu-

tions are considered equally good (as vector cannot be ordered completely), thus

a first simulation result was adopted and considered as the final optimal solution

for this ERF project analysis [83]. Details of these two strategies and the out-

comes from the simulation of multi-objective constrained optimization framework

are explained in the next section.

6.4.1 Multi-objective optimization subject to dual path

constraint (Strategy 1)

Strategy 1 illustrates a flexible operation of PCC plant associated with black

coal-fired power plant subject to dual path constraint. These two constraints re-

fer to operational and environmental constraints via non-vectorize optimization

architecture. Where, the optimizer evaluates the input elements at each time

instant/time interval in order to meet the objective function (maximize net op-

erating revenue). In this strategy, a time interval is at every 30-minute through

7-year of planning horizon (crediting period) which consists of 122 646 x 2 of

input variables (forecast electricity prices and historical power plant gross load)

as illustrated in Figure 6.4. The forecast electricity prices for year 2016 to 2022

were calculated based on the projected index real retail electricity price which is

1.44 relative to based year 2009 [84], while the historical power plant gross loads

were assumed to have similar yearly profile throughout the 7-year.

Operational and financial outcomes of the black coal-fired power plant ERF

project are evaluated based on its financial and operational uncertainties. The

operational uncertainty is illustrated by the competency of power plant to meet

the energy demand and capability of PCC plant to capture CO2 emissions to

ensure the emissions from the power plant is below the ERF emission baseline
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Figure 6.4: The electricity prices and historical power plant gross loads for 7-year
of crediting period from 2016 to 2022 at every 30 minute.
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as shown in Figure 6.6(a). While, the financial uncertainty represents by the net

operating revenue generated from the deployment of ERF project as illustrated

in Figure 6.8.

Figure 6.6(a) depicts the optimal solution (power plant load and CO2 capture

rate) generated from the optimization algorithm using 30-minute time interval.

It can be seen, there were certain periods where the power plant load (represents

the operational constraint) and CO2 capture rate (represents the environmental

constraint) performances were conflicting with each other as extracted in Figure

6.6(b). For instance, at low electricity prices, it is economically wise for power

plant to operate at low load (generate low energy) while taking an advantage by

enhancing the capacity of PCC plant via capturing maximum amount of CO2

emission (90%). Where, at this time, more steam from the intermediate turbine

can be provided for solvent regeneration process in the PCC system. However,

based on the optimizer solution (Figure 6.6(b)), at selected period between year

2016 - 2022, power plant operated at almost maximum capacity (500 - 680 MW)

coinciding capturing higher amount of CO2 emissions (PCC plant simultaneously

operated at maximum capacity).

This behaviour indicated that at certain condition when the integrated plant

(power plant with PCC system) forces to meet the optimization objectives (by

selling electricity and obtaining ERF incentive), the optimizer unable to deter-

mine the superiority performance between these two objectives. Concurrently,

caused suboptimal trade-off between operational and environmental constraints

(power plant load and CO2 capture rate) which made both outputs to behave

non sequentially. This solution underpinned with the study performed by Cristo-

bel et al. [85], where they found that operational and environmental constraints

are behaved diversely where improvement in one of the constraint can only be
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achieved by compromising the other. However, the optimizer still managed to

provide an optimal solution at some time instant as illustrated in Figure 6.6(a).

As at high electricity prices, CO2 was captured at low percentage coincides with

a considerable increased of power plant loads in order for power plant to meet

the energy demand (illustrated by the high electricity prices) and to obtain max-

imum net operating revenue. The result commensurate with the previous study

conducted by [66, 41].

Figure 6.6 features the performance of the developed multi-objective constrained

optimization algorithm in handling with the environmental constraint. It is elu-

cidated based on the profile of CO2 emission over the planning horizon (7-year

of crediting period). It can be observed that the optimizer managed to regulate

the power plant emission from exceeding the 30-minute emission baseline which

is below the 57 tonne CO2. Subsequently, limits the plant total emission below

than 7 100 000 tonne CO2. The computation time required for this analysis is

approximately 36-hour.

Financial analysis of black coal-fired power plant and evaluation of ERF project

is interpreted based on the plant net operating revenue. In this analysis, net

operating revenue is normalized (similar normalization technique as in Chapter

5) to ease of the management decision of the power plant industries (especially

black coal-fired power plants) and the Government (CER) to get a future insight

of the financial reliability of the ERF project (PCC plant embedded with MPC)

and feasibility of ACCU price proposed in this analysis. The financial evalua-

tion conducted in this analysis can accommodate the extensive demand in the

implementation of large-scale PCC plants in the present and future.

Calculation of net operating revenue is obtained based on Equation (6.3). It can
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(a) 

 

 (b) 

 

Figure 6.5: Profile of input and output variables from the multi-objective con-
strained optimization algorithm. (a) Multi-objective constrained optimization
output responses (power plant load and CO2 capture rate) from flexible oper-
ation mode of PCC plant retrofitted with existing black coal-fired power plant
subject to ERF scheme from year 2016 to 2022. (b) Profile of electricity prices
(RRP), power plant load and CO2 capture rate at selected period from 2016 to
2022.
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Figure 6.6: Performance of the environmental constraint via CO2 emission over
the planning horizon.

be segregated into four individual terms as given in Equation (6.4).

