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Abstract: 

Context. Paraquat poisoning is a  medical problem in many parts of Asia 
and the Pacific. The mortality rate is extremely high as there is no effective 
treatment.  
Objective.We analysed data collected during an ongoing cohort study on 
self-poisoning and from a randomized controlled trial assessing the efficacy 
of immunosuppressive therapy in hospitalized paraquat-intoxicated 
patients. The aim of this analysis was to characterise the toxicokinetics and 
toxicodynamics of paraquat in this population.  
Methods.A nonlinear mixed effects approach was used to perform 
toxicokinetic/toxicodynamic population analysis in a cohort of 78 patients.  
Results. The paraquat plasma concentrations were best fitted by a two-
compartment toxicokinetic structural model with first-order absorption and 
first-order elimination. Changes in renal function were used for the 
assessment of paraquat toxicodynamics. The estimates of toxicokinetic 
parameters for the apparent clearance, the apparent volume of distribution 
and elimination half-life were 1.17 L/h, 2.4 L/kg and 87 h, respectively. 
Renal function, namely creatinine clearance, was the most significant 
covariate to explain between patient variability in paraquat clearance.This 
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model suggested that a reduction in paraquat clearance occurred within 24 
to 48 h after poison ingestion, and afterward the clearance was constant 
over time.The model estimated that a paraquat concentration of 429 µg/L 
caused 50% of maximum renal toxicity. The immunosuppressive therapy 
tested during this study was associated with only 8% improvement of renal 
function.  
Conclusion. The developed models may be useful as prognostic tools to 
predict patient outcome  based on patient characteristics on admission and 
to assess drug effectiveness during antidote drug development.  
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Structured summary 

Context. Paraquat poisoning is a  medical problem in many parts of Asia and the Pacific. The 

mortality rate is extremely high as there is no effective treatment. 

Objective.We analysed data collected during an ongoing cohort study on self-poisoning and from 

a randomized controlled trial assessing the efficacy of immunosuppressive therapy in 

hospitalized paraquat-intoxicated patients. The aim of this analysis was to characterise the 

toxicokinetics and toxicodynamics of paraquat in this population. 

Methods.A nonlinear mixed effects approach was used to perform toxicokinetic/toxicodynamic 

population analysis in a cohort of 78 patients. 

Results. The paraquat plasma concentrations were best fitted by a two-compartment toxicokinetic 

structural model with first-order absorption and first-order elimination. Changes in renal function 

were used for the assessment of paraquat toxicodynamics. The estimates of toxicokinetic 

parameters for the apparent clearance, the apparent volume of distribution and elimination half-

life were 1.17 L/h, 2.4 L/kg and 87 h, respectively. Renal function, namely creatinine clearance, 

was the most significant covariate to explain between patient variability in paraquat 

clearance.This model suggested that a reduction in paraquat clearance occurred within 24 to 48 h 

after poison ingestion, and afterward the clearance was constant over time.The model estimated 

that a paraquat concentration of 429 µg/L caused 50% of maximum renal toxicity. The 

immunosuppressive therapy tested during this study was associated with only 8% improvement 

of renal function. 

Conclusion. The developed models may be useful as prognostic tools to predict patient outcome 

based on patient characteristics on admission and to assess drug effectiveness during antidote 

drug development. 
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What was already known about this subject: 

- Although heavily restricted, paraquat remains widely used in the developing world. 

- There is currently limited information on paraquat pharmacokinetics and pharmacodynamics in 

humans 

 - Available prognostic tools for patients outcome after paraquat poisoning were not developed 

based on pharmacology and do not account for differences in treatment effects.  

What this study adds? 

- This is the first  report on population pharmacokinetic and pharmacokinetic/pharmacodynamic 

analyses of paraquat in humans . 

- The developed models can be used to quantitatively characterize treatment effects and therefore 

optimize prognostic tools dedicated to predict patient outcome after poisoning. 

Page 6 of 40

British Pharmacological Society

British Journal of Clinical Pharmacology



5 

Introduction 

Paraquat is a commonly used herbicide that causes many deaths from accidental or 

intentional ingestion. Although heavily restricted, it remains widely used in the developing world, 

especially in Asia. Ingestion of more than 15-30 ml of a 20% (w/v) paraquat can result in death 

from multiple organ failure or respiratory failure within a month of intoxication. Due to the lack 

of effective treatment, [1-5]  the mortality rate after paraquat ingestion is around 60%, which is 

much higher than that of other commonly used herbicides such as glyphosate and chlorophenoxy 

herbicides (both around 5-30%). [6, 7] 

Understanding the disposition of paraquat in humans is important for evaluating 

treatments that aim to reduce paraquat concentrations and/or effects. Animal studies indicate that 

paraquat, a cation of a strong base, is rapidly but poorly absorbed from the gastrointestinal tract. 

