DETECTION AND ANALYSIS OF LIM DOMAIN-MEDIATED INTERACTIONS BETWEEN TRANSCRIPTION FACTORS

Ivan Nisevic

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Life and Environmental Sciences
University of Sydney
Declaration

The experimental work described in this Thesis was performed between March 2008 and May 2013 in the School of Molecular Bioscience at the University of Sydney. I performed the experiments unless otherwise stated. This work has not been submitted, in part or in full, for the purpose of obtaining any other degree.
Abstract

LIM-homeodomain (LIM-HD) proteins are a class of transcription factors involved in tissue specification and cell determination during development and are important in adult gene regulation. Six families of LIM-HD proteins, with two close paralogues in each family, are commonly found in tetrapods. They bind DNA via HDs, whereas their interactions with other proteins are mediated mainly by a pair of closely spaced LIM-domains (LIMs) in each protein. These proteins take part in various transcriptional complexes with Ldb1 and other cofactors that contain LIM-interaction domains (LIDs).

In this thesis, protein-protein interactions of LIM-HD proteins were analysed in order to better understand the molecular mechanisms of transcriptional complex formation.

Based on previous research that showed LIM-LID mediated interactions between Lhx3 and Isl1, yeast two-hybrid mating arrays were used to investigate how widespread protein-protein interactions are amongst the 12 mammalian LIM-HD proteins. Due to high levels of background growth in experiments with full-length proteins in pGBT9 vectors, the mating arrays focused on LIM-domain mediated interactions with full-length LIM-HDs or known LIDs. The arrays revealed a relatively strong interaction between Lhx3 (or Lhx4) and Isl1 (or Isl2), and detected weaker interactions between Lmx1a or Lmx1b and the LIM-binding domain of Isl1.

The contribution of separate LIM-domains to the overall interaction with Ldb1 for each of the proteins was analysed by the same method. In most cases one of the LIM domains in each protein was able to independently interact with the LID domain of Ldb1 by yeast two-hybrid analysis indicating a dominant binder: LIM1 in Isl1 and Isl2, or LIM2 in other proteins. The exceptions were paralogues Lhx1 and Lhx5, for which no separate domain showed interaction with Ldb1LID by this approach. All tandem LIM-domain constructs showed a much stronger interaction with Ldb1LID than any isolated LIM domain supporting the idea that both domains are required for high affinity binding to Ldb1.

Bimolecular Fluorescence Complementation experiments in yeast were designed and conducted as an alternative approach to test interactions between full-length LIM-HD proteins in the hope that a non-transcriptional based assay would lead to no or less background signal compared to yeast two-hybrid analysis. A plasmid system was developed based on existing yeast
two-hybrid vectors using split green fluorescent proteins in place of domains from the GAL4 transcription factor. The assay was able to detect interactions between different LIMs and their partners but unfortunately interactions between full-length proteins were still difficult to detect due to low fluorescence, self-complementation in the controls and localization effects.

LIM domains from LIM-HD proteins cannot be used in standard bimolecular binding assays because they tend to be insoluble and/or aggregate in the absence of a binding partner. Stable, soluble intramolecular ‘tethered complexes’ can be generated in which LIMs are tethered to Ldb1LID via a flexible linker. Introduction of a specific protease site into the tether allows the formation of intermolecular cut complexes, which have previously been used in homologous competition ELISA experiments.

In this thesis attempts were made to develop more robust biophysical binding assays that could be used to assess the binding affinities of different LIMs for Ldb1LID. Several different labelling approaches were used to generate proteins with fluorescent tags for use in fluorescence anisotropy assays. In one of these approaches expressed protein ligation was applied to generate proteins with an N-terminal fluorescein. Although this labelling strategy was of low efficiency for LIMs-Ldb1LID tethered constructs, some preliminary fluorescence anisotropy experiments were carried out, which indicated that this could be a useful strategy providing a more efficient labelling strategy can be found. GFP-tagged tethered complexes were easier to generate, but could not be used in anisotropy experiments because of the intrinsically high anisotropy of GFP proteins. However, preliminary experiments indicated that these proteins can be used in clear native gel shift competition assays to compare binding affinities of different tandem LIM domains to Ldb1LID.

Data presented in this thesis provide valuable insight into protein-protein interactions of LIM-HD transcription factors and the advantages, as well as disadvantages, of applied experimental approaches. The results and their implications are discussed, raising questions that can be resolved in future studies.
Acknowledgements

Most of all, I would like to thank my supervisor Prof. Jacqui Matthews for her support and help in writing this thesis. She has pulled me out of the quicksand many times, invested a lot of effort and showed incredible patience. I am indebted to her. To Prof. Joel Mackay, thank you for your inspirational talks and your passion in science and every sport we played.

I would like to express my gratitude to Mugdha, Morgan, Liza, Sandra, Ann, Roland, Robyn, Eija, Pep, Philippa, Lorna, Arwen, Margie, Kate, Chris, Ingrid, Jason, Chu Wai, Cy, Paula, Sock, Cuong, Mitch, Saad, Marylene, Katschi, Soumya, Nick, David, Krystal, Sarah, Kaavya, Gonzalo, Ana, Angela, Paul and many other wonderful people who showed me how to get around the lab, gave me advice on my experimental work and made my PhD experience more fun. I would especially like to thank Philippa and Neil for proofreading my thesis.

I am grateful to Dr Ben Crossett for his advice on MALDI-TOF, and Dr Brendan Wilkinson for his advice on native chemical ligation and help with reagent purification. Thanks are also due to Dr Tim Newsome for his microscopy-related advice. Thanks to Clare Woodley for everything and all the people from the SMB that I talked to at my progress interviews.

Finally, I need to thank my wife Mirjana, my children and my close family that have stood by me and helped me throughout the years.

I gratefully acknowledge the support and funding of an Australia Postgraduate Award.
Table of contents

Declaration ... i
Abstract .. ii
Acknowledgements .. iv
Table of contents ... v
List of abbreviations .. xi

Chapter 1 Introduction .. 1
 1.1 Complex interactions of transcription factors ... 1
 1.2 Multidomain nature of TFs ... 3
 1.3 Homeodomains (HDs) .. 3
 1.4 LIM-homeodomain (LIM-HD) proteins ... 5
 1.5 LIM-HD proteins and the TF-codes for neuron specification ... 8
 1.6 LIM-domains .. 11
 1.7 Ldb1/2 cofactors stabilize LIM-HD/LMO proteins and can mediate interactions between relevant chromatin-bound complexes ... 13
 1.8 Interactions between Isl1/2 and Lhx3/4 proteins .. 15
 1.9 General characteristics of LIM domain interactions .. 16
 1.9.1 Tethered LIM-LID ‘complexes’ ... 16
 1.9.2 LIM domain interfaces and the β-zipper binding mode of linear partner motifs 17
 1.10 Potential interactions between other LIM-HD proteins .. 21
 1.11 *In vitro* competition experiments can investigate binding affinities of competing LIMs:LID/LBD complexes ... 22
 1.12 Aims of the thesis .. 23

Chapter 2 Materials and methods ... 24
 2.1 Materials .. 24
 2.1.1 Chemicals, enzymes and kits .. 24
 2.1.2 Buffers and solutions ... 27
 2.1.3 General media components ... 29
 2.1.4 Resin and other material .. 30
 2.1.5 Bacterial and yeast strains ... 31
 2.1.6 Bacterial and yeast culture media .. 31
Table of Contents

2.2 Constructs .. 33
 2.2.1 LIM-HD full-length constructs .. 33
 2.2.2 Tandem and separate LIM domain constructs .. 33
 2.2.3 LIDs and other constructs .. 34
 2.2.4 Tethered LIMs-LID constructs with the Factor Xa site .. 34

2.3 Cloning methods .. 35
 2.3.1 PCR-based cloning and mutagenesis ... 35
 2.3.2 Plasmid-based cloning .. 38
 2.3.3 Verification by DNA sequencing .. 40

2.4 Plasmids .. 40
 2.4.1 Plasmids for bacterial protein over-expression ... 40
 2.4.2 Plasmids used in yeast two-hybrid assays .. 42
 2.4.3 Plasmids used in BiFC assays in yeast ... 42

2.5 Yeast two-hybrid (Y2H) assays .. 43
 2.5.1 Preparation of yeast competent cells ... 43
 2.5.2 Transformation of yeast competent cells ... 44
 2.5.3 Spot-tests with haploid yeast .. 44
 2.5.4 Y2H mating arrays ... 44

2.6 Bimolecular fluorescence complementation (BiFC) in yeast .. 47
 2.6.1 Yeast strain and culture media ... 47
 2.6.2 Yeast fixation ... 47
 2.6.3 Epifluorescence microscopy ... 47
 2.6.4 Yeast lysis ... 48

2.7 Overexpression and purification of recombinant proteins ... 48
 2.7.1 Protein overexpression in E. coli .. 48
 2.7.2 Bacterial cell lysis ... 49
 2.7.3 Protein purification by affinity chromatography .. 50
 2.7.4 Protein cleavage by proteases .. 51
 2.7.5 High Performance Liquid Chromatography (HPLC) .. 52
 2.7.6 Buffer exchange, desalting and removal of low MW components 53

2.8 Analytical methods for protein detection and quantification 53
 2.8.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.2</td>
<td>Western blot analysis</td>
<td>54</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Spectrophotometric determination of concentration</td>
<td>54</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF)</td>
<td>55</td>
</tr>
<tr>
<td>2.9</td>
<td>Methods for protein characterisation</td>
<td>56</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Far UV-Circular Dichroism (CD) spectropolarimetry</td>
<td>56</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Multi-angle laser light scattering (MALLS)</td>
<td>56</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Nuclear magnetic resonance (NMR) spectroscopy of fluorescein-2-MES</td>
<td>57</td>
</tr>
<tr>
<td>2.10</td>
<td>Site-specific protein labelling with synthetic fluorophores</td>
<td>57</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Labelling of SNAP-tagged proteins</td>
<td>57</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Labelling of proteins by Expressed Protein Ligation (EPL)</td>
<td>57</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Calculating the degree of labelling</td>
<td>59</td>
</tr>
<tr>
<td>2.11</td>
<td>Quantitative competition binding assays</td>
<td>59</td>
</tr>
<tr>
<td>2.11.1</td>
<td>The proteolysis of tethered complexes</td>
<td>59</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Fluorescence anisotropy (FA)</td>
<td>59</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Fluorescent gel shift assays</td>
<td>61</td>
</tr>
<tr>
<td>2.12</td>
<td>Bioinformatics, structure models and image processing</td>
<td>62</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Optimising Y2H mating arrays for interactions between LIM-HD proteins</td>
<td>63</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>3.1.1</td>
<td>General approach</td>
<td>63</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Plasmids, yeast strains and reporter genes</td>
<td>63</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Background growth: causes, inhibition and controls</td>
<td>66</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Yeast mating</td>
<td>67</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Arrays and replica plating</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Identification of autoactivating domains and experimental design</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Preliminary experiments</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Advantages of a larger scale approach with appropriate controls</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Y2H mating arrays</td>
<td>71</td>
</tr>
<tr>
<td>3.5.1</td>
<td>A cross-mating array</td>
<td>71</td>
</tr>
<tr>
<td>3.5.2</td>
<td>A spot-mating Y2H array</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Results from the cross-mating and spot-mating Y2H arrays</td>
<td>75</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Controls</td>
<td>75</td>
</tr>
</tbody>
</table>
3.6.2 LIM-HD vs. Ldb1\textsubscript{LID} interactions .. 77
3.6.3 LIM-HD vs. LIM-HD interactions .. 77
3.7 A 96-well Y2H mating array .. 80
3.8 Discussion ... 83
3.8.1 Key limitations of Y2H assays for detecting LIM-HD interactions 83
3.8.2 Autoactivation and false positive interactions in LIM-HD proteins 85
3.8.3 Possible explanations for differences in reporter activation between two combinations of fusion constructs (vectors) .. 86

Chapter 4 The contribution of individual LIM domains in binding to Ldb1 88
4.1 Introduction ... 88
4.2 Assay design ... 88
4.3 Comparison of relative strengths of LIM1 and LIM2 interactions with LID/LBD domains 90
4.4 The red-white selection based on the ADE2 reporter activation 96
4.5 Summary of results ... 97

Chapter 5 Development of a bimolecular fluorescence complementation (BIFC) assay for detecting interactions of LIM-domain proteins .. 99
5.1 Protein-fragment complementation assays (PCAs) .. 99
5.2 BiFC ... 99
5.3 Plasmid editing and protein fusion constructs .. 102
5.4 Autofluorescence .. 104
5.5 Optimization of the LMO4\textsubscript{LIM}:Ldb1\textsubscript{LID} interaction in the BiFC system .. 104
5.6 Selectivity and sensitivity of the assay .. 108
5.7 Full-length LIM-HD proteins in the BiFC assay and the impact of a stronger promoter 112
5.8 Nuclear BiFC ... 117
5.9 Split-GFPsol variant in the BiFC system .. 119
5.10 Discussion ... 122
5.10.1 Comparison of BiFC and Y2H assays for detecting interactions between LIM-HD proteins 122
5.10.2 Possible improvements of BiFC assays ... 123

Chapter 6 Site-specific labelling of a LIMs-LID construct with fluorescein and competition fluorescent anisotropy binding assays .. 125
6.1 Methods for labelling proteins with synthetic fluorophores 125
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Specific labelling of a SNAP-tagged LIMs-LID construct</td>
<td>128</td>
</tr>
<tr>
<td>6.3</td>
<td>Expressed protein ligation as a method for fluorescent labelling of proteins</td>
<td>130</td>
</tr>
<tr>
<td>6.4</td>
<td>Making the proteases and vectors</td>
<td>133</td>
</tr>
<tr>
<td>6.5</td>
<td>Production of tethered constructs with N-terminal cysteines</td>
<td>133</td>
</tr>
<tr>
<td>6.6</td>
<td>Production and purification of Fluorescein-2MES</td>
<td>137</td>
</tr>
<tr>
<td>6.7</td>
<td>Labelling and purification of fluorescein-Cys-LIMs-LID constructs</td>
<td>139</td>
</tr>
<tr>
<td>6.8</td>
<td>Labelling trial with a small unstructured protein</td>
<td>141</td>
</tr>
<tr>
<td>6.9</td>
<td>The effects of different thiol reagents and protein concentration</td>
<td>142</td>
</tr>
<tr>
<td>6.10</td>
<td>Fluorescence anisotropy</td>
<td>143</td>
</tr>
<tr>
<td>6.10.1</td>
<td>MBP-Ldb1\textsubscript{LID} and MBP</td>
<td>145</td>
</tr>
<tr>
<td>6.10.2</td>
<td>FA assay results and analysis</td>
<td>147</td>
</tr>
<tr>
<td>6.11</td>
<td>Summary</td>
<td>149</td>
</tr>
<tr>
<td>6.12</td>
<td>Discussion</td>
<td>149</td>
</tr>
<tr>
<td>6.12.1</td>
<td>Fluorescent labelling of LIMs-LID constructs</td>
<td>149</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Possible improvements in FA assays</td>
<td>151</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Competition assays with GFP-LIMs-LID constructs</td>
<td>152</td>
</tr>
<tr>
<td>7.1</td>
<td>Protein Preparation</td>
<td>152</td>
</tr>
<tr>
<td>7.1.1</td>
<td>GFP-LIMs:LID complexes</td>
<td>152</td>
</tr>
<tr>
<td>7.2</td>
<td>Fluorescent protein gel shift assays</td>
<td>157</td>
</tr>
<tr>
<td>7.2.1</td>
<td>BN-PAGE gel shift with the GFP\textsubscript{uv}-LMO4\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>158</td>
</tr>
<tr>
<td>7.2.2</td>
<td>CN-PAGE gel shifts with the GFP\textsubscript{sol}-labelled complexes</td>
<td>159</td>
</tr>
<tr>
<td>7.3</td>
<td>Fluorescent anisotropy assays with GFP-tagged proteins</td>
<td>164</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>165</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Limitations of fluorescence gel shift assays</td>
<td>165</td>
</tr>
<tr>
<td>7.4.2</td>
<td>A comparison of binding affinity studies</td>
<td>166</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Final discussion</td>
<td>168</td>
</tr>
<tr>
<td>8.1</td>
<td>The biological implications of LIM-HD interactions</td>
<td>168</td>
</tr>
<tr>
<td>8.2</td>
<td>Additional evidence for Lmx1a/b vs. Isl1/2 protein interactions</td>
<td>169</td>
</tr>
<tr>
<td>8.3</td>
<td>Interactions involving Lhx8</td>
<td>170</td>
</tr>
<tr>
<td>8.4</td>
<td>Contribution of separate LIM domains to binding</td>
<td>171</td>
</tr>
<tr>
<td>8.5</td>
<td>Considerations for binding assays</td>
<td>173</td>
</tr>
<tr>
<td>8.6</td>
<td>Concluding remarks</td>
<td>173</td>
</tr>
</tbody>
</table>
Table of Contents

References.. 175

Appendix A LIM-HD proteins: names, isoforms and homzygous knockout mice phenotypes ... 192

Appendix B Design of bacterial overexpression plasmids... 195

Appendix C Tethered LIMs-LID constructs with Factor Xa-cleavable linkers.. 198
 C.1 Protein constructs expressed from pGEX-TEVC and pGEX-6P-GFPsol plasmids ... 198
 C.2 Protein constructs expressed from pGEX-TEVC plasmids only ... 198

Appendix D BiFC-related DNA and protein constructs .. 200
 D.1 Split-GFP DNA constructs and BiFC plasmids... 200
 D.1.1 Removing Gal4 fragments from Y2H vectors.. 200
 D.1.2 Split-GFP DNA fragments ... 201
 D.1.3 BiFC plasmids.. 202
 D.1.4 Inserting constructs into BiFC plasmids... 205
 D.2 BiFC protein constructs .. 206

Appendix E ADH1 promoters in BiFC plasmids.. 213

Appendix F Calculations and curve fitting of data from binding affinity assays................................. 215
 F.1 Fitting the data for homologous competition binding with ligand depletion 217
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-AT</td>
<td>3-amino-1,2,4-triazole</td>
</tr>
<tr>
<td>AD</td>
<td>activation domain</td>
</tr>
<tr>
<td>ADH1</td>
<td>alcohol dehydrogenase 1</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>BiFC</td>
<td>bimolecular fluorescent complementation</td>
</tr>
<tr>
<td>BN-PAGE</td>
<td>blue native PAGE</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumine</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CN-PAGE</td>
<td>clear native PAGE</td>
</tr>
<tr>
<td>CGFP</td>
<td>C-terminal fragment of GFP</td>
</tr>
<tr>
<td>CGFP<sub>N</sub></td>
<td>CGFP as an N-terminal tag</td>
</tr>
<tr>
<td>CGFP<sub>C</sub></td>
<td>CGFP as an C-terminal tag</td>
</tr>
<tr>
<td>co-IP</td>
<td>co-immunoprecipitation</td>
</tr>
<tr>
<td>CRCs</td>
<td>chromatin remodelling complexes</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA-binding domain</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>DSS</td>
<td>2,2-dimethyl-2-silapentane-5-sulfonic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immuno-sorbent assay</td>
</tr>
<tr>
<td>EPL</td>
<td>expressed protein ligation</td>
</tr>
<tr>
<td>FA</td>
<td>fluorescence anisotropy</td>
</tr>
<tr>
<td>Fl-</td>
<td>fluorescein label</td>
</tr>
<tr>
<td>FP</td>
<td>fluorescent protein</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase</td>
</tr>
<tr>
<td>HD</td>
<td>homeodomain</td>
</tr>
<tr>
<td>His<sub>6</sub></td>
<td>hexahistidine purification tag</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>half maximal inhibitory concentration</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>K<sub>d</sub></td>
<td>dissociation constant</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani broth</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LBD</td>
<td>LIM-binding domain</td>
</tr>
<tr>
<td>LIMK1/2</td>
<td>LIM-kinases 1 and 2</td>
</tr>
<tr>
<td>LIM-HD</td>
<td>LIM homeodomain protein</td>
</tr>
<tr>
<td>LIMs</td>
<td>tandem LIM domains (LIM1+LIM2)</td>
</tr>
<tr>
<td>LIMs:LID</td>
<td>complex of LIMs and LID domains</td>
</tr>
<tr>
<td>LIMs:LID</td>
<td>tethered construct of LIMs and LID</td>
</tr>
<tr>
<td>LMO</td>
<td>LIM only protein</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix-assisted laser desorption/ionization - time of flight mass spectrometry</td>
</tr>
<tr>
<td>MALLS</td>
<td>multi-angle laser light scattering</td>
</tr>
<tr>
<td>MBP</td>
<td>maltose-binding protein</td>
</tr>
<tr>
<td>MESNA</td>
<td>sodium 2-sulfanylethanesulfonate</td>
</tr>
<tr>
<td>MQW</td>
<td>Milli-Q® water</td>
</tr>
<tr>
<td>MPAA</td>
<td>4-mercaptophenylacetic acid</td>
</tr>
<tr>
<td>NCL</td>
<td>native chemical ligation</td>
</tr>
<tr>
<td>NGFP</td>
<td>N-terminal fragment of GFP</td>
</tr>
<tr>
<td>NGFPN</td>
<td>NGFP as an N-terminal tag</td>
</tr>
<tr>
<td>NGFPC</td>
<td>NGFP as an C-terminal tag</td>
</tr>
<tr>
<td>NLS</td>
<td>nuclear localization sequence</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCA</td>
<td>protein complementation assay</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pdb (code)</td>
<td>Protein Data Bank accession code</td>
</tr>
<tr>
<td>PIC</td>
<td>preinitiation complex</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethylsulfonylfluoride</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>REs</td>
<td>regulatory (response) elements</td>
</tr>
<tr>
<td>RNAP II</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>SD-L-W-H-A</td>
<td>SD media lacking leucine, tryptophane, histidine and adenine</td>
</tr>
<tr>
<td>SD media</td>
<td>synthetic dropout media</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SEC</td>
<td>size exclusion chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MALLS</td>
<td>multi-angle laser light scattering</td>
</tr>
<tr>
<td>TCEP</td>
<td>tris(2-carboxyethyl)phosphine</td>
</tr>
<tr>
<td>tethered construct</td>
<td>two domains connected by a flexible linker with or without a protease site</td>
</tr>
<tr>
<td>tethered complex</td>
<td>intramolecular complex formed by domains of a tethered construct</td>
</tr>
<tr>
<td>TEV protease (TEV)</td>
<td>tobacco etch virus protease</td>
</tr>
<tr>
<td>TFs</td>
<td>transcription factors</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>X-α-gal</td>
<td>5-bromo-4-chloro-3-indolyl-α-D-galactopyranoside</td>
</tr>
<tr>
<td>Y2H</td>
<td>yeast two-hybrid</td>
</tr>
<tr>
<td>YPD</td>
<td>yeast peptone dextrose</td>
</tr>
<tr>
<td>ZnFs</td>
<td>zinc fingers</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction

1.1 Complex interactions of transcription factors

Regulation of gene expression is a process that has likely been in place for more than 3 billion years, and is still ongoing in every living cell today. It follows inherited genetic programs and epigenetic effects, which are modulated by extracellular signals that are, in turn, brought about through actions of macromolecular complexes.

Transcription factors (TFs) are proteins that are involved in the regulation of gene expression at the level of transcription and take part in the chromatin-bound macromolecular complexes. TF complexes interact with gene-regulatory elements (REs), RNA polymerases, histones, and with each other, to activate or repress transcription [1-4]. These complexes are dynamic and overlapping entities that include the pre-initiation complex (PIC), Mediator complex (or other co-activators), chromatin remodelling complexes (CRCs such as NuRD and BAF), insulators and others. The complexity of TF-interactions is evident in a following model of gene activation.

In order to activate transcription, 'pioneer' transcription factors infiltrate more densely packed chromatin and bind regulatory elements (REs) in the regions that have been primed (or 'bookmarked') by CRCs (Figure 1.1) [5].

Master TFs (e.g., Oct4, Sox2, Nanog, Klf4, etc.) bind primed so-called super-enhancers and are pulled out into more active regions of chromatin while larger complexes are progressively assembled and the local chromatin structure is modified due to CRC activity. The larger complexes potentially prevent the diffusion of regulatory elements back into inactive chromatin. The enhancer-bound complexes recruit components of Mediator (a multiprotein assembly that acts as a co-activator of transcription) or other co-activator complexes, whereas the promoter-bound complexes (which contain a pre-initiation complex at various degrees of assembly) are brought from less active chromatin regions to join them. In some cases, insulator factors such as CTCF rearrange to release a loop that contains the gene that is about to be activated. Chromatin looping caused by interactions between these two types of complexes is
Figure 1.1 A stylized model of transcriptional activation in eukaryotes. (A) So-called transcription factories in the active chromatin are represented by coloured circles and the associated chromatin loops are shown as grey and black lines. A chromosomal territory (area in the nucleus where an interphase chromosome is located) is shown as a green oval. (B) Activation of gene expression. The activity of chromatin remodelling complexes (CRCs; not shown) transforms densely packed inactive chromatin (dark grey) to relaxed active chromatin (white). A typical enhancer in active chromatin is bound by master transcription factors (TFs) and subsequent multiprotein transcriptional complexes. Transcription of non-coding RNA at enhancers attracts RNA-binding components of Mediator to move the assembly towards a local transcription factory. A gene that is about to be activated is 'bookmarked' by CRCs, resulting in a specific 'histone code' that makes the promoter accessible to pioneer TFs (position 1). As additional TFs bind, the promoter is pulled towards the more active chromatin (positions 2 and 3). CTCF insulators release unfavourable loops and create favourable loops that allow activation of a particular gene. Appropriate complexes are progressively assembled at proximal promoter RE (ppRE) and basal promoter (e.g., TATA block) regions. (C) Enhancer-ppRE connecting complexes likely initiate and (D) support the interactions of Mediator (or a similar coactivator) as it covers the basal pre-initiation complex (PIC) with support from cohesin rings. At this point, the promoter is brought into the transcription factory, the RNAPII in PIC is activated and gene transcription starts, generating pre-mRNA. min PIC = minimal pre-initiation complex (complete PolII and all GTFs); ppRE = promoter-proximal response elements; GTF = general transcription factors.
often stabilized by cohesin rings and is characteristic of transcription factories, which are hot-spots of transcription in the nucleus.

During Metazoan development, induced transcriptional programs determine the ultimate fate of stem cells, so specific combinations of TFs are often used as markers of specific cell progenitors and of differentiated cells. Even in terminally differentiated cells, functions and response to stimuli are maintained by actions of different specific TF complexes.

Mutations and agents that affect TF complexes can lead to developmental disorders, cancer and other disease, but conversely, gene regulation shows significant plasticity due to multiple pathways which can compensate for non-functional proteins [6].

1.2 Multidomain nature of TFs

Protein-expressing genes are classified into gene families according to DNA sequence similarities that reflect the common origin and evolution of these sequences. Proteins are often classified according to common structural and/or functional elements (referred to as domains) or by their participation in particular protein complexes or biological processes. As most proteins contain several domains and are multifunctional, these classification systems partially overlap.

TFs usually contain DNA-binding domains such as zinc fingers (ZnFs), helix-turn-helix (HTH), basic helix-loop-helix (bHLH), leucine zipper and others, but they generally contain additional domains that can mediate interactions with proteins, RNA and other cofactors. Metazoans tend to have TFs that contain conserved combinations of domains that give rise to complex protein networks that regulate inter-cell communication and create complexes that bind a large repertoire of REs in the non-coding genomic DNA. For example, a few thousand TFs regulate the expression of >20000 genes in the human genome through interactions with over a million known REs [7, 8]. The TF toolkit is enhanced by the existence of alternatively spliced polypeptide variants and modifications.

1.3 Homeodomains (HDs)

Homeodomains (HDs) are ~60 residue DNA-binding HTH domains that were first discovered in proteins coded by homeobox regions of fruitfly homeotic genes. HDs contain an
N-terminal basic 'arm', and two antiparallel shorter α-helices on top of a third, longer, perpendicular helix (Figure 1.2). HDs typically bind the TAAT core DNA sequence as monomers, with lower intrinsic specificity in vitro. Helix 3 is essential for DNA binding and the N-terminal arm that wraps around DNA provides a degree of specificity in some cases (Figure 1.2A). However, HD proteins commonly cooperatively bind as homo- or heterodimers on hybrid or neighbouring DNA sites, which is thought to provide RE-specific binding of complexes in vivo (Figure 1.2B and C) [9-14]. Many HD-proteins contain multiple HD and/or other domains. For example, Zfhx3 contains four HDs and 22 C2H2 ZnFs.