(PP+PCC)Rev = A + E - C - D

(6.4)

Where A represents the plant revenue generated through selling of electricity, E is

incentive obtained from the ERF project (based on the amount of CO2 captured

and ACCU price). Whilst, C and D represent the power plant and PCC operating

costs respectively.

According to Figure 6.7, it is noticeable that via Strategy 1, the first objective

(revenue from selling electricity) is seen to dominate the second objective which is
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Figure 6.7: Revenue breakdown for power plant retrofitted with PCC system for
7-year of crediting period (2016 - 2022) at 30-minute time interval.

incentive from the ERF project (E). By means, the deployment of ERF project is

able to added substantial profit to the power plant revenue for approximately 26%

from the total net operating revenue. On the other hand, revenue from selling

electricity accounted about 41% from the total net operating revenue while the

rest (33%) was occupied by the power plant and PCC operating costs. The rev-

enue obtained from this multi-objective constrained optimization strategy shows

that the optimizer is capable to provide a feasible and reliable solution for the

power plant management decision-making.

6.4.2 Multi-objective optimization subject to path and

end-point constraints (Strategy 2)

Contrary to Strategy 1, Strategy 2 elucidates a flexible operation of PCC plant

associated with black-coal fired power plant subject to path and end-point con-
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straints. In this strategy, a path constraint is applied for operational constraint

while the end-point constraint is enforced for environmental constraint. This

strategy is executed via vectorize optimization architecture. The advantage of

vectorization technique is it can reduce the computational time. However, exe-

cuting the multi-objective algorithm in Matlab environment via vectorize archi-

tecture (122 646 x 2 of input variables at 30-minute time interval for 7-year of

planning horizon) resulted to a large array size of 448 GB where, eventually ex-

ceeded the memory available in the Matlab system. This has caused a failure in

convergence the optimization problem and led to an algorithm error as illustrated

in Figure 6.8.

Figure 6.8: GA optimization error via vectorize optimization architecture (122
646 x 2 of input variables at 30-minute time interval for 7-year of planning hori-
zon).

To overcome this problem, number of input variables are reduced to ensure Mat-

lab is able to store the executed data during solving the optimization problem.
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Figure 6.9: The electricity prices and historical power plant gross load for 7-year
of crediting period from 2016 to 2022 at weekly time interval.

Therefore, alternatively, a longer time interval was chosen from 30-minute to 168-

hour. It features a weekly time interval with similar planning horizon (7-year)

and vectorization architecture. Through this condition, a 333 x 2 of input vari-

ables were generated (Figure 6.9) which based on the maximum value of weekly

data extracted from the Figure 6.4.

Figure 6.10 shows the optimal solution (power plant load and CO2 capture rate)

generated from the optimizer for the black coal-fired power plant associated with

PCC system under the ERF scheme using longer interval time (168-hour). It

can be seen at low electricity prices (low power plant load demand), CO2 was

captured at high percentage which evident that more steam was distributed to

the reboiler system for solvent regeneration process (elucidated by a lower power

plant load at average 20 - 100 MW). This performance is zoomed out as illustrated

in Figure 6.11 (in log scale). On the other hand, at high electricity prices, power
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plant suppose to generate more energy (increase the load) and partially reduce

the capacity of PCC plant in order to meet the electricity demand and gain

revenue via selling the electricity. However, in this strategy, it can be observed

that the average maximum power plant load throughout the crediting period is

only 200 MW at most of the peak hours (high electricity prices) as illustrated

in Figure 6.11. Where, at that period, the performance of power plant load and

CO2 capture rate were conflicting with each other. For instance, at period of

A (high electricity prices), PCC plant is operated at its maximum capacity by

capturing almost 90% of CO2. Where practically, it is more economically wise if

power plant generates more energy (selling the electricity during high electricity

prices) instead of capturing more CO2 (gaining the ERF incentive). Furthermore,

this poor load forecasting performance may result in significant losses and even

blackout events subsequently jeopardize the energy security system in the country

[86]. This behaviour indicated that under the Strategy 2, when the optimizer has

to abide the constraints (operational and environmental constraints) and meeting

the objective function (maximize net operating revenue), one of the constraints

might behave in a contradict way.

To improve the performance of the optimization outputs (power plant load and

CO2 capture rate), an initial condition for the optimization variable was adjusted

from 200 MW to 250 and 300 MW (no changes was made for initial value of CO2

capture rate). It can be seen, no feasible solutions (unsuccessful convergence)

were found at this specific initial condition. Thus, it can be concluded that the

optimal solution for Strategy 2 can only be achieved at the feasible domain by

using 200 MW as the power plant initial optimization condition.

Figure 6.12 features the performance of the developed hybrid framework in han-

dling with the environmental constraint. According to Figure 6.12, the optimizer

147



6.4. Application of multi-objective constrained optimization strategy
for black coal-fired power plant ERF project

0

10

20

30

40

50

60

70

80

90

0

100

200

300

400

500

600

700

C
C

 (
%

)

P
P

 lo
ad

 (
M

W
)

7-year of planning horizon

CC% PP_load

Figure 6.10: Multi-objective constrained optimization responses (power plant
load and CO2 capture rate) from flexible operation mode of PCC plant retrofitted
with existing black coal-fired power plant subject to ERF scheme from year 2016
to 2022.

managed to regulate the power plant emissions from exceeding the emission base-

line as required in the ERF scheme (emission baseline is 7 100 000 tonne CO2).