Only 5-15% reaches the blood stream where the peak level is obtained within 2-6 hours. [3] 

Protein binding of paraquat is very low and paraquat is not metabolized. [8] Small amounts of 

paraquat have been found in bile (post-mortem), indicating that some excretion via bile occurs. 

[8] However, up to 98%of paraquat is excreted unchanged via urine indicating that renal function 

is a key factor in the elimination of paraquat. [9-11] Paraquat toxicokinetics have been studied in 

several animal species including dogs, rats, and rabbits. [11-15] To date, only a few studies have 

focused on paraquat toxicokinetics in humans.
 
[16,17] Moreover, the relationship between 

human toxicokinetics (TK) and toxicodynamics(TD) has not been studied. Over decades, many 

procedures and treatments have been used to modify toxicity of paraquat without any great 

success. [1, 18-20] The best predictors of outcome are volume of ingestion, kidney function and 

age. 
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Acute kidney injury (as measured by a change in creatinine) is very common and very 

strongly predicts death after paraquat poisoning. [21, 22] However, a rise in creatinine is a good 

predictor because it is both an indicator of the extent of ongoing toxicity and of the ability to 

eliminate paraquat. It would be useful to determine the relative contribution of these two factors 

as they have different implications for improving management. 

We report on a nonlinear mixed effects approach to better characterise paraquat kinetics 

and toxicity in a paraquat intoxicated population (population TK/TD or pop TK/TD), the 

uncertainty around TK and TD and the potential covariates that could explain variability in 

paraquat disposition in intoxicated patients.The aims of the present study were: (1) to predict the 

time course of paraquat exposure based on information recorded on admission such as the initial 

kidney function and the ingested volume, (2) to better understand the relationship between 

paraquat exposure and toxicity in humans and (3) to assess the influence of patient characteristics 

on paraquat exposure and toxicity, including  the effects of commonly used treatment 

approaches. 

Materials and methods 

Patients 

The subjects (n = 78) included in the present analysis were from two different sources: 

(1) an ongoing cohort study on self-poisoning and (2) a nested randomized controlled trial (RCT) 

assessing the efficacy ofimmunosuppressive therapy on paraquat poisoning (ISRCTN85372848) 

in Sri Lankan tertiary hospitals. Demographic and clinical data were collected prospectively 

from all consenting patients. The studies were approved by the Ethical Review Committee of the 

Faculty of Medicine, University of Peradeniya, Sri Lanka, and the Human Research Ethics 
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Committee of the Australian National University. Informed written consent was obtained from 

the patients or relatives where this was not possible. 

Paraquat ingestion was initially diagnosed based on patient’s or relative’s history and/or 

by examination of the bottle or label brought to the hospital. Paraquat ingestion was then 

confirmed via these mi-quantitative urine dithionate test (done at least 4 hours after ingestion). 

The amount of paraquat ingested was estimated from the volume described by the patients or 

their relatives. A “little” or “ a teaspoon” was interpreted as equivalent to 5 ml, a “mouthful” to 

25 ml, a “small cup” to 100 ml, a “glass” to 300 ml, and a “bottle” to 400 ml of a commercial 

product containing 20% paraquat. If the patient reported a range of volumes of ingestion, the 

mean volume was used. [23] 

Sixty-eight patients were included in the TD study. The patients were grouped by 

treatment regimen as: standard care (n = 19), standard care  plus placebo (n = 26), and standard 

care plus immunosuppressive therapy (comprising pulse therapy with methylprednisolone and 

cyclophosphamide/MESNA, and dexamethasone) (n = 23) as described elsewhere.
20

Standard

care consisted of resuscitation (assessment and management of airway, breathing and 

circulation), decontamination using charcoal or Fuller’s earth, and intravenous fluids. 

Haemoperfusion/haemodialysis were not used in any patients. 

Blood and urine sampling 

Serial blood and urine samples were collected for the quantification of paraquat levels at 

admission (t=0), 4, 8, 16, and 24 hour (post admission) and then daily until discharge. After 

discharge, all patients were followed up at one month and three months at the clinic or their 

home. At follow-up, some clinical data, blood and urine samples were collected. Around 6-8 ml 
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blood were withdrawn at each time point and were transferred to two EDTA tubes and mixed 

thoroughly. Then soon after collection,blood samples were centrifuged for 10 minutes at 3000 

rpm and plasma was separated. Urine volumes were not recorded, but where possible 20 ml of 

urine was also collected at these time points, and centrifuged at 2000 rpm for 10 minutes. Clear 

supernatant was then transferred into small tubes. Plasma and urine samples were then carefully 

labeled and immediately transferred to a -20°C freezer, and later shipped to Australia for further 

analysis. 