Figure 1.2 Homeodomain (HD) structure and classification. (A) The Clawless HD:DNA complex with DNA in grey surface representation and the HD shown as a red ribbon (pdb code 3A01). (B) HDs from the Drosophila proteins Aristaleless and Clawless form a heterodimer on DNA (pdb code 3A01). (C) The Mammalian Oct4 and Sox2 proteins form heterodimeric complexes on DNA (pdb code 1GT0). (D) Classes of HD-containing proteins in humans. DNA-binding specificity is increased by dimerisation on hybrid DNA sites.
Proteins that contain HDs are transcription factors involved in cell specification and the maintenance of cell-specific gene expression in terminally differentiated cells.

Human homeobox genes can be classified into 11 classes (Figure 1.2D), which collectively contain over 100 gene families with a total of 235 genes [15]. One of these classes contains the LIM-HD proteins.

1.4 LIM-homeodomain (LIM-HD) proteins

LIM-HD proteins are a class of related transcription factors that contain two N-terminal, tandemly arrayed, ZnFs known as LIM domains, a central DNA-binding HD and a C-terminal region (Figure 1.3A). Some LIM-HD proteins also have N-terminal regions (95 residues in Lhx6) and/or a LIM-HD connecting region (~80 residues in Lhx2). The C-terminal regions of some LIM-HD proteins were shown to cause transcriptional activation [16, 17] and/or contain additional protein interaction domains [18, 19]. In several cases, alternative splicing can result in variants (isoforms) with alternative N-terminal or C-terminal domains, as well as variants lacking other domains [20-22]. LIM-HD protein variants and etymology are described in Appendix A.

The twelve mammalian LIM-HD genes are grouped into six families, each consisting of a pair of paralogue genes (Figure 1.3B) thought to have formed by genome duplication some time before the last common ancestor of jawed vertebrates. In jawless fish and most other animal groups, one gene per family is present in the genome, whereas additional genome duplication events in teleost fish resulted in more paralogues in each family (Figure 1.3C)[23]. LIM-HD proteins are closely related to LIM-only proteins (LMO1–4), which contain related tandemly arrayed LIM domains but generally little other sequence, and it has been proposed that LMO genes descended from an ancestral LIM-HD gene [24]. Both protein groups were shown to function primarily as transcription factors as detailed below.

LIM-HD proteins can bind DNA as monomers and show a preference for A/T-rich binding sites (Figure 1.3D) [10, 11, 25, 26]. Several promoters and enhancers were shown to contain monomeric, homo- and heterodimeric LIM-HD binding sites [25, 27-38].
Figure 1.3 LIM-HD proteins. (A) LIM-HD protein structure schematic. Examples of tandemly arrayed LIM domains and HDs that are highly conserved in all LIM-HD proteins are shown; the remaining sequences are generally predicted to be intrinsically disordered. Positions of transactivation and/or protein interaction domains are indicated. The length and sequence of the intrinsically disordered regions varies between LIM-HD proteins. (B) LIM-HD phylogenetic tree [23, 24] with paralogue pairs shown in ovals of similar colours. (C) Evolutionary history of LIM-HD genes. WGD = whole genome duplication. LCA = last common ancestor. (D) Sequence logos of DNA-binding sites for LIM-HD monomers. Taken from Lee et al., 2008 [25](Isl1 logo only) and Berger et al., 2008 [10].
During animal embryonic development, LIM-HD proteins are expressed in cell progenitors and are involved in cell specification. LIM-HD proteins also help to maintain cell identity in specific differentiated cells throughout life. They are especially important for development of neurons in the central nervous system and sensory organs (retina, inner ear and olfactory neurons; Table 1.1). Patterns of expression for vertebrate LIM-HD proteins from the same family are mostly overlapping, but can differ in a few tissues. Combinations of two to three LIM-HD proteins from different families have been detected in the developing and adult pituitary, pancreas, intestine, limbs and reproductive system, whereas a specific LIM-HD protein or paralogue pair can be characteristic for the development of other cells and tissues, including heart, teeth, palate, kidneys, and red blood cells.

Table 1.1 Proposed functions of LIM-HD genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>Gene</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lhx3</td>
<td>Interneuron and motoneuron specification in the ventral spinal cord; dorso-ventral patterning in the pituitary and for anterior pituitary development [39, 40]; development of inner ear, retina and heart [41, 42].</td>
<td>Lhx4</td>
<td>Necessary for pituitary and lung development, axon projections of ventral MNs in spinal cord [41].</td>
</tr>
<tr>
<td>Lhx1</td>
<td>Roles in blastoporal organizer activity [17]; important role during gastrulation for axis formation, regulates gastrulation movements [43]; required in both primitive streak-derived tissues and extraembryonic tissues for head formation [44]; controls terminal differentiation and circadian function of the suprachiasmatic nucleus [45]; required for specification of the renal progenitor cell field [46]; directs the trajectories of motor axons in the limb [47].</td>
<td>Lhx5</td>
<td>Required for normal development and distribution of Cajal-Retzius cells in mammalian cerebral cortex [48-50]. Both Lhx1/5 are involved in development of the mammalian urogenital system [51], consolidate the inhibitory-neurotransmitter (GABAergic) program of dorsal interneurons in the spinal cord, control Purkinje cell differentiation in cerebellum, activate transcription of Wnt antagonists in the forebrain and specify horizontal cell laminar position in retina [49, 52-55];</td>
</tr>
<tr>
<td>Lmx1a</td>
<td>Specification of dopaminergic neurons with a correct midbrain identity; required for the proper formation of the roof plate, cerebellum, and the inner ear [56-58].</td>
<td>Lmx1b</td>
<td>Dorso-ventral patterning of limbs and patterning the otic vesicle [59]; important for specification of serotonergic neurons [60, 61] and dopaminergic neurons [58, 62]; regulates anterior eye development [63].</td>
</tr>
<tr>
<td>Gene</td>
<td>Function</td>
<td>Gene</td>
<td>Function</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Lhx2</td>
<td>Lhx2 controls talamocortical axonal guidance [64]; co-ordinates multiple patterning events for the formation of the optic cup [65]; necessary for differentiation of the neuroretina [66]; involved in trophic hormone gene regulation in the pituitary, development of cerebral cortex (especially hippocampus), limb, and erythropoiesis.</td>
<td>Lhx9</td>
<td>Lhx2/9 have roles in patterning the nervous system, wing development, muscle development, axon guidance, neurotransmitter choice [67, 68]; required for development of olfactory sensory neurons. Lhx9 has a role in early gonadal development [69]; important in development of retina and the reproductive system. Lhx2/9 are required for midline axonal crossing in the spinal cord [70].</td>
</tr>
<tr>
<td>Lhx6</td>
<td>Roles in mandibular and maxilar patterning; in precursors of cortical interneurons expressing calbindin, parvalbumin, and somatostatin [71]; regulate migration of GABAergic neurons [72].</td>
<td>Lhx8</td>
<td>Important in development of basal forebrain cholinergic neurons [73]; important for survival of mesenchymal cells of the tooth germ in development [74]; critical in early folliculogenesis [75]. Lhx6/8 are important for development of striatal interneuron subtype [35, 76, 77].</td>
</tr>
<tr>
<td>Isl1</td>
<td>Specification of motoneurons and dorsal interneurons in spinal cord [78]; specification of cholinergic neurons [79, 80]; development of pancreatic mesenchyme and islet cells, development of cardiac progenitor cells, limbs and essential for early pituitary development [32, 40, 81-83]. Isl1 specifies the identity of hypothalamic melanocortin neurons [84].</td>
<td>Isl2</td>
<td>Motoneuron specification in the spinal cord and axonal pathfinding; development of retina, inner ear, pancreas; promotes midline crossing in the visual system by gene repression [85].</td>
</tr>
</tbody>
</table>

Homzygous knockout mutants of LIM-HD genes (Table A2) are embryonic or perinatal lethal in mice, except in the following cases. For Lhx9 pups survive but show defects in gonadal development) [86]. Incomplete penetrance allows survival to weaning for Lmx1a knockouts and to adulthood for Lhx8 (Table A.2, Appendix A). Mutations in LIM-HD genes are associated with a number of syndromes and diseases such as combined pituitary hormone deficiency (Lhx3 or Lhx4), nail-patella syndrome (Lmx1b), cleft palate (Lhx8), Mayer-Rokitansky-Kuster-Hauser syndrome (Lhx1) and others. Aberrant methylation or expression of some LIM-HD genes is associated with some types of cancer (e.g. Lhx1 in nephroblastoma, Lhx2 in leukaemia, Lhx6 in cervical cancer, Lhx8 in odontoma, Lhx9 in glioma) [86].

1.5 LIM-HD proteins and the TF-codes for neuron specification

In embryonic development, rostral-caudal (front-back) patterning of the spinal cord is initiated by opposing gradients of caudally-expressed fibroblast growth factor (Fgf) and rostrally produced retinoic acid (RA). These gradients translate into expression patterns of Hox genes that
correspond to their order in the Hox gene cluster. The dorsal-ventral (top-bottom) axis is governed by gradient of Sonic hedgehog protein (Shh; ventral), bone morphogenetic proteins (BMPs; dorsal) and Wnt proteins (dorsal). These gradients trigger transcriptional programs that specify the identities of cells in each progenitor zone, while acting to oppose adjacent transcriptional programs and sharpen boundaries between the neighbouring zones [87].

The combinatorial nature of LIM-HD protein expression in the spinal cord was shown to be important for differentiation of neuron subclasses that segregate into different spinal columns and select specific axonal pathways (Figure 1.4A). This combinatorial expression was particularly evident for motoneurons, and lead to proposition of a motoneuron 'LIM code' [90, 91]. Later, a similar hypothesis was proposed for the definition of boundaries in the developing brain [92, 93].

In the spinal cord, Lhx3 is the first LIM-HD protein that is expressed in mitotic cells from the pMN (progenitor of motoneuron) zone. The expression of the LIM-HD Isl1 and a HD-protein Mnx1(Hb9), is detected early in postmitotic motoneurons, overlapping with the expression of Lhx3 and bHLH factors (Figure 1.4A) [89, 94]. Expression of the LIM-only protein LMO4, and the LIM-HD proteins Isl2, Lhx1, and/or other TFs, is detected in cell groups that define spinal motor columns and later direct axons towards correct targets. Studies performed by Pfaff and colleagues suggest that potential feedback loops, mediated by Isl1, Lhx3, Mnx1, Vsx2 (Chx10 or Hox10), LMO4 and associated TFs, help to maintain motoneuron and V2 interneuron identities (Figure 1.4B) [25, 95].

The term LIM code is an oversimplification because other HD proteins, bHLH, ETS and forkhead TFs are also necessary to define each stage and transition in neuron specification. In vitro experiments show that coexpression of key transfected TFs, Ngn2, Isl1 and Lhx3 (collectively referred to as NIL programming), can rapidly and efficiently program cultivated and induced neural pluripotent stem cells (ipSCs) to acquire cervical motoneuron identity [96-98]. By expressing Phox2a instead of Lhx3 (NIP programming), ipSCs can instead be programmed to acquire cranial motoneuron identity [99].
Figure 1.4 Transcription factor code in motoneuron specification and axon pathfinding. A) Proposed model of the TF expression program in spinal motoneuron cell fate determination and axon pathfinding. Ovals represent progenitors from the pMN, motoneuron columns or muscles. Expressed proteins are shown as squares. Sharp angles for Foxg1, Isl1 and Isl2 indicate lower concentrations of these proteins in specific lineages. HD proteins are in yellow and LIM-HD proteins have a red border. LMCl, LMCm, HMC, MMC and PGC refer to lateral portion of lateral motor column, medial portion of lateral motor column, hypaxial motor column, medial motor column and preganglionic column, respectively. This figure is adapted from figures in Alaynick et al., 2011 [88] and Lu et al., 2015 [89]. B) Isl1 and Lhx3 proteins are essential for proposed feedback loops that sharpen the boundary between pMN and p2 progenitor zones in the spinal cord. All HD proteins are shown as squares. LMO4 is thought to inhibit the formation of complexes from low levels of misexpressed LIM-HD proteins.
1.6 LIM-domains

In the early 1990's, a new type of zinc-coordinating domain was discovered in the N-terminal regions of the C. elegans HD proteins Lin-11 [100] and Mec3 [101], and rat HD protein Isl1 [102]. The domain was named LIM after the first letters of these proteins and the new protein class was named LIM-HD proteins.

A LIM domain is a ZnF consisting of two sequential zinc-coordinating modules, each of which forms a so-called treble clef fold [103], connected by a common small hydrophobic core (Figure 1.5A). LIM domains share the following consensus sequence:

$$CX_2CX_{16-23}(H/C)X_{2\sim 4}(C/H/E)X_2CX_2CX_{14-21}(C/H)X_{1\sim 3}(C/H/D/E),$$

where the Zn-coordinating residues are shown in bold font. Each of the treble clef folds closely resembles a GATA-type ZnF [104-106], except that in a LIM domain the C-terminal helices of the treble clefs are of variable length, and in the first modules are very short, comprising one turn only (Figure 1.5A). LIM domains contain conserved hydrophobic residues that stabilize the separate treble clefs, form a central LIM domain core and the hydrophobic pockets for protein interactions.

Unlike the GATA ZnFs they closely resemble, most LIM domains do not bind nucleic acids. Rather they bind proteins and often act as adaptors between multiple partner proteins [103, 107-110]. There are, however, some reports that LIM domains from a small number of proteins can bind non-specifically to nucleic acids [111, 112], but at this stage there are no well-characterised studies of DNA binding by LIM domains.

Many LIM-domain proteins are involved in regulation of cytoskeletal dynamics including actin polymerisation, cross-linking and bundling all of which build scaffolding at focal adhesions, adherens junctions and other structures. These molecular processes are a basis for cell spreading, motility, growth, cytokinesis and cell specification. Many LIM-domain proteins seem to shuffle between cytoplasm and the nucleus implying that they are involved in both cell signalling and gene regulation (Figure 1.5B). Given these functions, it is not surprising that LIM domain proteins play important roles in the development of nervous and muscular systems [110].
Figure 1.5. LIM domains and LIM domain proteins. A) LIM domain structures contain two fused treble clef motifs, each of which contains a small hydrophobic core (yellow) the first of which forms part of a larger central hydrophobic core (purple). B) Classes of LIM domain proteins, structure, proteins and localization. LIM domains are shown as green ovals, sequence similarity between domains is indicated by dashed red lines. The HD is shown as a red rectangle and other domains are indicated. Proteins in blue font are cytoplasmic, proteins in red font are nuclear and proteins in purple were found both in cytoplasm and nucleus.
1.7 Ldb1/2 cofactors stabilize LIM-HD/LMO proteins and can mediate interactions between relevant chromatin-bound complexes

LIM-domain binding (Ldb) proteins Ldb1 (CHIP/NLI/CLIM2) and Ldb2 (CLIM1) are transcription factors that specifically bind to the LIM-domains of all LIM-HD/LMO proteins, but not other LIM domain proteins [113, 114]. Ldb1 is widely expressed throughout development and in adult tissues, while the expression of Ldb2 is much more restricted [86, 115]. Ldb proteins act as adapters that connect different tissue or stage-specific combinations of TFs (Figure 1.6A) [113, 116].

Ldb proteins contain an N-terminal self-association domain (SA), followed by a Ldb/CHIP conserved domain (LCCD), nuclear localization signal (NLS) and an ~30 residue LIM-interaction domain (LID) (Figure 1.6B).

The ubiquitin-proteasome system (UPS) regulates the turnover of cytoskeletal, signalling and other proteins, including transcription factors. In neural development, the selective removal of TFs by this system is important for migration, axon guidance, neurite outgrowth and synaptic plasticity [117-120]. Rnf12 (RLIM), a E3 ubiquitin-protein ligase, was shown to bind Ldb1, ubiquitinate the protein at K170, and target the protein for proteosomal degradation (Figure 1.6C) [115, 121-123]. In contrast, single-strand DNA binding proteins Ssbp3 (Ssdp1) and Ssbp2 were shown to bind Ldb1, inhibit the interaction with RLIM, prevent RLIM-mediated ubiquitination, and protect Ldb proteins and complexes from proteasomal degradation [124-127].

The Ldb proteins were originally assumed to form dimers [128-139], but in vitro data for the isolated self-association domain, expressed from *E coli.* suggests that it may form higher order complexes [140]. Work is still ongoing to confirm the self-association state of the protein in vitro and in vivo.

Several studies have demonstrated that Ldb1 plays an important role in mediating long range interactions (DNA-looping) between RE-bound haematopoietic complexes. For example, complexes with LMO, GATA, Tal1/E12 and Klf1 TFs in the regulation of β-globin gene transcription (Figure 1.6D) [114, 134, 141-144] or complexes with Isl1 during the activation of genes in cardiac progenitor cells [38] were found to participate in DNA-looping. Ldb-containing complexes that contain Tal1/E12 and LMO proteins are predominantly found to act as
transcriptional activators, but some participation in repression complexes that contain Cbfa2t3 (Eto2) or Fog proteins has been reported [145-147].

Figure 1.6. LIM-domain binding proteins. A) STRING database interaction map shows genetic and direct interactions, and the relative position of Ldb cofactors and LIM-HDs/LMOs, within the network of cellular interactions from the database. A colour code indicates protein types. B) Domain structure of Ldb proteins. The residue numbers shown correspond to Ldb1. LCCD = Ldb/CHIP conserved domain, NLS = nuclear localization signal and LID = LIM-interaction domain. C) Protein interactions protect LIM-HD proteins from aggregation and Ldb proteins and their partners from proteasomal degradation. Red shading indicates instability and green shading indicates stability. D) Different core Ldb-mediated complexes can loop and mediate contact between distant REs.
1.8 Interactions between Isl1/2 and Lhx3/4 proteins

In the early years of research on LIM domain proteins, various binding studies performed using cell lysates suggested that some LIM domains have the ability to specifically homo- or heterodimerize [148, 149]. Following the discovery of Ldb1 interaction studies suggested that it appeared that Ldb cofactors were likely to mediate all of those interactions in vivo [132].

Expression and biophysical characterisation of recombinant LIM-HD/LMO proteins showed that in the absence of Ldb1, the LIM domains of these proteins tend make nonspecific interactions, including forming protein aggregates in vitro [150-152]. However, several subsequent studies have demonstrated that some LIM-HD proteins can physically interact with each other and form Ldb1-containing TF complexes that play key roles in the definition of cell identities in the developing spinal cord [78, 132, 153].

Lhx3:Ldb1 complexes are formed through the interaction of the LIM domains from Lhx3 (Lhx3_{LIMs}) and the LID from Ldb1 (Ldb1_{LID}). These complexes are formed in two neighbouring zones in the developing ventral spinal cord: the p2 zone that produces V2 interneurons, and pMN zone ultimately produces motoneurons. Motoneuron progenitors also express Isl1 allowing the formation of Lhx3:Isl1:Ldb1 complexes, where the LIM domains of Isl1 (Isl1_{LIMs}) contact Ldb1_{LID}, and Lhx3_{LIMs} interacts with the C-terminal region of Isl1 (Figure 1.7). This complex was shown to be crucial for activation of the Mnx1 gene and motoneuron specification [25, 78], whereas the Lhx3:Ldb1 complex is required for V2 interneuron specification. The Lhx3:Isl1 complex was later shown to regulate gonadotrope-specific expression of the gonadotrope-releasing hormone receptor (Gnrhr) in the pituitary [32].

Our laboratory further investigated the Isl1:Lhx3 interaction and employed yeast two-hybrid (Y2H) analysis and truncation mutagenesis to define the minimal Lhx3-binding domain in the C-terminal region of Isl1. This ~30-residue domain is termed the LIM-binding domain (LBD) [18]. The laboratory further showed that an LBD is also present in the Isl1 paralogue, Isl2, and that each of Lhx3 and Lhx4 interact with each of Isl1_{LBD} and Isl2_{LBD} [19]. The Lhx3:Isl1 interaction probably exists in all vertebrates and many other animal groups where Isl1 and Lhx3 orthologues are coexpressed. For example, Lim3 and Islet are required for motoneuron
development in fruit flies [154], and the Ceh14Lms and Lim7LBD domains from *C. elegans* protein orthologues are coexpressed in some neurons and can interact in Y2H assays [155].

An interaction between Lmx1a and Isl1, which was dependent on Isl1Lms, was detected in the same co-immunoprecipitation experiments that identified the Lhx3:Isl1 interaction [132, 154].

![Figure 1.7](image)

Figure 1.7 Two complexes that differentiate motoneurons from V2 interneurons in the developing ventral spinal cord. A) Lhx3:Ldb1 complex B) Lhx3:Isl1:Ldb1 complex. The stoichiometry of the Ldb mediated complexes is uncertain but for simplicity, is presented as dimeric.

1.9 General characteristics of LIM domain interactions

1.9.1 Tethered LIM-LID ‘complexes’

Initial experiments on LIM-only proteins (see section 1.4), in which LMO2 and LMO4 were expressed in bacteria gave rise to very low yields of soluble proteins that were prone to aggregation, making structural studies impossible, as such studies require milligram quantities of soluble protein [150, 151]. Mutagenesis of two non-ligating cysteines to serines in LMO4 only marginally increased solubility, but it was noted that the co-incubation of LIM-constructs with
Ldb1_LID peptide significantly reduced aggregation, albeit temporarily. Therefore, LIM domains were expressed as fusion constructs in which the LIM domains were tethered to Ldb1_LID by a glycine/serine-linker (see Appendix C). The resulting intramolecular ‘complexes’ were soluble, folded and stable [150]. The incorporation of a specific protease site in the linker, and comparison of NMR spectra before and after proteolytic cleavage, showed that tethered LIM-LID constructs form native-like complexes [152, 156]. This tethering approach has subsequently allowed structure determination of numerous LIM-partner complexes, and studies of higher order assemblies to be carried out [18, 19, 150, 151, 156-165]. Tethered complexes were used in most in vitro experiments described in this thesis.

1.9.2 LIM domain interfaces and the β-zipper binding mode of linear partner motifs

Currently there are numerous structures that exist of LIM-partner complexes, including LIM domains from the LIM-HD/LMO classes as well as other LIM proteins. These partners can be broken into two main groups: peptides binders (such as LID and LBDs) and globular proteins. Whereas globular proteins can bind various surfaces on LIM domains, including partially exposed hydrophobic treble clef cores (e.g., LMO2:Tal1:E47, pdb code 2YPA; PINCH:ILK, pdb code 2KBX; and TES:MENA, pdb code 2XQN), to date all of the peptide binders bind a common interface, referred to here as the 'front' interface. This front interface is characterised by exposed beta sheets and hydrophobic pockets and surfaces, and is found in LIM-HD/LMO complexes with Ldb1, Isl1/2, CtIP and DEAF1 (pdb codes: 1RUT, 2XJY, 2RGT, 3MMK, 2JTN, 2L4Z, 2MBV), and in the TES:ARP7A complex (pdb code: 2SQN) (Figure 1.8A and B). This class of interaction is discussed in more detail below and an example of binding to other surfaces is shown for LMO2:Tal1:E47 (Figure 1.8C and D).

LIM-binding peptides are generally unstructured prior to binding, and bind the front interface of the LIM domains in an extended conformation in which short β-hairpins in the LIM domains are augmented by short antiparallel β-strands in the peptide, forming a β-zipper [166]. Although peptide binding partners of LIM domains share low sequence identity, hydrophobic residues are conserved in a few positions. These conserved residues, some of which have been
identified as hot-spot residues from mutagenic studies, cover hydrophobic surfaces or fill hydrophobic pockets on the surface of the LIM domain (Figure 1.9A and B). The binding of peptides to tandem LIM domains is modular, where each LIM domain binds to a linear motif in the peptide. Cooperative binding of these modules leads to high affinity and apparently high specificity binding [18, 167]. Interestingly, in some other ZnFs and LIM-domains sequences N- or C-terminal to the ZnF form similar antiparallel β-sheets, but via intramolecular rather than intermolecular β-augmentation.

Figure 1.8 Alternate binding modes of tandem LIM domains of LMO2.
Hydrophobic atoms are shown as dark salmon with hydrophobic core residues shown in red. A) Ldb1LID binds the front interface of LMO2 in a β-zipper conformation (yellow arrows). Anchoring or ‘hot-spot’ hydrophobic residues of LID, as defined by mutagenic studies, are shown as blue spheres. B) LMO2 front surface (bound state) shows hydrophobic pockets in which core residues are exposed (yellow circles). C) Tal1:E47 dimer binds to LMO2 back interface and covers a pocket with exposed core of treble clef. Hydrophobic residues of the bHLH dimer are shown as blue spheres. D) Back surface of LMO2 (bound state) with the interacting hydrophobic pocket (yellow circle).

The LIM domains from LIM-HD and LMO proteins share a number of conserved hydrophobic, charged and glycine residues that are not generally conserved in all LIM domain proteins, and preferences for specific residues or residue types exist at many positions (Figure 1.10). These residues are generally not found in the LIM domains from LIM kinases (LIMK1/2), which contain closely related tandem LIM domains, but which do not bind Ldb1, suggesting that
those residues are responsible for the specific binding of Ldb1 to LIM-HD and LMO but not other LIM domain proteins [152]. Mutations of several of these LIM-HD/LMO specific residues in LMO4_LIM1 to corresponding residues from LIMK1 was shown to inhibit binding to Ldb1_LID [152].

\[\text{id}2\]

Figure 1.9 Linear motifs form β-zipper motifs at 'front' interfaces of LIM domains. A) Ribbon representation of the β-zipper structure of the LMO2 (black):Ldb1_LID (red) complex (pdb code:2YPA). In each LIM domain, a hydrophobic pocket created by the loop of the first treble clef motif is indicated in green, the LIM core in purple, and core of the second treble clef in yellow. Coordinated zinc atoms are grey spheres. Positions of conserved charged residues are indicated. B) Alignment of structurally characterised LIM-HD/LMO-interacting peptide domains. β-sheets are shown as red arrows, and hotspot residues that interact with specific LIM surfaces or pockets are highlighted in the same colour as the corresponding hydrophobic region. Acidic residues are shown in light blue, basic residues are in red, and prolines are green. Parts of LIM-binding motifs for which the structure has not been determined are in rectangles with red dashed borders. Alanine or glycine mutations that significantly decrease binding are shown above the alignment (white font with black highlights). C) Examples of ZnF domains that exhibit intramolecular β-augmentation are shown in cartoon representation. Complementing β-strands segments are shown in cyan.
Figure 1.10 Comparison of LIM domain amino acid sequences from LIM-HD/LMO and LIMK1/2. LIM1 alignment. Residue position 1 was set 3 residues before the first Zn-ligating cysteine. LIMK1/2 residues in bold font indicate potentially significant differences compared to LIM-HD/LMO residues at the same positions.
Tandemly arrayed LIM domains (up to five) exist in many LIM-domain proteins but the spacers between them vary from ~50 in CRP1/2 and 8–10 residues in some other LIM proteins to 1–3 residues in LIMK1/2, LIM-HDs and LMO proteins (Figure 1.10) [108]. Other multi-LIM proteins also contain closely spaced LIM domains (e.g., TES LIM2 and LIM3). As there are generally few contacts between the LIM domains, it is thought that in the unbound state the LIM domains flex relative to one another, but close spacing creates an essentially continuous interaction interface, and the binding peptides provide interdomain constraints and influence the relative angle between the LIM domains [19, 165, 168].

1.10 Potential interactions between other LIM-HD proteins

The coexpression of Lhx3 and Isl1 proteins in the developing spinal cord is only one of many examples of overlapping expression patterns of LIM-HD proteins. Therefore, it seems feasible that other LIM-HD proteins could interact in a similar fashion. Indeed, as mentioned above, Lmx1a showed some evidence of binding to Isl1 in co-immunoprecipitation experiments [132], and Y2H experiments performed in our laboratory indicated that an Lmx1a:Isl1 interaction is mediated by Lmx1aLIMs and Isl1LBD [169]. Other LIM-HD proteins contain sequences with unidentified functions, especially in the C-terminal regions, so it is possible that LIM-domain binding motifs exist in LIM-HD proteins other than Isl1/2.

As noted at the beginning of this chapter many HD-proteins can cooperatively bind DNA through direct HD-HD interactions [12, 170, 171]. This could point to a mechanism for the interaction of LIM-HD proteins, independent of, or in addition to, interactions via the LIM domains.