The spike appeared in CO2 captured profile was due to the high power plant

load generated from the power plant during that specific period as illustrated in

Figure 6.10. Where, amount of CO2 captured and CO2 emission are strongly

related to the load generation of the coal-fired power plant. The computation

time required for this analysis is approximately 1-hour.

Financial analysis of black coal-fired power plant and evaluation of ERF project

is interpreted based on the net operating revenue as delineated in Equation 6.4.

According to Figure 6.13, it is noticeable that via Strategy 2, the second ob-

jective (E) is seen to dominate the first objective which is revenue of selling

electricity (A) in order to maximize the net operating revenue of the integrated
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Figure 6.11: Profile of electricity prices (RRP), power plant load and CO2 capture
rate at selected period from 2016 to 2022.

plant. It is indicated that, to gain the global objective function (maximize net

operating revenue), one of the other objective has to be sacrificed to obtain a

feasible solution while satisfying the constraints. It is interestingly to note that

even though the black-coal fired power plant able to obtain surplus revenue from

the implementation of ERF project (using Strategy 2), but the conflict between

economic and environmental decision-making leads to a difficulty in the deploy-

ment of ERF project. Where, it is unrealistic for coal-fired power plant to deploy

PCC technology if only plant net revenue is gained from ERF incentive. This

was translated in Figure 6.12 where the power plant showed poor load forecasting

ability throughout the crediting period.
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Figure 6.12: Performance of the environmental constraint via CO2 emission over
the planning horizon.

6.5 Optimization limitation of the multi-objective

constrained optimization strategies

6.5.1 Resolution analysis (time interval/optimization in-

terval)

Essentially, a smaller interval time will enhance the accuracy and resolution of

the optimization solution (better objective function) and leads to larger flexibility.

While, longer interval time makes the optimization solution infeasible and impair

the objective function [87]. Furthermore, implementation of longer interval time

contributes to a large model error since it is unable to replicate the actual physical

characteristic of the developed model (refer to power plant retrofitted with PCC

150



6.5. Optimization limitation of the multi-objective constrained
optimization strategies

Figure 6.13: Revenue breakdown for power plant retrofitted with PCC system
for 7-year of crediting period (2016-2022).

system) [87].

Due to the computational limitation of Matlab environment using GA technique,

the optimization problem for 30-minute time interval via vectorization architec-

ture (for 7-year of planning horizon) was unable to achieve an optimal feasible

solution. Thus, a longer interval time (168-hour) has been used to overcome

those issue as in Strategy 2. This is due to the limitation in Matlab memory

to temporary store the intermediate data during execution time. Therefore, two

resolution analyses were conducted to evaluate the exactitude and reliability of

the optimization solutions at 30-minute and 24-hour interval time via vectoriza-

tion architecture. This is to quantify the divergence of the optimization solutions

based on different optimization interval/time interval.
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6.5.1.1 Time interval: 30-minute

A 30-minute time interval for 7 days (1 week) of planning horizon was demon-

strated for the resolution analysis with identical objective function and constraints

as Strategy 2. The inputs of the optimization algorithm were extracted from Fig-

ure 6.4 (at maximum value) subject to weekly emission baseline, 91 000 tonne

CO2 via vectorization architecture. It consists of 336 x 2 of input variables as

depicted in Figure 6.14.
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Figure 6.14: The electricity prices and historical power plant gross loads for 7-day
of planning horizon at 30-minute time interval.

The outputs from the multi-objective constrained optimization algorithm are

showed in Figure 6.16(a), which involve power plant load and CO2 capture pro-

file. It can be seen, at corresponding electricity and ACCU price ($ 50/tonne

CO2), capture rate was observed to decrease when the power plant load is in-
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creased. Opposite profile was occurred when power plant operated at minimum

capacity (PCC plant capacity is increased). These behaviours are comparable to

the study conducted by [41, 71]. It presented a sensible proposition for the op-

eration of coal-fired power plant integrated with PCC technology. Furthermore,

power plant managed to control it emissions below the weekly emission baseline

as illustrated in Figure 6.16(b).

Financial evaluation for this specific resolution analysis is depicted in Figure 6.16.

It can be seen that the revenue from selling electricity is dominated the incentive

gained from the ERF project. This is in favour with the black coal-fired power

plant management decision on the ERF project. From the revenue breakdown, the

incentive gained from the ERF project is about 22% from the total net operating

revenue, while revenue from selling electricity is approximately 42% from the total

net operating revenue.

6.5.1.2 Time interval: 24-hour

A 24-hour (1 day) time interval for 7 days (1 week) of planning horizon was

demonstrated for the resolution analysis with identical objective function and

constraints as Strategy 2. The inputs of the optimization algorithm were ex-

tracted from Figure 6.4 (at maximum value) subject to weekly emission baseline,

91 000 tonne-CO2 via vectorization architecture. It consists of 7 x 2 of input

variables as depicted in Figure 6.17.