Paraquat analysis 

Paraquat concentrations in plasma and urine were determined using the LC–MS/MS 

system consisting of an SLC-10AVP system controller, two LC-10AD pumps, an SIL-20AC-HT 

autosampler (Shimadzu, Kyoto, Japan) and an API2000 triple quadrupole(Applied Biosystems 

Inc., Foster City, CA, USA) a mass spectrometer coupled with an electrospray ionization (ESI) 

source and a divert valve.
24

 Briefly, plasma and urine samples were carried out by one-step

protein precipitation using cold acetonitrile (−20 to −10 ºC). After centrifugation, an aliquot of 

10 µl of supernatant was injected into a KinetexTM hydrophilic interaction chromatography 

(HILIC) column with a KrudKatcherTM Ultra in-line filter. The chromatographic separation was 

achieved using the mobile phase mixture of 250 mM ammonium formate (with 0.8% aqueous 

formic acid) in water and acetonitrile at a flow rate of 0.3 ml/min. The calibration curve was 

linear over the concentration range of 10–5000µg/L, with an LLOQ of 10 µg/L. The inter- and 

intra-day precision (% R.S.D.) was<8.5% with accuracy within the range of 95.1–102.8%. 

Paraquat in plasma and urine samples was stable when stored at -20°C for 3 freeze–thaw cycles. 
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Descriptive statistics and graphic generation 

Graphics and descriptive statistics were generated using GraphPad Prism version 6.01 

(GraphPad Solfware, San Diego, USA).The relationship between paraquat plasma and urine 

concentration over time was also plotted to provide a rough model-independent assessment of 

the expected change over time in renal paraquat clearance. 

Population toxicokinetic-toxicodynamic analysis 

Pop TK: Structural model 

The concentration-time data for paraquat in plasma were analysed by a non-linear mixed-

effect modeling approach using Phoenix NLME version 1.2 Build 6.3.0.395 (Pharsight 

Corporation, Mountain View, CA, USA).  Initial toxicokinetic model selection was performed 

using graphical analysis. Plots of paraquat plasma concentration versus time were generated for 

each individual and examined to determine the appropriate descriptive model. During this 

analysis,  it was assumed that the renal function modified by paraquat had already reached a 

steady state at the time most of plasma paraquat concentrations were measured . This was based 

on the fact that renal function has been shown to decrease exponentially after paraquat ingestion 

before reaching a steady state impaired renal function within the first 48 hours. [13] Based on the 

graphical analysis and the known physicochemical and TK properties of paraquat, a two-

compartment model with first-order absorption and first-order elimination was used as the 

toxicokinetic structural model. Data were fitted using the extended least squared first order 

conditional estimation method (FOCE ELS) as implemented in Phoenix software. The model 

was parameterised in terms of paraquat apparent oral clearance (CLPQ/F), apparent volume of 

distribution of central compartment after oral administration (V1/F), apparent volume of 
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distribution of peripheral compartment after oral administration (V2/F), inter-compartmental 

clearanceafter oral administration (Q/F),  absorption rate constant (Ka) and bioavailability factor 

(F). Ka was fixed to 1 h
-1

given the lack of data during the absorption phase and given that the

reported mean Tmax in human was 3 h.[3] As the ingested dose was estimated from volume of 

ingestion, the varying doses were imputed as covariates on the bioavailability factor and the 

median dose of paraquat (10 g) was given as the amount administered to each patient. In order to 

avoid numerical issues due to boundaries of F between 0 and 1, the logit of bioavailability factor 

(XF) was first estimated, and the bioavailability factor was subsequently regenerated using the 

following formula: 

F=XF/(1+XF) (1) 

Pop TK: Stochastic model 

Inter-individual variability (IIV) in TK parameters were modeled using an exponential 

model as illustrated below: 

Pi = P*exp(ηi)        (2) 

where Pi is the parameter estimate of the i
th

 individual, P is the typical value for the

population, and ηi is the random effect for individual i, ηwas assumed to be normally distributed 

with a mean value of 0 and a variance of ω
2
.
25

IIV terms were added on all the TK parameters.

Residual errors were best described using a combined model (additive and proportional) 

as depicted below: 

Cji = C0ji*(1+ε1ji) + ε2ji
       

 (3) 

where Cji and C0ji are the i
th

 measured (observed) and model predicted paraquat plasma

concentrations for the j
th

 patient, respectively. ε1jiand ε2ji denote the proportional and the additive
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terms for random residual error, respectively. They were assumed to be normally distributed with 

a mean of 0 and variances of ��
�and ��

�. 

Pop TK: Covariate model 

A stepwise approach was used for toxicokinetic covariate model building with forward 

inclusion followed by backward exclusion. The following covariates were assessed for their 

effects on paraquat disposition: body weight (BW, kg), gender, age (years), amount ingested (g) 

and renal function markers: serum creatinine concentration (sCr, mg/dL) and estimated 

creatinine clearance (eCLcr, L/h). eCLcr was estimated using the Cockcroft-Gault equation. [26] 

Covariates first tested separately according to their biological plausibility and where considered 

to be significant when their addition to the base model led to a decrease of at least 3.84 points in 

the objective function value (OFV) (P-value < 0.05 in the approximate χ
2
 distribution with 1

degree of freedom). [27, 28] The continuous covariates were normalized to their corresponding 

medians and introduced into the model as shown by Equation 4: 

Pk = θk1*[(Cov/Covmedian) 
θk2

]
 

(4) 

where Pk is the TK parameter, θk1 is the typical value of the TK parameter in the 

population, θk2 is the effect coefficient of the covariate,  Cov is the value of the covariate and 

Covmedian is the median of the covariate in the population under investigation. 

