Daily Image Guided Radiation Therapy for Prostate Cancer:

An assessment of treatment plan reproducibility.

Kellie Ann Knight

A thesis submitted in fulfilment of the requirements of the degree of Doctor of Health Science.

The University of Sydney

October, 2006
Declaration

I hereby declare that this thesis is my original work. To the best of my knowledge it contains no previously published material unless otherwise acknowledged or has been accepted for an award or diploma by any other institution of higher learning.

Signed: ..

Name: Kellie Ann Knight (200092607)

Date: ..
Acknowledgements:

Although my study towards the Doctor of Health Science was conceived as a part-time project, the majority was conducted while I was working full-time as the inaugural Research Radiation Therapist at the Peter MacCallum Cancer Centre. I am extremely grateful to Prof. Gillian Duchesne, Director of the Division of Radiation Oncology, and Mrs. Kate Love, Head of Radiation Therapy Services, for the creation and support of this position.

I owe a huge debt of gratitude to Dr. Jenny Cox for her mentoring and supervision whilst also completing her PhD, and to Dr. Alastair Davison who has combined co-supervision with his promotion to Pro-Dean. I am also in debt to Prof. Gillian Duchesne for her mentoring and workplace supervision, something that minimised the distance between Melbourne and Sydney.

I wish to sincerely thank those people who volunteered their expertise at different stages during this research: Mrs. Kate Matthias and Mrs. Nilgun Touma (Radiation Therapists), Dr. Andrew See (Radiation Oncologist), Mr. Jim Cramb and Dr. Li Zhu (Physicists), and Mr. John Fay (Father and statistical consultant!). I am also extremely grateful to all the staff at the Tattersall’s Cancer Centre, my ‘home’ for the 18 months it took to develop, implement and complete the data collection. Their enthusiasm and support was very much appreciated. This is only the start of their journey to becoming “world famous”! I also sincerely thank the staff at Peter Mac Moorabbin for welcoming me back and for their support and encouragement during the writing of this thesis.

Finally, I have saved my biggest thank you for my husband, Chris. Throughout the past three years he has provided the emotional and physical support that I have needed to complete this thesis. Thank you from the bottom of my heart……
Summary:

It is well documented that for prostate cancer patients undergoing radiation therapy, there is a correlation between target volume displacement and changes in bladder and rectal volumes. However, these studies have used a methodology that has captured only a subset of all treatment positions. This research used daily Computer Tomography (CT) imaging to comprehensively assess organ volumes, organ motion and their effect on dose, something that has never been performed previously, thus adding considerably to the understanding of the topic.

Daily CT images were obtained using a Siemens Primus Linear Accelerator equipped with an in-room Somatom CT unit in the accelerator suite, marketed as ‘Primatom’, to accurately position the patient prior to treatment delivery. The internal structures of interest were contoured on the planning workstation by the investigator. The daily volume and location of the organs were derived from the computer to assess and analyse internal organ motion. The planned dose distribution was then imported onto the treatment CT datasets and used to compare the planned dose to i) the actual isocentre, where the isocentre was actually placed for that fraction, ii) the uncorrected isocentre, by un-doing any on-line corrections performed by the treatment staff prior to treatment delivery, and iii) the future isocentre, by placing the isocentre relative to internal organ motion on a daily basis.

The results of this study did not confirm a statistically significant decrease in rectum volumes over time (hypothesis 1), however large fluctuations in bladder volume were confirmed (hypothesis 2). Internal organ motion for the rectum and bladder was demonstrated to be related to organ filling. Ideal planning volumes for these organs have been reported to minimise systematic and random uncertainty in the treatment volumes. An observed decrease in prostate volume over time, a systematic uncertainty in the location of the prostate at the time of the planning CT scan and a significant relationship between prostate centre of volume and rectum and bladder volumes has resulted in a recommendation that patients should be re-scanned during treatment to ensure appropriate clinical target volume coverage. A significant relationship between rectal and bladder volumes and the dose delivered to these organs was found (hypothesis 3). The dose delivered to the planning target volume was not related to the rectal or bladder volumes, although it was related to the
motion of these organs. Despite these results only minimal effects on the dose delivered to any of the three isocentres occurred, indicating that the planned dose was accurately delivered using the methodology presented here (hypothesis 4). However the results do indicate that the patient preparation instructions need to be improved if margins are to be reduced in the future.