The outputs from the multi-objective constrained optimization algorithm are

showed in Figure 6.19(a), which involve power plant load and CO2 capture profile.

Similar performance as previous analysis (30-minute time interval) was forecasted

for this analysis. Where, the power plant and PCC plant are operationally com-

promised in order to obtain maximum plant net operating revenue. On the other
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6.16 (a) 

 
6.16(b) 
 

 

Figure 6.15: Multi-objective constrained optimization responses (power plant
load and CO2 capture rate) from flexible operation mode of PCC plant retrofitted
with existing black coal-fired power plant subject to ERF scheme for 7-day of
planning horizon at 30-minute time interval.

hand, the black coal-fired power plant managed to control it emissions below the

weekly emission baseline as illustrated in Figure 6.19(b). The incentive gained
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Figure 6.16: Revenue breakdown for power plant retrofitted with PCC system
for 7-day of planning horizon at 30-minute time interval.

from the ERF project is about 9% while revenue from selling electricity is ap-

proximately 65% from the net operating revenue as depicted in Figure 6.19.

According to both resolution analyses, it can be concluded that an interval time

plays a significant parameter for the optimization algorithm to attain a feasible

optimal solution. For instance, total net operating revenue for 24-hour interval

time is much more higher than the 30-minute interval time, with the percentage

difference approximately 20%. Therefore, based on this outcome, it can be con-

cluded that a longer interval time will result to a higher net operating revenue

compare to a smaller interval time under identical optimization problem. Based

on this ratio, the net operating revenue for 30-minute interval time for 7-year of

planning horizon (122 646 x 2 of input variables via vectorization architecture)

can be predicted to generate at least six times less than the net operating revenue
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Figure 6.17: The electricity prices and historical power plant gross loads for 7-day
of planning horizon at 1-hour time interval.

for Strategy 2 (333 x 2 of input variables via vectorization architecture).

6.5.2 Computational complexity: Pareto optimal solution

One of the challenges in the multi-objective constrained optimization strategies

(Strategy 1 and 2) proposed in this chapter arises from the existence of different

set of optimal solutions known as Pareto-optimal solutions [88]. In this analysis,

Pareto-optimal solution features a trade-off between two objectives with the pres-

ence of dual constraints. Where, the optimization goal (global objective function:

maximize net operating revenue) imposes a conflict between maximizing the rev-

enue from selling electricity and raising the incentive from the ERF project (PCC

technology) bounded to the corresponding constraints (operational and environ-

mental) as illustrated in Figure 6.3. This has added computational complexity
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6.19 (a) 

 
6.19 (b) 
 

 

Figure 6.18: Multi-objective constrained optimization responses (power plant
load and CO2 capture rate) from flexible operation mode of PCC plant retrofitted
with existing black coal-fired power plant subject to ERF scheme for 7-day of
planning horizon at 1-hour time interval.

in solving the optimization problem, thus requires sensible decision-making phi-

losophy from the operational and financial perspectives of black coal-fired power
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Figure 6.19: Revenue breakdown for power plant retrofitted with PCC system
for 7-day of planning horizon at 1-hour time interval.

plant.

According to the optimization result and financial evaluation conducted in this

analysis, the conflict occurred when the ERF incentive is superior to the revenue

of selling electricity as illustrated in Strategy 2. This is because from the power

plant's perspective; net operating revenue should be gained from selling electric-

ity instead of the ERF project which underpinning the operational principal of

power plant; to enhance the energy security via reliable supply demand. On the

other hand, the fundamental deployment of ERF project (PCC technology) in

coal-fired power plant is to embrace national environmental sustainability (by

reducing the amount of CO2 emission) as demanded by the Government concur-

rently could be as a secondary financial assistance to the coal-fired power plant.

However, the financial analysis predicted in this analysis is solely deterministic
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where thorough calculation should be focused on the capital cost of PCC technol-

ogy (rate of return) and installation cost of the control system with consideration

of the time value of money and future operational demand of black coal-based

power generations throughout the crediting period.

Furthermore, the additional conflict also swayed by the constraints (power plant

load and CO2 capture rate) bounded on the optimization algorithm. As such,

the power plant load forecasting is usually influenced by the exogenous variables

accommodated in the optimization algorithm, for instance, time (peak or off-peak

hours), electricity prices and policy (ERF scheme) [86]. While, the forecast of

CO2 capture rate is highly dependent on the power plant load. This interrela-

tion (between power plant load and CO2 capture rate) increased the complexity

of optimization algorithm to find the optimal solution subject to the preference

of human making decision (power plant managerial decision-making). This phe-

nomenon featured in Strategy 1 and 2, where the conflict occurred when the

integrated plant (power plant fitted with PCC system) forecasted to operate at

maximum capacity during low electricity prices. Supposedly, the integrated plant

should compliment each other for instance, when the power plant load increases

the capture rate should be reduced and vice versa.