 Categorical covariates were entered into the model using an exponential model. For 

example, the following model was used to assess gender effect on PD parameters: 

Pj = θ0*exp(θ1j *X1j) (5) 

where X1j = 0 and 1 for males and females respectively,θ0 is the typical value of the TD 

parameter in the population and θ1j is the effect coefficient for females. 
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TK model evaluation 

Criteria for selecting the final model included change in the OFV, precision of parameter 

estimation (coefficient of variation (CV) estimates smaller than 50%), [29] graphical analysis 

and quality of goodness-of-fit plots. All of these criteria were taken into account when evaluating 

alternate models.  Lead TK models were evaluated with regards to their accuracy and their 

stability using nonparametric bootstrapping and visual predictive check (VPC) methods. [30] A 

nonparametric bootstrapping method was allowed to assess the stability and uncertainty of the 

final model and estimate the confidence intervals (CI) around parameter estimates in order to 

characterise the precision of their estimation. [31, 32] One thousand replicates of the data sets 

were generated by randomly sampling the patient data, and the final model was fitted 

individually to each of them. All of the model parameters were estimated, and their median and 

95% CI were generated. The VPCs were performed using the final model parameters to simulate 

TK data for 1000 virtual subjects. The 95% prediction interval of simulated concentrations or 

effects was computed and plotted against the observed values. Bayesian estimates of parameters 

for individual patients were also computed from the final model. The final TK model was used to 

generate individual predicted concentrations at times of TD measurements. These individual 

predicted concentration values were used as input for the TD model. TD parameters and their 

associated variability were estimated in a subsequent step as described below. 

Population toxicodynamic model development 

TD: Structural model 

Acute renal failure is a common and important acute toxic effect, and the extent of injury 

predicts death in severe paraquat poisoning. [3, 21] Estimated CLcr  (eCLcr) was used as the 
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marker of paraquat renal toxicity. Initial Pop TD model selection was carried out using graphical 

analysis. Plots of paraquat plasma concentration and TD effect (eCLcr) was constructed for each 

individual and examined to determine the appropriate descriptive model.  Based on this graphical 

analysis, the inhibitory fractional sigmoid Emax model including the baseline was chosen and is 

described as follows: 

E(t) = E0*(1-Emax*C
γ
/(����

ɤ + C
γ
)) (6) 

where E(t) is the TD effect (eCLcr) at time t, E0 is the baseline eCLcr of each patient at 

admission, Emax is the maximal fractional decrease of eCLcr caused by paraquat, IC50 is the 

concentration of paraquat causing a 50% of maximum paraquat induced eCLcr decrease, and γ is 

a shape factor characterizing the slope of the response.
25

TD: Stochastic model 

Inter-individual variability in TD parameters was also assumed to be log-normally 

distributed and was also modeled using an exponential model.  IIV terms were imputed on all 

TD parameters. 

The residual errors were best described using a log-additive error model as depicted 

below: 

Log Eoij = Log Eji+ εji
         

(7) 

Where Eoij is the observed effect (eCLcr) for the i
th

 individual at concentration j, Eji is the

individual predicted effect (eCLcr) for the i
th

 individual at concentration j, εjiis the residual error

term. εjiis assumed to be normally distributed with a mean of 0 and a variance equal to σ
2
.

TD: Covariate model 

The following covariates were tested on the baseline parameter given that they plausibly 

affected baseline CLcr: age, gender, body weight. The effects of different treatments were tested 
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as covariate on Emax, IC50 and γ. Continuous covariates were entered using power models and 

categorical covariates were entered into the model using exponential models as previously 

described. 

When the covariate had more than 2 categories, such as treatment groups, the following 

equations were used: 

Pj = θ0 if treatment group = placebo

Pj = θ0*expθ1j if treatment group = immunosuppressive 

Pj = θ0*expθ2j if treatment group = control (8) 

θ1j and θ2j are the effect coefficients of the covariate 

TD model evaluation 

Lead TD models were also evaluated by a bootstrapping approach and visual predictive 

checks (VPC) as previously described. Bayesian estimates of parametersfor individual patients 

were also computed from the final model. 

Results 

Patient demographics and plasma: urine paraquat ratios 

A total of 698 plasma concentrations from 78 paraquat poisoned patients were included 

in the TK analysis. The demographics of the patients in this study are shown in Table 1. Most 

paraquat plasma concentrations were proportional to urine concentrations with a median ratio 

(plasma:urine) of 0.17 (Fig. 1) in this population. The plasma:urine paraquat ratio was variable 

but overall did not change significantly over time. 