It is also possible that intramolecular contacts between the LIM domains and LBDs from the same protein can take place. Such interactions may reversibly affect localization and/or protein function of some LIM domain proteins [172, 173]. The autoinhibitory effects of some LIM domains on HD-mediated DNA-binding have been reported [174] and recent work from our laboratory showed that the LIM and LDB domains in Isl1/2 do interact in an intramolecular fashion, which may protect against non-specific binding and non-productive complex formation in the absence of other binding partners [162].
1.11 *In vitro* competition experiments can investigate binding affinities of competing LIMs:LID/LBD complexes

Given the poor solution properties of isolated LIM domains from LIM-HD and LMO proteins, it is not possible to measure binding affinities between their LIM domains and peptide binding partners using standard methods. However, it is feasible to use homologous competition experiments to estimate binding affinities for LIM domain interactions with peptide partners.

In the past, homologous competition ELISAs were used to estimate binding affinities for this family of proteins. For those ELISAs, GST-LIMs-LID constructs (containing LIMs from LMO2, LMO4, Lhx3 and Isl1) were generated that contained a protease site in the tether between the LIMs and LID. The purified proteins were treated with the protease, and the cut complexes bound to ELISA plates that had been pre-coated with anti-GST antibodies. Increasing concentrations of Ldb1\textsubscript{LID} peptide containing a C-terminal FLAG-tag were added. After washing, bound FLAG-tagged peptides were detected using an anti-FLAG antibody conjugated to a peroxidase. The initial study resulted in binding curves suggesting that this format of ELISAs can be used to compare in vitro binding of LMO4\textsubscript{LIM}\textsubscript{a} to wild type and mutant Ldb1\textsubscript{LID} peptides, and gave an estimate of IC\textsubscript{50} = 1 nM for the wild type LMO4:Ldb1\textsubscript{LID} interaction [156]. After more experiments using lower starting concentrations of Ldb1\textsubscript{LID}-FLAG, this estimate was revised to ~10 nM and the IC\textsubscript{50} for the interactions of Ldb1\textsubscript{LID} with three other LIM domain proteins were reported: 20 nM for LMO2, 35 nM for Lhx3 and 90 nM for Isl1 [18, 167].

In these experiments, it was assumed that non-specific binding is not significant, binding affinities are not affected by protein tags and that surface-adsorbed complexes can approximate low concentrations of complexes in solution. It was further assumed that incubation allows for the system to come to equilibrium and that subsequent washing steps do not significantly affect this equilibrium [175, 176]. Based on these assumptions, the IC\textsubscript{50} is a reasonable approximation of K_d. However, it is likely that these assumptions do not hold, especially through numerous washing steps. Further, the method cannot measure weaker interactions, and data can be inconsistent. Thus, part of the project described in this thesis focussed on exploring approaches to generate a more robust assay for this system.
1.12 Aims of the thesis

LIM-HD proteins are involved in many developmental and disease processes but questions remain about their mechanisms of action, especially with respect to overlapping expression patterns and their potential to form multi-protein transcriptional complexes. Given that LIM-domains of Lhx3/4 interact with LBD-domain of Isl1/2, do other LIM-HD proteins interact with Isl1/2, or with each other? How do the different LIM domain modules contribute to binding Ldb1LID and similar polypeptide sequences? What are the binding affinities of the different tandem LIM-domains to Ldb1LID? If there is a competition between LIM-HD proteins for their common partner Ldb1, could differences in binding affinities explain the formation of specific complexes? Answering these questions should lead to a better understanding of cell specification associated with this family of LIM domain proteins. This information could be important for the development of treatments to inhibit neoplasms associated with the overexpression of various LIM-HD and LMO proteins, to regenerate damaged tissues with appropriately induced stem cells, or to induce proper axon pathfinding in recovering nerves. The key aims of this thesis were to develop a number of experimental procedures that could provide some of these answers.

The specific aims, as broken down into results chapters were:

1. To apply Y2H screening approaches based on yeast mating to detect interactions between LIM-HD proteins (Chapter 3).

2. To establish the contributions from individual and tandem LIM-domains of LIM-HD proteins to interactions with Ldb1LID (Chapter 4).

3. To develop fluorescence-based complementation assays in yeast to address some of the limitations of Y2H experiments (Chapter 5).

4. To develop strategies for the specific N-terminal fluorescent labelling of tethered LIM-LID complexes for use in solution-based homologous competition assays as an alternative to ELISAs (Chapters 6 and 7).
Chapter 2 Materials and methods

2.1 Materials

2.1.1 Chemicals, enzymes and kits

Table 2.1 Chemicals.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Manufacturer/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2-Dimethyl-2-silapentane-5-sulfonic acid (DSS)</td>
<td>Fluka</td>
</tr>
<tr>
<td>2H$_2$O (Deuterium oxide)</td>
<td>Aldrich</td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>2-Log DNA standard</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>3-Amino-1,2,4-triazole (3-AT)</td>
<td>Sigma</td>
</tr>
<tr>
<td>3,5-Dimethoxy-4-hydroxycinnamic acid (sinapinic acid)</td>
<td></td>
</tr>
<tr>
<td>4-Mercaptophenylacetic acid (MPAA)</td>
<td>GOLD Biotechnology</td>
</tr>
<tr>
<td>5-Bromo-4-chloro-3-indolyl-α-D-galactopyranoside (X-α-gal)</td>
<td></td>
</tr>
<tr>
<td>α-Cyano-4-hydroxycinnamic acid (CHCA)</td>
<td>Sigma</td>
</tr>
<tr>
<td>Agarose</td>
<td></td>
</tr>
<tr>
<td>Ampicilin (Amp), sodium salt</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Arabinose,</td>
<td></td>
</tr>
<tr>
<td>Bis-Tris</td>
<td></td>
</tr>
<tr>
<td>Bovine serum albumin (BSA, monomeric)</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>GOLD Biotechnology</td>
</tr>
<tr>
<td>Complete EDTA-free protease inhibitor cocktail tablets</td>
<td>Roche</td>
</tr>
<tr>
<td>Coomassie Brilliant Blue G-250</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Deoxyribonucleotide triphosphates (dNTP for PCRs)</td>
<td>Bioline</td>
</tr>
<tr>
<td>Dimethylformamide (DMF)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Dithiothreitol (DTT)</td>
<td>GOLD Biotechnology</td>
</tr>
<tr>
<td>Deoxyribonuclease I (DNaseI)</td>
<td>Roche</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Ficoll</td>
<td>GE Life Sciences</td>
</tr>
<tr>
<td>Glutathione (GSH)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>HEPES</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Imidazole</td>
<td>Sigma</td>
</tr>
<tr>
<td>Immersion oil</td>
<td>Cargille</td>
</tr>
<tr>
<td>Isopropyl-β-D-thiogalactopyranoside (IPTG)</td>
<td>GOLD Biotechnology</td>
</tr>
<tr>
<td>Lithium Dodecyl Sulphate (LDS)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Maltose</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>Mark 12 protein standard</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>MOPS</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Paraformaldehyde (PFA)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Polyethylene glycol (PEG) 4000</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Rainbow™ molecular weight marker</td>
<td>GE Life Sciences</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Salmon sperm (10 mg/mL)</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Trifluoroacetic acid (TFA)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Tricine</td>
<td>Sigma</td>
</tr>
<tr>
<td>Tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCl)</td>
<td>Sigma</td>
</tr>
</tbody>
</table>

All other standard chemicals and reagents were obtained from Boehringer Mannheim (Castle Hill, NSW), ICN Biochemicals (Seven Hills, NSW), Promega (Madison, WI), Sigma (Castle Hill, NSW) or Univar (Auburn, NSW).

Stock solutions of simple sugars (D-glucose, maltose and arabinose), sorbitol, Ficoll and glycerol were made as syringe-filtered 40% or 50% stocks. MgCl₂ was made as a 2 M stock and sterile filtered.
Table 2.2 Enzymes and antibodies.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction endonucleases</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Factor Xa</td>
<td></td>
</tr>
<tr>
<td>HRV3C protease</td>
<td>Produced in house by Angela Nikolic, SMB. Specific</td>
</tr>
<tr>
<td></td>
<td>activity not specified.</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>Sigma</td>
</tr>
<tr>
<td>Pfu Turbo DNA polymerase</td>
<td>Stratagene</td>
</tr>
<tr>
<td>T4 DNA ligase</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Taq DNA polymerase</td>
<td>Boehringer Mannheim</td>
</tr>
<tr>
<td>TEV protease</td>
<td>Produced as a part of this thesis, section 2.5.3.2</td>
</tr>
<tr>
<td>Thermosensitive Shrimp</td>
<td>Promega</td>
</tr>
<tr>
<td>Alkaline Phosphatase (TSAP)</td>
<td></td>
</tr>
<tr>
<td>Sequencing Grade Trypsin</td>
<td></td>
</tr>
<tr>
<td>Rabbit anti-GFP polyclonal IgG</td>
<td>Amersham biosciences</td>
</tr>
<tr>
<td>HRP-conjugated anti-rabbit IgG</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3. Kits used in this study.

<table>
<thead>
<tr>
<th>Kit</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIAprep Miniprep Kit</td>
<td>QIAGEN GmbH</td>
</tr>
<tr>
<td>QIAquick PCR Purification Kit</td>
<td>QIAGEN GmbH</td>
</tr>
<tr>
<td>QIAquick Gel Extraction Kit</td>
<td>QIAGEN GmbH</td>
</tr>
<tr>
<td>Expand Long Template PCR System</td>
<td>Roche</td>
</tr>
<tr>
<td>QuikChange II Site-Directed Mutagenesis Kit</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>SNAP-Cell Starter Kit</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Pierce™ ECL Western Blotting Substrate kit</td>
<td>Life Technologies</td>
</tr>
</tbody>
</table>
2.1.2 Buffers and solutions

All reactions performed with commercial DNA-modifying enzymes used the appropriate commercial buffers recommended by the manufacturer. Buffers used in cell lysis, protein purification, proteolysis and labelling are shown in Tables 2.4–2.7. All aqueous buffers and solutions were made with MilliQ water (Millipore). Protein purification buffers were filtered with the 0.45 µm filter, whereas NCL labelling reaction buffer, Factor Xa buffer, competition assay buffer and solutions used for bacterial or yeast cultures were sterile filtered using a 0.22 µm syringe filter. All buffers were made fresh, and cooled to 4 °C before use where necessary.

Table 2.4. Lysis and affinity purification buffers.

<table>
<thead>
<tr>
<th>Buffers</th>
<th>Yeast breaking buffer</th>
<th>GST-Lysis buffer</th>
<th>GST-Wash buffer</th>
<th>GST-Proteolysis buffers (HRV3C or TEV)</th>
<th>GST-Elution buffer</th>
<th>MBP-Lysis buffer</th>
<th>MBP-Wash buffer</th>
<th>MBP-Elution buffer</th>
<th>Ni-NTA-Lysis buffer</th>
<th>Ni-NTA-Wash buffer</th>
<th>Ni-NTA-Elution buffer</th>
<th>Ni-NTA-Proteolysis buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast breaking buffer</td>
<td>20 mM Tris-HCl pH 7.5–8.0, 150 mM NaCl, 1 mM DTT, 1 mM DTT and 10 mM freshly prepared reduced GSH</td>
<td>50 mM Tris-HCl pH 7.5–8.0, 150 mM NaCl, 1 mM DTT, 1 mM PMSF</td>
<td>50 mM Tris-HCl pH 8.0, 300 mM NaCl, 1 mM DTT, 1 mM PMSF</td>
<td>50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM 2-mercaptoethanol, 1 mM PMSF and 1 tablet/50 mL buffer of Complete EDTA-free protease inhibitor cocktail</td>
<td>20 mM Tris-HCl pH 8.0, 1 M NaCl, 50 mM imidazole, 10% glycerol, 10 mM 2-mercaptoethanol, 1 mM PMSF</td>
<td>20 mM Tris-HCl pH 7.4, 0.2 M NaCl, 1 mM DTT, 1 mM EDTA, 0.1 mg/mL lysozyme, 10 µg/mL DNase I, 10 mM MgCl₂</td>
<td>20 mM Tris-HCl pH 7.4, 0.2 M NaCl, 1 mM DTT, 10 mM 2-mercaptoethanol, 1 mM PMSF and 1 tablet/50 mL buffer of Complete EDTA-free protease inhibitor cocktail</td>
<td>MBP-Column buffer with 10 mM maltose</td>
<td>20 mM Tris-HCl pH 8.0, 0.4 M NaCl, 20 mM imidazole, 0.1% Triton X-100, 10 mM 2-mercaptoethanol, 1 mM PMSF</td>
<td>20 mM Tris-HCl pH 8.0, 1 M NaCl, 50 mM imidazole, 10% glycerol, 10 mM 2-mercaptoethanol, 1 mM PMSF</td>
<td>Ni-NTA-Wash buffer with 250 mM imidazole</td>
<td>20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM 2-mercaptoethanol</td>
</tr>
</tbody>
</table>
Table 2.5. HPLC buffers.

<table>
<thead>
<tr>
<th>Chromatography Type</th>
<th>Buffer Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size exclusion chromatography buffer</td>
<td>20 mM Tris-HCl pH 8.0, 300 mM NaCl, 1 mM DTT</td>
</tr>
<tr>
<td>Anion-exchange chromatography buffers</td>
<td>10 mM Tris-HCl pH 7.4–8 or 10 mM sodium-phosphate pH 7.4, with 1 mM DTT</td>
</tr>
<tr>
<td>Buffer A:</td>
<td>0 M NaCl</td>
</tr>
<tr>
<td>Buffer B:</td>
<td>with 1 M NaCl</td>
</tr>
<tr>
<td>Reverse phase chromatography buffers</td>
<td>Buffer A: 0.1% TFA</td>
</tr>
<tr>
<td></td>
<td>Buffer B: 0.1% TFA in acetonitrile</td>
</tr>
</tbody>
</table>

Table 2.6. Electrophoresis buffers.

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>50×TAE buffer</td>
<td>40 mM Tris-base, 5.7% glacial acetic acid, 10 mM EDTA (diluted 1-in-50 for use)</td>
</tr>
<tr>
<td>SDS-PAGE running buffer</td>
<td>1-in-20 dilution of Life Technologies NuPAGE MES SDS Running Buffer (20×). At 1× = 50 mM MES, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA, pH 7.3</td>
</tr>
<tr>
<td>10×Bis-Tris-Tricine buffer</td>
<td>200 mM Bis-Tris, 200 mM Tricine, pH 6.8 (diluted 1-in-10 for use)</td>
</tr>
</tbody>
</table>

Table 2.7. Specific buffers and solutions.

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCL labelling reaction buffer</td>
<td>0.1 sodium-phosphate pH 7.5, 0–150 mM NaCl, 0.5–10 mM TCEP</td>
</tr>
<tr>
<td>SNAP-tag labelling buffer</td>
<td>20 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM DTT</td>
</tr>
<tr>
<td>Western blot transfer buffer</td>
<td>SDS-PAGE Running Buffer, 20% methanol</td>
</tr>
<tr>
<td>TBST buffer</td>
<td>50 mM Tris-base (pH 7.4), 150 mM NaCl, 0.05% (v/v) Tween-20</td>
</tr>
<tr>
<td>4×LDS (SDS-PAGE loading buffer)</td>
<td>0.3125 M Tris base pH 6.8, 10% LDS, 50% glycerol, 25% DTT, 0.5% bromophenol blue in aqueous solution</td>
</tr>
<tr>
<td>Native gel loading buffer</td>
<td>3% (w/v) Ficoll in Competition assay buffer (from 15% stock) or 5–10% glycerol in Competition assay buffer (from 50% stock)</td>
</tr>
<tr>
<td>Coomassie blue stain solution</td>
<td>0.125% (w/v) Coomassie Brilliant Blue G-250, 40% (v/v) methanol, 10% (v/v) acetic acid</td>
</tr>
<tr>
<td>Gel fixing and destaining solution</td>
<td>30% (v/v) methanol, 10% (v/v) acetic acid</td>
</tr>
<tr>
<td>20×Na-borate buffer</td>
<td>47 g/L boric acid, 200mM NaOH, pH 8.7 (diluted 1-in-20 for use)</td>
</tr>
<tr>
<td>Factor Xa buffer</td>
<td>Competition assay buffer with 2 mM CaCl₂</td>
</tr>
<tr>
<td>10×TE buffer</td>
<td>100 mM Tris-HCl, 10 mM EDTA, pH 8.0</td>
</tr>
<tr>
<td>10×LiAc solution</td>
<td>1 M LiAc, pH 7.5</td>
</tr>
<tr>
<td>1×TE/LiAc buffer</td>
<td>1×LiAc solution, 1×TE buffer</td>
</tr>
</tbody>
</table>
Table 2.8. Buffers for preparing competent *E. coli* cells.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG/LiAc buffer</td>
<td>40% PEG, 1xLiAc solution, 1xTE buffer</td>
</tr>
<tr>
<td>K-phosphate/sorbitol buffer</td>
<td>1.2 M sorbitol (diluted from a 2 M stock) 0.1 M potassium phosphate pH 7.5 (diluted from a 1 M stock)</td>
</tr>
<tr>
<td>Yeast fixation solution</td>
<td>4% paraformaldehyde (made in warm water, NaOH 1M added dropwise with stirring until dissolved), 3.4% sucrose</td>
</tr>
<tr>
<td>Competition assay buffer</td>
<td>20 mM sodium phosphate buffer pH 7.5, 150 mM NaCl, 1 mM DTT</td>
</tr>
</tbody>
</table>

Table 2.9. Solutions for preparation of MALDI-TOF samples.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetting Solution</td>
<td>0.1% TFA, 50% acetonitrile</td>
</tr>
<tr>
<td>Wash Solution</td>
<td>0.1% TFA</td>
</tr>
<tr>
<td>Matrix Solution</td>
<td>0.1% TFA, 70% acetonitrile, 10 mg/mL matrix (CHCA or sinapinic acid)</td>
</tr>
</tbody>
</table>

2.1.3 General media components

Table 2.10. General media components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacto Peptone</td>
<td>Difco</td>
</tr>
<tr>
<td>Bacto Tryptone</td>
<td>Difco</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>Difco, Affymetrix</td>
</tr>
<tr>
<td>Yeast nitrogen base</td>
<td>Difco</td>
</tr>
<tr>
<td>Amino acids and nucleobases</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Agar</td>
<td>Amyl Media</td>
</tr>
</tbody>
</table>
2.1.4 Resin and other material

Table 2.11. Resin

<table>
<thead>
<tr>
<th>Resin</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutathione (GSH)-sepharose resin</td>
<td>GE Life Sciences</td>
</tr>
<tr>
<td>Ni-NTA resin</td>
<td>Invitrogen, Life Technologies, Qiagen</td>
</tr>
<tr>
<td>Amylose resin</td>
<td>New England Biolabs</td>
</tr>
</tbody>
</table>

Table 2.12. Other disposable and reusable materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass beads, 425–600 µm</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>SnakeSkin dialysis tubing (various molecular weight cut-offs)</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>PD-10 desalting columns</td>
<td>GE Life Sciences</td>
</tr>
<tr>
<td>Millex-GP Syringe Filter (0.22 µm)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Nanosep MF centrifugal filters (0.45 µm)</td>
<td>Pall</td>
</tr>
<tr>
<td>ZipTips C18</td>
<td>Merck Millipore</td>
</tr>
<tr>
<td>Vivaspin sample concentrators (3, 5 or 10 kDa cut-offs)</td>
<td>Sartorius Stedim Biotech</td>
</tr>
<tr>
<td>Concentrators</td>
<td>Thermo Scientific Pierce</td>
</tr>
<tr>
<td>Microscope slides and cover glass</td>
<td>Sail Brand</td>
</tr>
<tr>
<td>NativePAGE Novex Bis-Tris precast gels (3–12%)</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>4–12% SDS-PAGE precast gels</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Biotrace™ NT pure nitrocellulose transfer membrane</td>
<td>Pall Gelman Laboratory</td>
</tr>
<tr>
<td>Velveteen</td>
<td>Purchased at Lincraft</td>
</tr>
<tr>
<td>Petri dishes (90 and 140 mm)</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>96-well plates</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>Replica plating apparatus</td>
<td>Made by the School of Molecular Biology Workshop</td>
</tr>
</tbody>
</table>
2.1.5 Bacterial and yeast strains

Table 2.13. *E. coli* strains, genotypes and their purpose. The pLysS plasmid is in bold.

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Genotype</th>
<th>Purpose</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α</td>
<td>F’ endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(tK, mK2), λ−</td>
<td>Plasmid cloning</td>
<td>Bethesda Research Laboratories</td>
</tr>
<tr>
<td>XL-Blue</td>
<td>recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacIqZΔM15 Tn10 (Tetr)]</td>
<td></td>
<td>Stratagene</td>
</tr>
<tr>
<td>BL21(DE3)</td>
<td>F’ ompT gal dcm lon hsdS6(tB− mB+) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])</td>
<td></td>
<td>Novagen</td>
</tr>
<tr>
<td>*BL21-AI™</td>
<td>F’ ompT gal dcm lon hsdS6(tB− mB+) araB::T7RNAPE-tetA</td>
<td>Protein overexpression</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Rosetta™ 2 (DE3)pLysS</td>
<td>F’ ompT hsdS6(tB− mB+) gal dcm (DE3) pLysSRAE2 (Cam^R)</td>
<td></td>
<td>Novagen</td>
</tr>
</tbody>
</table>

*Tight regulation of the T7 RNA polymerase by the arabinose-inducible araBAD promoter and high overexpressed protein yields make BL21-AI cells optimal for expression of toxic proteins (BL21-AI™ One Shot® Chemically Competent *E. coli* manual, Invitrogen) [177]. These cells can be used in combination with any T7 promoter-based vector.

Table 2.14. *S. cerevisiae* yeast two-hybrid (Y2H) strains, genotypes and reporters. Reporters in bold were used in this thesis.

<table>
<thead>
<tr>
<th>Y2H strain</th>
<th>Genotype</th>
<th>Reporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH109</td>
<td>MATa, trp1-901, leu2-3, leu2-112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1_UAS-GAL1_TATAT-HIS3, GAL2_UAS-GAL2_TATA-ADE2, URA3::MEL1_UAS-MEL1_TATAT-lacZ, MEL1</td>
<td>HIS3, ADE2, lacZ, MEL1</td>
</tr>
<tr>
<td>Y187</td>
<td>MATa, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, leu2-112, met15Δ, gal4Δ, gal80Δ, URA3::GAL1_UAS-GAL1_TATAT-lacZ, MEL1</td>
<td>lacZ, MEL1</td>
</tr>
</tbody>
</table>

2.1.6 Bacterial and yeast culture media

Table 2.15. Media for bacterial cultures. LB broth and all solid media were autoclaved.

<table>
<thead>
<tr>
<th>LB media (1L)</th>
<th>Bacto-Peptone/Tryptone 10 g, Yeast Extract 5 g, NaCl 5 g, agar (for plates only) 15 g, deionized water added to 1L, autoclaved</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC media</td>
<td>Bacto-Tryptone 8 g, Yeast Extract 2 g, NaCl 0.2 g, KCl 4 mL of 250 mM stock, deionized water to 390 mL, adjusted to pH 7 and autoclaved. 2 mL of 2 M MgCl₂ and 8 mL of 1 M D-glucose was added from filtered stocks</td>
</tr>
</tbody>
</table>
Antibiotics as appropriate were added to LB broth after cooling to ~37 °C, and to agar-containing media after cooling to 40–50 °C, after which the agar-containing media was poured into plastic petri dishes and further cooled to solidify. LB_{Amp} broth and solid media contained 100 μg/mL ampicillin, while LB_{Amp+Cam} broth and solid media contained 50 μg/mL ampicillin and 100 μg/mL chloramphenicol.

Table 2.16. Rich and minimal media for yeast growth. YPD broth and all solid media were autoclaved.

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPD Media</td>
<td>20 g/L bacto peptone, 10 g/L yeast extract, 2% (w/v) agar (for solid media)</td>
</tr>
<tr>
<td>Yeast Synthetic Drop-out (SD) Media</td>
<td>6.7 g/L yeast nitrogen base solution (autoclaved), 1×DO solution (see below for 10×DO solution), 2% D-glucose, 1× appropriate supplemental nutrients (Table 2.18), 1.5% (w/v) agar (for solid media)</td>
</tr>
</tbody>
</table>

Table 2.17. Components of 10×Dropout (DO) Solution.

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Isoleucine</td>
<td>300</td>
</tr>
<tr>
<td>L-Valine</td>
<td>1500</td>
</tr>
<tr>
<td>L-Adenine hemisulfate salt</td>
<td>200</td>
</tr>
<tr>
<td>L-Arginine HCl</td>
<td>200</td>
</tr>
<tr>
<td>L-Histidine HCl, monohydrate</td>
<td>200</td>
</tr>
<tr>
<td>L-Leucine</td>
<td>1000</td>
</tr>
<tr>
<td>L-Lysine HCl</td>
<td>300</td>
</tr>
<tr>
<td>L-Methionine</td>
<td>200</td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>500</td>
</tr>
<tr>
<td>L-Threonine</td>
<td>2000</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>200</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td>300</td>
</tr>
<tr>
<td>L-Uracil</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 2.18. Supplement nutrient solutions added to SD media. All solutions were filter-sterilized.

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100× Uracil</td>
<td>2000</td>
</tr>
<tr>
<td>100× L-Histidine</td>
<td>2000</td>
</tr>
<tr>
<td>100× Adenine hemisulfate</td>
<td>2000</td>
</tr>
</tbody>
</table>
2.2 Constructs

2.2.1 LIM-HD full-length constructs

Unless otherwise indicated, all proteins are from *M. musculus*. Mouse proteins were chosen because of their high similarity to human proteins and because they allow testing in mouse models. The sequences used are those identified as isoforms current at the time of starting the project. In the interim several other isoforms have been added to the NCBI Consensus CDS (CCDS) protein set of LIM-HD proteins, of which all except Lhx3b, Lhx9.1 and Lhx9.2 were analysed in this thesis (see Appendix A). All four isoforms of Lhx6 were used in Y2H mating arrays. Lhx4_24-390 (hereafter referred to as Lhx4) was used to represent full-length protein in all assays. The Isl2 construct used in this thesis was based on the NCBI Reference Sequence NP_081673.1 and contains the mutations S157T, H185D, L267F and R282G. This version was succeeded by the NP_081673.2 NCBI Reference Sequence.

Full-length Lhx1, Lhx2, Lhx9.3 and Lmx1a were cloned by Vanessa Craig (Matthews laboratory, SMB, University of Sydney) from mouse brain mRNA. Isl1α and Lhx3a full-length constructs were obtained from Prof Ingold Bach (University of Massachusetts Medical School) as cloned cDNA and Lhx4, Lhx5, Lmx1b, Isl2, Lhx6.1 and Lhx6.2 were obtained from Codon Devices (Cambridge, MA 02139, USA) and Lhx8 was obtained from GenScript (Piscataway, NJ 08854, USA) as synthetic genes. Y2H vectors containing Lhx1, Lhx2, Lhx9.3 and Lmx1a constructs were obtained from Vanessa Craig and Lhx5 and Lhx6.2 were obtained from Dr Sally Eaton (Matthews laboratory, SMB, University of Sydney). Lhx6.3 and Lhx6.4 variants were generated by PCR from Lhx6.1 and Lhx6.2 templates, and were cloned along with Lhx4, Lhx6.1, Lhx8, Lmx1a and Isl2 into Y2H vectors as a part of this thesis. Note that in this thesis, the protein variants (Isl1α, Lhx3a, Lhx6.1, etc.) are specified only in case of full-length proteins.

2.2.2 Tandem and separate LIM domain constructs

Tandem and separate LIM constructs of Lhx3, Lhx4 and Isl1 in Y2H vectors and NpGBT9-Lmx1aLIMs plasmid were obtained from Amy Nancarrow, Dr Mugdha Bhati, Vanessa Craig, Dr Cy Jeffries, Dr Morgan Gadd and Dr Sally Eaton (all from within the Matthews
laboratory, SMB, University of Sydney). Tandem and separate constructs of Lhx1, Lhx2, Lhx5, Lhx6, Lhx8, Lhx9, Lmx1b, Isl2 and separate LIM constructs of Lmx1a were created and cloned into Y2H vectors as a part of this thesis.

Both tandem LIMs and separate LIM-domains contained 6 residues before the first Zn-ligating cysteine (N-terminal extension) and 6 residues after the last Zn-ligating residue (C-terminal extension), except for the N-terminal extensions of the following LIMs and LIM1 constructs: Lhx5, 4 residues; Lhx1, 3 residues (these represent the full extent of the native protein sequence); and Lmx1a, 2 residues. Two versions of Lhx1\textsubscript{LIMS} were used. An initial Lhx1\textsubscript{LIMS}* construct did not contain any C-terminal extension and was replaced by a 3-residue extended construct part way through experiments as detailed in section 3.6.1.