Generally, multi-objective constrained optimization problem (represented in Strat-

egy 1 and 2) generates a number of optimal solutions (Pareto optimal solution)

and thus require extensive technical information and prudent decision based on

human/organisational preferences in order to attain the best and an exact opti-

mization solution. One of the technique to solve this issue is by using numerical

weight for respective objectives; revenue from selling electricity and incentive

gained from the ERF project. This numerical weight can be obtained by finding

all possible points in the feasible region in Pareto front [86] or by quantifying the
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trade-off between two objectives by using trial and error [83]. However, further

analysis to calculate the numerical weight (weighted factor) of this multi-objective

constrained optimization problem is not possible in the tenure of this research

work and may be explored in future studies.

6.6 The contemporary relevance of ERF scheme

towards black coal-fired power plant

The multi-objective with dual path constraint strategy (Strategy 1) proposed in

this chapter has shown to generate a feasible and reliable solution to predict the

future insight of black coal-fired power plant ERF project compared to Strategy

2 (multi-objective with path and end-point constraints).

Based on Strategy 1, at the end of final crediting period (2022), the PCC plant

is capable of capturing approximately 90% of total CO2 emission throughout the

crediting period. At this condition, the implementation of the ERF project (PCC

technology) manages to limit the plant emissions below the regulated 7-year emis-

sion baseline (7 100 000 tonne CO2). Deployment of PCC system has provided

a surplus revenue of approximately 26% from the incentive gained from the ERF

project. While, the power plant managed to obtain 41% revenue from selling the

electricity. Under Strategy 1, the FAE for ERF project is approximately 10%

from the total CO2 emission of the BAU. This value can be used to represent the

number of ACCU units to be issued during the auction process with estimated

ACCU price per unit CO2 is $AUD 50.

Based on the aforementioned result, it is financially and operationally viable

for Australian black coal electricity generations to deploy PCC system under
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the prevailing ERF scheme for crediting period between 2016 - 2022. However,

a comprehensive analysis should be conducted regarding safeguard mechanism

since the best decision for black coal-fired power plant ERF project can only be

achieved if hourly emission (based on 30-minute emission baseline) is applied.

Moreover, the outcome of this Strategy 1 is not deterministic (is only hypothet-

ical) and warrants sensitivity analysis to evaluate the monetary value of a black

coal electricity generation ERF project. Examples of parameters to be considered

for sensitivity analysis are ACCU price, emission baseline and contract period.

However, this study is believed to provide an insight to the Government and elec-

tricity generators towards advantage of the ERF project in term of economic and

environmental perspectives.
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Chapter 7

Conclusion and future work

7.1 Conclusion

The implementation of low emission technologies such as CCS system (i.e. amine-

based PCC plant) at commercial scale power plant specifically coal-fired is of

significant importance for the short and long-term global energy securities. Espe-

cially, when there is international pressure on the GHG abatement on top of the

sporadic sources of renewable energy and rapid escalation of natural gas prices.

Moreover, the uncertainty in technical and financial liabilities (in term of capital

and operating expenditures) of the PCC plant have influenced and thus likely

hindered the investment of the plant into large-scale deployment. Following that,

a comprehensive managerial study that covers technical, economic, social, policy,

safety and environmental perspectives are required towards the transformation

of sustainable operation of clean fossil power generation and climate neutrality.

Thus, this thesis explicates a development of computational management decision

support framework for a coal-fired power plant associated with PCC system with

the primary focus is to ensure the technology (amine-based PCC plant) is well

worth considering for large-scale deployment.
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At the initial stage, a mathematical black box model was developed to analyse

the dynamic responses of a PCC pilot plant as illustrated in Chapter 3. The

model identification reported the dynamics of variables of the key units in the

plant; the absorber, rich/lean heat exchanger and desorber. Pilot plant dynamic

data were used to develop a data-driven model (NLARX model) for each unit

operation. Individual models were integrated to produce a simplified 4 x 3 PCC

process model of the PCC plant. The fastest dynamic with a time constant

ranging from 2 - 3 minutes featured in the relationship between power plant flue

gas flow rate and CO2 concentration in the absorber off gas. Whereas, the slowest

response with a process time constant between 9 - 27 minutes occurred in CO2

concentration at the top of the stripper due to changes in reboiler heat duty.

Process control analysis was then performed using the developed PCC-NLARX

model in Chapter 4. Two control schemes were proposed which include a standard

PID feedback control and a model-based control strategy in the form of MPC.

Stepwise set point tracking and disturbance rejection scenarios imitated a real-

time situation of power plant while considering retrofitting of the PCC system

were employed to evaluate the performance of the proposed controllers for flexible

operation, i.e. under variable plant load condition surrogate to electricity and

carbon market prices patterns. Three elements of constraints include operational,

economic and environmental were considered in selecting the best control strategy.

The closed-loop simulation results showed that the MPC strategy handled very

well the servo and regulator problems without violating the above mentioned

constraints.