Population toxicokinetic model 
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As described in the methods section, a two-compartment toxicokinetic structural model 

with first-order absorption and first-order elimination was fitted to the data. Parameter estimates 

for the TK base model are presented in Table 2. Given the lack of data in the early distribution 

phase, V2/F value was fixed to 0.17 L/kg based on a sensitivity analysis and taking into account 

previously reported values of paraquat volume of distribution and patient body weights. 

Parameter estimates for the final model are also shown in Table 2. Ingested dose and 

renal function markers were found to be significant covariates on the paraquat bioavailability (F) 

and apparent paraquat clearance (CLPQ), respectively. Estimated CLcr or sCr were tested to assess 

which marker performed better in reflecting renal contribution to CLPQ. Even though smaller 

standard error estimates were obtained when sCr was used (data not shown) as a renal function 

marker, the OFV was significantly higher than when CLcr  was used (Table 2).  Inclusion of body 

weight in the model also significantly reduced the OFV. The goodness-of-fit plots obtained from 

the final toxicokinetic model are shown in Fig. 2, which indicate the model satisfactorily fitted 

the data. 

Population toxicodynamic model 

The final TK model was used to predict individual paraquat concentrations at times of 

TD measurement. Based on graphical analysis, an inhibitory fractional sigmoid Emax model 

including the baseline as shown in Equation (5) was chosen as structural TD model. Parameter 

estimates for the base TD model are presented in Table 3. Parameter estimates for the final 

model are also included in Table 3. 

The final PopTD model (model 7) included age, sex and body weight as covariates on 

baseline eCLcr and method of treatment as covariate on maximum reduction of eCLcr (Emax) 
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(Table 3). Immunosuppression treatment slightly lowered the Emax, by 8% compared to the 

placebo group. The Emax  was 24% lower in the patients treated with standard treatments outside 

the RCT compared to the placebo group (suggesting these two standard treatment only groups 

may differ due to the inclusion criteria for the RCT, in a way not accounted for by measured 

covariates). Goodness-of-fit plots were generated for the final model and the weighted residual 

showed no apparent visual bias for the prediction (Fig. 3). 

Model evaluation 

The accuracy and stability of these models were assessed by nonparametric bootstrap and 

VPC.  As shown in Table 4, the mean population parameters estimated from the bootstrapping 

were stable and comparable to the estimates from the final model. The estimates of the 

parameters from the final model all fell within the 95% CIs of the corresponding parameters 

obtained with the 1,000 bootstraps, indicating that the final model was fairly robust. The VPCs 

showed that approximately 95% of the observed data appear to fall within the 95% confidence 

interval (Fig. 4), suggesting that the final model accurately described the observed data. The 

estimated TK and TK/TD parameters of the individual patients are listed in Table 5. 

Clinical usefulness of the model 

The change of estimated CLPQ over time is shown in Fig.5 showing that after an initial 

rapid decrease the CLPQ was stable over time. The resulting median paraquat concentrations and 

CLcr were simulated for three different values CLcr at admission: the minimum, the median and 

the maximum values (0.3, 6 and 13L/h, respectively) in this cohort of patient. The results 

displayed in Fig. 6 show that the model is able to predict paraquat exposure and toxicity given 
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patient characteristics on admission. It could therefore serve to optimize prognostic tools 

dedicated to predict patients outcome on admission and could serve as a tool to evaluate 

treatment options and candidate antidotes. 

Discussion 

We used a population approach   to describe paraquat disposition and its effects on renal 

function in poisoned patients. A two compartment toxicokinetic model with rapid absorption 

fitted the data well. Renal function was the most important factor influencing paraquat clearance. 

As a function of paraquat concentration, there was a variable but rapid reduction in paraquat 

clearance within 24 to 48 hours, which then was constant and low (around 10ml/min). The time 

at which most of paraquat samples were collected is estimated to be more than 48 hours after 

ingestion.  Whilst paraquat does induce an immediate and variable change in renal function, this 

renal function appears to reach an impaired new steady state renal function within 48 hours. [13] 

Accordingly, the PK model used in this work used the simpler constant impaired renal function 

after paraquat ingestion and did not consider the time variant changes in renal function at early 

times. Renal injury occurred with relatively low concentrations of paraquat (IC50 =429 µg/L). 

This analysis has implications for the development of better prognostic tools, for evaluation of 

candidate antidotes and for the design of the optimal methods to enhance elimination. 

In humans, there is limited data on absorption of paraquat. Any uncertainty on the ingestion 

dose and time of ingestion in our study would be expected to propagate into uncertainty on TK 

and TD parameter estimates. There is only one study that has reported the complete recovery of 

paraquat after oral dosing, [16] and they estimated a V of 1.4 L/kg. If this value is substituted 

into our V/F estimated, the bioavailability(F) is estimated to be around 0.58. 