It is unrealistic to assume that Image Guided Radiation Therapy will ever become routine practice due to infrastructure costs and time limitations. This research will inform radiation therapy centres of the variables associated with prostate cancer treatment on a daily basis, something that has never before been realistically achievable. As a result centres will be able to devise protocols to improve treatment outcomes.
Table of Contents:

Acknowledgements: ... i
Summary: ... ii
List of Figures: .. x
List of Tables: ... xiv
1. **Introduction** .. 1
 1.1 Importance of prostate positioning ... 2
 1.2 Hypotheses .. 3
 1.2.1 Hypothesis 1: Rectal volumes decrease .. 3
 1.2.2 Hypothesis 2: Bladder volumes fluctuate ... 3
 1.2.3 Hypothesis 3: Reduced rectal volumes lead to increased dose 3
 1.2.4 Hypothesis 4: Current instructions are inadequate ... 3
2. **Anatomy and Physiology** ... 4
 2.1 The Pelvis ... 4
 2.2 Prostate Gland ... 5
 2.3 Seminal Vesicles ... 6
 2.4 Large Intestine ... 6
 2.5 Rectum ... 7
 2.6 Anal Canal ... 9
 2.7 Urinary bladder .. 9
3. **Prostate cancer** .. 10
 3.1 Epidemiology .. 10
 3.2 Pathophysiology .. 11
 3.3 Staging .. 12
 3.4 Diagnostic Imaging ... 12
 3.4.1 CT ... 12
 3.4.2 MRI ... 15
 3.5 Treatments .. 15
4. **Radiation Therapy for Prostate Cancer** .. 16
 4.1 Introduction .. 16
 4.2 External Beam .. 16
 4.3 Planning process .. 17
 4.3.1 Patient data acquisition .. 17
 4.3.2 Geographical planning ... 17
 4.3.3 GTV/CTV/PTV definitions ... 18
 4.3.4 Treatment techniques ... 19
 4.3.4a Three-Dimensional Conformal Radiation Therapy ... 19
 4.3.4b Intensity Modulated Radiation Therapy (IMRT) .. 20
 4.3.5 Dosimetry .. 21
 4.3.6 Prescribed Dose .. 22
 4.3.7 Morbidity and Side effects ... 23
 4.3.7a Basics of radiation biology: Radiobiological effects ... 23
 4.3.7b Rectum morbidity .. 25
 4.3.7c Anal Canal morbidity ... 29
 4.3.7d Bladder morbidity .. 29
4.4 Sources of uncertainty in Radiation Therapy .. 31
 4.4.1 Systematic errors .. 32
 4.4.2 Random errors .. 33
 4.4.3 Total Uncertainty ... 33
4.5 Contouring uncertainty ... 34
 4.5.1 Defining the Prostate (CTV) .. 34
5. Treatment Verification

5.1 Introduction ... 66
5.1.1 Off-line corrections .. 67
5.1.2 On-line corrections .. 67
5.2 Non-CT based verification ... 68
5.3 Out-of-room CT scanning for treatment verification 69
5.4 In-room CT verification .. 71
5.4.1 Stand alone CT scanner ... 73