To ensure the reliability and feasibility of PCC technology, an algorithm that

combines MPC with MINLP optimization (the hybrid MPC-MINLP algorithm)

was developed in Chapter 5, and its application was demonstrated for coal-fired
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power plants retrofitted with the solvent based PCC system. The developed al-

gorithm, which featured a high sample frequency commensurate with electricity

dispatch and control instrumentation levels was proposed as a decision support

tool for flexible operation of the carbon capture plant while considering electricity

and carbon price dynamics. Two techno-economic scenarios based on fixed (cap-

ture rate is constant) and flexible (capture rate is variable) operation modes were

developed using actual (year 2011) and forecast (year 2020) electricity prices with

two different carbon policy mechanisms for instance, fixed carbon prices (carbon

tax) ($AUD 5, 25, 50/tonne-CO2) for 24 hour period and ETS for one year plan-

ning horizon. Results showed that the integrated plant (power plant with PCC

system) subject to forecast 2020 electricity and carbon prices were shown to gen-

erate yearly net operating revenue of approximately 12% of the gross revenue.

While, the same integrated plant generated yearly net operating revenue loss of

roughly 13% under 2011 electricity and carbon prices. These results underpin

the strategy that employed the proposed optimization-based control framework

for flexible operation of a PCC plant in the year 2020, because such framework

captures financial benefits hidden in the dynamics of electricity load, electricity

and carbon price trends, and does so at high temporal resolution.

Chapter 6 extended the techno-economic analysis performed in Chapter 5 for a

real implementation in the emission abatement activity of Australia black-coal

fired power plant. In this chapter, a multi-objective constrained optimization

technique is used to evaluate the relevance of PCC technology as the ERF project

for black coal power generations. The evaluation is conducted by incorporating

economic and environmental objectives (design goals) to obtain maximum plant

net operating revenue by generating the forecast of power plant load and CO2 cap-

ture rate subject to dual constraint: operational and environmental. The results

indicated that the multi-objective with dual path constraint strategy (Strategy
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1) was able to generate a feasible and sensible solution to predict future insight of

black coal fired power plant ERF project compared to Strategy 2 (multi-objective

with path and end-point constraints) in term of operational and financial uncer-

tainties. Throughout the seven years of the ERF contract period, the black-coal

fired power plant capable to reduce plant emission approximately 10% from the

total emission (from BAU) via Strategy 1. Moreover, coal-fired power plant ob-

tained surplus revenue roughly 26% by the incentive gained from ERF project

subject to carbon credit price of $AUD 50 per unit CO2.

7.2 Future work

Although the outcomes of this thesis are able to provide a conceivable decision

pertaining to the future deployment of CCS technology (i.e. PCC system) in

term of operational, financial and policy point of views, more important aspects

are still remains lacking. For instance, to ensure a realistic investment decision,

a capital cost of CCS technology should be considered in the techno-economic

analysis while adapting with the carbon-constrained world. This is because the

cost of construction materials such as steel, cement and piping are fluctuated

and thus can affect the total plant capital cost over time. Moreover, the cost of

the control system package (i.e. hardware, software and services (maintenance,

installation)) contributes to the elevation of PCC capital cost for an indetermi-

nate return on capital if the plant flexibility is in demand. Beside the top-down

managerial decisions propose in this thesis, there are other decisions that need

to take into account by the power plant companies pertaining to the deployment

of PCC technology. For instance, initial investment in transport and storage in-

frastructure is one of the vital decisions that can unlock the forecast unit cost

reduction. Moreover, another critical decision is to obtain initial incentive either

from government of non-government agencies to begin early PCC deployment.
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On the other hand, this research can be extended by considering the uncertainty

in CCS investment decisions (investment risk) for instance scale-up of CCS de-

ployment, sequestration cost (onshore and offshore costs) and public acceptance.

Additionally, one has to contemplate the extra cost emerges from the deployment

of CCS technology such as the cost of coal and gas. Nevertheless, a highly so-

phisticated framework consists of comprehensive and wide-ranging internal and

external uncertainties/parameters of the power plant and CCS technology will re-

sult in a high computational complexity, and thus require high-end computation

software to deliver optimal and reliable solutions.
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Appendix

Appendix A: A simplified 4 x 3 PCC linearized transfer function model.

From input "u1" to output...

y1 = 0.0002285z4

z5 − 0.9374z4 + 4.895e−23z3 + 3.584e−47z2 + 2.469e−86z
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9.256e−7z31−7.27e−6z30−2.752e−6z29+0.0001684z28−0.0006914z27+0.001443z26−

0.001813z25+0.001392z24−0.0005707z23+1.915e−5z22+9.985e−5z21−4.467e−5z20+

6.595e−6z19−2.581e−7z18+3.402e−7z17−1.466e−7z16+2.083e−8z15+2.063e−21z14+

1.236e−21z13+6.91e−23z12−5.63e−25z11+7.753e−25z10−2.34e−38z9+2.173e−39z8−

3.487e−53z7−1.057e−54z6+1.346e−68z5−6.228e−71z4+1.66e−85z3+9.717e−86z2−

8.358e−101z + 1.744e−102

y4 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z33−8.961z32+36.22z31−86.77z30+135.7z29−142.3z28+95.52z27−29.06z26−15.68z25+

25.27z24−13.03z23−1.02z22+5.991z21−3.68z20+0.615z19+0.3639z18−0.2075z17+

0.03178z16+0.001128z15−0.0003495z14−8.876e−20z13+2.042e−19z12−2.425e−21z11+

4.933e−22z10+3.771e−36z9−3.217e−37z8+7.334e−52z7−5.602e−53z6−5.589e−67z5+

4.508e−68z4 + 3.619e−84z3 − 2.501e−85z2
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−2.657e−08z32−4.374e−07z31+1.4e−06z30+4.106e−06z29−2.687e−05z28+5.734e−05z27−