Page 19 of 40

British Pharmacological Society

British Journal of Clinical Pharmacology



18 

Other studies have estimated values for V/F ranging from 1.2 to 2.75 L/kg. [33, 34] and thus 

the V/F of about 2.4 L/kg estimated from our TK model is in the range of estimates. Several 

factors are known to influence paraquat distribution. The extent to which the herbicide is actively 

taken up by lung, liver, kidney and other tissues determines V/F. Therefore, if tissue binding of 

paraquat increased over time, V/F will increase as well. However, a high V/F estimation could be 

due to the over-estimation of the ingested doses. A limitation of this study is the lack of any way 

to accurately quantify ingestion volume, which impacts on estimated TK and TK/TD parameters 

(in both our and all other human studies). Moreover, the uncertainty in the estimation of some 

key covariates (e.g. renal function) also affects the degree of precision in these models. 

The deep compartment consists of tissues where the toxic effects are manifested (in 

particular lungs and kidneys) and other tissues which act as a reservoir. Paraquat is actively taken 

up into type II pneumocytes resulting in slow elimination of paraquat from lung compared to 

other tissues. [1] Active renal uptake and excretion of paraquat is also concentration dependent 

and saturable; [35] consequently, high levels of paraquat are seen in kidney. Impairment of 

kidney function in turn leads to higher concentrations of paraquat in the plasma. [12] Muscle is 

an important paraquat reservoir explaining the persistence of paraquat in plasma and urine for 

several weeks after exposure. [16] The long elimination half-life (t1/2 β) of 3-4 days in our study 

reflects the combined effects of reduced clearance from the decline in renal function and the 

slow release of paraquat from tissues into the circulation. 

An obvious large change in paraquat renal clearance in these patients was not observed and 

the plasma/urine paraquat ratio changed little over time (Fig. 1) which could wrongly suggest a 

simple and static first-order elimination process. Modeling individual patient concentrations did 

demonstrate a progressive decline in clearance. Several previous reports also indicate that 
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paraquat renal clearance (and total clearance) is a nonlinear function of time. A large decrease 

over time in CLPQ occurs with nephrotoxicity.[8, 13] At low doses, CLPQ may exceed 12 L/h in 

humans with normal kidney function.
36

The mean estimate for CLPQ/F (1.17 L/h) obtained from

our PopTK model is considerably lower than that reported in some previous human case reports 

(mean = 4.39 L/h), [34] and they showed a rapid change in CLPQ/F from 8.77 to 2.72 L/h within 

12 h. Substituting F = 0.58 into CLPQ/F yields an estimated mean CLPQ of 0.68L/h (11.33 

ml/min) in our study.  This CLPQ is similar to those reported by Houze et al which range from 

0.47 to 0.59 L/h (7.9 to 9.9 ml/min). [16] It seems likely we and Houze et al have missed a very 

short early phase of high CLPQ reported by others. [34, 36] The low CLPQ reflects the very rapid 

onset of paraquat induced renal impairment. [12, 13, 35, 37-39] Therefore, the low estimated 

CLPQ/F in the present study reflects that most blood samples were collected 6 or more hours 

post-paraquat ingestion when renal damage was already established. While a further modest 

decline in estimated CLPQ/Fwasfound over 24 to 48 h (Fig. 5), thereafter the estimated clearances 

were constant over time. 

In our analysis, the effect of the eCLcr, (reflecting GFR), on CLPQ was lower than one would 

expect. This probably reflects errors in the estimate of GFR rather than the model. [40] The 

Cockcroft-Gault equation has at least a 30% variance around actual renal function in chronic 

kidney disease population with sCr≤ 1.5 mg/dl. [41] It also performs very poorly when Cr is 

changing (i.e. it assumes steady-state). However, other estimation methods perform equally 

poorly (when compared with gold standard methods such as iohexol clearance). Future studies 

should ideally use more accurate direct measurements of GFR or creatinine clearance. 

The model suggested a very small effect of immunosuppressive treatment (8% lower Emax 

compared to placebo group).This is consistent with the clinical outcomes reported in this trial 
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[20] which was a very small favourable treatment effect that was not statistically significant. 

However, this difference was less than that seen in the non-RCT patients (24% lower 

Emax);which might be a result of the RCT inclusion criteria aiming to select people who had 

significant poisoning but also who would survive long enough to measure renal injury. Further, 

anotherRCT has also reported that immunosuppressive therapy did not improve renal function.2, 

[42] So, these results should not be used to imply that immunosuppressive treatment has 

substantial effects on renal injury. 

Model predictions may serve a number of purposes. From a clinical perspective, they can 

identify patients on admission who are very likely to develop kidney dysfunction. Using the TK 

model developed in this study, a paraquat plasma concentration-time profile can be predicted for 

individual patients on admission. Thereafter, a combination of the TK and the TD model could 

predict kidney function, namely creatinine clearance, changes over time. Prediction of 

toxicokinetics and acute kidney injury might in turn be used to identify patients most likely to 

benefit from enhanced elimination or who are most suitable for inclusion into clinical trials of 

strategies to prevent kidney injury and other manifestations of paraquat toxicity. 