6. Aims ... 75
6.1 Aim 1 .. 76
6.2 Aim 2 .. 76
6.3 Aim 3 .. 76
6.4 Aim 4 .. 76
6.5 Aim 5 .. 76
6.6 Aim 6 .. 76

7. Research Methodology .. 77
7.1 Ethics Approval ... 77
7.2 Patient recruitment ... 77
7.2.1 Sample size ... 77
7.2.2 Recruitment process ... 79
7.3 Consent Process .. 80
7.4 Eligibility criteria ... 80
7.5 Planning Process .. 81
7.6 Additional Planning & Data collection 85
7.6.1 Patient File Maintenance ➔ Contouring 86
7.6.2 Teletherapy .. 88
7.7 Treatment Process, CT verification 90
7.8 Data Collection using XIO .. 92
7.8.1 Patient File Maintenance ➔ Contouring 92
7.8.2 Teletherapy .. 92
8.6.1a Rectum Solid ... - 170 -
8.6.1b Rectal Wall ... - 171 -
8.6.1c Anal Canal ... - 172 -
8.6.1d Hypothesis 3: Reduced rectal volumes lead to increased rectal dose. - 173 -
8.6.2 Bladder ... - 180 -
8.6.2a Bladder ... - 180 -
8.6.2b Effect of Bladder volume on bladder dose - 181 -
8.6.3 Prostate ... - 183 -
8.6.3a Prostate CTV and PTV .. - 183 -
8.6.3b Effect of rectal volume on PTV dose - 185 -
8.6.3c Effect of bladder volume on PTV dose - 186 -
8.6.3d Effect of rectum solid COV motion on PTV dose - 188 -
8.6.3e Effect of bladder COV motion on PTV dose - 189 -
8.6.3f Effect of prostate COV motion on PTV dose - 190 -
8.7 Hypothesis 4: Current preparation instructions are inadequate to maintain the planned dose distribution ... - 195 -
9. Discussion: ... - 196 -
9.1 Patient Characteristics ... - 196 -
9.1.1 Descriptive characteristics of the sample population - 196 -
9.1.2 Patient Symptoms .. - 196 -
9.2 Contouring Uncertainty .. - 197 -
9.2.1 Intra-observer contouring uncertainty - 197 -
9.2.1a Rectum .. - 198 -
9.2.1b Bladder ... - 203 -
9.2.1c Prostate ... - 205 -
9.2.1d Anal Canal ... - 208 -
9.2.2 Inter-observer contouring uncertainty - 210 -
9.2.2a Rectum .. - 211 -
9.2.2b Bladder ... - 214 -
9.2.2c Prostate ... - 215 -
9.2.2d Anal Canal ... - 216 -
9.2.3 Summary of intra and inter-observer uncertainty - 216 -
9.3 Patient set-up uncertainty .. - 219 -
9.4 Aim 1: To increase knowledge of volume variations - 226 -
9.4.1 Hypothesis 1: Rectal volumes decrease - 227 -
9.4.1a Rectum Solid ... - 228 -
9.4.1b Rectal Wall ... - 235 -
9.4.1c Anal Canal ... - 239 -
9.4.2 Hypothesis 2: Bladder volumes fluctuate - 241 -
9.4.3 Prostate volume variation ... - 251 -
9.4.4 Correlation between volume variations and symptoms - 260 -
9.4.4a Rectum Volume and Gastrointestinal Symptoms - 260 -
9.4.4b Bladder Volume and Urinary Symptoms - 262 -
9.4.5 Aim 2: Correlation between volumes and field placement corrections - 263 -
9.5 Internal Organ Motion .. - 264 -
9.5.1 Rectum COV motion .. - 264 -
9.5.1a Rectum solid COV motion ... - 264 -
9.5.1b The effect of Rectum solid volume on rectum COV motion - 265 -
9.5.1c Anal Canal COV motion ... - 266 -
9.5.1d The effect of Anal Canal volume on anal canal COV motion - 267 -
9.5.2 Bladder COV motion - 267 -
9.5.2b The effect of bladder volume on bladder COV motion - 268 -
9.5.3 Prostate COV motion - 269 -
9.5.3b Correlation between Rectal volume and prostate motion - 272 -
9.5.3c Correlation between Bladder volume and prostate motion - 275 -
9.6 Aim 3: Effect of volume variations on the planned dose - 277 -
9.6.1 Rectum - 280 -
9.6.1a Rectum Solid dose reproducibility - 280 -
9.6.1b Rectal wall dose reproducibility - 280 -
9.6.1c Anal canal dose reproducibility - 281 -
9.6.1d Hypothesis 3: That reduced rectal volumes lead to increased rectal dose - 281 -
9.6.2 Bladder - 285 -
9.6.2a Bladder dose reproducibility - 285 -
9.6.2b Effect of bladder volume on bladder dose - 286 -
9.6.3 Prostate & PTV dose reproducibility - 287 -
9.6.3a Prostate (CTV) and PTV - 287 -
9.6.3b Effect of rectal volume on PTV dose - 289 -
9.6.3c Effect of bladder volume on PTV dose - 289 -
9.6.3d Effect of rectum solid COV motion on PTV dose - 290 -
9.6.3e Effect of bladder COV motion on PTV dose - 292 -
9.6.3f Effect of prostate COV motion on PTV dose - 294 -
9.7 Hypothesis 4: Current treatment instructions are inadequate to maintain the planned dose - 296 -
9.8 Aim 4: To examine the effect of uncertainties on the general patient population - 300 -
9.9 Aim 5: Examine the current patient treatment instructions and assess the need for review - 301 -
9.10 Application of results: - 304 -
9.10.1 Aim 6: Will these results influence the margins or prescribed dose? - 305 -
9.11 Limitations - 306 -
10. Summary of IGRT research - 309 -
10.1 Patient set-up uncertainty - 309 -
10.2 Organ Volumes Variations - 310 -
10.3 Organ motion - 311 -
10.4 Dose delivered - 311 -
10.5 Conclusion - 313 -
10.5.1 Suggestions for further investigation - 313 -
10.5.2 Recommendations - 314 -
11. References - 316 -
12. Appendices - 333 -
Appendix 1: Ethics certificates - 333 -
Appendix 2: Consent form - 337 -
Appendix 3: Daily isocentre location data form - 337 -
Appendix 4: XIO manual - 337 -
Appendix 5: Primatom CT verification manual - 337 -
Appendix 6: Blank data sheets - 337 -
Appendix 7: Patient raw data - 337 -
Appendix 8: Contouring uncertainty data - 337 -
Appendix 9: Patient set up uncertainty analysis - 337 -
List of Figures:

Figure 2 - 1: The Male Pelvis .. - 4 -
Figure 5 - 1: Primatom 'stand alone' CT scanner... - 74 -
Figure 7 - 1: a) Topogram & b) Control slice... - 83 -
Figure 7 - 2: Contours shown on Axial Slice.. - 87 -
Figure 7 - 3: Three different isocentres used to analyse effect of IGRT on dose.- 93 -
Figure 8 - 1 (a-e): Rectum volumes variations ... - 102 -
Figure 8 - 2: Normalised rectum volume histogram ... - 103 -
Figure 8 - 3 (a-c): Distribution of COV location normalised to the mean - 104 -
Figure 8 - 4(a-e): Bladder volume variations... - 106 -
Figure 8 - 5: Normalised bladder volume histogram ... - 107 -
Figure 8 - 6(a-c): Distribution of COV location normalised to the mean - 108 -
Figure 8 - 7(a-e): Prostate volume variations ... - 109 -
Figure 8 - 8: Normalised prostate volume histogram - 110 -
Figure 8 - 9(a-c): Distribution of COV location normalised to mean - 111 -
Figure 8 - 10(a-e): Anal Canal volume variation .. - 113 -
Figure 8 - 11: Normalised anal canal volume histogram - 114 -
Figure 8 - 12 (a-c): Distribution of normalised COV location - 115 -
Figure 8 - 13: Comparison of mean rectum volume vs. RO contoured volume.- 116 -
Figure 8 - 14: Comparison of mean bladder volume vs. RO contoured volume- 118 -
Figure 8 - 15: Comparison of mean prostate volume vs. RO contoured volume-120 -
Figure 8 - 16: Comparison of mean anal canal volume vs. RO contoured volume..... - 121 -
Figure 8 - 17: Number of isomoves per patient .. - 124 -
Figure 8 - 18: Direction of isomoves .. - 125 -
Figure 8 - 19: Direction of multiple isomoves ... - 126 -
Figure 8 - 20: Magnitude direction of isomoves ... - 126 -
Figure 8 - 21: Body habitus vs. isomoves .. - 127 -
Figure 8 - 22: AP separation vs. isomoves .. - 127 -
Figure 8 - 23: Lateral separation vs. isomoves .. - 128 -
Figure 8 - 24 a-c: Distribution of set-up uncertainty - 130 -
Figure 8 - 25: Average change in Rectum solid volume - 132 -
Figure 8 - 26: Systematic error for Rectum Solid volumes - 133 -
Figure 8 - 27: Planned rectum solid volume vs. systematic error - 133 -
Figure 8 - 28: Random error for Rectum Solid volumes - 134 -
Figure 8 - 29: Planned rectum solid volume vs. random error - 134 -
Figure 8 - 30: Average change in rectal wall volume - 137 -
Figure 8 - 31: Systematic error for rectal wall volumes - 137 -
Figure 8 - 32: Planned rectal wall volume vs. systematic error - 138 -
Figure 8 - 33: Random error for rectal wall volume - 138 -
Figure 8 - 34: Planned rectal wall volume vs. random error - 139 -
Figure 8 - 35: Average change in anal canal volume - 142 -
Figure 8 - 36: Systematic error for anal canal volumes - 142 -
Figure 8 - 37: Planned anal canal volume vs. systematic error - 143 -
Figure 8 - 38: Random error for anal canal volume - 143 -
Figure 8 - 39: Planned anal canal volume vs. random error - 144 -
Figure 8 - 40: Average change in Bladder volume .. - 146 -
Figure 8 - 41: Systematic error for bladder volumes - 146 -
Figure 8 - 42: Planned bladder volume vs. systematic error - 147 -
Figure 8 - 43: Random error for bladder volumes .. - 147 -
List of Tables:

Table 4 - 1: Normal tissue tolerance doses ... - 24 -
Table 4 - 2: Set-up errors using various forms of immobilisation device - 42 -
Table 4 - 3: Results of prostate motion studies .. - 49 -
Table 4 - 4: Combinations of organ filling as published in the literature - 55 -
Table 5 - 1: Studies using repeat CT scans outside treatment room - 70 -
Table 8 - 1: Patient Characteristics ... - 97 -
Table 8 - 2: Urinary symptoms reported .. - 99 -
Table 8 - 3: Rectal symptoms reported .. - 100 -
Table 8 - 4: Rectum volume statistics ... - 101 -
Table 8 - 5: Rectum contours: Regression statistics .. - 102 -
Table 8 - 6: Rectum COV variation (cm) relative to the mean COV location - 103 -
Table 8 - 7: Normal distribution data for COV motion ... - 104 -
Table 8 - 8: Rectum volume (cc) as a result of expansion ... - 105 -
Table 8 - 9: Bladder volume statistics ... - 105 -
Table 8 - 10: Bladder contours: Correlation coefficients, 95% CI range and p-values .. - 106 -
Table 8 - 11: Bladder COV variation relative to the mean COV location - 107 -
Table 8 - 12: Normal distribution data for COV motion ... - 108 -
Table 8 - 13: Bladder volume (cc) as a result of expansion - 108 -
Table 8 - 14: Prostate volume statistics ... - 109 -
Table 8 - 15: Prostate contours: correlation coefficients, 95% CI and p-values. - 110 -
Table 8 - 16: Prostate COV variation relative to the mean COV location - 111 -
Table 8 - 17: Normal distribution data for COV motion ... - 112 -
Table 8 - 18: Prostate volume (cc) as a result of expansion - 112 -
Table 8 - 19: Anal Canal volume statistics .. - 112 -
Table 8 - 20: Anal Canal contours: Correlation coefficients, 95% CI and p-values. - 113 -
Table 8 - 21: Anal Canal COV variation relative to mean COV location - 114 -
Table 8 - 22: Normal distribution data for COV motion ... - 115 -
Table 8 - 23: Anal canal volume (cc) as a result of expansion - 116 -
Table 8 - 24: Rectum Inter-observer variation (cc) ... - 117 -
Table 8 - 25: Rectum COV variations (cm) ... - 117 -
Table 8 - 26: Bladder Inter-observer variation (cc) ... - 118 -
Table 8 - 27: Bladder COV variations (cm) ... - 119 -
Table 8 - 28: Prostate Inter-observer variation (cc) .. - 120 -
Table 8 - 29: Prostate COV variations (cm) ... - 121 -
Table 8 - 30: Anal Canal Inter-observer variation (cc) ... - 122 -
Table 8 - 31: Anal Canal COV variations ... - 122 -
Table 8 - 32: Pre-treatment isomoves and adjustments to treatment sheet - 124 -
Table 8 - 33: Analysis of isomove magnitude (mm) ... - 127 -
Table 8 - 34: Systematic set-up error (mm) ... - 128 -
Table 8 - 35: Random Error (mm) .. - 129 -
Table 8 - 36: Total set-up uncertainty (mm) .. - 129 -
Table 8 - 37: Analysis for normal distribution of overall set-up uncertainty - 130 -
Table 8 - 38: Organ volume variations - Rectum Solid .. - 131 -
Table 8 - 39: Maximum & minimum treatment volume (% of planned volume) - 135 -
Table 8 - 40: Organ volume variations: Rectal Wall .. - 136 -
Table 8 - 41: Maximum & minimum treatment volume (% of the planned volume)...
 .. - 140 -
Table 8 - 42: Organ volume variations: Anal Canal - 141 -
Table 8 - 43: Organ volume variation: Bladder - 145 -
Table 8 - 44: Maximum & minimum treatment volumes (% of the planned volume) .
 .. - 149 -
Table 8 - 45: Organ volume variations –Prostate - 150 -
Table 8 - 46: Maximum & minimum treatment volumes (% of the planned volume) .
 .. - 154 -