2.2.3 LIDs and other constructs

Ldb1\textsubscript{LID} and Isl1\textsubscript{LBD} constructs in Y2H vectors were obtained from M. Bhati in the laboratory, and an extended LID domain (residues 331–375) construct was generated by PCR and cloned it into the pIH1121 plasmid for expression with an N-terminal Maltose binding protein (MBP)-tag (see section 6.10.1). Plasmids containing constructs encoding other ZnF proteins (LIMs of proteins LMO1–4, ZnF 1 and 9 of U-shaped, N-terminal ZnF of Pannier) were sourced from the laboratory. Human SSB1 in Y2H vectors was obtained from Dr. Liza Cubbedu (Matthews laboratory, SMB, University of Sydney) for use as a non-related protein negative control in mating arrays (section 3.4). Full-length coding sequence of rat Pit1 protein (98% identical to the mouse protein) was cloned into Y2H vectors. DEAF1\textsubscript{404–438(T435D)}, cloned into the pRSET vector was obtained from Dr. Soumya Joseph (Matthews laboratory, SMB, University of Sydney).

2.2.4 Tethered LIMs-LID constructs with the Factor Xa site

Tethered LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID} DNA construct [156] and Lhx3\textsubscript{LIMS}-Ldb1\textsubscript{LID} DNA construct [18] were designed to code for the Factor Xa protease cleavage site in the linker between the LIMs and LID domains. These LIMs-LID constructs were originally cloned into pGEX-2T vectors (GE Healthcare) for expression with an N-terminal glutathione-S-transferase (GST)-tag
that could be removed by treatment with thrombin. The LIMs-LID DNA constructs containing LIMs-coding sequences of the remaining 11 LIM-HD proteins were cloned in pGEX-2T by Dr Mitchell O'Connell (Mackay laboratory, SMB, University of Sydney).

2.3 Cloning methods

2.3.1 PCR-based cloning and mutagenesis

PCR-based cloning was used to generate new constructs (wild type and mutant, fragments or fusion/tethered constructs), and introduce/remove restriction sites in plasmids.

2.3.1.1 Primer design

Primers were designed such that regions complementary to the template, or over overlapping regions of primers used for overlap extension PCR, had optimal melting temperatures (Tm, estimated as Tm = \(2 \times \#(A+T) + 4 \times \#(G+C)\)°C). Primers that formed the termini of PCR products intended for ligation were engineered with restriction sites (e.g., BamHI for the forward and EcoRI for the reverse primer). The reverse primer included 3 consecutive stop codons (transcribed as UGAUAAUAG) in front of the restriction site, except when the resulting PCR fragment was intended as an N-terminal part of a fusion or tethered construct. To increase the efficiency with which restriction enzymes digested PCR products, primers were designed with extra bases on the terminal sides of restriction sites as recommended by the manufacturer. See Appendix A for details of primers used in this thesis.

2.3.1.2 Standard polymerase chain reaction (PCR)

All PCR reactions were performed in an Eppendorf Mastercycler (Eppendorf AG, Hamburg, GER), Hybaid PCRscript thermal cycler (Thermo Electron Corp., Waltham, MA, USA) or the T3000 Thermocycler (Biometra, GER). Reaction mixtures (50 or 100 μL) contained two primers (0.02 nM each), 2.5 mM each of dATP, dCTP, dGTP and dTTP, 8% (v/v) DMSO (Dimethyl sulfoxide), 1× volume of manufacturer-supplied or home-made *Pfu Turbo* PCR buffer, 10–500 ng template DNA and 1 U *Pfu Turbo* DNA polymerase. The reaction mixtures
were subjected to 25 cycles of the temperature sequence: 94 °C (1 min), [Tm – 2] °C (1 min), 72 °C (1 min), followed by a final elongation step at 72 °C (10 min). A 'hot-start' version of the method was used for most reactions, where a reaction without the enzyme was initially subjected to a long denaturation step (5 min at 95 °C), after which the enzyme was added and the standard PCR programme initiated. Completed reactions were stored at 4 °C or -20 °C until required.

2.3.1.3 Inverse PCR

The Expand Long Template PCR System Kit was used to perform inverse PCR. For this method, two primers with matching restriction sites at their 5’ ends were designed to extend away from each other using a circular plasmid template. When the primers were designed to be complementary to sites on each side of the sequence that is intended to be removed, inverse PCR results in amplification of an entire plasmid except for the sequence between the primer-complementary sites. The linear product was digested with the primer-specific restriction enzyme(s) and the plasmid re-circularized by ligation. Reaction mixtures (50 µL) contained ~10 ng of plasmid DNA as template, primers at 300 nM, 5 µL of provided 10×Buffer 3 and 3.75 U (0.75 µL) of the supplied enzyme mix (Taq and Tgo DNA polymerases) [178]. The PCR program included a hot start step, followed by addition of the enzyme mix and 10 cycles of: 94 °C (30 s), 52 °C (30 s) and 68 °C (4 min). The programme continued with 20 cycles of: 94 °C (30 s), 52 °C (30 s) and an elongation step at 68 °C that increased in length from 4 min by 20 s with each successive cycle, with an additional final elongation step of 7 min.

The QuikChange Site-Directed Mutagenesis kit was used to perform a version of the inverse PCR where the forward and reverse primers had complementary (overlapping) 5’ ends that contained the designed mutation, whereas the 3’ primer ends were complementary to the surrounding sequence in the template on each side. Reactions contained 125 ng (125 nM) of each primer, 1 µL of dNTP mix, 5 µL of the 10× Pfu buffer, 1 µL of Pfu polymerase (2.5 U/ µL) and 10 ng of the plasmid template in 50 µL reaction volume. The product of PCR reaction had complementary sticky 5’ ends introduced by primers and circularized but did not ligate until it was transformed into the XL1-Blue supercompetent E. coli strain and the nick in the plasmid has been repaired. DpnI digestion after PCR was used to degrade the original methylated template plasmid leaving the newly generated non-methylated template intact.
2.3.1.4 **Overlap extension PCR**

Overlap extension PCR was used to introduce mutations or remove restriction sites from DNA sequences. Pairs of precisely overlapping oligonucleotides were designed that contained mutations flanked by 12 bp of wild type sequence on each side. Each oligonucleotide from a pair was used in a separate reaction with a primer corresponding to the 5’ or 3’ ends of the full-length construct (end primers). The overlapping fragments were gel purified and aliquots (5–10 μL) were combined and used as templates in a second round PCR reaction which contained end primers. In cases where multiple distant mutations were needed, the product of this reaction was gel-purified and used as a template in following rounds of PCR reactions with different pairs of overlapping primers.

2.3.1.5 **Purification of PCR products**

DNA from inverse PCR reactions was purified by ethanol precipitation. Sodium-acetate (5 μL of a 3 M stock solution) was added to a 50 μL PCR reaction, followed by 100 μL chilled ethanol. The tube was incubated on ice for ~30 min followed by centrifugation at 12000 × g for 20–30 min at 4 °C. The supernatant was carefully removed and the pelleted DNA dried in a SpeedVac concentrator. DNA from other PCR reactions was either purified by the QIAquick PCR Purification Kit or by agarose gel electrophoresis followed by the use of the QIAquick Gel Extraction Kit. In all cases the purified DNA was resuspended or eluted in ~30 μL of MilliQ water.

2.3.1.6 **Restriction endonuclease digestion of PCR products**

PCR products were digested by restriction endonucleases to prepare them for directional cloning into plasmids. Purified PCR product (section 2.3.1.6), 4 μL of the recommended 10× restriction enzyme buffer, 4 μL of 10×BSA, and 1 μL of each enzyme were made up to a total volume of 40 μL with MilliQ water, and the reaction was incubated 37 °C for 2–4 h.

2.3.1.7 **Agarose gel electrophoresis of digested DNA**

DNA samples from restriction digestion or PCR reactions were mixed with 6× loading dye (Fermentas Life Sciences, Ontario, Canada) and loaded into 1–2% (w/v) agarose gels
containing ethidium bromide (1 μg/mL) that were prepared in 1×TAE buffer, and subjected to electrophoresis at 80–100 V for 45–60 min. Gels were visualised under long-wave UV light and target bands were excised from the gel, stored at -20 °C until required, and purified using the QIAquick gel extraction kit according to the manufacturer’s instructions (Qiagen, Valencia, CA, USA).

2.3.2 Plasmid-based cloning

2.3.2.1 Restriction endonuclease digestion of plasmid DNA

Plasmid DNA was treated with the same restriction enzymes as used for the PCR products to prepare a target (empty) plasmid for ligation with a new DNA fragment, or to excise a previously cloned DNA fragment from a plasmid, as described in section 2.3.1.6 but the final volumes were 30 μL (with 3-μL aliquots of 10× solutions) with 5–10 μL of miniprep purified plasmid (see section 2.3.2.6).

2.3.2.2 Ligation reactions

All ligation reactions were performed in a total volume of 10 μL. Reactions contained 1 μL of commercially supplied 10× T4 DNA ligase buffer (400 mM Tris, 100 mM MgCl₂, 100 mM DTT, 5 mM ATP) and 1 Weiss unit of T4 DNA ligase (1 μL). Restriction enzyme digested plasmid DNA was combined with an excess of similarly digested insert DNA and incubated at room temperature for 4 h or in icy water overnight. The reactions were usually heated at 65 °C for 20 min to deactivate the ligase. The total reaction mixture was transformed into DH5α E. coli cells.

2.3.2.3 Plasmid amplification

Most plasmids were amplified by propagation in E. coli strain DH5α (Table 2.13). Plasmid products of QuickChange PCR reactions were transformed into the XL1-Blue supercompetent cells (QuikChange® II Site-Directed Mutagenesis Kit). Bacteria were plated on a solid LB_Amp media and cultured in Luria-Bertani (LB) broth.
2.3.2.4 Preparation of competent E. coli

MgCl₂ method. Antibiotic-free SOC media (400 mL) was inoculated with a 10 mL overnight SOC culture of a strain, then grown at 37 °C until OD₆₀₀ = 0.4. The culture was cooled for 20 min by placing the tube in an ice/water slurry and the cells were subsequently centrifuged at 1000 × g for 15 min in cold 50 mL tubes. The pellet was resuspended in 20 mL autoclaved Resuspension buffer. The resuspended cells were divided into small (50–100 µL) aliquots, snap frozen in liquid N₂ and stored at -80 °C. DH5α, BL21(DE3) and Rosetta 2(DE3)pLysS strains were made competent for transformation by this method.

RbCl method (BL21-AI cells) [179]. LB broth (50 mL) was inoculated with a single colony of BL21-AI cells and was grown, with shaking at 37 °C to an OD₆₀₀ of 0.3–0.5. The culture was cooled on ice for 5 min, the cells centrifuged (4000 × g) at 4 °C, and the supernatant was discarded. Cells were gently resuspended in ice-cold TFB1 buffer (15 mL) and incubated on ice for 90 min. The cells were collected by centrifugation (5 min, 4000 × g, 4 °C) and the cell pellet carefully resuspended in 2 mL ice-cold TFB2 buffer, aliquoted (50 µL) into sterile microcentrifuge tubes, frozen on dry ice, and stored at -80 °C.

2.3.2.5 Transformation of E. coli

Plasmid DNA (1 µL of prepared plasmid DNA) or 10 µL ligation mixture was added to 30 and 100 µL of competent E. coli cells, respectively, and incubated on ice for ~15 min. Cells were heat-shocked at 42 °C for 5 min and 200 µL of sterile LB broth added. Cells were allowed to propagate for a further 1.5 h at 37 °C before being spread onto LB_{Amp} plates. Transformed Rosetta 2 cells were spread onto LB_{Amp+Cam} plates and incubated overnight at 37 °C.

2.3.2.6 Amplification and preparation of plasmids

A single colony of DH5α or XL1-Blue E. coli cells transformed with plasmid DNA (section 2.3.2.5) was used to inoculate 5 mL of LB_{Amp} broth and incubated overnight at 37 °C. The cells were then collected by centrifugation (5000 × g, 4 °C, 10 min) and plasmid DNA prepared using a QIAprep Miniprep Kit according to the manufacturer’s instructions. Final solutions of plasmid DNA were eluted in 50 µL elution buffer and stored at −20 °C.
2.3.3 Verification by DNA sequencing

All plasmid inserts generated by PCR were sequenced to confirm their identities at SUPAMAC, University of Sydney, NSW or Australian Genome Research Facility (AGRF). Samples were prepared according to SUPAMAC or AGRF guidelines.

2.4 Plasmids

2.4.1 Plasmids for bacterial protein over-expression

See Appendix B for details of design strategies for bacterial overexpression plasmids in this thesis.

2.4.1.1 Plasmids for generating MBP-tagged constructs

Plasmids that code for N-terminally-tagged MBP constructs were derived from the pIH1119 plasmid, which was in turn derived from the pMAL-c2x plasmid (New England Biolabs) such that the EcoRI and BamHI restriction sites were swapped (MBP-linker-BamHI-EcoRI in pIH1119). The pMAL-stop plasmid contains a stop codon after the MBP sequence and it was used to produce MBP-only protein controls for competition assays (Chapters 6 and 7).

The pIH1121 plasmid was created by replacing the Factor Xa protease site in pIH1119 with an HRV3C protease site. This was achieved by digesting the pIH1119 plasmid with AvaI and BamHI restriction enzymes to excise the Factor Xa protease site, and ligating annealed and phosphorylated complementary oligonucleotides that encoded the HRV3C protease site into the AvaI and BamHI sites in. An extended variant of Ldb1\textsubscript{LID} spanning residues 331–375 was cloned into the pIH1121 plasmid and was used for expression of MBP-Ldb1\textsubscript{LID}.

2.4.1.2 Plasmids for GFP-tagging

The GFPsol full-length sequence was created by joining the NGFPsol and CGFP split-GFP fragments by overlap extension PCR. Note that the C-terminal fragment is the same in GFPuv and GFPsol and is therefore referred to simply as CGFP. NGFPsol, the N-terminal
fragment of the GFPsol was created by introducing F64L and S65T mutations in the NGFPuv fragment from a BiFC plasmid template (see section 2.4.3) by QuickChange PCR. Plasmid pET15b, which allows proteins to be expressed with an N-terminal His tag, was modified to remove an EcoRI restriction site positioned between HindIII and AatII sites, and an out-of-frame BamHI site that lay close to an NdeI site. Standard PCR was performed in which the new in-frame BamHI and EcoRI sites were incorporated into the sequence of the forward primer, which was complementary to the template BamHI site with additional downstream sequence. The reverse primer was complementary to sequence just upstream of the template EcoRI site and contained an AatII site on the 5' end. The resulting plasmid was named pET15bBE. A BglII-GFPsol-BamHI-TAATGA-EcoRI construct was created using PCR that contained two stop codons in frame before the EcoRI site to allow expression of GFPsol-only constructs. This construct was digested with BglII and EcoRI and inserted between the BamHI and EcoRI sites of a pHisGB1 plasmid that contained an HRV3C site in place of the original thrombin site (created by Dr. Soumya Joseph, Matthews laboratory, SMB, University of Sydney). The construct was similarly inserted into pET15bBE and pGEX-6P. The resulting plasmids have a hybrid BamHI/BglII that is not cuttable by either enzyme before the GFPsol sequence and only the downstream BamHI-EcoRI site is available for further cloning. Tethered constructs of LMO4LIMs-Ldb1LID (with Factor Xa protease sites in the linkers) were subcloned into these vectors.

2.4.1.3 SNAP-tag plasmid with a cleavable His-tag

The pSNAP-tag(T7) Vector (New England Biolabs) was modified by standard PCR to include an N-terminal His-tag for Ni-NTA purification and a TEV protease site in the linker for removal of the tag. The LMO4LIMs-Ldb1LID construct, which was initially cloned into the pSNAP-tag(T7) vector between the BamHI and EcoRI sites, was amplified by PCR for which the forward primer contained a coding sequence for the TEV site and the NdeI restriction enzyme site on its 5' end. The PCR product and the pSNAP-tag(T7) were digested with NdeI and EcoRI, and the two ligated. The resulting plasmid was named pT7-His-SNAP-LMO4LIMs-Ldb1LID.
2.4.1.4 **Plasmids that allow production of proteins with an N-terminal cysteine**

The pGEX 2TKE plasmid (a modified version of pGEX 2T from GE Healthcare in which a pseudo thrombin site in the GST moiety was removed by mutation) was edited by overlap extension PCR to generate pGEX-TEVC in which the thrombin protease site was replaced by a modified TEV protease site (ENLYFQ|C) where “|” indicates the proteolysed bond. Removal of the GST tag with TEV protease leaves an N-terminal cysteine residue. Tethered constructs of LMO4\(_{\text{LIMs}}\), Lhx1\(_{\text{LIMs}}\), Lhx2\(_{\text{LIMs}}\), Lhx3\(_{\text{LIMs}}\), Lhx4\(_{\text{LIMs}}\) or Isl1\(_{\text{LIMs}}\) with Ldb1\(_{\text{LID}}\) (with Factor Xa protease sites in the linker) were subcloned into this plasmid. See Appendix C for details of protein sequences of tethered LIMs-LID constructs with Factor Xa-cleavable linkers used in this thesis.

2.4.2 **Plasmids used in yeast two-hybrid assays**

Constructs for yeast two-hybrid experiments were expressed as fusion constructs with the GAL4 DNA-binding domain (DBD) and GAL4 activation domain (AD). These fusion proteins were generated using NpGBT9 and pGAD10 vectors, respectively. NpGBT9 is a modified version of pGBT9 (Clontech, CA, USA) in which the BamHI and EcoRI sites within the MCS were reversed.

2.4.3 **Plasmids used in BiFC assays in yeast**

See Appendix D for DNA and protein sequences of BiFC plasmids used in this thesis and Appendix E for details of ADH1 promoters used in these plasmids.

pW397 and pL397 plasmids were created by inverse PCR from the NpGBT9 and pGAD10 Y2H plasmids. The Gal4 domains and related NLS sequences were replaced with a NdeI restriction site. NGFPuv fragments with (GGGGS)\(_2\) linkers on either the N- or C- termini, generated by PCR, were cloned into pW397 (see Appendices B and C), allowing N- or C-terminal tagging of inserted proteins (pW397-NGFP\(_N\) and pW397-NGFP\(_C\) plasmids). The NGFP\(_N\) fragment was cloned between the NdeI and BamHI sites, whereas the NGFP\(_C\) contained the stop codons and was cloned between the EcoRI and PstI sites. CGFP fragments with
(GGGGS)$_2$ linkers on N- or C- termini, generated by PCR, were cloned into the pL397, allowing N-or C-terminal tagging of inserted proteins (pL397-CGFP$_N$ and pL397-CGFP$_C$ plasmids). The CGFP$_N$ fragment was cloned between the NdeI and BamHI sites, whereas the CGFP$_C$ contained the stop codons and was cloned between the EcoRI and BglII sites. LMO4$_{LIMs}$ and Ldb1$_{LID}$ constructs with or without the stop codons were subcloned into the appropriate plasmids, producing 8 possible combinations of fusion construct pairs. Other LIM-domains and ZnFs were subcloned only into the pW397-NGFP$_N$ plasmid, and their binding partners were subcloned into pL397-CGFP$_C$. Full-length LIM-HD proteins Lhx3a and Isl1α were subcloned into pW397-NGFP$_N$ and pL397-CGFP$_C$, respectively.

pW397-NGFP$_{N/C}$ and pL397-CGFP$_{N/C}$ plasmids were modified by replacing the short ADH1 (yeast alcohol dehydrogenase 1 gene) promoter (397 bp) with the full-length ADH1 promoter (1472 bp), creating pWAFL-NGFP$_{N/C}$ plasmids and pLAFL-CGFP$_{N/C}$ plasmids. Full-length Lhx3a and Isl1α constructs were subcloned into these plasmids. pW397-NGFP$_N$ and pL397-CGFP$_N$ plasmids were modified to make pW397-NLS-NGFP$_N$ and pL397-NLS-CGFP$_N$ plasmids in which an SV40 NLS sequence, created by PCR, was inserted into the NdeI site that codes for the N-terminus of each related GFP-fragment. LMO4$_{LIMs}$ and Ldb1$_{LID}$ constructs were cloned in these plasmids, respectively.

PCR mutagenesis (QuickChange PCR) was used to modify the NGFPuv fragment in the pW397-NGFPsol$_N$ and pW397-NGFPsol$_C$ plasmids through introduction of F64L and S65T mutations in the NGFPuv fragments. Full-length Lhx3a and Isl1α constructs were subcloned into both of these plasmids.

Finally, pW397-His-GFPsol and pL397-His-GFPsol plasmids were created by inserting the full-length GFPsol construct, created by overlap extension PCR (see section 2.3.1.4), between the NdeI and BamHI sites in the plasmids, with the 5' primer containing the His-tag.

2.5 Yeast two-hybrid (Y2H) assays

2.5.1 Preparation of yeast competent cells

Yeast was cultured overnight at 30 °C with shaking (200 rpm) in 50 mL YPD media and then added to 300 mL YPD and grown for 4–5 hours under the same conditions. Cells were
collected in 7×50 mL falcon tubes by centrifugation at 1000 × g for 5 min. The cells were washed in 25 mL sterile water, centrifuged, collected and resuspended in 3–4 mL of fresh sterile 1×TE/LiAc buffer. Competent yeast cells were stored at 4 °C and used within 4 days.

2.5.2 Transformation of yeast competent cells

Plasmid DNA (~0.5 μg) and salmon sperm DNA (~100 μg) were combined with 0.1 mL of competent yeast, 0.6 mL of PEG/LiAc (40% PEG-4000, 100 mM LiAc, 10 mM Tris (pH 8.0), 1 mM EDTA) and then mixed by vortexing. The cells were incubated at 30 °C with shaking (200 rpm) for 30 min. DMSO (70 μL) was added and the mixture inverted 3–4 times. The cells were heat shocked at 42 °C for 15 min with gentle mixing every 5 min. The cells were chilled on ice for 2 min and pelleted by centrifugation (15 000 × g) for 5 s. The supernatant was removed and the cells were resuspended in 300 μL of sterile 1×TE buffer (10 mM Tris (pH 8.0), 1 mM EDTA), spread onto appropriate selective SD-agar plates and incubated at 30 °C for 3–4 days. In all further protocols yeast were incubated at 30 °C, and liquid cultures were grown with shaking at 200 rpm, except where otherwise specified.

2.5.3 Spot-tests with haploid yeast

Experiments were carried out using inserts cloned into pGAD10 and NpGBT9 plasmids, which were co-transformed into AH109 cells (Clontech). Successfully co-transformed cells were selected by growth on media lacking leucine and tryptophan (SD-L-W). Yeast cultures were diluted to an absorbance of 0.2 at 600 nm in a 1 cm pathlength (OD₆₀₀), and two serial 1-in-10 dilutions were made for each sample. Yeast suspensions (2 μL) were spotted in arrays on different solid selection media (Table 3.1) and reporter activation was followed and analysed over the next several days.

2.5.4 Y2H mating arrays

2.5.4.1 Replica plating

Transfer of cells from one plate to another in mating arrays was done by replica plating (Figure 2.1). For this purpose, a metal stamp was constructed by the SMB workshop that fitted
140 mm petri dishes (plates). This stamp was covered with pieces of sterilized velveteen. The velveteen was carefully tightened over the stamp and fixed with rubber bands to prevent wrinkles in the fabric. Plates were dried prior to transfer and were gently pressed onto a stamp.

2.5.4.2 Cross-mating and spot-mating Y2H arrays on solid media

In yeast mating experiments AH109 cells were transformed with NpGBT9 constructs and Y187 cells were transformed with pGAD10 constructs. After a 72 h incubation colonies were picked from transformant plates and grown overnight in 3 mL of appropriate liquid SD media. Cultures of AH109 and Y187 cells at OD$_{600}$ ≈ 1.0 were either:

a) centrifuged for 5 min at 1500 × g, the supernatant removed and pellets streaked in parallel on a SD-W or a SD-L plate, with each streak representing a single transformant (Figure 2.1, left). These plates were incubated for ~24 h, and then replica plated at right angles to each other on a mating (YPD) plate. Mating occurred at each crossover point after overnight incubation.

b) spotted in small aliquots (0.5 µL) on top of each other in an array on a mating plate and incubated for ~16 h. Spots containing mated diploid cells were replica plated onto different interaction selection media (Table 3.1) and incubated for ~48 h (Figure 2.1, middle). In a short protocol, yeast was replica plated directly from the mating plate onto interaction selection plates.

2.5.4.3 The 96-well mating arrays

The 96-well Y2H mating array was carried out manually (Figure 2.1, right). Solid media was pipetted into each well (200–300 µL/well using 1 mL tips for easy transfer) while the media was still warm. SD-selective media broth was used to grow transformants overnight in a separate plate. A set of 8×12 pipette tips in a tip storage holder was dipped in wells containing one strain, and then dipped in wells containing YPD broth. The same procedure was repeated with fresh tips to inoculate transformants of the opposite mating type into the same plate for mating. After overnight cultivation, fresh tips were used to dip and replica plate the mated yeast on to the surface of the solid selection media in the 96-well plate. Colony growth and colour was followed for the next several days.
Figure 2.1. Flowchart of Y2H mating array protocols. Yeast is depicted as white spots or streaks on grey coloured media whereas arrows show transfers of yeast between media. Tubes and plates with liquid media are marked by purple frames. Colonies of AH109 strain (red) and Y187 strain (blue) transformants carrying a NpGBT9-Ai plasmid (i=1→n) or a pGAD10-Bj plasmid (j=1→m), respectively, were picked with sterile pipette tips and appropriate liquid media were inoculated. In the cross-mating protocol (left), cell pellets of overnight cultures were streaked with the inoculation loop as parallel streaks on appropriate selection plates. Haploid yeast streaks were replica plated orthogonally to each other onto a mating plate, via a velveteen stamp. In the spot-mating protocol (middle), haploid yeast cultures were spotted on top of each other in an array of spots on a mating plate. Both cross-mating and spot-mating protocols employed velveteen stamp replica plating in all subsequent steps. An alternative short protocol applied replica plating from the spot-mating plate directly onto interaction selection plates. In the 96-well mating protocol (right), mating and diploid selection steps were performed in liquid media, whereas arrays of sterile pipette tips were used for replica plating. Note that interaction selection plates included SD-L-W-H plates with X-α-gal and different amounts of 3-AT or SD-L-W-H-A plates.
2.6 Bimolecular fluorescence complementation (BiFC) in yeast

2.6.1 Yeast strain and culture media

Yeast cells were co-transformed with pairs of complementary BiFC plasmids as described above (section 2.5.2). Transformed yeast was cultured on solid media as described above (section 2.5.3). Adenine hemi-sulfate salt (60 μg/mL) was added to the plates and liquid media to prevent auto-fluorescence of AH109 cells. Transformed cells were grown at 30 °C for 3 days on SD-L-W plates. Yeast transformant colonies were used to inoculate liquid SD-L-W media, grown overnight at 30 °C with shaking, and used to inoculate fresh media. Protein expression was performed in secondary 10 mL overnight cultures until the OD$_{600}$ = 1.0 (~ 20 h) [180].

2.6.2 Yeast fixation

Yeast cultures were centrifuged (1000 × g, 5 min at room temperature), supernatant was removed and cell pellets were resuspended in 1 mL pH 7.5 K-phosphate/sorbitol buffer (Table 2.7). The resuspended cells were transferred to microtubes, centrifuged and pellets resuspended in 100 µL of yeast fixation solution. The cells were vortexed and incubated at room temperature for 15 min. This was followed by a wash with 1 mL K-phosphate/sorbitol buffer.

2.6.3 Epifluorescence microscopy

Detection and localization of BiFC fluorescence was carried out using epifluorescent microscopy on an Olympus BX51 System fluorescent microscope with a mercury UV-lamp, FITC and DAPI filter sets and a 100x objective was used for visualization. Yeast cells were either fixed (in trial experiments only) or were only washed with 1 mL K-phosphate/sorbitol buffer, without fixing. Cells were mixed in a 1:1 ratio with Mobial mountant on the microscopic slide. The best results were obtained when a dense 0.5–1 µL cell suspension was gently smeared by the cover glass and flattened into an approximately single layer of cells. Areas with tightly packed yeast cells in a single layer were analysed to standardize the cell density per slide. All
micrographs were created using the same magnification and scale bars were not added to micrographs.

2.6.3.1 Image acquisition

AnalySIS LS Starter software was used for image acquisition. Camera settings were controlled in the Camera Control window and the starting exposure was 100–200 ms. For some samples exposure times were increased to 500 ms or 1 s. The Intelligent Control feature was used to set the optimal signal intensity range. Micrographs were created on two (FITC and bright field) or three channels (FITC, bright field and DAPI) and composite images were generated by the software.