Conclusion 

Renal function was the most significant covariate to explain between patient variability in 

paraquat clearance. Renal injury occurred with relatively low concentrations of paraquat (IC50 

=429 µg/L). A reduction in paraquat clearance occurred over 24 to 48 h after paraquat ingestion, 

and afterward the clearance was constant and low. The low clearance (around 10ml/min) and 

long half-life (3-4 days) in these cases suggest further studies of extracorporeal elimination 

would be worth exploring, as it is clear much greater clearance can be obtained by such methods. 
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[39] After optimal methods for enhancing elimination have been developed, large clinical trials 

will still be needed to determine if such methods can improve clinical outcomes. 
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Legends to figures 

Figure 1. Scatter plot of plasma versus urine paraquat concentrations. 

Figure 2. Diagnostic goodness-of-fit plots from the final population toxicokinetic model: 

Conditional weighted residuals versus time after ingestion (A), Conditional weighted versus 

population predicted concentration (B), Observed versus individual predicted concentrations (C), 

Observed versus population predicted concentrations (D). The open circles are the observed data, 

and the plotted line is the line of identity (y=x) 

Figure 3. Diagnostic goodness-of-fit plots from the final population toxicodynamics model: 

Conditional weighted residuals versus paraquat plasma concentrations (A), Conditional weighted 

residuals versus population predicted CLcr (B), Observed versus individual predicted CLcr (C), 

Observed versus population predicted CLcr (D). The open circles are the observed data, and the 

plotted line is the line of identity (y=x) 

Figure 4. Scatter plots for visual predictive check: observed and simulated concentrations versus 

time (A),observed and simulated CLcr versus paraquat plasma concentrations (B). Percentiles (5, 

50 and 95) were calculated using the final PopTK and TD model. 

Figure 5.Time course of empirical Bayes estimates of CLPQ   in PQ-poisoning patients. 

Figure 6. Time course of median predicted PQ concentrations for initial CLcr of  0.3, 6 

and13L/h. 
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Tables 

Table 1. Demographics of the patients enrolled in the population toxicokinetic and 

toxicodynamic studies 

Characteristics Toxicokinetic study (n= 78) 

Median (Range) 

Toxicodynamic study (n= 

68)Median (Range) 

Male/female (n) 52/26 45/23 

Age (y) 28 (14-76) 30 (14-76) 

Weight (kg) 51 (35-66) 51 (35-66) 

sCr (mg/dl) 2 (0.3-12.6) 2 (0.3-12.6) 

CLcr (L/h) 1.89 (0.29-13.25) 2.05 (0.29-13.25) 

Ingestion volume (ml) 50 (5-750) - 

Ingestion dose (g) 10 (1-150) - 
sCr, serum creatinine; CLcr, creatinine clearance 
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Table 2. Toxicokinetic model of paraquat 

OFV, objective function value; IIV, Inter-individual variability; F, bioavailability;V1/F, apparent volume of central compartment; CL/F, clearance; Q/F, apparent 

inter-compartmental clearance; XF, the logit of bioavailability; BW, body weight; %CV, coefficient of variation; %SE, standard error 

Description of model OFV Parameter (RSE(%)) Covariate effect (RSE(%)) IIV % (RSE(%)) 

V1/F CL/F Q/F V1/F CL/F XF V1/F CL/F XF 

Base model with mixed 

error model 

9496 16.46 

(16) 

0.58 

(15) 

1.74 

(8) 

- - - 91 

(20) 

125 

(44) 

142 

(38) 

 Final model with 

ingestion dose  effect on 

F, CLcr effect on CLPQ, 

BW on V1 

9449 13.63 

(16) 

0.15 

(31) 

0.84 

(11) 

BW: 1.0 CLcr: 1.57 

(10) 

Dose: 6.93E-8 

(42) 

89 

(18) 

124 

(57) 

142 

(37) 
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Table 3. Toxicodynamic model of paraquat 
OFV, objective function value;; IIV, Inter-individual variability; IC50, the concentration of PQ causing a 50% of maximum PQ induced-creatinine clearance 

reduction; γ, a shape factor characterising the slope of the response; E0, the baseline creatinine clearance; Emax, the maximum fractional decrease of creatinine 

clearance; BW, body weight; %CV, coefficient of variation; %SE, standard error 

Description of model OFV Parameter (RSE(%)) Covariate effect (RSE(%)) IIV % (RSE(%)) 

IC50 γ E0 Emax E0 Emax IC50 γ E0 Emax 

Base model with log-

additive error model 

745 346 

(3) 

24.02 

(2) 

3.35 

(2) 

0.55 

(2) 