Table 8 - 47: Relationship between GI symptoms & rectum solid volume trend..
 .. - 155 -
Table 8 - 48: Relationship between urinary symptoms & bladder volume trend.....
 .. - 155 -
Table 8 - 49: Internal organ motion (cm): Rectum Solid - 156 -
Table 8 - 50: Systematic error vs. planned rectum solid volume - 157 -
Table 8 - 51: Random error vs. planned rectum solid volume. - 157 -
Table 8 - 52: Regression statistics for Rectum COV vs. change in Rectum volume....
 .. - 158 -
Table 8 - 53: Internal organ motion (cm): Anal canal - 159 -
Table 8 - 54: Systematic error vs. planned anal canal volume - 159 -
Table 8 - 55: Random error vs. planned anal canal volume - 160 -
Table 8 - 56: Internal organ motion (cm): Bladder - 160 -
Table 8 - 57: Systematic error vs. planned bladder volume - 161 -
Table 8 - 58: Random error vs. planned bladder volume - 161 -
Table 8 - 59: Regression statistics for Bladder COV vs. change in bladder volume...
 .. - 162 -
Table 8 - 60: Internal organ motion (cm): Prostate - 163 -
Table 8 - 61: Regression analysis - prostate motion in 2 dimensions - 165 -
Table 8 - 62: Systematic COV prostate error vs. planned rectum solid volume.- 165 -
Table 8 - 63: Random COV prostate error vs. planned rectum solid volume.... - 165 -
Table 8 - 64: Regression statistics for Prostate COV vs. % change in rectum solid
 volume. ... - 167 -
Table 8 - 65: Systematic COV prostate error vs. planned bladder volume- 167 -
Table 8 - 66: Random COV prostate error vs. planned bladder volume- 167 -
Table 8 - 67: Regression statistics for Prostate COV vs. % change in bladder volume.
 .. - 169 -
Table 8 - 68: Mean rectal dose as a % of the planned dose for each patient..... - 170 -
Table 8 - 69: Mean rectal wall dose as a % of the planned dose for each patient-
 .. - 171 -
Table 8 - 70: Mean anal canal dose as a % of the planned dose for each patient...
 .. - 173 -
Table 8 - 71: Rectum solid; Regression statistics and effect on dose - 174 -
Table 8 - 72: Rectum wall; Regression statistics and effect on dose - 175 -
Table 8 - 73: Anal Canal; Regression statistics and effect on dose - 176 -
Table 8 - 74: Relationship between rectum solid volume and dose - 180 -
Table 8 - 75: Mean bladder dose as a % of the planned dose for each patient- - 181 -
Table 8 - 76: Mean PTV dose as a % of the planned dose for each patient - 184 -
Table 8 - 77: Regression analysis: Effect of rectum motion on PTV dose – actual
 isocentre .. - 189 -
Table 8 - 78: Regression analysis: Effect of rectum motion on PTV dose – future
 isocentre .. - 189 -
Table 8 - 79: Regression analysis: Effect of bladder motion on PTV dose – actual isocentre.. - 190 -
Table 8 - 80: Regression analysis: Effect of bladder motion on PTV dose – future isocentre.. - 190 -
Table 9 - 1: Volume and COV uncertainty.. - 217 -
Table 9 - 2: Set up errors reported in the literature... - 222 -
Table 9 - 3: Systematic and Random errors as reported in the literature.......... - 225 -
Table 9 - 4: Comparison of intra-observer prostate contouring time trends over 12 and 2 months, ... - 256 -
Table 9 - 5: Hormone treatments and trends in prostate volume for each patient... - 258 -
Table 9 - 6: Relationship between rectal wall and dose...................................... - 285 -
Table 9 - 7: Effect of prostate displacement on PTV dose................................... - 295 -
1. Introduction