6.433e−05z26 + 3.868e−05z25 − 8.628e−06z24 − 2.91e−06z23 + 1.831e−06z22−

2.124e−07z21 + 2.602e−07z20 − 3.201e−07z19 + 1.383e−07z18 − 2.26e−08z17−

4.42e−23z16 + 4.386e−22z15 − 6.338e−23z14 − 9.359e−24z13 + 1.607e−24z12−

4.713e−38z11 + 3.185e−39z10 + 7.64e−41z9 + 8.852e−42z8 + 1.181e−55z7+

2.065e−56z6 + 4.012e−71z5 + 1.21e−71z4 − 8.466e−87z3 + 1.796e−88z2−

1.328e6−102z − 8.722e− 104

y5 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z34−8.577z33+32.81z32−73.13z31+103.3z30−92.15z29+43.5z28+5.415z27−25.8z26+

19.29z25−3.813z24−5.653z23+5.528z22−1.485z21−0.7007z20+0.5728z19−0.07412z18−

0.04196z17+0.01222z16+5.72e−05z15−0.0001223z14+2.737e−19z13−1.035e−19z12−2.899e−21z11+

1.278e−21z10+5.497e−36z9−3.304e−37z8+3.846e−52z7−1.301e−52z6+5.886e−68z5+

1.033e−68z4 + 1.306e6−86z3 − 3.968e−85z2
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From input "u2" to output...

y1 = 0

0.0007257z31−0.009656z30+0.05054z29−0.1447z28+0.2554z27−0.2884z26+0.2023z25−

0.07302z24−0.003546z23+0.0157z22−0.00606z21+0.0006646z20+6.798e−05z19+

6.785e−06z18 − 1.132e−05z17 + 3.552e−06z16 − 4.452e−07z15 − 3.764e−18z14−

1.496e−19z13+3.014e−20z12−4.424e−22z11+2.665e−22z10−2.559e−36z9+1.074e−36z8−

2.673e−51z7−1.147e−54z6−4.831e−67z5+6.59e−69z4+7.224e−83z3−8.144e−84z2+

9.69e−99z − 4.539e−100

y4 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z33−8.961z32+36.22z31−86.77z30+135.7z29−142.3z28+95.52z27−29.06z26−15.68z25+

25.27z24−13.03z23−1.02z22+5.991z21−3.68z20+0.615z19+0.3639z18−0.2075z17+

0.03178z16+0.001128z15−0.0003495z14−8.876e−20z13+2.042e−19z12−2.425e−21z11+

4.933e−22z10+3.771e−36z9−3.217e−37z8+7.334e−52z7−5.602e−53z6−5.589e−67z5+

4.508e−68z4 + 3.619e−84z3 − 2.501e−85z2
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−2.083e−05z32−0.00022z31+0.002038z30−0.00651z29+0.01105z28−0.01088z27

0.0009423z25−0.000691z24+0.0003993z23−5.503e−05z22−2.096e−06z21−8.749e−06z20+

8.74e−06z19 − 3.411e−06z18 + 4.829e−07z17 − 4.728e−20z16 − 4.135e−20z15+

7.024e−21z14 − 6.734e−22z13 + 1.094e−22z12 − 1.971e−37z11 + 6.751e−38z10−

3.512e−39z9−5.685e−40z8−3.348e−54z7−3.799e−55z6−1.8e−69z5−3.116e−70z4−

1.286e− 85z3 − 6.087e−86z2 − 1.728e−102z − 3.265e−102

y5 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z34−8.577z33+32.81z32−73.13z31+103.3z30−92.15z29+43.5z28+5.415z27−25.8z26+

19.29z25−3.813z24−5.653z23+5.528z22−1.485z21−0.7007z20+0.5728z19−0.07412z18−

0.04196z17+0.01222z16+5.72e−05z15−0.0001223z14+2.737e−19z13−1.035e−19z12−

2.899e−21z11+1.278e−21z10+5.497e−36z9−3.304e−37z8+3.846e−52z7−1.301e−52z6+

5.886e−68z5 + 1.033e−68z4 + 1.306e−86z3 − 3.968e−85z2
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From input "u3" to output...

y1 = 0

−1.537e−06z34 + 1.254e−05z33− 4.593e−05z32 + 9.92e−05z31− 0.0001389z30+

0.0001288z29 − 7.373e−05z28 + 1.364e−05z27 + 1.89e−05z26 − 2.061e−05z25+

7.499e−06z24 + 3.17e−06z23 − 5.037e−06z22 + 2.277e−06z21 − 1.858e−07z20−

2.271e−07z19 + 9.063e−08z18 − 1.381e−08z17 + 3.249e−09z16 − 1.805e−09z15+

4.096e−10z14 + 2.09e−24z13 − 2.738e−25z12 + 4.219e−26z11 − 5.22e−27z10−

1.088e−40z9+7.814e−42z8+4.86e−56z7−2.33e−57z6−1.023e−71z5−8.316e−73z4+

1.451e−87z3 + 2.494e−88z2 − 1.805e−103z + 3.398e−104

y4 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z35−8.961z34+36.22z33−86.77z32+135.7z31−142.3z30+95.52z29−29.06z28−