2.6.4 Yeast lysis

Yeast BiFC co-transformants were grown on selective media overnight. After confirming the BiFC fluorescence signal in positive controls using the epifluorescent microscope (section 2.6.3), yeast were pelleted by centrifugation at 1000 × g for 5 min. The resulting pellets (1 volume) were washed with 1 volume of water and dissolved in 3 volumes of Yeast breaking buffer on ice. Glass beads (4 volumes) were added and the samples were vortexed vigorously (5 × 1 min). The resulting extracts were either analysed directly using SDS-PAGE (section 2.8.1) or the cells were centrifuged in a microcentrifuge at 12000 × g for 2 minutes to separate the soluble and insoluble fractions.

2.7 Overexpression and purification of recombinant proteins

2.7.1 Protein overexpression in E. coli

All proteins, except SNAP-tagged constructs, were overexpressed in BL21(DE3) cells; but some initial trials with GFP-labelled proteins were carried out in Rosetta 2 cells. Glucose (1%) was added all cultures for MBP-tagged constructs to repress the expression of bacterial amylases that tend to degrade amylase-based purification resins. The overexpression of His-SNAP-LMO4_LIMs-Ldb1_LID in BL21-AI cells was induced with 0.001% arabinose. Small scale overexpression experiments (expression trials) were performed in order to find the optimal
conditions for overexpression, stability and solubility of each protein or class of proteins. These trials usually involved 10–15 mL bacterial cultures, in 50 mL conical centrifuge tubes. An overnight culture was started from a single colony in 10 mL LB broth with the appropriate antibiotic(s) and grown at 37 °C with shaking (180 rpm) for 16–18 h. The culture was diluted in fresh media to OD₆₀₀ = 0.1 and grown to OD₆₀₀ = 0.4, when the temperature was lowered to 18–25 °C (usually 20 °C). Overexpression of BL21(DE3) cells was usually induced at OD₆₀₀ of 0.5–0.6 with 0.1 mM for GST-GFP-tagged proteins, 0.3 mM for MBP-tagged proteins, or 0.5 mM IPTG for other proteins. Overexpression continued at lower temperatures for 16–18 h (overnight) in order to minimize proteolytic degradation that is common in constructs expressed from pMal-type vectors, and decrease aggregation/insolubility in other cases. Large scale overexpression experiments were usually carried out in 1L cultures, following scaled-up trial expression procedures.

2.7.2 Bacterial cell lysis

Bacterial cells were harvested by centrifugation at 5500 × g (12–15 minutes at 4 °C) and thoroughly resuspended in appropriate lysis buffers. In large scale experiments lysis buffers were used at 4–40 mL/g cell pellet (usually 5 mL/g for GST- and His-tagged proteins, and 20–40 mL/g for MBP-tagged proteins), and in small scale experiments at ~1 mL/10–15 mL culture. The suspension was then placed at -20 °C (to promote partial cell lysis through slow freezing) and lysed, either immediately or after storage at -20 °C, by 2–3 freeze-thaw cycles using liquid N₂ for freezing and thawing in a water bath. Lysozyme (0.1 mg/mL) and Dnase I (10 µg/mL) were either present in the lysis buffer from the start or were added after thawing. Samples were sonicated on ice (3 series of 10 × 1 s bursts, with 1 min breaks between series) using a macrotip probe for large volumes or step tip probe for small volumes, at 70% the maximum sonicator output (Sonifier® S-250A, Branson ultrasonics, CT, USA). The lysate was then incubated for >30 min at 4 °C with mixing, and the insoluble fraction removed by centrifugation at 20000 × g for 30 min at 4 °C.
2.7.3 Protein purification by affinity chromatography

Small scale purification was performed using microtubes and large scale purification was performed in glass or plastic columns fitted with glass wool filters at the bottom of the column. All resins were first washed with 5 column volumes (CV, which corresponds to the volume of the resin in the column) of MilliQ water. After equilibration with the appropriate lysis buffer, the resin was mixed with the soluble fraction of the lysate and incubated in a sealed column/flask/tube for 1 h on a rotating wheel at 4 °C. The resin was then run through the column, at ~1 mL/min and the non-bound components (flow-through) collected. The same flow rate was used in subsequent washing and elution steps. Fractions containing purified protein were combined, concentrated, snap-frozen in liquid N$_2$ and stored at -80 °C.

2.7.3.1 GSH-affinity chromatography

GSH resin (3–10 mL/L culture or 2 mL/g cell pellet, 50 µL for trials) was equilibrated by running 10 CV of GST-Lysis buffer through the column. After binding, the GSH resin was washed with 20 CV of GST-Wash buffer, followed by either elution from the column by 3–5 × CV of GST-Elution buffer (some GST-tagged proteins in trial experiments), or washing with 10 CV of an appropriate GST-Proteolysis buffer prior to proteolysis step (most preparations). GSH in the GST-Elution buffer competes with the resin for binding the GST-tag, thereby specifically releasing a GST-tagged construct from the resin.

2.7.3.2 Native Ni-affinity chromatography

All His-tagged constructs of TEV protease and SNAP-LMO$_4$LIM$_{5}$-Ldb$_{1}$LID were initially purified by Ni-NTA affinity chromatography under native conditions. Resin was used at the ratio of 2 mL resin per 1 L of culture. Ni-NTA-Lysis buffer included 20 mM imidazole to minimise non-specific binding of different bacterial proteins to the Ni-NTA resin, as the imidazole competes with His for Ni-binding. Relatively higher concentrations of NaCl (0.4–1 M in the Ni-NTA buffers compared with 300 mM in GST-purification buffers) served a similar purpose. The purification was carried out as described for GSH-affinity purification, except that 4 × 2 CV Ni-NTA-Wash buffer was used for washing and 4 × 2 CV of Ni-NTA-Elution buffer was used for
elution steps. Size exclusion chromatography (SEC) was used to remove imidazole and finely purify the protein.

2.7.3.3 Amylose-affinity chromatography

MBP-only and MBP-Ldb1LID constructs were initially purified by amylose-affinity chromatography. Amylose resin (~15 mL per 1 L culture) was equilibrated with 8 CV of MBP-Lysis buffer. After binding, the resin was washed with 12 CV of the MBP-Wash buffer and the protein was eluted with 3 × CV of the MBP-Elution buffer. Maltose from the MBP-elution buffer competes with the amylose resin for MBP-binding, thereby specifically releasing a MBP-tagged construct from the resin. Elution fractions containing the protein were concentrated, exchanged into a 20 mM Tris-Cl pH 8.0 buffer (no NaCl) with PD-10 columns, and further purified using anion-exchange chromatography. No additional purification steps were required for MBP-only.

2.7.4 Protein cleavage by proteases

Affinity tags were removed by proteolysis. In most cases, this step was carried out when the protein was still immobilised on the affinity resin. The resin was mixed with ~2 CV of a proteolysis buffer and the appropriate amount of enzyme in the purification column, which was sealed and incubated as indicated on a rotating wheel. After treatment with the protease as described below, the freshly cleaved samples were collected and more cleaved protein was further washed off from the resin with proteolysis buffer (~2 CV). For some experiments proteolysis was carried out in solution, after the protein was eluted from the affinity resin. Fractions containing cleaved or eluted proteins were combined, concentrated and purified further or snap-frozen in liquid N₂ and stored at -80 °C.

Proteolysis of GST-GFP-tagged constructs was conducted with the HRV3C protease. HRV3C protease (50 µL of in-house product) was used per 1 mL resin for 4–5 h for trials or overnight for large scale experiments at 4 °C.

 Constructs expressed from pGEX-TEVC plasmids were treated with ~50 µg of TEV protease per 1 mL of resin, and incubated overnight, at room temperature.
2.7.5 High Performance Liquid Chromatography (HPLC)

Most proteins were further purified using size-exclusion chromatography (SEC) and/or ion exchange chromatography. All samples were passed through 0.22 μm filters prior to loading. The major fractions containing purified proteins were combined and stored at 4 °C for immediate or short term use, or snap-frozen and kept at -80 °C for long-term storage.

2.7.5.1 Size-exclusion chromatography (SEC)

HiLoad Superdex 75 16/60 or HiLoad Superdex 200 16/60 size-exclusion columns (GE Healthcare) were used for preparative SEC of concentrated, affinity-purified samples (1–5 mL/injection), at a flow rate of 1 mL/min on a BioLogic DuoFlow (Bio-Rad Laboratories Inc., CA, USA). Elution of target proteins was monitored by absorbance at 280 nm.

2.7.5.2 Anion-exchange chromatography

A 6 ml, prepacked monolith ion exchange column UnoQ6 (BioRad) was used for purification of MBP-Ldb1_LID, fluorescein-labelled and GFP-tagged tethered constructs. Protein samples were desalted into Anion-exchange chromatography buffer A and loaded onto the column that was equilibrated in the same buffer. The proteins were eluted using different buffer B gradients of 0–100% over 20 min, with a typical flow rate of 1 mL/min in the gradient and 2 mL/min in other steps of the program. Elution of target proteins was monitored by absorbance at 280 nm or 215 nm.

2.7.5.3 Reverse-phase (RP) chromatography

Reverse phase high performance liquid chromatography (RP-HPLC) was used by Dr Brendan Wilkinson (from the research group of Prof. Richard Payne, School of Chemistry, University of Sydney) for purification of the fluorescein-2MES. The reagent was purified by applying a 0–100% methanol gradient with 0.1% (v/v) trifluoroacetic acid (TFA) on a Waters Symmetry C4 column with 0.2 mL/min flow rate. Fluorescein 2-MES eluted at ~40% methanol.
2.7.6 Buffer exchange, desalting and removal of low MW components

2.7.6.1 Protein dialysis

Samples were loaded into dialysis buttons (100 µL to 5 mL), microtube lids (≤100 µL) or dialysis bags (larger volumes). Dialysis membranes (SnakeSkin® dialysis tubing 3.5 or 10 kDa molecular weight cut off) pre-wetted in new buffer were used to cover the samples in buttons or lids and make dialysis bags. Samples were sealed inside the buttons with O-rings, in lids with the tubes with the bottom cut-out, and the bags were sealed with specialized dialysis clips (Spectra/Por Closures). These apparatuses were placed in buffer using buffer-to-sample volume ratios of ≥250:1 for >3 h with gentle stirring at the desired temperature. The buffer was changed 2–3 times with the final dialysis step generally being carried out overnight at 4 °C.

2.7.6.2 Gravity flow PD-10 columns

Gravity flow PD-10 columns (GE-Healthcare) were used to rapidly exchange buffers and remove unbound reagents in NCL labelling reactions (section 2.10.2.4) according to the manufacturer's instructions.

2.8 Analytical methods for protein detection and quantification

2.8.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Protein samples were mixed with 4×LDS loading dye (Table 2.7), heated at ~85 °C for 5 min (except for fluorescein-labelled and GFP-tagged proteins), loaded into precast SDS-PAGE gels (Table 2.12) and run at 170–200 V in 1×MES SDS-PAGE running buffer for 45–60 min, or until the dye front had reached the bottom of the gel. Gels were fixed with Gel fixing and destaining solution for 20 min, stained with Coomassie blue stain solution for ~1 h and destained in Gel fixing and destaining solution (Table 2.7).
2.8.2 Western blot analysis

Western blot analysis was performed with yeast lysate samples from BiFC assay cultures. Following SDS-PAGE, the yeast lysates or soluble fractions were transferred onto Biotrace™ NT nitrocellulose membranes using a Hoefer TE22 Mini Tank Blotting Unit (Fisher Scientific) in Western blot transfer buffer. Transfer took place at 200 mA for 2–3 h at 4 °C. After transfer the membrane was blocked in 5% skim milk powder in TBST overnight with rocking at room temperature. The membrane was washed with TBST (15 min), and incubated with polyclonal anti-GFP antibody diluted 1:1000 in TBST with rocking for 1 h at room temperature. The membrane was then washed in 10 mL TBST (4 × 15 min), and subsequently incubated with the secondary anti-rabbit HRP-conjugate antibody diluted 1:4000 in TBST for 1 h with rocking at room temperature. Final washing was carried out in TBST (4 × 15 min). Antibody detection was carried out using the ECL Western Blotting Substrate kit, and chemiluminescence was detected by exposure to X-ray film (10 s to 2 min). The film was then developed using Kodak reagents.

2.8.3 Spectrophotometric determination of concentration

Protein and DNA concentrations were determined via UV-spectrophotometry using a ND-1000 spectrophotometer (NanoDrop Technologies Inc., 3411 Silverside Road, Wilmington, DE 19810, USA). Buffers were used as blanks. The absorbances of protein samples were measured at 280 nm and concentrations were calculated using the Beer-Lambert equation:

\[A_\lambda = \varepsilon_\lambda \cdot c \cdot l \]

(Equation 2.1)

where \(A_\lambda \) is the sample absorbance at wavelength \(\lambda \), \(\varepsilon_\lambda \) is the molar extinction coefficient (M\(^{-1}\) cm\(^{-1}\)) at wavelength \(\lambda \), \(c \) is the concentration of the sample (M) and \(l \) is the path length (cm). Molar extinction coefficients were estimated using the program ProtParam [181] and are shown in Appendix C (Table C.1).

For protein constructs that did not contain tryptophan residues the concentration was calculated using the Equation 2.2 [182]:

\[144 \cdot (A_{215\text{ nm}} - A_{225\text{ nm}}) = \text{protein} \mu \text{g} \cdot \text{mL}^{-1} \]

(Equation 2.2)
Concentrations of plasmid solutions and other dsDNA samples were determined by absorbance readings at 260 nm using the same spectrophotometer, assuming $\varepsilon_{260nm} = 50$ ng/µL/cm.

2.8.4 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF)

Mass spectrometry analysis was done using the Matrix-assisted laser desorption/ionization - time of flight mass spectrometry (MALDI-TOF) method on the Voyager DE STR MALDI-TOF instrument (Applied Biosystems Inc., Foster City, CA USA) at the Sydney University Proteome Research Unit (SUPRU)/ Mass Spectrometry Core Facility (MSCF).

To generate peptides for protein identification by MALDI-TOF, bands were excised from Coomassie-stained SDS-PAGE gels, destained in gel fixing and destaining solution (Table 2.7), washed with 100% acetonitrile, dried, and then incubated with 15 µL of sequencing grade trypsin (12 ng/µL in 50 mM NH$_4$HCO$_3$) for 1 h at 4 °C. Excess trypsin was removed and the sample digested at 37 °C overnight in 15 µL 20 mM ammonium bicarbonate. All samples were desalted with C18 ZipTips. Subsequently, targets on the MALDI plate were first spotted with 1 µL of the appropriate matrix solution, CHCA for trypsin digest samples (peptides) and with sinapinic acid for proteins. Several concentrations of protein and peptide samples were prepared (1/10 dilutions in Matrix Solution, starting from ~ 1 µM), spotted on top of the previously deposited matrix on the MALDI plate, and mixed with matrix by pipetting. After drying (~30 min), the plate was loaded into the instrument for data acquisition. The results were analysed in Data Explorer (Microsoft), and Mascot Server (Matrix Science) was used for the identification and characterisation of proteins based on trypsin fingerprinting.

2.8.4.1 C18 ZipTips desalting

MALDI-TOF samples were desalted with C18 ZipTips (Millipore). The C18 tips were preincubated with 10 µL of Wetting Solution, washed with 10 µL Wash solution, and the 10 µL of protein/peptide solutions were bound to columns by pipetting them through the tip 5–10 times.
After washing the column 1–3 times with Wash Solution, the samples were eluted with 1.3 or 10 µL Matrix Solution by pipetting it through the tip 1–5 times.

2.9 Methods for protein characterisation

2.9.1 Far UV-Circular Dichroism (CD) spectropolarimetry

Samples for Far UV-CD experiments (13 µM protein in 20 mM Na-phosphate buffer pH 7.5, 20 mM TCEP) were placed in a 1-mm path length quartz cell seated in a peltier temperature controlled cell holder. CD spectra were recorded at 25 ºC on a Jasco J-815 spectropolarimeter (Jasco Inc., Easton, MD, USA). CD data were collected over the wavelength range 260–190 nm in a continuous scanning mode, with a speed of 20 nm/min, step resolution of 1 nm, bandwidth of 1 nm and a response time of 1 s. Data were omitted if the total signal at any given wavelength exceeded 500 V. Final spectra were the average of three scans, which was then baseline corrected. The corrected data were converted to mean-residue ellipticity ([θ], deg/cm²/dmol) using the following equation:

\[[\theta]_{M,\lambda} = \frac{M \cdot [\theta]_{\lambda}}{(10 \cdot d \cdot c)} \]

(Equation 2.3)

where M is the mean residue weight, \([\theta]_{\lambda}\) is the observed ellipticity (mdeg) at the wavelength \(\lambda\), \(d\) is the path length (cm), and \(c\) is the concentration (g/mL).

2.9.2 Multi-angle laser light scattering (MALLS)

Analytical SEC for SEC-MALLS experiments was performed using a Superose 12 column on an Äkta Basic liquid chromatography system (GE Healthcare) at a flow rate of 0.5 mL/min in Competition Assay Buffer. Protein samples of 250 µL at ~2 mg/mL were used. The SEC setup included an in-line miniDAWN light scattering detector and an interferometric refractometer (Wyatt Technologies, CA, USA). Light scattering analysis was performed using a 690 nm wavelength laser. Voltage and light scattering intensity were calibrated with toluene yielding a constant of 8.534 \(\times 10^{-6}\) for this experiment. Molecular weights were estimated using ASTRA software (Wyatt Technologies). MALLS analysis of monomeric BSA was also conducted to check the calibration of the instrument.
2.9.3 Nuclear magnetic resonance (NMR) spectroscopy of fluorescein-2-MES

The sample contained 2.7 mM fluorescein-2-MES in 20 mM Na-phosphate buffer pH 7.5 to which 5% (v/v) D$_2$O and 2 μM DSS (Table 2.1) were added. 1H-NMR spectra (64 scans) were recorded with a spectral width of 12 ppm at 25 ºC on an Avance III 800 MHz Bruker spectrometer (Bruker AXS GmbH, Karlsruhe, Germany) equipped with a 5 mm triple-resonance TCI cryoprobe and processed using Topspin 2.1 (Bruker). Water suppression was achieved using pulsed-field gradients. Spectra were processed using TOPSPIN (Bruker) running on Linux workstations. Spectra were referenced to DSS at 0.00 ppm.

2.10 Site-specific protein labelling with synthetic fluorophores

2.10.1 Labelling of SNAP-tagged proteins

pT7-His-SNAP-LMO4$_{\text{LIMs}}$-Ldb1$_{\text{LID}}$ was overexpressed in BL21-AI cells, and purified by Ni-affinity chromatography (see section 2.7.3.2), followed by anion-exchange chromatography (see section 2.7.5.2). The protein was labelled with BG-488 reagent in SNAP-tag labelling buffer, according to the manufacturer's instructions (protocol for labelling in solution, SNAP-Cell Starter Kit, New England Biolabs). Dialysis (see section 2.7.6.1) was performed to remove free reagent from solution and the degree of labelling was estimated (see section 2.10.3).

2.10.2 Labelling of proteins by Expressed Protein Ligation (EPL)

2.10.2.1 Production of the fluorescein-2MES reagent

5-(and 6-)Carboxyfluorescein succinimidyl ester (96 mg) and sodium 2-mercaptoethanesulfonate (375 mg) were combined and dissolved in 10 mL of 100 mM Na-borate buffer, pH 8.7. The reaction was stirred at room temperature for 2 h and the product purified by RP-HPLC (see section 2.7.5.3).
2.10.2.2 Production and purification of TEV protease

The S219V mutant of TEV protease was overexpressed as a His-tagged protein in BL21(DE3) cells. In the initial stages of the project the protein was purified only by Ni-affinity chromatography as described previously [183, 184]. In later stages of the project the enzyme was additionally purified by SEC. After purification, the enzyme was concentrated to ~0.5 mg/mL, diluted with glycerol to ~0.25 mg/mL (50% glycerol stocks), snap-frozen as 100 µL aliquots, and stored at -80 °C.

2.10.2.3 Production and purification of proteins with an N-terminal cysteine residue

Tethered LIMs-LID constructs and the DEAF1 construct in pGEX-TEVC vectors were overexpressed in BL21(DE3) cells, purified by GSH-affinity chromatography, treated with TEV to remove the tag and expose the N-terminal cysteine residue, and subsequently purified by anion-exchange chromatography.

2.10.2.4 Native chemical ligation (NCL) reaction

Labelling of N-terminal cysteines with fluorescein was performed by native chemical ligation (NCL). Tethered constructs with an exposed N-terminal cysteine residue were concentrated to 1–4 mg/mL in NCL buffer and the solutions used to resuspend dry fluorescein 2-MES reagent to a final concentration of 0.2–0.5 mg/mL. MESNA (or MPAA) thiol in buffer (0.4 M) was added to this tube to a final concentration of 20–100 mM thiol. The reaction was incubated in the dark at room temperature as indicated (5–92 h). Long reactions (>48 h) with MESNA were used to obtain products without significant levels of nonspecific binding (Figure 6.13). The reaction was stopped by adding 1 volume of buffer containing 100 mM DTT and incubated for 30 min at room temperature. Unreacted reagents were removed, and the buffer changed to anion-exchange buffer A, using PD-10 desalting columns (section 2.7.6.2). Samples were analysed by SDS-PAGE and fluorescence scanning on Typhoon FLA9000 scanner (GE Healthcare), and absorbances at 280 nm and 494 nm measured on the ND-1000 after each step.
2.10.3 Calculating the degree of labelling

Purified labelled protein was diluted in buffer, and absorbance was measured at 280 nm \((A_{280})\) and 506 nm (BG-488-labelled proteins, section 2.10.1) or 494 nm (fluorescein-labelled proteins, section 2.10.2) and the concentration of labelled protein calculated using Equation 2.4:

\[
c_p=\frac{1}{\epsilon_{280}}(A_{280} - \text{CF} \cdot A_{\text{exc}}) \cdot \text{dilution factor}
\]

(Equation 2.4)

where \(\epsilon_{280}\) is the molar extinction coefficient of the unlabelled protein at 280 nm (for specific values see Appendix C), \(A_{\text{exc}}\) is the absorbance measured at the appropriate excitation wavelength (506 nm for BG-488-labelled and 494 nm for fluorescein-labelled proteins), and CF is a correction factor (~0.3 for most proteins), which compensates for absorption of the bound fluorophore (fluorescein) at 280 nm. The degree of labelling was calculated using the following equations:

\[
dye \ \text{per protein} = \frac{A_{\text{exc}}}{(\epsilon_{\text{exc}} \cdot c_p)}
\]

(Equation 2.5)

or

\[
\% \ \text{labelled protein} = 100 \cdot \frac{A_{\text{exc}}}{(\epsilon_{\text{exc}} \cdot c_p)}
\]

(Equation 2.6)

where \(\epsilon_{\text{exc}}\) is the extinction coefficient of BG-488 at 506 nm or fluorescein at 494 nm (~70 000 M\(^{-1}\)cm\(^{-1}\) for both).

2.11 Quantitative competition binding assays

2.11.1 The proteolysis of tethered complexes

Factor Xa was used to cut the specific IEGR|G site in tethers that connect the LIMs and LID domains in tethered complexes. The reaction was usually performed with 1–5 µM protein in the appropriate proteolysis buffer (Table 2.7), containing 20 µg/mL Factor Xa, for 6 h at room temperature. The reaction was stopped with 1 mM PMSF.

2.11.2 Fluorescence anisotropy (FA)

All solutions used in fluorescence spectroscopy were filtered through 0.22-µm filters to remove light-scattering particles. Increasing concentrations of MBP-Ldb1\text{LID} were mixed with solutions containing <10 nM of Factor Xa-cleaved, fluorescent LIMs:LID complexes in 300 µL
reaction volumes, and incubated at room temperature for at least 30 min up to several hours. Each sample was transferred to a quartz cuvette and the fluorescence intensity monitored: excitation at 475 nm and emission at 510 nm for GFP-tagged constructs; excitation at 492 nm and emission at 520 nm for fluorescein-labelled constructs. Data were recorded in order from low to high MBP-Ldb1\textsubscript{LID} concentration samples. The Fluorescence spectrophotometer (Cary Eclipse, Varian Instruments, Mulgrave VIC) was fitted with a manual polariser (Varian Instruments), and Long Pass filters (Coherent Scientific Pty. Ltd.) for excitation and emission. The temperature was maintained at 25 °C using a block temperature controller (Varian Instruments, Mulgrave, VIC), slit widths were set to 10 nm and each data point was averaged over 15 s. In control assays, MBP-only was used instead of MBP-Ldb1\textsubscript{LID} to evaluate non-specific binding.

Anisotropy values (r) were calculated from the formula

\[r = \frac{(I_{vv} - G \cdot I_{vh})}{(I_{vv} + 2 \cdot G \cdot I_{vh})} \]

(Equation 2.7)

where:

- \(I_{vv} \) = emission light intensity when both the excitation and emission filters transmit vertically polarized light
- \(I_{vh} \) = emission light intensity when the excitation filter transmits vertically polarised and the emission filter transmits horizontally polarised light

Any bias towards vertically or horizontally polarised light caused by the fluorescence spectrophotometer was corrected by including a G-value:

\[G = \frac{I_{hv}}{I_{hh}} \]

(Equation 2.8)

where:

- \(I_{hv} \) = emission light intensity when the excitation filter transmits horizontally polarised and emission filter transmits vertically polarised light
- \(I_{hh} \) = emission light intensity when both the excitation and emission filters transmit horizontally polarized light.

The G-value was 1.7–1.9 for different FA competition assays performed in this study.
2.11.3 Fluorescent gel shift assays

Fluorescently labelled LIMs-LID tethered constructs were treated with Factor Xa to cut the linker between the LIMs and LID domains, generating un-tethered (or cut) complexes for use in competition binding assays. Increasing concentrations of MBP-Ldb1\textsubscript{LID} were added to compete with Ldb1\textsubscript{LID} from the original construct for binding to the LIM domains. The ~42-kDa MBP tag means that newly formed complexes are larger, which can be detected in different binding assays.

2.11.3.1 Native gel electrophoresis (protein gel shift assays)

Samples of cut GFP-tagged LIMs:LID complexes were mixed with increasing concentrations of MBP-Ldb1\textsubscript{LID} in a total reaction volume of 0.5 mL. Following incubation for 1 h at room temperature, these samples were mixed with the Native gel loading buffer and loaded into wells of a precast gradient native gel (NativePAGE Bis-Tris gel system, Life Technologies). The gels were subjected to electrophoresis at 4 °C in the dark, in Blue Native PAGE or Clear Native PAGE formats, according to the manufacturer's instructions. In both formats Bis-Tris-Tricine buffer was used, but in the Blue Native format the cathode buffer contained 0.4% Coomassie Brilliant Blue G-250. After 1 h of electrophoresis at 150 V, the voltage was increased to 250 V and the gel was run for a further 45–50 min.

2.11.3.2 Detection and quantification of fluorescence

Blue and clear native gels were scanned on a Typhoon FLA9000 imager (GE Healthcare Life Sciences) using EGFP excitation/emission settings. The Clear Native gels were subsequently stained with Coomassie blue stain solution. The obtained images were saved in TIFF format and ImageJ [185] was used to analyse these images and quantify the intensity of signal in each shifted fluorescent band. These values were plotted to obtain binding curves in Origin9.1 (OriginLab, Northampton, MA). Calculation and curve fitting is explained in more detail in Appendix F.
2.12 Bioinformatics, structure models and image processing

ProtParam, PeptideCutter and some other Expasy online tools [181] were used to predict characteristics, structure, and identify proteins analysed in this study. NCBI BLAST search tools Clustal W2 and Clustal Omega alignment were used to compare protein sequences of different proteins and find conserved residues and motifs [186, 187]. The STRING protein-protein interaction database was used to investigate functional connections and possible interactions between LIM-HD proteins and their partners [116]. The Weblogo online tool was used to generate a diagram of conserved residues in HDs of LIM-HD proteins (http://weblogo.berkeley.edu; [188]). Data on gene positions, clusters, paralogues and ortologues, phylogenetics, protein isoforms, mutations etc. was obtained from the UCSC Genome Browser (http://genome.ucsc.edu) [189] and ENSEMBL database [190]. Protein expression and localization data was obtained from the mouse Gene Expression Database (GXD) [86], Gene Expression Evolution database (Bgee) [191], or the Human Protein Atlas [192].