Prostate cancer is to men what breast cancer is to women. Both have the highest incidence of cancer for their sex and radical radiation therapy is a mainstay of curative treatment.

The development of Prostate Specific Antigen (PSA) testing has lead to an increase in early detection of low stage localised prostate cancers. However, “there is no recognised single best treatment for localised prostate cancer, as each patient is unique and different. The current treatment options for localised prostate cancer include surgery, radiation therapy, hormone manipulation and observation as well as various combinations thereof” (Eng, Thomas & Herman 2002, p. 239).

Radiation therapy can consist of External Beam Radiation Therapy (EBRT) and/or Brachytherapy (radioactive implant). The most common form of radiation therapy to the prostate is EBRT. Three-Dimensional Conformal Radiation Therapy (3D-CRT) is widely used to treat localised prostate cancer during a standard fractionated course of around seven to eight weeks. The intention of 3D-CRT is to deliver high target doses to the prostate while optimally reducing irradiation of critical non-target structures such as the rectum and the bladder. This has been made possible by advances in imaging techniques, planning computer systems and treatment technology (Martinez et al. 2001; Fiorino et al. 1998). As a result of 3D-CRT the incidence of severe bladder and rectal toxicity has decreased compared to previous treatment techniques. The continued use of 3D-CRT relates to its suitability for “medically non-surgical candidates, relatively low morbidity, cost, preservation of normal sexual function in some patients, less time lost from work and patient preference.” (Eng, Thomas & Herman 2002, p. 239)
1.1 Importance of prostate positioning

During a seven to eight week course of radical External Beam Radiation Therapy (EBRT) there are several variables that affect the accuracy with which the patient’s treatment can be delivered. These include daily patient set-up uncertainties, organ volume uncertainties and organ motion.

Numerous authors have demonstrated that there is a correlation between target volume displacement and variations in rectal and/or bladder volume (Antolak et al. 1998; Dawson et al. 1998; Miralbell et al, 2003a; Roeske et al. 1995; Zelefsky et al. 1999; Zellars et al. 2000). These volumes are affected on a daily basis by fluid intake, fibre supplements and patient diet. Although conventionally the accuracy of treatment set-up in prostate cancer patients has been verified according to bony anatomy, the bladder status, rectal distension and pelvic muscle contraction may all affect daily prostate motion. Patient treatment position and stabilisation methods also affect treatment accuracy.

These uncertainties all contribute to an inability to deliver the planned dose distribution which may lead to an under-dosage of part of the target or to the over-dosage of healthy tissues.

Throughout this thesis anterior-posterior refers to the Z direction on the Cartesian axis and will be abbreviated to AP, superior-inferior (SI) refers to the Y direction and right-left (RL or Lateral where more appropriate) refers to the X direction.
1.2 Hypotheses

Based on the published literature and clinical observations, the following hypotheses were proposed in the context of prostate radiotherapy and tested during this research study.

1.2.1 Hypothesis 1: Rectal volumes decrease

That rectal volume decreases across a course of radiotherapy.

1.2.2 Hypothesis 2: Bladder volumes fluctuate

That bladder volume fluctuates/alters during a course of radiotherapy.

1.2.3 Hypothesis 3: Reduced rectal volumes lead to increased dose

That reducing rectal volume leads to increasing rectal radiation dose; i.e. that more of the rectum is inside the high dose region.

1.2.4 Hypothesis 4: Current instructions are inadequate

That the current patient preparation instructions regarding bladder filling and rectal emptying are inadequate to maintain the planned dose distribution.