15.68z27+25.27z26−13.03z25−1.02z24+5.991z23−3.68z22+0.615z21+0.3639z20−

0.2075z19+0.03178z18+0.001128z17−0.0003495z16−8.876e−20z15+2.042e−19z14−

2.425e−21z13 + 4.933e−22z12 + 3.771e−36z11 − 3.217e−37z10 + 7.334e−52z9−

5.602e−53z8 − 5.589e−67z7 + 4.508e−68z6 + 3.619e−84z5 − 2.501e−85z4
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−5.06e−06z35+5.376e−05z34−0.0002503z33+0.0006773z32−0.00118z31+0.001372z30−

0.001034z29+0.0004049z28+8.992e−05z27−0.0002486z26+0.0001584z25−1.272e−05z24−

5.652e− 05z23 + 4.291e−05z22− 9.935e−06z21− 3.414e−06z20 + 2.519e−06z19−

4.363e−07z18−1.057e−08z17 +4.251e−09z16−1.226e−23 z15 +1.019e−23z14−

6.535e−26z13 − 3.221e−26z12 − 1.072e−40z11 + 9.983e−42z10 + 8.119e−44z9−

4.85e−44z8−2.251e−58z7−3.618e−59z6+5.926e−73z5−2.367e−74z4−4.593e−88z3+

4.804e−89z2 − 3.331e−104z + 3.442e−105

y5 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z36−8.577z35+32.81z34−73.13z33+103.3z32−92.15z31+43.5z30+5.415z29−

25.8z28 + 19.29z27− 3.813z26− 5.653z25 + 5.528z24− 1.485z23− 0.7007z22+

0.5728z21−0.07412z20−0.04196z19+0.01222z18+5.72e−05z17−0.0001223z16+

2.737e−19z15 − 1.035e−19z14 − 2.899e−21z13 + 1.278e−21z12 + 5.497e−36z11−

3.304e−37z10 + 3.846e−52z9 − 1.301e−52z8 + 5.886e−68z7 + 1.033e−68z6+

1.306e−86z5 − 3.968e−85z4
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From input "u4" to output...

y1 = 0

−0.001331z31+0.01835z30−0.1011z29+0.3099z28−0.5967z27+0.7574z26−0.6326z25+

0.3219z24−0.06548z23−0.02869z22+0.02483z21−0.007176z20+0.0007504z19+

2.53e−05z18 − 3.994e−06z17 − 1.578e−07z16 − 6.056e−08z15 − 6.57e−19z14+

7.725e−19z13 − 1.256e−19z12 − 9.969e−22z11 − 4.612e−23z10 − 2.694e−36z9+

4.113e−37z8 + 8.96e−52z7 − 3.712e−52z6 + 1.855e−66z5 + 1.796e−69z4−

2.341e−82z3 + 3.076e−83z2 − 1.379e−98z − 4.585e−101

y4 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z33−8.961z32+36.22z31−86.77z30+135.7z29−142.3z28+95.52z27−29.06z26−

15.68z25+25.27z24−13.03z23−1.02z22+5.991z21−3.68z20+0.615z19+0.3639z18−

0.2075z17+0.03178z16+0.001128z15−0.0003495z14−8.876e−20z13+2.042e−19z12−

2.425e−21z11 + 4.933e−22z10 + 3.771e−36z9 − 3.217e−37z8 + 7.334e−52z7−

5.602e−53z6 − 5.589e−67z5 + 4.508e−68z4 + 3.619e−84z3 − 2.501e−85z2
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3.821e−05z32+0.000386z31−0.003946z30+0.01383z29−0.02633z28+0.03038z27−0.02123z26+

0.007717z25−4.267e−06z24−0.001286z23+0.00055z22−0.0001147z21+2.037e−05z20−

4.068e−06z19 + 2.313e−07z18 + 6.569e−08z17 + 1.115e−18z16 + 4.723e−20z15−

5.351e−20z14 − 1.57e−21z13 + 3.04e−22z12 − 5.625e−36z11 − 6.466e−37z10+

7.433e−39z9 + 4.55e−39z8 + 4.862e−54z7 + 3.299e−54z6 − 2.672e−69z5+

4.535e− 70z4 − 3.301e−84z3 + 1.16e−85z2 + 5.941e−100z − 4.2e−101

y4 = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z34−8.577z33+32.81z32−73.13z31+103.3z30−92.15z29+43.5z28+5.415z27−

25.8z26+19.29z25−3.813z24−5.653z23+5.528z22−1.485z21−0.7007z20+0.5728z19−

0.07412z18−0.04196z17+0.01222z16+5.72e−05z15−0.0001223z14+2.737e−19z13−

1.035e−19z12 − 2.899e−21z11 + 1.278e−21z10 + 5.497e−36z9 − 3.304e−37z8+

3.846e−52z7−1.301e−52z6+5.886e−68z5+1.033e−68z4+1.306e−86z3−3.968e−85z2
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