Figures in this thesis were made with Adobe Illustrator CC (Adobe Systems) and CorelDraw Graphics Suite X7 (Corel Corporation) software packages. Image models of various structures were analysed and prepared in the PyMOL Molecular Graphics System, version 1.7.6.3 (Schrödinger, LLC.) Where available, RCSB protein data bank (PDB) accession codes were indicated [193].
Chapter 3 **Optimising Y2H mating arrays for interactions between LIM-HD proteins**

3.1 **Introduction**

This chapter describes experiments aimed to detect protein-protein interactions between all LIM-HD proteins and specifically if LIM-HD proteins other than Lhx3/4 and Lmx1a interact with Isl1/2.

Protein-protein interactions in this chapter were exclusively investigated by yeast two-hybrid analysis. For this reason, the approach and the two ways the approach was used in this chapter are explained in detail. More information on yeast strain genotypes, yeast plasmid maps, media composition and experimental procedures can be found in the Materials and Methods section of this thesis.

3.1.1 **General approach**

Yeast-two hybrid (abbreviated hereafter as Y2H) has been a standard *in vivo* method for detecting protein-protein interactions for more than 20 years [194]. The approach is based on the idea that if you express two interacting proteins fused to specific complementary active domains, upon binding, this hybrid complex will generate some detectable output *in vivo*. For standard Y2H, this function is the transcriptional activation of reporter genes. Many related two- (and three-) hybrid methods in yeast and other organisms have been developed that are based on enzyme activity, fluorescence and various other functions [195-198].

3.1.2 **Plasmids, yeast strains and reporter genes**

The experiments presented in this chapter used the well-defined Gal4 system (Figure 3.1). In this system, the two domains to be tested are cloned as fusion constructs with each of the DNA-binding domain (DBD) and activating domain (AD) of yeast transcription factor Gal4. Each construct is present in a separate expression vector. DBD-fusion constructs were expressed from the NpGBT9 plasmid, and AD-fusion constructs were expressed from the pGAD10
plasmid, both from a short ADH1 promoter (396 bp) that gives very low levels of constitutive expression during the exponential growth phase [199].

Figure 3.1. The Gal4 yeast two-hybrid system. The DNA-binding domain (DBD) of the Gal4 yeast transcription factor is fused to protein A and the activating domain (AD) of Gal4 is fused to protein B. The two fusion constructs are co-expressed in a yeast cell and localized in the nucleus. If proteins A and B interact, reconstituted Gal4 dimers bind UAS sites and activate the HIS3, MEL1 and ADE2 reporter genes, used in this thesis. Inserted yellow table shows which of the reporters are present in AH109 and Y187 strains.

The assays used commercially available (Clontech) strains of yeast Saccharomyces cerevisiae AH109 (in all experiments) and Y187 (in mating arrays only). These yeast strains
have both been made auxotrophic (cannot grow in the absence of a given substance) for the amino acids leucine (L), tryptophan (W) and histidine (H), and the nucleobase adenine (A).

NpGBT9 and pGAD10 contain selective markers (genes that express the missing enzymes) that allow growth on tryptophan-deficient (-W) and leucine-deficient (-L) media, respectively. When transformed with both types of plasmids, AH109 and Y187 strains should grow on SD-L-W media. The AH109 genome also carries reporter genes that compensate for auxotrophy in histidine (HIS3) and adenine (ADE2) biosynthesis. Both AH109 and Y187 carry the colourimetric reporter gene MEL1, which encodes an α-galactosidase that creates a blue product from the substrate X-α-Gal.

Upstream activating sequences (UAS) in promoter regions of these reporter genes contain binding sites for the Gal4 protein. When the test proteins interact, the hybrid complex will be recruited to Gal4-binding sites via the Gal4DBD and interact with the basal transcriptional machinery via the Gal4AD. The hybrid complex activates transcription of reporter genes, allowing growth on selective media without histidine and adenine (Table 3.1). Up to 100 mM of 3-aminotriazole (3-AT), a competitive inhibitor of the HIS3 reporter product, is often added to media to increase selection pressure. In this thesis, 0.5–10 mM 3-AT was added to interaction selection plates (Table 3.1). However, 3-AT was not used to further increase selection pressure under double selection conditions.

Table 3.1. Yeast selection conditions used to detect an interaction. Different media were classified according to their assumed selection pressure into weak, moderate or double selection media. All media require activation of the HIS3 auxotrophic reporter while double selection media requires the additional activation of the ADE2 auxotrophic reporter. Weak selection media does not contain 3-AT. Moderate selection media contains 3-AT (0.5–10 mM). X-α-Gal, a substrate for the MEL1 colourimetric reporter was added in weak and moderate selection media. Any single assay used a subset of these conditions. SD media content is listed in Table 2.16. SD-L-W-H(-A) is SD media lacking amino acids L, W, H (and adenine nucleobase).

<table>
<thead>
<tr>
<th>Selection Condition</th>
<th>Media Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak selection</td>
<td>SD-L-W-H, X-α-Gal</td>
</tr>
<tr>
<td>Moderate selection</td>
<td>SD-L-W-H, X-α-Gal, 0.5–10 mM 3-AT</td>
</tr>
<tr>
<td>Double selection</td>
<td>SD-L-W-H-A</td>
</tr>
</tbody>
</table>
Yeast growth and MEL1 reporter activation were followed in parallel in all experiments except the double selection conditions where X-α-Gal was not included in the media. However, colour is used to report on a given interaction only when differences in colour development could not be explained by differences in growth, or when the growth was not consistent.

3.1.3 Background growth: causes, inhibition and controls

In all Y2H experiments positive and negative controls were included on every plate. The main negative controls comprised each of the DBD- and AD-fusion proteins tested against the AD-only or DBD-only domains, respectively, expressed from the appropriate 'empty' plasmids (i.e., the AD or DBD are produced in the absence of a fusion partner). Where a negative control gave rise to yeast growth it was considered as assay background for the related interaction. Yeast spots that did not grow significantly above background were classified as false positives. Weak background growth can be caused by leaky expression of the HIS3 reporter in the absence of Gal4 activity. Indeed, under weak selection conditions this was often observed, so most experiments reported use 3-AT (i.e., moderate selection conditions) to eliminate this phenomenon.

Some proteins, when expressed as DBD-fusion constructs, can directly activate (‘autoactivate’) reporter genes and lead to false positive results. Autoactivation can also be caused by AD-fusion constructs of DNA-binding proteins that bind non-specifically to promoters of reporter genes [198, 200, 201]. Autoactivation is the most common cause of false positives and can be confirmed using additional negative control experiments in which a single plasmid containing either an AD- or DBD-fusion construct of a protein in question is transformed into yeast. Several moderate selection conditions were used in this work to compensate for different levels of autoactivation caused by some of the tested constructs.

When testing a pair of constructs A and B for an interaction, the Y2H assay commonly uses two combinations of fusion constructs: DBD-A vs. AD-B; and, DBD-B vs. AD-A. Although carrying out experiments that test both combinations is preferred, autoactivation can often prevent detection in one of the combinations.
3.1.4 Yeast mating

There are two strategies for inserting both DBD- and AD-containing plasmids into yeast cells: co-transformation (adding both plasmids during transformation) and mating [202, 203]. The latter method takes advantage of the ability of haploid yeast *S. cerevisiae* to exist in either of two complementary mating types, MATa or MATα. The two mating types can mate with each other and thereby fuse into a diploid form (Figure 3.2). In this study AH109 (MATa) cells were transformed with DBD-containing plasmids and Y187 (MATα) with AD-containing plasmids. The haploid transformants were mated to create diploid yeast cells that co-express both fusion constructs. A big advantage of mating is the simplification of transformation when large numbers of interactions are tested [204, 205].

![Figure 3.2. Yeast mating](image)

Figure 3.2. Yeast mating. Haploid strains of opposite mating types are each transformed with one of the complementary Y2H plasmids. MATa and MATα cells fuse together to make a diploid yeast cell (i.e., with two sets of 16 yeast chromosomes) that carries both Y2H plasmids.
3.1.5 Arrays and replica plating

Y2H mating arrays often test defined numbers of known protein constructs against each other in an ordered matrix of spots on the same plate [206-208]. Mating arrays can also be used for library screens [209]. In mating arrays, replica plating is used to transfer yeast from haploid plates to a mating plate, and then transfer diploid yeast to different selection plates. Replica plating maintains the relative positions of yeast colonies, spots or stripes from starting plates (‘master’ plates) on the subsequent plates (replica plates) [209, 210]. Where appropriate, in these experiments manual velveteen stamp replica plating was used in which a sterile piece of velveteen cloth is applied to the first plate and then touched onto the replica plates.

3.2 Identification of autoactivating domains and experimental design

Full-length (or near full-length) constructs of several mouse LIM-HD proteins in Y2H assays were first tested for autoactivation as previous studies in the laboratory have indicated that autoactivation is a potential problem for this family of proteins. All constructs showed some level of autoactivation, although the extent of autoactivation varied. For example, when expressed as a DBD-fusion construct, Lhx3a showed strong background growth in the negative control under all selection conditions (Figure 3.3A) and background growth when expressed as an AD-fusion construct only under weak selection conditions, as did most other members of the family (e.g., Figure 3.3B). This autoactivation likely arises from the C-terminal regions of these proteins as several LIM-HD proteins are reported to contain transcriptional activation domains in this region [136, 211-213], although the HDs also appear to contribute to this affect (data not shown). In contrast, although DBD-fusion constructs of tandem LIM domains (LIMs) can show background growth under weak selection, this is generally eliminated by the inclusion of up to 10 mM 3-AT in the media, as shown for DBD-Is1₂LIMs, and DBD-Lhx2LIMs (Figure 3.3C). Other LIMs constructs have been used previously in Y2H experiments as DBD-fusion constructs, with little or no background growth [18, 156, 167].

The tests confirmed that DBD-full-length LIM-HD constructs can cause background growth that could make weak interactions difficult to detect. Therefore it was decided to use only LIMs constructs in DBD-fusion constructs and test them for binding against full-length
constructs expressed as AD-fusion constructs (DBD-LIMs vs. AD-full-length combination). There is good precedent for using these constructs, as Lhx3\textsubscript{LIMs} mediates an interaction with the Isl1\textsubscript{LDB} domain. It should be noted that with this assay design non-LIM mediated interactions within the LIM-HD family cannot be assayed. The mating arrays were carried out with up to 10 mM 3-AT on moderate selection plates, and on double selection plates.

![Figure 3.3. False positives from autoactivation.](image)

3.3 Preliminary experiments

Prior to the start of this thesis project, a series of Y2H spot-test assays were carried out to test possible interactions between some LIM-HD proteins [169]. These experiments covered only some of the possible interactions within the family of LIM-HD proteins as not all protein
constructs were available at the time. The results of these assays are presented in Table 3.2, and showed previously detected interactions between Isl1α, and Lhx3LIMs and Lhx4LIMs. In addition this work reported some novel, apparently weaker interactions between Lhx3a and the tandem LIM domains of several LIM-HD proteins, and between Lmx1aLIMs and Isl1LBD. Some of these apparently weaker interactions could not be detected by an Honours Student in the laboratory, Kim Tieu, at a later date [214]. This disparity possibly arose because weaker interactions often give varying levels of growth from experiment to experiment as they are close to the limit of detection. Small variations in media, growth conditions and handling can push them either side of the detection limit. Y2H assays on weak selection plates are particularly sensitive to these effects. It is also possible that some of these interactions were in fact false positives due to additive autoactivation effects of DBD-LIMs and AD-Lhx3a fusion constructs.

Table 3.2. The results of preliminary Y2H spot-test assays from [169]. The table shows a summary of relative yeast growth “on SD-L-W-H plates containing X-α-Gal and 3-AT (0.5 mM or 1 mM). (++) indicates strong growth and blue colour, (++) signifies growth and faint/absent blue colour; (+) indicates weak growth and no blue colour; (-) indicates absence of yeast growth on SD-L-W-H plates containing X-α-Gal and 3-AT (1 mM)” [169]. The scaling system used for these results was different from the system applied in experiments performed for this thesis. Light grey fields mark the constructs and interactions that were not tested.

<table>
<thead>
<tr>
<th>AD-fusions</th>
<th>Lhx1</th>
<th>Lhx2</th>
<th>Lhx3</th>
<th>Lhx4</th>
<th>Lhx6</th>
<th>Lhx7</th>
<th>Lhx8</th>
<th>Lhx9</th>
<th>Lmx1a</th>
<th>Lmx1b</th>
<th>Isl1</th>
<th>Isl1LBD</th>
<th>Isl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lhx1LIMs</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lhx2LIMs</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lhx3LIMs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lhx4LIMs</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lhx5LIMs</td>
<td>-</td>
</tr>
<tr>
<td>Lhx6LIMs</td>
<td>-</td>
</tr>
<tr>
<td>Lhx7LIMs</td>
<td>-</td>
</tr>
<tr>
<td>Lhx8LIMs</td>
<td>-</td>
</tr>
<tr>
<td>Lhx9LIMs</td>
<td>-</td>
</tr>
<tr>
<td>Lmx1aLIMs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lmx1bLIMs</td>
<td>-</td>
</tr>
<tr>
<td>Isl1LIMc</td>
<td>-</td>
</tr>
<tr>
<td>Isl1LBD</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.4 Advantages of a larger scale approach with appropriate controls

To minimise experimental variation, an aim of this project was to simultaneously test all mouse LIM-HD proteins (including all Lhx6 isoforms), for pair-wise interactions. Given the
large number of possible interactions and corresponding controls, a Y2H mating array was designed that would take advantage of replica plating and enable all the interactions to be tested at the same time, on a single plate. Hits from this screen would be confirmed using Y2H spot-tests.

Since the Ldb1_{LID} interacts with LIM domains of all LMO and LIM-HD proteins, it was used as a positive control (both DBD- and AD-Ldb1_{LID}) in all arrays. Isl1_{LBD} was chosen as a second positive control because it is known to interact with Lhx3_{LIMs}, and to determine if other LIM-HD proteins could interact with this domain. DBD- and AD-fusion constructs of rat Pit1 protein, a putative partner of Lhx3 \cite{215}, were included in some of the assays but this interaction is not a focus of this thesis. Human SSB1 protein, which was shown previously not to interact with LMO proteins in Y2H assays (Dr Liza Cubeddu, personal communication) was used as a non-related protein control. Protein isoforms and constructs used in the assays are described in Chapter 2.

3.5 Y2H mating arrays

3.5.1 A cross-mating array

NpGBT9 constructs were individually transformed into AH109 yeast maintained on SD-W media, whereas pGAD10 constructs were individually transformed into Y187 cells maintained on SD-L media. The first rounds of mating arrays were performed using a cross-mating procedure (section 2.5.4.1). On mating plates, horizontal stripes from the AH109 transformants were pink compared with mostly cream coloured vertical stripes of the Y187 transformants (Figure 3.4A). The red pigment is an oxidized intermediate of adenine synthesis (AIR) and is known to appear in yeast strains that carry the ade2 and/or ade1 mutant genes \cite{216-219} or the ade2 gene replaced by the ADE2 reporter (as in AH109 strain, \cite{220}), when growing on media with low but permissive adenine content. The Y187 strain does accumulate the same red pigment, but probably at a different rate than AH109.

Only spots with mated diploid yeast that carried auxotrophic selection markers for both -L and -W grew on the diploid selection plate (Figure 3.4B). Yeast cells that were transferred but did not grow because they lacked appropriate plasmids were visible as opaque spots on the
The same effect can be seen on all interaction selection plates. The negative mating controls showed no yeast growth, as expected, because the two mating partners carried the same plasmid type, and the resulting diploid cells had only one of the two auxotrophic markers necessary for survival on the SD-L-W plate. Diploid yeast were further replica plated onto 1 mM and 10 mM 3-AT moderate selection plates (Figure 3.6). Double-selection conditions were also used in cross-mating arrays (not shown) but since the resolution (separation between neighbouring spots) became unacceptable after two replica platings from the same diploid selection plate, moderate conditions were given priority.

Figure 3.4. Cross-mating and diploid yeast selection. Black arrow shows the replica plating direction and the small photograph behind the arrow shows the replica plating apparatus (velveteen stamp). Note that although the figure emphasizes strains and plasmids with LIMs and full-length LIM-HD constructs, the empty plasmids and other controls were included in this array as explained in the text. (A) Cross-mating plate showing both haploid strains (and mated diploids at crossing points) growing on a YPD plate after being replica plated from each of the single-plasmid selection plates with streaks arrayed orthogonally to each other. The yeast was left to grow and mate overnight at 30 °C. (B) Cross-mated yeast was replica plated on to SD-L-W medium to select for diploids containing both plasmids. Mating controls are indicated by rectangles. Blue rectangles show the position of Y187 yeast transformed with an empty NpGBT9 plasmid and transferred onto the YPD plate from the horizontally streaked SD-W plate. Red rectangles show the position of AH109 yeast transformed with an empty pGAD10 plasmid and transferred onto the YPD plate from the vertically streaked SD-L plate. A purple arrowhead points to a positive mating control spot (B). A yellow star indicates the horizontal streak of AH109 transformed with NpGBT9-Isl2LIMs (A).

In the cross-mating arrays, the final selection plates (1 and 10 mM 3-AT moderate selection conditions) were scanned every day for 4 days. Each of the two plates were analysed
(scored for interactions) at incubation times that were the most informative (i.e., gave the best signal-to-noise ratio and resolution). Background growth made 1 mM 3-AT moderate selection plates difficult to analyse after 2–3 days. Fortunately, most positive controls could be detected on day 1 of the incubation.

Although replica plating is a well-established method for this type of interaction array, several issues were noted. The amount of yeast cells transferred to each spot by velveteen stamp replica plating cannot be normalized prior to transfer and is probably much higher than the highest amounts commonly used in Y2H spot-tests (~10⁴ cells). Therefore, it is likely that in the absence of autoactivation all weak interactions detectable in a particular Y2H system would appear on weak selection plates using this method.

Yeast spot size on an interaction selection plate is determined by spot size on the previous plate, efficiency of replica plating transfer and media consistency, in addition to reporter activation. Consecutive replica plating steps led to decreased resolution of yeast spots. Based on initial observations of how closely spaced streaks could be prior to fusion of spots and/or diffusion of blue pigment to neighbouring spots, this cross-mating protocol was estimated to have an upper limit of 16 streaked lines per column/row in a 140 mm plate. However, the complete LIM-HD vs. LIMs array needed at least 18 columns for all AD-fusion constructs and controls.

3.5.2 A spot-mating Y2H array

To improve the resolution of the assay, instead of streaking and crossing the yeast streaks, small aliquots of overnight cultures of AH109 and Y187 transformants in the appropriate selective media were spotted manually on top of each other on a mating plate (section 2.5.4.2.). Mating control was not deemed necessary in this version of the assay. Mated yeast spots were then replica plated on to a diploid selection plate (Figure 3.5), which was used as a template for replica plating onto interaction selection plates. The interaction spots were scanned every 24 h (Figures 3.7 and 3.8).

The spot-mating arrays showed improved resolution, which allowed analysis of up to 20 × 20 spots in 140 mm plates. Using relatively drier YPD and selection plates allowed cleaner transfers and did not negatively affect the yeast growth but improved resolution of spots. At this point
attempts were made to identify additional weaker interactions under weak selection conditions. A variation of the spot mating protocol was attempted to further reduce the loss in resolution induced by consecutive replica plating. In the short protocol (Figure 3.5, green arrow) replica plating was done only once to transfer yeast spots directly from the YPD plate on to the interaction plates. The resolution was slightly improved but the overall growth rate of yeast on the weak selection plate was still very high, which made the background growth in all spots appear early in the incubation period. For this reason, this plate was monitored for only 48 h (Figure 3.7C and D).

Figure 3.5. Y2H spot-mating flowchart. Haploid strains were manually spotted on top of each other on a YPD mating plate and incubated for 24 h at 30 °C. AH109 transformants expressing DBD-fusion constructs (rows) were mated with Y187 transformants expressing AD-fusion constructs (columns) (A). The successfully mated diploid yeast spots were selected on a SD-L-W plate (B). Standard (black arrows) and short (green arrow) protocols were performed for transferring yeast to the various interaction selection plates (C). The small photographs represent replica plating. Note that although the figure emphasizes strains and plasmids with LIMs and full-length LIM-HD constructs, the empty plasmids and other controls were included in this array as explained in the text.
3.6 Results from the cross-mating and spot-mating Y2H arrays

The following section summarises all of the interaction data taken from Figure 3.6 (cross-mating method; 1 and 10 mM 3-AT moderate selection), Figure 3.7A–B (spot-mating, standard protocol; 1 mM 3-AT moderate selection) and Figure 3.8 (spot-mating, short protocol; double selection). Note that references to colour only refer to weak and moderate selection plates, where X-α-Gal was included in the media.

3.6.1 Controls

In terms of interpreting the interaction plates, it was first necessary to evaluate the negative and positive controls to establish if constructs show different levels of background growth in diploid cells compared to the haploid cells that were tested for autoactivation in section 3.2, and to establish if known interactions were detected by this method.

Examination of DBD negative controls (expressing DBD-fusion constructs and AD-only) confirmed the results from the preliminary autoactivation assays. The pattern of reproducible background growth on 1 mM 3-AT moderate selection plates was consistent with that expected from preliminary autoactivation assays.

DBD-Isl2 LIMs autoactivation was particularly strong in these arrays and the corresponding yeast grew on the 10 mM 3-AT moderate selection plate but did not develop colour (Figure 3.6B). This construct, as well as DBD-rPit1, allowed some weak growth due to autoactivation under double selection conditions (Figure 3.8). Of the full-length fusion constructs, AD-Lhx1, Lhx2, Lhx3a and Lhx4 showed low levels of growth when tested against DBD-only (AD negative controls) under 1 mM 3-AT moderate selection conditions in the streak-mating method, which was eliminated under 10 mM 3-AT moderate selection conditions. Other negative controls in this combination were essentially clear.

For the positive controls: the interaction plates showed evidence of an interaction (yeast growth and evolution of blue colour in the presence of X-α-Gal) between all AD-full-length LIM-HD constructs and DBD-Ldb1 LID. Thus, all of the longer AD-full-length constructs appear to have reasonable levels of expression and stability, with each containing functional LIM-domains. Similarly, AD-Isl1α and AD-Isl2 showed evidence of an interaction with DBD-
Lhx3\textsubscript{LIMs} and DBD-Lhx4\textsubscript{LIMs}, indicating that AD-Isl1\textalpha and AD-Isl2 are stably expressed, with each containing a functional LBD. Apart from the Lhx1 and Lhx5 interactions (which appeared to be weaker under some conditions, with variability from experiment to experiment), all DBD-LIMs constructs showed evidence of an interaction with AD-Ldb1\textsubscript{LID}. Note that some early experiments (e.g., Figure 3.6) used Lhx1*\textsubscript{LIMs}, which was found to extend only as far as the last zinc-coordinating aspartate residue, D117. LIM domains tend to have ~4–6 structured residues beyond this point, so an extended construct (to S123) was generated and used in later experiments and is referred to as Lhx1\textsubscript{LIMs}.

Figure 3.6 Results of a cross-mating Y2H array. A SD-L-W diploid selection plate was replica plated onto SD-L-W-H with X-\alpha-Gal and with either 1 mM (A) or 10 mM 3-AT (B). DBD-fusion constructs (horizontal) were tested against AD-fusion constructs (vertical). AH109 transformants are shown in red and Y187 transformants are shown in blue. Ldb1\textsubscript{LID} and Isl1\textsubscript{LBD} were used as positive controls in both combinations. DBD-fusion constructs of Lhx1\textsubscript{LIMs} and Lhx6\textsubscript{LIMs} were tested in duplicate. The 1 mM 3-AT moderate selection plate (A) is shown at day 2 and the 10 mM 3-AT moderate selection plate (B) is shown at day 4. Red and blue font colours differentiate the two mating strains used. AD-full-length and DBD-LIMs fusion constructs of LIM-HD proteins are shown in black boxes; Yeast spots that correspond to interactions between these constructs are shown in green boxes. The Lhx1*\textsubscript{LIMs} construct extends only as far as the last Zn-coordinating residue and was replaced in later assays by a longer construct.
To assess reproducibility within an experiment for the streak mating experiments (Figure 3.6) duplicates of DBD-Lhx1\textsubscript{LIMs} and DBD-Lhx6\textsubscript{LIMs} expressing yeast were generated from separate colonies from the same transformation plates. Both pairs of replicates displayed identical results.

3.6.2 LIM-HD vs. Ldb1\textsubscript{LID} interactions

As noted above, evidence for interactions were observed between all full-length AD-LIM-HD proteins and DBD-Ldb1\textsubscript{LID}, and all DBD-LIMs constructs and AD-Ldb1\textsubscript{LID}. It was noted that despite extending the DBD-Lhx1\textsubscript{LIMs} construct, both Lhx1 and Lhx5 appeared to interact less strongly that the other LIM-HD proteins, as evidenced by weaker growth and/or slower colour development under some conditions, and variability between experiments, which are characteristics of weak interactions analysed by Y2H as noted above (section 3.3). The pattern of apparent interaction intensities (based on colour development) in spots with DBD-LIMs fusion constructs did not exactly reflect the apparent interaction intensities in spots with respective AD-full-length fusion constructs (Figures 3.6–3.8). Lhx1 and Lhx5, whose DBD-LIMs fusion constructs gave the weakest activation, resulted in strong activation when AD-full-length fusion constructs were tested. A similar effect was observed for Lhx3a/4, Lmx1a/b and Lhx8. This resembles results from Y2H spot-test experiments with LIMs vs. LID/LBD interactions from our laboratory, where interactions with DBD-LIMs vs. AD-LID/LBD gave weaker reporter activation than with the AD-LIMs vs. DBD-LID/LBD combination [18, 19]. The opposite effect was observed for Lhx2, the DBD-LIMs fusion of which interacted very strongly but the AD-Lhx2 fusion of which did not produce such high levels of reporter activation. Also, AD-fusion constructs of Lhx6 isoforms produced noticeably lower activation of MEL1 compared to DBD-Lhx6\textsubscript{LIMs}.

3.6.3 LIM-HD vs. LIM-HD interactions

All previously identified interactions between AD-Isl1\textsubscript{a/Isl2} full-length and DBD-Lhx3/4\textsubscript{LIMs} fusion constructs and between the DBD-Isl1\textsubscript{LBD} and AD-Lhx3/4\textsubscript{LIMs} fusion constructs, were detected in these mating assays. However, AD-Isl2 gave rise to a more intense
Figure 3.7 Results of a spot-mating Y2H array. Standard protocol (A and B): The YPD plate with spot-mated yeast spots was first replica plated onto the SD-L-W plate. After 24 h at 30 °C, the spots were replica plated on to the SD-L-W-H plate with X-α-Gal and 1 mM 3-AT. The figure shows scans after 48 h (A) and 96 h (B). Short protocol (C and D): The YPD plate with spot-mated yeast was replica plated directly on to the weak selection SD-L-W-H plate with X-α-Gal, The figure shows scans after 24 h (C) and 48 h (D). Red and blue font colours differentiate the two mating strains used. AD-LIM-HD and DBD-LIM-HD\textsubscript{LIM} constructs are shown in black boxes; Yeast spots that correspond to interactions between these constructs are shown in green boxes.
activation in the interaction assays than AD-Isl1α, with the former showing increased levels of blue colour under weaker selection conditions plus growth under double selection conditions for both DBD-Lhx\textsubscript{3_LIMs} and DBD-Lhx\textsubscript{4_LIMs}, compared to less colour under weaker selection conditions and no growth under double selection conditions for AD-Isl1α. In contrast, the interactions involving the isolated Isl1\textsubscript{LBD} (AD-Isl1\textsubscript{LBD}) showed good levels of colour and robust growth under the same conditions (Figures 3.6–3.8). It is possible that the full-length Isl1α protein interacts more weakly with Lhx3/4\textsubscript{_LIMs} compared to the isolated LBD domain due to intramolecular contacts between the LIMs and LDB in Isl1α that could compete for intermolecular binding events [162]. On the other hand, Isl2 has a slightly different LBD that might not form weak intramolecular interactions. As was the case with Ldb1\textsubscript{LID} interactions, AD-Lhx3a/4 vs. DBD-Isl1\textsubscript{LBD} were apparently stronger than interactions of DBD-Lhx3/4\textsubscript{_LIMs} with AD-Isl1\textsubscript{LBD}.