- - 373 

(62) 

4 

(0.01) 

38 

(1) 

6 

(0.02) 

Final model with age, 

sex and BW effect on 

E0,Treatment effect on 

Emax 

727 207 

(1) 

5.02 

(0.7) 

3.23 

(0.7) 

0.62 

(0.7) 

Age: -0.07 (0.7) 

Male: 0.14 (0.7) 

BW: 1.39 (0.7) 

Active: -0.08 

(0.7) 

Control: -0.27 

(0.7) 

369 

(20.2) 

31 

(0.1) 

27 

(0.1) 

6 

(0.01) 
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Table 4. Results of nonparametric bootstrap analysis of paraquat population toxicokinetics and toxicodynamics 

Parameter Final model Bootstrap 

Mean %CV 2.5%CI 97.5% CI Mean %CV Median 2.5% CI 97.5% CI 

Toxicokinetics 

θV (L) 13.63 16 9.28 17.98 14.64 36 13.59 6.62 27.32 

θCL (L/h) 0.15 31 0.06 0.24 0.22 86 0.16 0.02 0.73 

θQ (L/h) 0.84 11 0.67 1.02 0.87 27 0.85 0.48 1.35 

Proportional 

residual error (%) 

0.48 39 0.12 0.84 0.80 148 0.44 0.11 4.38 

Additive residual 

error (µg/L) 

0.89 ² - - 1.26 77 0.98 0.1 3.7 

Toxicodynamics 

θIC50 (µg/L) 207 1.04 202.91 211.36 286 80 208 126 806 

θγ 5.02 0.74 4.94 5.09 5.49 15 5.15 3.97 6.84 

θE0 (L/h) 3.23 0.73 3.18 3.27 3.17 9 3.17 2.69 3.77 

θEmax (L/h) 0.62 0.72 0.61 0.63 0.62 7 0.62 0.54 0.71 

Log additive 

residual error(L/h) 

0.58 - - - 0.58 6 0.58 0.51 0.64 

θV, typical value of the volume distribution; θCL, typical value of the clearance, θQ, typical value of the inter-compartmental clearance; θXF, typical value of the 

logit of bioavailability; θIC50, typical value of the concentration of PQ causing a 50% of maximum PQ induced-creatinine clearance reduction; θγ, typical value of 

a shape factor characterising the slope of the response; θE0, typical value of the baseline creatinine clearance; θEmax, typical value of the maximum fractional 

decrease of creatinine clearance; %CV, coefficient of variation; CI, confidence interval 
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Table 5. Distribuion of empirical Bayes estimates of population toxicokinetic and toxicodynamic 

parameters 

Model Parameter Mean SD 2.5% 97.5%CI 

Toxicokinetics (n = 78) V1 (L/kg) 0.34 0.21 0.28 0.38 

V2 (L/kg) 2.06 1.73 1.67 2.44 

Ka(h
-1

) 0.93 0.40 0.84 1.0 

CLPQ (L/h) 1.17 3.52 0.32 2.01 

t1/2 β(h) 86.98 189.2 41.53 132.4 

Toxicodynamics (n = 68) IC50(µg/L) 429 893 213 645 

Emax(L/h) 0.62 0.006 0.61 0.62 

V1, volume of distribution of central compartment; V2, volume of distribution of peripheral compartment; Ka, 

absorption rate constant; CLPQ, paraquat clearance; t1/2 β, elimination half-life; IC50, the concentration of PQ causing 

a 50% of maximum PQ induced-creatinine clearance reduction; Emax, the maximum fractional decrease of creatinine 

clearance; SD, standard deviation; %CI, confidence interval 
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Figure 1. Scatter plot of plasma versus urine paraquat concentrations. 
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Figure 2. Diagnostic goodness-of-fit plots from the final population toxicokinetic model: Conditional weighted 
residuals versus time after ingestion (A), Conditional weighted versus population predicted concentration 

(B), Observed versus individual predicted concentrations (C), Observed versus population predicted 
concentrations (D). The open circles are the observed data, and the plotted line is the line of identity (y=x)  
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Figure 3. Diagnostic goodness-of-fit plots from the final population toxicodynamics model: Conditional 
weighted residuals versus paraquat plasma concentrations (A), Conditional weighted residuals versus 

population predicted CLcr (B), Observed versus individual predicted CLcr (C), Observed versus population 
predicted CLcr (D). The open circles are the observed data, and the plotted line is the line of identity (y=x) 
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Figure 4. Scatter plots for visual predictive check: observed and simulated concentrations versus time 
(A),observed and simulated CLcr versus paraquat plasma concentrations (B). Percentiles (5, 50 and 95) 

were calculated using the final PopTK and TD model.  
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Figure 5.Time course of empirical Bayes estimates of CLPQ   in PQ-poisoning patients. 
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Figure 6. Time course of median predicted   PQ concentrations for initial CLcr of  0.3, 6 and13L/h. 
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