Figure 3.8. Results of a spot-mating Y2H array on a double selection plate (short protocol). The YPD plate with spot-mated yeast spots was replica plated directly on to the double selection SD-L-W-H-A plate. The plate was scanned after 48 h. Red and blue font colours differentiate the two mating strains used. AD-full-length and DBD-LIMs constructs of LIM-HD proteins are shown in boxes; Yeast spots that correspond to interactions between these constructs are shown in the green box.
DBD-Lmx1a\textsubscript{LIMs} and DBD-Lmx1b\textsubscript{LIMs} showed some evidence of an interaction with AD-Isl1\textsubscript{LBD}, with limited growth, but no blue colour being evident on the 1 mM 3-AT moderate selection plate. The DBD-Lmx1a\textsubscript{LIMs}/AD-Isl1\textsubscript{a} spot was also evident on the 10 mM 3-AT moderate selection plate in the streak-mating array. Neither set of diploid transformants grew under double selection conditions.

AD-Lhx8 appeared to interact with all DBD-LIMs constructs with weak to moderate intensity (but not with other constructs), as evidenced by some growth but no colour development on both plates. In contrast, AD-Lhx8\textsubscript{LIMs} did not show evidence of interaction with other full-length LIM-HD proteins.

Pit1 did not show evidence of an interaction with any construct in the arrays. This was later followed up by additional spot tests with Lhx3a and Lhx3\textsubscript{LIMs} (not shown) and although weak selection conditions allowed some growth in the interaction between Lhx3\textsubscript{LIMs} and POU-domains of Pit1, this interaction could not be confirmed.

3.7 A 96-well Y2H mating array

Towards the end of this project, another version of the Y2H mating array was assessed that used a 96-well plate format with liquid and agar-based media [210]. This method avoids both smearing of the template and target plates, and loss of resolution from successive replica plating steps.

In this 96-well mating protocol, singly-transformed strains were grown overnight at 30 °C/220 rpm in the appropriate media, as in the previous mating assays. Then 96-well plates containing rich liquid media (YPD) were co-inoculated with 2-μL aliquots from appropriate pairs of overnight cultures, and left to mate for up to 16 h at 30 °C/220 rpm. Replica plating was performed by dipping a set of EasyLoad 200-μL tips into the plates containing the liquid rich media culture, and inoculating a new 96-well plate containing liquid SD-L-W media for selection of diploid yeast. After overnight incubation, the yeast was replica plated using the same method onto 96-well plates containing 0.5 mM 3-AT moderate selection media (agar). The plate was scanned every 24 h for 4 days to monitor yeast growth and blue colour development.
In this mating array, in addition to the LIMs and full-length LIM-HD constructs, the four mouse LMO proteins were also included as DBD-fusion constructs and tested against the AD-full-length LIM-HD constructs. As each yeast transformant is grown in a separate well of the 96-well plate, there are no opportunities for cross-contamination during transfer, fusion of neighboring spots, or diffusion of blue pigment over time. These properties can allow the successful scoring of different intensity interactions on the same plate over a longer time period (e.g., up to 5-7 instead of 1-2 days). The use of multiple sets of 96-well plates also presents an advantage over the spatial limitation of 20×20 arrays in a single Petri dish.

Figure 3.9 shows the growth and color of yeast in the wells after 4 days, estimated to best represent the relative differences in signal intensities from different wells. Overall these interaction data are very similar to the plate method, with the following exceptions:

1) Previously detected false positives (such as the DBD-Lhx2LIMs with all LIM-HD proteins in Figure 3.9) were difficult to confirm here due to lack of growth in the controls, likely because of inefficient yeast transfer.

2) The AD-only negative controls for DBD-Lhx4LIMs that grew on the plates did not appear here. It is possible that there were inefficiencies or inconsistencies associated with simple manual transfer method to the selection plates. These possible issues might be overcome in the future by using a robotics approach with measured drop sizes.

3) DBD-Lmx1bLIMs showed evidence of an interaction with both full-length AD-Isl1α/Is12 protein constructs while the DBD-Lmx1aLIMs did not, whereas the Lmx1a interactions were apparently stronger in the cross-mating and spot-mating methods. This may be a problem with drop size variability, or may simply be indicative of weak interactions for both Lmx1a and Lmx1b with Isl1α and Isl2.

4) AD-Lhx6 showed a weak propensity to interact when tested against some LIMs constructs, as was seen previously in the plate assays only for AD-Lhx8. AD-Lhx8 showed evidence of an interaction with many LIMs constructs, with apparently stronger interactions with the LMO proteins that were additionally tested in this approach. Note that these preliminary data need to be retested using precise drop sizes before they could be considered significant.

5) Manual replica plating likely resulted in the lack of growth in some controls, which made some interactions/false positives difficult to confirm on the basis of this assay alone.
Figure 3.9. Results of the 96-well plate-based Y2H mating array. The figure shows AD-fusion constructs in rows interacting with DBD-fusion constructs in columns of the plate. The 96-pipette tip set was dipped in the 96-well plate with overnight mated yeast cultures growing in SD-L-W media. The tips were gently brought in contact with the agar in the 96-well 0.5 mM 3-AT moderate selection plate. The agar plate was incubated at 30 °C for 4 days and then scanned. The figure was pieced together from two plates made with the same media and incubated together and white lines show where those pieces were connected. Green circles indicate known interactions detected in previous studies that were confirmed in this assay. Red circles indicate false positives detected in this plate (significant growth in AD-only control). White, yellow and blue circles indicate very weak, colourless and coloured yeast spots respectively.
Chapter 3

3.8 Discussion

The experiments presented in this chapter show that among the mammalian LIM-HD proteins, high affinity interactions appear to be mediated only between the LBD domains from Isl1 and Isl2 with the LIM domains from Lhx3 and Lhx4. In addition to Lmx1a, Lmx1b protein was also found to exhibit some IslLBD-binding activity, but these interactions were apparently of much weaker affinity. These interactions are summarised and the likely biological relevance of interactions between LIM domain proteins is discussed in sections 8.2 and 8.3. The discussion in this section is restricted to technical details of Y2H assays.

Overall Y2H mating arrays proved to be a useful technique for performing larger scale experiments and this method could be further improved by the use of robotics and 96–768-well plates to standardize experiments, prevent manual errors, reduce assay-to-assay variability, and allow medium-to-high throughput experiments [210, 221].

Slight differences between results from the yeast mating arrays and Y2H spot-tests could result from differences in expression profiles or different properties between cells transferred from a colony compared with cells spotted from an overnight culture, or differences in diploid versus haploid states of Y2H transformants. For example, diploid yeast are said to be more vigorous than haploid strains and can better tolerate expression of toxic proteins [222]. A previous report suggested that yeast mating reduces background caused by autoactivation [203]. Only AH109 carries the auxotrophic HIS3 and ADE2 reporters, so diploid nuclei contain twice as much DNA per copy of these reporters, reducing the likelihood of their activation. In contrast the MEL1 reporter is present in both strains and should have resulted in stronger activation in diploid cells.

3.8.1 Key limitations of Y2H assays for detecting LIM-HD interactions

The restriction of possible interactions to the LIM domains of the LIM-HD proteins was necessary to minimize background growth in the assay.; This prevented detection of interactions that are not mediated by LIM domains. It should be noted that the Y2H system holds several limitations that could have prevented detection of LIM-HD vs. LIM-HD interactions including:
the sensitivity of the assay, stability of heterogenous proteins in yeast and non-native posttranslational modifications.

It has been reported that Y2H is not sensitive enough to detect interactions weaker than $K_d \approx 10^{-6}$ M [222, 223]. However, the ability of a reconstituted Y2H construct to activate HIS3, MEL1 or the ADE2 reporter might not be directly related to K_d values of tested protein pairs [223], and there are some reports of interactions with K_d values close to 10^{-4} M being detected by the Gal4 Y2H system [224, 225]. The ADH1-derived promoter used in the vectors used to date drives very low constitutive expression, so it might be possible to enhance the detection of weak interactions by increasing the copy number of the plasmids used and/or use promoters that give higher levels of expression of fusion proteins. Such an approach would probably simultaneously increase autoactivation, which was already common in this system, but if higher levels of 3-AT were used to compensate for autoactivation, the remaining HIS3 activity could conceivably still be higher and more easily detected.

The ability to detect an interaction will likely also depend on the stability in yeast of the proteins being tested and steric hindrance resulting from fusion constructs to the Gal4 domains. For example, intrinsically disordered regions of proteins can give rise to false negatives, possibly caused by proteolytic degradation of these constructs. Stabilization of these constructs by additional structured elements can sometimes lead to higher stability and allow detection [163, 164, 226]. This type of approach might be useful for testing interactions involving the C-terminal domains of LIM-HD proteins.

Steric hindrance could prevent the formation of functional Y2H complexes. In some of these cases, interactions might be detected by finding the optimal combination(s) of fusion constructs. There are alternative Y2H plasmids that allow DBD-/AD-fragments to be fused to C-termini of tested proteins so that 6 additional combinations can be tested [227, 228]. An example of this type of optimization is described in the context of a modified assay in Chapter 5.

Budding yeasts, including the strains used for Y2H, lack complete families of important tyrosine kinase genes present in vertebrates and therefore have a limited ability to phosphorylate tyrosines [229, 230]. SH2 domains that recognize phospho-tyrosines (present in some Ub-protein ligases) are also absent, possibly preventing further modifications [231, 232]. If tyrosine phosphorylation is required for an interaction, that interaction will not be detected by Y2H.
other cases, the lack of appropriate posttranslational modifications could affect protein lifetimes and effective concentrations in yeast cells. At present, there is no data to suggest that posttranslational modifications affect interactions of LIM-HD proteins in vivo.

In an ideal Y2H system, an increase in binding affinity of tested proteins would result in a corresponding increase in reporter activation (Figure 3.10). Unfortunately, this is often not the case [222, 223], possibly in part due to autoactivation and the attempts to reduce it. However, some classes of interactions could be quantified through the activation of colourimetric LacZ/MEL1 reporters or fluorescent yEGFP reporters in well-plates combined with colourimetric scanning or flow cytometry [233-235]. This type of approach might provide a better way of quantifying LIM-HD interactions.

3.8.2 Autoactivation and false positive interactions in LIM-HD proteins

The autoactivation seen in Y2H assays with full-length LIM-HD proteins could arise from two main sources. The first source is the DNA-binding activity of the HDs. These domains target AT-rich sequences, more than 10 of which exist in the GAL1 promoter, suggesting that the HDs could directly target these sites to trigger autoactivation. The second source is the transactivation-like domains in the C-terminal regions (tails) of the LIM-HD proteins. Protein sequences likely to cause transactivation as DBD-fusion constructs in yeast are often acidic, acidic amphipathic helices, and/or are rich in proline or glutamine residues [236]. Tails of LIM-HD proteins are rich in prolines and four proteins contain glutamine clusters (Isl1α, Isl2, Lmx1a and Lmx1b) which could explain some of the observed effects. In most cases it has not been established if these regions have transcriptional transactivation activity in nature.

It should also be noted that proteins that have evolved as part of obligate complexes like LIM-HD proteins are often naturally 'sticky' and can cause false positives by non-specific interactions with many different targets, likely through exposed hydrophobic surfaces [237].
3.8.3 Possible explanations for differences in reporter activation between two combinations of fusion constructs (vectors)

As reported in this chapter, interactions between LIMs and LID/LBDs often appear stronger in one combination of yeast vectors. The same phenomenon has been reported for other systems (e.g., Myc and Max bHLH-LZs; [223]). A possible explanation extends a mechanism that was proposed to explain the difficulties in detection of parallel coiled coil homodimers by Y2H [238, 239]. Gal4\textsubscript{DBD} forms homodimers [240, 241], and homodimerization of that domain was thought to promote the specific homodimerization of the coiled-coil domains and thereby prevent interactions with AD-fusion partners, thereby lowering reporter activation (Figure 3.10) [238, 239]. In a similar manner, Gal4\textsubscript{DBD} homodimerisation could promote non-specific binding of LIMs and thereby prevent interaction with the AD-LIDs. As the 2µ plasmids that carry the TRP1 selection marker were reported to give higher expression of Y2H fusion constructs than those that carry the LEU2 marker [242], the concentration of DBD-LIMs could be higher than that of AD-LID, and that could increase the negative effects of Gal4\textsubscript{DBD} homodimerisation.

The structured DBD domain could also provide some protection of intrinsically disordered LIM domain partners from proteolysis, and increase the lifetimes of reconstituted Y2H complexes on DNA. In contrast monomeric AD-fusion constructs of LIM-partners which are likely to be unstructured are likely to be more accessible to proteolysis [164]. Thus, DBD-LID/LBDs vs. AD-LIMs interactions would appear stronger than in DBD-LIMs vs. AD-LID/LBDs interactions.
Figure 3.10. Homodimerization of hypothetical constructs in the Gal4 Y2H system. The example shows Y2H tests with hypothetical green and black proteins that can form homodimers (specific or unspecific) as well as heterodimers (green-black, green or black coiled coils). DBD-fusion constructs (E) can dimerize via DBD (F), dimerize via tested protein (A), or bind AD-fusion constructs to reconstitute the full Gal4 protein (H). These reconstituted Gal4 monomers can dimerize via DBD (I) and all complexes with dimerized DBD domains (I, F and B) can bind UAS elements but activation of RNAPII requires bound AD-fusion constructs (J). Reconstituted Gal4 complexes (free or bound to a UAS element) are shown in green fields (H, I and J), while fusion protein homodimers are shown in red (A, B and D). Chelate effect (cooperative binding) between DBD-fusion constructs would tip the equilibria towards a species that cannot cause activation (B). Figure is adapted from Hu et al., 2000 and extended to include all species and complexes.
Chapter 4 The contribution of individual LIM domains in binding to Ldb1

4.1 Introduction

It is generally considered that both of the tandem LIM domains of LIM-HD and LMO proteins are required for high affinity binding to Ldb1 (Figure 4.1), but in some cases either one LIM domain or the other has been shown to be more important for the interaction [131, 136]. It was decided to use the spot-mating Y2H array (as described in sections 2.5.4.2 and 3.4) to investigate modular binding of Ldb1_LID for the whole panel of individual LIM domains from LIM-HD proteins to determine if there are patterns to the LIM-specific binding across this family of proteins.

![Figure 4.1. A scheme showing tandem (A) and separate LIM domains (B and C) binding the Ldb1_LID. LIM domains are represented as ovals and Ldb1_LID (LID) as a ribbon. Binding segments of the LID peptide are represented by thicker segments of the ribbon. N- and C-terminal ends of each partner are labelled.](image)

4.2 Assay design

Individual LIM domain (LIM1 or LIM2) constructs were designed to contain six flanking residues at either end of the first and last zinc-coordinating residues, meaning that the constructs overlap by 3 or 4 residues between LIM1 and LIM2 depending on the length of the intervening sequence (Figure 4.2). Previous experiments with separate LIM domains of LMO2, LMO4 and Lhx3 indicated that these intervening sequences help maintain structural integrity of separate domains but do not directly contribute to binding of Ldb1 [18, 156]. These constructs were generated by PCR and cloned as both DBD- and AD-fusion constructs. Interactions between tandem and the individual LIM domain constructs were tested for binding to Ldb1_LID in both combinations (i.e., as DBD-fusion constructs as shown in Figure 4.3, and AD-fusion constructs as shown in Figure 4.4). In addition, AD-Isl1_LBD and AD-Isl2 were tested for interaction with the
LIM domain constructs from Lhx3 and Lhx4 as shown in Figure 4.4. Three levels of selection conditions were used to assess the interactions: weak, moderate (with 1 mM 3-AT) and double selection (as in Table 3.1). However, only moderate and double selection conditions were used in the DBD-LIM/AD-(LID/LBD) arrays. Weak selection conditions were not used for this combination because autoactivation tests (section 3.2) showed that DBD-LIMs fusion constructs gave rise to background growth under weak selection conditions.

Figure 4.2. Design of individual LIM domain constructs. (A) The LIM1 and LIM2 domains are shown in red and blue, respectively. These constructs were designed to contain six residues before the first and after the last Zn-ligating residues, with the exceptions that the N-terminal 'extension' is (*) 4 residues in Lhx5, 3 residues in Lhx1 and 2 residues in Lmx1a LIM1 and LIMs constructs, and there were no residues (**) beyond the last Zn-ligating residue in Lhx1 LIM2 and LIMs constructs. The overlap between separate LIM constructs was 3–4 residues, depending on the spacing between the LIM domains in each protein. (B) The LIM domains from the structure of Lhx3_{LIMs}·Isl1_{LBD} (2RG7T) coloured as in panel A.
4.3 Comparison of relative strengths of LIM1 and LIM2 interactions with LID/LBD domains

DBD-LIM vs. AD-LID combination. The spot-mated yeast on selection plates were initially scanned after three days of incubation. At this time the moderate selection plate showed evidence of interactions of Ldb1_{LID} with all tandem LIM constructs, but not with any individual LIM domain (Figure 4.3A). The yeast growth seen for the Lhx2_{LIM1} construct in the interaction spot control matched that of the empty vector and was disregarded. Some background growth was also detected for the Isl2_{LIMs} construct but reporter activation in the interaction spot was much stronger. A longer incubation time resulted in the loss of resolution on this plate and no additional interactions could be detected (not shown). On the double selection plate, only a subset of spots were visible after 3 days, corresponding to interactions of Lhx2_{LIMS}, Lhx6_{LIMS}, Lhx8_{LIMS}, Lhx9_{LIMS}, Lmx1b_{LIMS}, Isl1_{LIMs} and Isl2_{LIMs} with Ldb1_{LID} (Figure 4.3B). These double selection plates were scanned again after 6 days of incubation, when spots corresponding to interactions of Lhx3_{LIMS}, Lhx4_{LIMS}, Lmx1a_{LIMs} with Ldb1_{LID}, appeared. After 14 days of incubation, the spots for Lhx1_{LIMs} and Lhx5_{LIMs} also appeared, as well as that for Isl2_{LIMs} background in the negative control. The strongest growing and the earliest appearing spots were considered the strongest interactors.

Interactions of Lhx3_{LIMs} and Lhx4_{LIMs} with both Isl1_{LBD} and Isl2 were detected on the moderate selection plate after 3 days of incubation (Figure 4.4). On the double selection plate, both Lhx3_{LIMs} and Lhx4_{LIMs} interacted with Isl2 while only Lhx3_{LIMs} interacted with Isl1_{LBD} and resulted in yeast growth after 6 days. A few colonies appeared for the Isl1_{LBD} interaction with Lhx3_{LIMs}, but only after 14 days of incubation. The individual LIM domain interactions were not detected on any plate.

AD-LIM vs. DBD-LID combination. Under double selection conditions, yeast growth for all AD-LIMs fusion constructs vs. DBD-Ldb1_{LID} appeared by day 2 of incubation and developed into strong spots by day 5 (Figure 4.5, bottom panel). Of the tests with separate LIM domains, only the LIM1 domains of Isl1 and Isl2 showed a robust interaction with Ldb1_{LID} on the double selection plate, while the interaction with Lhx2_{LIM2} was lower and with Lhx9_{LIM2} produced only a few colonies. The AD-Lhx3_{LIMS}/Lhx4_{LIMs} vs. DBD-Isl1_{LBD} interactions showed several
Figure 4.3. Y2H spot-mating array for DBD-LIM vs. AD-LID. All LIM-domains were expressed as DBD-fusion constructs and tested for interaction against AD-Ldb1LID. The figure compares the Y2H mating arrays on moderate (A) and double (B) selection media and displays the chronological appearance of signals on the double selection plate. (C) DBD-fusion constructs of the Lhx3 and Lhx4 domains were also tested for interaction against AD-Is11LBD and AD-Is12 on both selection plates.
colonies by day 2, which developed into spots by day 5. Under moderate selection conditions (Figure 4.5, top panel), all interactions that later appeared on double selection plates were visible after overnight incubation. Later, interactions between Ldb1_{LID} and Lhx2/9_{LIM2} also appeared, followed by interactions of Ldb1_{LID} with Lmx1a/b_{LIM2} and Lhx6/8_{LIM2}. Some growth was also detected for Lhx2_{LIM1} and only a few colonies for interactions between Lhx4_{LIM5} and Ldb1_{LID} or Isl1_{LBD}.

<table>
<thead>
<tr>
<th>DBD-fusions</th>
<th>AD-fusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM1</td>
<td>Lhx3</td>
</tr>
<tr>
<td>LIM2</td>
<td></td>
</tr>
<tr>
<td>LiMs</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incubation (days)</th>
<th>3</th>
<th>3</th>
<th>6</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-L-W-H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-α-Gal, 1 mM 3-AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isl1<sub>LBD</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isl2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.4. Y2H spot-mating array for DBD-LIM vs. AD-LID. DBD-fusion constructs of the Lhx3 and Lhx4 domains were additionally tested for interaction against AD-Isl1_{LBD} and AD-Isl2 on moderate and double selection plates.

Under weak selection conditions (Figure 4.6), after 2 days of incubation, the same pattern of growth was observed as on the moderate selection plate after 5 days, but with an additional yeast spot detected for the Lhx3_{LIM2} interaction with Ldb1. Under this selection condition reporter activation for the Lhx3_{LIM5} interactions were similar to that of Lhx4_{LIM5}. Again, none of the separate LIM domains from Lhx1 and Lhx5 showed strong evidence of an interaction under any conditions at day 2. Longer incubation (5 days) resulted in some background growth in all spots expressing the DBD-Ldb1_{LID} fusion construct and in the appropriate negative control as well.
Minor evidence of an interaction was detected for Ldb1LID with Lhx1LIM2 due to some colour development. An interaction between Lhx3LIM2 and Isl1LBD was indicated by weak growth compared to no growth in the DBD-Isl1LBD negative control.

Figure 4.5. Y2H spot-mating array for AD-LIM vs. DBD-LID. All LIM-domains were expressed as AD-fusion constructs and tested for interaction against DBD-Ldb1LID. The LIM domains from Lhx3 and Lhx4 were also tested for interaction against DBD-Isl1LBD. DBD-only and AD-only controls were included (‘-‘). The top panel shows the moderate selection plate and the bottom panel shows the double selection plate after 5 days of incubation at 30 °C.
Arrays with AD-LIM vs. DBD-(LID/LBD) combination of fusion constructs showed greater sensitivity than the opposite (DBD-LIM vs. AD-(LID/LBD)) combination of fusion constructs. This observation is in line with previous experiments in our laboratory [18, 19], and some results from the previous chapter (section 3.7.2). This increased sensitivity revealed a binding preference of Ldb1 and Isl1/2 for individual LIM domains. The negative controls were free of significant background growth, except on weak selection plates after 5 days of incubation.

![Figure 4.6. Signal development under weak selection conditions for AD-LIM vs. DBD-LID in Y2H spot-mating arrays.](image)

Y2H spot-tests using the mated yeast diploids were carried out (without serial dilutions) to ensure equal loading of yeast cells and better gauge the relative apparent binding affinities. The selection data are largely identical, but in this spot-test form are easier to visualise (Figure 4.7). Apparent interaction intensities were classified according to growth rates and colour development in spots on different selection plates. All tandem LIM vs. Ldb1_LID interactions and
Figure 4.7. Y2H spot-tests of tandem and separate AD-LIM fusion constructs vs. the DBD-Ldb1_LID in diploid cells. Yeast growth on double selection plates on day 5 of incubation (top panel) and yeast spots on low and moderate selection plates, on the third day of incubation (middle and bottom panel). '-' indicates DBD domains expressed from empty vectors. The yeast cultures were normalized to OD_{600} ≈ 0.2 before 2 µL aliquots of yeast cell suspensions were spotted onto the plates (a single spot per interaction). All plates were incubated for 3 days at 30 °C.
Isl1/2_{LIM1} vs. Ldb1_{LID} interactions were strong as shown by robust growth under double selection conditions for all proteins except Lhx1, which showed more modest yeast growth. Moderate interactions were seen between Ldb1_{LID} and LIM2 domains of Lhx2, Lhx6, Lhx8, Lhx9, Lmx1a and Lmx1b (1 mM 3-AT moderate selection conditions) and weaker interactions were seen for Lhx3/4_{LIM2} vs. Ldb1_{LID}. Weak interactions were detected in tests between Ldb1_{LID} and LIM1 domains of Lhx2, Lhx6 and Lmx1b (under weak selection conditions).

4.4 The red-white selection based on the ADE2 reporter activation

Activation of the ADE2 reporter was additionally assessed by the colour of spots growing on rich YPD media that was not supplemented with adenine (Figure 4.8). Under these conditions

![Figure 4.8. A YPD plate spotted with indicated yeast transformants.](image-url)

The plate was spotted with transformants and incubated for 3 days at 30 °C. The white spots are diploid yeast (derived from the mating of AH109 and Y187 cells) expressing the interacting constructs that activate the ADE2 reporter. DBD-Lmx1a_{LIM6} vs. DBD-only control did not grow on this plate (white cross).
there is no selection pressure so all the transformants grew, but only yeast that activated \textit{ADE2} turned white (section 3.5.1). The assay reports the same interactions as seen under double selection conditions in Figure 4.7, with the additional observation of a slight pigment reduction for Lhx2\textsubscript{LIM2} vs. Ldb1\textsubscript{LID}. The colour differences appeared early, after overnight incubation. The colour was followed for two additional days as the differences became more pronounced, but because the pigment accumulated quickly in the absence of stronger interactions, no additional interactions could be detected with prolonged incubation. As this method didn't provide additional information, it wasn't further used.

4.5 Summary of results

The results of Y2H arrays presented in this chapter show that most LIM-HD proteins appear to have a tighter (or dominant) binding and a weaker binding LIM-domain in interactions with Ldb1\textsubscript{LID} (Table 4.1). In most LIM-HD proteins the dominant binder is LIM2, except for Isl1/2 where LIM1 is the dominant binder, and Lhx1/5 where no significant binding was observed for either individual domain, indicating that if there is a dominant binder the affinity of binding lies below the detection limit of the assay. The LIM domains from paralogous pairs of LIM-HD proteins show similar modes and affinities of binding to Ldb1\textsubscript{LID} in Y2H assays. Based on the assays described in this chapter the tandem LIMs of Isl1/2 and Lhx2/9 have the strongest binding overall, followed by Lhx6/8, Lmx1a/b and Lhx3/4, with Lhx1/5\textsubscript{LIM2} constructs being the weakest binders. Isl1/2\textsubscript{LIM1} appeared to be the strongest interacting single domains, which were consistently detected under double selection conditions. Somewhat weaker interactions of Lhx2/9\textsubscript{LIM2} were detected under double selection conditions only in one combination of fusion constructs. Lhx6/8\textsubscript{LIM2} and Lmx1b\textsubscript{LIM2} apparently bound more strongly to Ldb1\textsubscript{LID} than Lmx1b\textsubscript{LIM2} and Lhx4\textsubscript{LIM2}, followed by Lhx3\textsubscript{LIM2}.

Some apparent binding of LIM1 domains was detected for proteins where LIM2 was the dominant domain (Lhx2\textsubscript{LIM1}, Lhx6\textsubscript{LIM1} and Lmx1b\textsubscript{LIM1}) as evidenced by growth and colour development under 1 mM 3-AT moderate selection (Lhx2\textsubscript{LIM1} only) and weak selection conditions. Isl1\textsubscript{LBD} interactions with Lhx3/4\textsubscript{LIM2} resulted in reporter activation at levels lower than that for Ldb1\textsubscript{LID} with Lhx3/4\textsubscript{LIMs} and only slightly lower than that for Ldb1\textsubscript{LID} interaction
with LIM1 domains of Isl1/2. Finally, the range of interactions detectable by red-white selection was shown to be similar to interactions detected on double selection media.

The potential biological relevance of the LIM domain contributions are discussed in section 8.4.

Table 4.1. Summary of Y2H array results testing the abilities of separate LIM-domains to bind Ldb1\textsubscript{LID}. For this comparison, reporter activation was quantified by a scale from 1 (lowest under weak selection conditions) to 12 bars (strongest under moderate and double selection conditions) based on growth and colour development in all 3 selection conditions, using both combinations of Y2H fusion constructs. Dashed bars indicate potential interactions that caused yeast growth at or slightly above background level on weak selection plates. Interactions consistently detected under double selection conditions in at least one combination are shown in yellow fields and interactions detected only under weak selection conditions are in light grey fields. Red bars indicate interactions which were detected in both combinations of fusion constructs, and black bars indicate interactions which were detected only in the AD-LIMs vs. DBD-LID combination. The column on the right shows which LIM domain is dominant (if any) in interactions with Ldb1\textsubscript{LID}.

<table>
<thead>
<tr>
<th>Protein</th>
<th>LIMs</th>
<th>LIM1</th>
<th>LIM2</th>
<th>Dominant LIM domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lhx1</td>
<td></td>
<td></td>
<td></td>
<td>neither one</td>
</tr>
<tr>
<td>Lhx5</td>
<td></td>
<td></td>
<td></td>
<td>neither one</td>
</tr>
<tr>
<td>Lhx3</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Lhx4</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Lmx1a</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Lmx1b</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Lhx8</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Lhx6</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Lhx9</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Lhx2</td>
<td></td>
<td></td>
<td></td>
<td>LIM2</td>
</tr>
<tr>
<td>Isl1</td>
<td></td>
<td></td>
<td></td>
<td>LIM1</td>
</tr>
<tr>
<td>Isl2</td>
<td></td>
<td></td>
<td></td>
<td>LIM1</td>
</tr>
</tbody>
</table>
Chapter 5 Development of a bimolecular fluorescence complementation (BIFC) assay for detecting interactions of LIM-domain proteins

5.1 Protein-fragment complementation assays (PCAs)

It has been known for decades that some proteins can fold into native or native-like tertiary structures when the protein has been split into two separate polypeptides fragments [243-245]. This idea is referred to as protein complementation. Johnsson and Varshavsky developed an in vivo assay based on this approach for detecting protein-protein interactions through complementation of split-ubiquitin fragments [246]. Since then, a number of similar methods have been developed (reviewed in [198, 247-250]). They are commonly known as protein-fragment complementation assays (PCAs) or split-protein assays (Figure 5.1A). PCAs rely on direct interactions between the split-protein fragments. Note that the interactions involve protein binding and folding rather than docking of pre-folded fragments [248].

The types of signal generated in PCAs can include transcriptional activation, survival selection, enzyme activity, bioluminescence or fluorescence. Common PCA methods employ split ubiquitin, DHFR, intein, luciferase and GFP (Figure 5.1B). The latter is referred to as Bimolecular Fluorescence Complementation (BiFC).

5.2 BiFC

BiFC is based on the Aquarea victoria green fluorescent protein (GFP) and its numerous variants. These fluorescent proteins (FPs) have a β-barrel structure comprised of 11 anti-parallel β-sheets, surrounding a deformed helical sequence that stretches through the interior to form an autocatalytic fluorophore that is created only when the protein is folded (Figure 5.2A and B). Fluorophore maturation involves residues S(T/G)65, Y66 and G67 undergoing a series of cyclization, dehydration and oxidation reactions to create a functional fluorophore [251, 252]. After maturation, the FP fold is practically irreversible under physiological conditions [253]. In BiFC two test proteins are expressed as fusion constructs of complementary fragments from an FP. Binding of the test proteins induces folding of the two complementary fragments and
creation of the fluorophore (Figure 5.2C). Split GFPs are usually split in the loops between the sheets 7 and 8 (this study), 8 and 9, or, 10 and 11 (Figure 5.2B). In some cases, the complementary fragments have an overlap as in the case for NYFP1-172 and CYFP155-238 [254]. Studies investigating GFP folding indicated that N-terminal fragments could be partially folded when expressed independently, but the C-terminal fragment likely does not form secondary structure prior to complementation [255, 256]. BiFC assays have now been carried out in a wide variety of cells from bacteria, mammalian cells, Fungi, Nematoda, fruitfly and plants (reviewed in [247, 257]).

Figure 5.1. **Protein complementation assay (PCA).** (A) The principle of PCA. Two proteins (A and B) fused to non-functional fragments of a reporter protein interact with each other to facilitate the association and folding of non-functional fragments into a functional reporter protein. (B) Split-proteins commonly used in PCA experiments (taken from Kerppola, 2006). Two colours in backbone cartoon representations show two complementary fragments in their folded/bound state. Magenta indicates overlap between fragments. The fluorophore from GFP variants is shown in yellow.
Figure 5.2. Split-GFP and the mechanism of Bimolecular Fluorescence Complementation (BiFC). (A) Cartoon representation of GFP (pdb code: 1B9C). The fluorophore atoms are indicated by yellow spheres inside the β-barrel. (B) Topology map of GFP showing secondary structure where arrows with numbers show β-sheets, helices show α-helical regions and line segments show loops. In this study the split site immediately followed residue 158. (C) BiFC mechanism as described in the above text based on cartoon representations of FP fragments and the complete FP protein. The yellow star shows the position of the fluorophore. In (A) and (B) the split-GFP structure is shown with its N-terminal (NGFP, dark green) and C-terminal (CGFP, grey) fragments. β-sheets are numbered according to their position in the primary sequence. Black triangles mark the commonly used split sites.

Our laboratory wanted to explore using a yeast-based BiFC assay to try and overcome two problems associated with the standard Y2H assay for LIM-HD proteins. The first problem is that the Y2H assay is a transcription based assay that can show high levels of background activation for transcription factors, which was particularly problematic for many LIM-HD proteins (see section 3.2), and prevented comprehensive screening of interactions that could be mediated by the C-terminal domains of the LIM-HDs. Whereas Y2H assays take place in the yeast nucleus, BiFC assays can be cytoplasmic and potentially avoid the problem of background transcriptional activation. The second problem is that it can be difficult to detect weak interactions. Because the final BiFC product is a stable molecule, it may be better suited to the detection of weaker interactions. Of the possible eukaryotic systems that could be used, S.
cerevisiae was selected for use because it is relatively simple and has proven to be a good platform for testing LIM-HD interactions in the past (apart from the previously mentioned problems, see section 3.8.1).

5.3 Plasmid editing and protein fusion constructs

A split-GFP sequence that coded for an optimized form of GFP (GFPuv, alphaGFP) was obtained. This version belongs to the same spectral group as the wild type protein, but contains the mutations F99S, M153T and V163A [258]. It has similar folding kinetics to wild type GFP but is less prone to aggregation resulting in higher yields and improved relative fluorescence at 37 °C [252, 259, 260]. The protein was split between residues 158 and 159, in the loop between β-sheets 7 and 8, into non-overlapping NGFP (1–158) and CGFP (159–238) fragments. The assay design involved the use of modified Y2H vectors in which the Gal4 domains were replaced with NGFP and CGFP. Two NpGBT9-based BiFC vectors were generated: pW397-NGFP_N, which contained NGFP and a linker (NGFP_N) upstream of the cloning site to generate N-terminally tagged constructs; and, pW397-NGFP_C, which contained a linker followed by NGFP (NGFP_C) downstream of the cloning site to generate C-terminally tagged constructs. Similarly two pGAD10-derived BiFC vectors were generated: pL397-CGFP_N and pL397-CGFP_C, to generate N- and C-terminally tagged constructs, respectively (Figure 5.3). The 10-residue linker (GGGGS)₂ is designed to allow flexibility, enhance solubility, and was used successfully in earlier BiFC studies [261].

As part of this process two additional empty vectors that lacked any GFP-tags (pW397 and pL397) were created. An NGFP-CGFP fusion construct in which the GFP fragments were connected by a 24-residue long linker (contains 4 repeats of the GGGGS sequence, see Appendix B) was cloned into each of these plasmids for use in control experiments. As the complementary GFP fragments are joined by the linker, this construct was expected to display maximal fluorescence intensity. Note that it was not expected that the same levels of fluorescence intensity would be reached by actual BiFC interactions as such signals are typically < 10% of the full-length GFP [247].
Figure 5.3. BiFC plasmids and fusion constructs. Plasmids are shown on the left and the corresponding constructs are shown on the right. Each yeast BiFC plasmid has the 2μ origin, a truncated ADH1 promoter (397 bp), and was modified to contain a GFP fragment cDNA plus a linker before, or after, the BamHI-EcoRI cloning site. pW397 and pL397 plasmids contain the trp1 and leu2 auxotrophic selection markers, respectively. The N or C in the subscript of the plasmid name indicates that the GFP fragment is expressed N-terminal or C-terminal of the tested protein. In this figure only a subset of the test proteins constructs are depicted as each of A and B are cloned into each vector.
5.4 Autofluorescence

The Y2H AH109 yeast cells, which contain the optimal auxotrophic markers required for the designed BiFC plasmid system, showed high levels of autofluorescence in the initial tests compared to some other strains such as EGY48 (Figure 5.4). This autofluorescence was localized mainly in the vacuole and comes from the red AIR pigment that accumulates due to a mutation in *ade2* under adenine-depleted conditions (section 3.5.1). By supplementing the media with adenine-hemisulfate (60 µg/mL) and by growing the transformants in two consecutive overnight cultures, it was possible to significantly reduce autofluorescence, although some older and dying cells still displayed autofluorescence [262]. Several other studies have reported the successful use of *ade2* mutant yeast strains in BiFC experiments, supporting this as a reasonable approach [263-265].

![Diagram of a yeast cell showing the vacuole, nucleus, mitochondria, cytoplasm, and cell wall](image)

Figure 5.4. Autofluorescence in yeast. (A) Cartoon of a yeast cell. The vacuole, nucleus, mitochondria, cytoplasm and cell wall are labelled. (B) Micrograph of the untransformed AH109 strain (*ade2* mutant) showing strong vacuolar autofluorescence. (C) Untransformed EGY48 (*ade2* wt) strain showing no autofluorescence. Both strains were grown on YPD plates without added adenine. The images are composites of FITC (green) and bright field (blue) micrographs.

5.5 Optimization of the LMO4_{LIMs}:Ldb1_{LID} interaction in the BiFC system

The well characterised interaction of LMO4_{LIMs} vs. Ldb1_{LID} [152, 156, 167] was selected as a model system for BiFC assay development. Because BiFC requires that complementing fragments are brought together in an orientation that favours folding of the GFP, the first step in optimizing BiFC for previously untested groups of proteins is to find the combination of fusion constructs that gives the highest increase of BiFC signal over controls (i.e., an optimal signal to
Figure 5.5. Models of possible assemblies formed from protein fusion constructs shown in Figure 5.3. The combinations or assembly modes are numbered. GFP fragments are shown as parts of the folded GFP in dark green (NGFP) and grey (CGFP). The flexible linkers are shown as black lines, LMO4LIMs as tandem red ovals, and Ldb1LID as a blue rod.
Eight combinations of fusion constructs that could allow for eight different assembly modes were tested (Figure 5.5).

Every interaction pair was compared to its two relevant negative controls (a NGFP- or CGFP-tagged test protein against CGFP_{NC} or NCFP_{NC}, respectively). All NGFP- and CGFP-only pairs were tested for self assembly in the absence of interacting test proteins. An autofluorescence control was also included in which cells were co-transformed with pW397 and pL397 (i.e., did not contain any GFP fragments). The results of these assays are presented in Figures 5.6 and 5.7.

Figure 5.6. Optimizing the orientation of GFP-fragment tags for the LMO4_{LIM} vs. Ldb1_{LID} BiFC assay. Combinations 1–4. Yeast cells were visualized with a 100x objective and FITC filter at 200 ms exposure, unless otherwise indicated. Representative images are composites of FITC (green) and bright field (blue) micrographs. The NGFP-CGFP fluorescence control is shown at 100 ms exposure. No GFP refers to pW397/pL397 (i.e., no GFP fragments). The 16 images below show combinations 1–4 (on the left, numbered) and the rest are appropriate controls. Combination 1 and its controls are shown in the red rectangle.
Importantly the self assembly and autofluorescence controls showed no significant fluorescence. Except for combination 4, BiFC fluorescence was detected in all sets of LMO4_LIMs/Ldb1_LID interaction pairs with the average fluorescence intensity of BiFC-positive cells being at least an order of magnitude weaker than that of the NGFP-CGFP positive control (Figure 5.6, top left). The combinations in which LMO4_LIMs was fused to NGFP_C or CGFP_C gave relatively weaker BiFC signals compared to LMO4_LIMs fused to NGFP_N or CGFP_N. This is particularly evident for combinations involving the LMO4_LIMs-NGFP_C fusion construct (combinations 3 and 4). The strongest signals were detected for combination 1 involving NGFP_N-LMO4_LIMs and CGFP_N-Ldb1_LID (magenta rectangle in Figure 5.6) and combinations 2, 5 and 7. Combination 1 was chosen as a benchmark for other LIM-domain interactions and was further characterized.

![Figure 5.7. Optimizing the orientation of GFP-fragment tags for the LMO4_LIMs vs. Ldb1_LID BiFC assay. Combinations 5–8. Presentation is the same as Fig. 5.6, but for combinations 5–8. The images are composites of FITC (green) and bright field (blue) micrographs.](image-url)
All tested combinations and the NGFP-CGFP control showed BiFC signals with the same cytoplasmic-nuclear localization. This was confirmed with Hoescht staining of the cells on the slide and visualization under a DAPI filter to detect nuclear DNA (Figure 5.8B). Interestingly, the cells that exhibited stronger BiFC were less likely to take in the Hoescht stain.

![Figure 5.8. Localization of BiFC signal in the LMO4(LIMs) vs. Ldb1(LID) interaction.](image.png)

Figure 5.8. Localization of BiFC signal in the LMO4(LIMs) vs. Ldb1(LID) interaction. AH109 yeast cells co-transformed by NGFP_N-LMO4_{LIMs} vs. CGFP_N-Ldb1_{LID}. (A) Composite image made of bright field (blue) and FITC (green) micrographs. (B) Composite image made of DAPI (red) and FITC (blue) micrographs of the Hoechst-stained yeast slide.

5.6 Selectivity and sensitivity of the assay

In order to test the selectivity of BiFC assays for detecting strong LIM-LID interactions an Ldb1_{LID} mutant that had previously shown to completely disrupted the growth of yeast in the Y2H assay [167] was tested for interaction against LMO4. The m30 variant of Ldb1_{LID} is a double mutant (V339A/I358A) in which the mutations affect binding to LMO4_{LIM2} and LMO4_{LIM1}, respectively. The orientation of GFP fragments was NGFP_N vs. CGFP_N as selected above. Cells expressing m30 had very little fluorescent complementation signal compared to the cells expressing wild type Ldb1_{LID} (Figure 5.9A and B). Since the fixation procedure in trial experiments produced lower BiFC fluorescence, higher autofluorescence and often disrupted vacuolae and nuclei (not shown), the cells were not fixed before microscopy. Therefore, the cells
were used fresh to minimize degradation and were not additionally incubated to allow recently formed BiFC complexes to mature. As this procedure was sufficient for the full-length GFP protein to show fluorescence in appropriate positive controls, it was estimated that the relatively slower growth of yeast in SD media at 30°C (~140 min doubling time), allowed enough time for maturation. However, when the m30-expressing cells were incubated for 5 h at 4 °C, the fluorescence increased to reach a similar level to that of the wild type Ldb1_LID (Figure 5.9C), which itself did not significantly change (not shown). The data indicates that this BiFC system can discriminate between LIM:LID interactions with wild type sequences and interactions involving specific mutants designed to affect binding, but that temperature and time of incubation are important factors in distinguishing interactions of differing affinity. These properties are consistent with the temperature-dependence of the GFP fluorophore maturation and the apparent irreversibility of complementation [252, 254]. Previous studies have similarly used lower temperatures and longer maturation times prior to detection to increase fluorescence signal [264, 266].

The binding of m30 for LMO4 (binding affinity is not known) can be detected by low moderate selection conditions by Y2H but not double selection conditions [156]. Previous reports of high sensitivity in BiFC assays (down to 1 mM) were attributed to the accumulation of reconstituted BiFC complexes [253, 267].

![Figure 5.9. Selectivity of the BiFC assay for a LIM:LID interaction and the effect of cold incubation. LMO4_LIMs was tested against (A) wild-type Ldb1_LID (no incubation) and (B) the m30 mutant of Ldb1_LID containing V339A/I358A double mutation (no incubation). (C) The NGFP_N-LMO4_LIMs/CGFP_N-m30 combination was incubated at 4 °C for 5 h and re-visualized. The images are composites of FITC (green) and bright field (blue) micrographs.](image)

To further explore the sensitivity of this system in the context of LIM family and related proteins, a study was carried out in which the ability of several ZnF domains (including LIM domains) to interact with their binding partners in the yeast BiFC assay was tested (Figure 5.9). These interactions cover a range of previously reported binding affinities stretching from $K_d \approx 10^{-8}$ M to $\approx 10^{-4}$ M (Table 5.1). The experiments were repeated with some variation in fluorescent signal intensities, especially for the lower affinity interaction with the U-shaped ZnFs 1 and 9 (USHF1 and USHF9) with the N-terminal ZnF from Pannier (PNR-NF). Overall, the LMO4-Ldb1 interaction appeared to give the strongest signals by a small margin and other LIM-LID interactions were of similar average intensity (Figure 5.10). The fluorescence intensity was lowest for the weakest interaction involving USHf9. Overall, these data show that BiFC in yeast can detect interactions in a wide range of binding affinities, including weak interactions of close to $K_d = 100 \mu$M.

Table 5.1. Binding affinities of construct pairs tested in the BiFC yeast system. Binding affinities are expressed in the form of dissociation constant K_d. All interactions were previously detected with Y2H and the K_d values were determined by biophysical methods in vitro.

<table>
<thead>
<tr>
<th>Proteins (domains)</th>
<th>K_d(M)</th>
<th>Reference</th>
<th>Detected by Y2H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMO4_{LIMs}</td>
<td>Ldb1_{LID}</td>
<td>10^{-8}</td>
<td>[167]</td>
</tr>
<tr>
<td>LMO2_{LIMs}</td>
<td>Ldb1_{LID}</td>
<td>2×10^{-8}</td>
<td>[167]</td>
</tr>
<tr>
<td>Lhx3_{LIMs}</td>
<td>Ldb1_{LID}</td>
<td>3.4×10^{-8}</td>
<td>[18]</td>
</tr>
<tr>
<td>Isl1_{LIMs}</td>
<td>Ldb1_{LID}</td>
<td>9×10^{-8}</td>
<td>[18]</td>
</tr>
<tr>
<td>USHF1</td>
<td>PNR-NF</td>
<td>10^{-4} to 6.9×10^{-6}</td>
<td>[268]</td>
</tr>
<tr>
<td>USHF9</td>
<td>PNR-NF</td>
<td>10^{-4} to 5.2×10^{-5}</td>
<td>[268]</td>
</tr>
</tbody>
</table>
Figure 5.10. Sensitivity of the BiFC assay in protein-protein interactions mediated by ZnFs from LIM, GATA and FOG proteins. Mouse LMO4\textsubscript{LIMs}, LMO2\textsubscript{LIMs} and Isl1\textsubscript{LIMs} constructs were tested for interaction against Ldb1\textsubscript{LID}, whereas USF1 and USF9 were tested against PNR-NF. Only the FITC signal is shown. All micrographs on the left (magenta box) show tests between NGFP\textsubscript{N}-tagged and CGFP\textsubscript{N}-tagged proteins. Other micrographs show the appropriate controls with the relevant GFP fragment. The reported binding affinities of interactions decrease from top (low K_d) to bottom (high K_d) as shown by the triangle on the left.
5.7 Full-length LIM-HD proteins in the BiFC assay and the impact of a stronger promoter

The well characterised Lhx3 vs. Isl1α interaction (section 1.8) was chosen as a model to test full-length LIM-HD proteins in BiFC. Lhx3a was cloned into the pW397-NGFP\textsubscript{N} vector, whereas Isl1α was cloned into the pL397-CGFP\textsubscript{N} vector. Lhx3\textsubscript{LIMs} and Isl1\textsubscript{LBD} were also cloned into appropriate plasmids to provide a domain vs. domain interaction control for comparison with the full-length protein interaction. Full-length protein vs. Ldb1\textsubscript{LID} interactions were also tested as a comparison. The domain-domain interaction NGFP\textsubscript{N}-Lhx3\textsubscript{LIMs} vs. CGFP\textsubscript{N}-Isl1\textsubscript{LBD} was detected (Fig 5.11C), but no fluorescence signal was detected for the full-length proteins (NGFP\textsubscript{N}-Lhx3a vs. CGFP\textsubscript{N}-Isl1α) under the same experimental conditions (Figure 5.11F). It was noted, however, that all tests involving the CGFP\textsubscript{N}-Isl1α fusion construct failed to develop fluorescence (Figure 5.11F, D and H), which could indicate a problem with the expression and/or stability of this construct. In contrast, tests of NGFP\textsubscript{N}-Lhx3a with CGFP\textsubscript{N}-Ldb1\textsubscript{LID} and (to a lesser extent) CGFP\textsubscript{N}-Isl1\textsubscript{LBD} showed nuclear localization of signal in some cells (Figure 5.11G and E).

A western blot using a polyclonal anti-GFP antibody was carried out to test for proper expression of full-length LIM-HD and LMO4/Ldb1 constructs (Figure 5.11I). A strong band corresponding to the NGFP-CGFP construct was detected, but no GFP-fragments were detected in other samples, despite detection of GFP fluorescence in the cells containing NGFP\textsubscript{N}-LMO4\textsubscript{LIMs}/CGFP\textsubscript{N}-Ldb1\textsubscript{LID} and NGFP\textsubscript{N}-Lhx3\textsubscript{LIMs}/CGFP\textsubscript{N}-Isl1\textsubscript{LBD} plasmids. The non-detection of protein suggests that GFP-fragments and fusion constructs in yeast cells have much lower levels of stable expression than that of the full-length GFP (NGFP-CGFP).

The 397 bp ADH1 (truncated) promoter that was part of the parent vectors was designed to give low levels of constitutive expression. The 397 bp promoter was replaced with a 1473 bp full-length ADH1 promoter from the pGADT7 plasmid in the relevant BiFC plasmids to generate pWAFL-NGFP\textsubscript{N} and pLAFL-CGFP\textsubscript{N} (where AFL indicates the full-length ADH1 promoter) to try and increase expression levels of GFP-fusion proteins and the experiment was repeated. This promoter should give high expression in mid-log phase under aerobic conditions (Clontech, Yeast Protocols Handbook). The modified plasmids did result in significantly
Figure 5.11. Investigating interactions between Lhx3α and Isl1α proteins. (A) Fluorescence control. (B) Positive interaction control. (C) Interaction between isolated Lhx3LIM and Isl1LBD domains. (D) and (E) show tests between isolated domains and full-length proteins. (F) Test between full-length proteins. (G) and (H) tests between Ldb1LID and full-length proteins. All proteins were expressed using the 397 bp ADH1 promoter. BiFC images (A), (B), (D) and (G) are composites of FITC (green) and bright field (blue) micrographs while other images show only FITC channels. Exposure times are shown in the bottom left corner of every image. Images framed in red show no or very weak fluorescence and images framed in green detect nuclear localization of fluorescence. (I) Western blot of yeast lysates from indicated transformants. NGFP-CGFP construct (28.6 kDa; circled). Rabbit Anti-GFP polyclonal primary Ab and goat anti-rabbit secondary Ab was used. An unspecific band is seen in all lanes of the gel at higher MW that does not correspond to any GFP-fragments or complemented proteins.
higher levels of fluorescence for yeast cells expressing the NGFP-CGFP control, the NGFP_N-LMO4_{LIMs} vs. CGFP_N-Ldb1_{LID} BiFC control and NGFP_N-Lhx3_{LIMs} vs. CGFP_N-Isl1_{LBD} (Figure 5.12A–C). In the case of full-length Lhx3α and Isl1α BiFC, a weaker signal that was predominantly localised to the nucleus was observed (Figure 5.12D–E). Full-length Lhx3α tested against CGFP_N-Ldb1_{LID} gave rise to nuclear localization (Figure 5.12F) as was observed previously (Figure 5.11G). These observations suggested that some full-length Isl1α and Lhx3α proteins are being directed to the nucleus where the interaction may take place. However, the levels of fluorescence were very low compared to interactions between separate domains. In some replicate experiments cells expressing both fusion constructs failed to grow, which could imply the toxicity due to higher expression levels.

A western blot of samples from this experiment showed higher levels of background, but more importantly, showed clear bands that correspond to the expected sizes of several NGFP-fragments (Figure 5.12G). For example, NGFP-CGFP (28.6 kDa) in lanes 1 and 6, NGFP_N (20.4 kDa) in lanes 2 and 4, and NGFP_N-LMO4_{LIMs} (33.2 kDa) in lane 5 were seen. However, no bands corresponding to CGFP-containing fragments were evident. Possible degradation products of the NGFP-CGFP were also detected in lanes 1 and 6. These data indicate that the stronger promoter did result in higher levels of protein expression, but suggest that at least some of the protein constructs are susceptible to degradation.

A new set of plasmids for expression of His-tagged GFP-fusion constructs in yeast were designed (pWAFLHisGFP-Lhx3α and pLAFLHisGFP-Isl1α) to permit visualisation of localization of individual proteins while facilitating their detection with anti-His-tag antibodies in a western blot. Unfortunately, yeast transformed with these plasmids failed to grow, or grew very slowly, which suggested that the His-GFP-Lhx3α and His-GFP-Isl1α constructs were probably toxic. Yeast transformed with pLAFLHisGFP-Isl1α displayed very weak fluorescence in a majority of cells, indicating low expression or misfolding of constructs. The signal in these cells was stronger in the cytoplasm and slightly depleted in the nuclei (Figure 5.13). Yeast transformed with pWAFLHisGFP-Lhx3α showed nuclear fluorescence in a small percentage of cells, but most cells showed no signal. When two proteins were co-expressed, the result was similar except that some cells showed weak cytoplasmic fluorescence. The apparent toxicity of
Figure 5.1. The effects of the full-length ADH1 promoter on fluorescence intensity. Constructs under the control of the full-length ADH1 promoter were expressed from pWAFL-NGFP_N and pLAFL-CGFP_N vectors. (A-D) BiFC images are composites of FITC (green) and bright field (blue) micrographs. (E-F) BiFC signal localization. FITC (blue), DAPI (red) and bright field (green) micrographs were overlayed. Purple indicates nuclear localization of complexes. Exposure times are shown in the bottom left corner of every image. (G) Western blot of yeast cell lysates from indicated transformants using an anti-GFP polyclonal antibody as the primary antibody. Relevant bands (see text) are indicated with green ovals.
His-tagged constructs prevented any meaningful comparison in expression levels, so no western blot experiments were carried out for these constructs.

In previous studies, a BiFC signal in yeast was detected by fluorescence methods using flow cytometry [264, 269-273]. This approach filters out and/or rapidly quantifies background cells that are not fluorescent because of a lack of interaction, in contrast to Y2H assays where those cells do not grow. As an alternative approach, solution state fluorimetry was used to try and distinguish between samples that contain interacting proteins and negative controls. Intact yeast cells that co-expressed NGFP_N-LMO4_{LIM}s and CGFP_N-Ldb1_{LID} under the control of full-length ADH1 promoter were resuspended in PBS buffer, normalised for cell density and scanned for bulk fluorescence in solution, and compared with a NCFP-CGFP positive control and a NGFP_N vs. CGFP_N self-assembly control (Figure 5.14). There was no evidence of GFP-fluorescence in the self-assembly control and GFP-fluorescence at 510 nm was more than 3-fold weaker in the NGFP_N-LMO4_{LIM}s vs. CGFP_N-Ldb1_{LID} interaction sample than in the NGFP-CGFP positive control. These results showed that the interaction was detectable by standard fluorimetry, and confirmed that the average BiFC fluorescence in case of a strong interaction was only ~30% of the wtGFP (NCFP-CGFP).

Figure 5.2. Fluorescence in cells expressing His₆-GFP-tagged full-length proteins from the full-length ADH1 promoter. The proteins were either expressed separately (A) and (B) or co-expressed (C). White arrows indicate some nuclei with depleted fluorescence and yellow arrows indicate cells with mostly cytoplasmic fluorescence.
Figure 5.3. In vivo detection of a BiFC interaction. All constructs were expressed under the control of full-length ADH1 promoter. The yeast cell suspensions were excited at 475 nm and the emission spectra was recorded from 480–550 nm. The emission spectra for NGFP_N-LMO₄LIM_B vs. CGFP_N-Ldb_{LID} interaction and NGFP-CGFP positive control are shown in green and the NGFP_N vs. CGFP_N self-assembly control is in black. The cell suspension buffer was used as the blank.

5.8 Nuclear BiFC

The interactions between the full-length Lhx3a and Isl1α were associated with nuclear localisation (Fig 5.12 and 5.13). Whereas Lhx3a did seem to localize to the nucleus (Fig 5.13B), Isl1α did not (Fig 5.13B). Differences in sub-cellular localization are obvious features that could give rise to false negative results. For example, if one partner is directed to the nucleus and the other to the cytoplasm, there is a possibility that GFP complementation would be below the detection level because the fragments have little or no opportunity to encounter one another. Thus, a nuclear-localized version of the BiFC assay was designed by introducing the SV40 NLS sequence at the N-termini of the pW397-NGFP_N and pL397-CGFP_N plasmids (Figure 5.15). The resulting plasmids were named pW397-NLS-NGFP_N and pL397-NLS-CGFP_N.
Figure 5.4. NLS-containing BiFC plasmids (left column) and models of the resulting protein fusion constructs (right column). The SV40 NLS sequence is coloured purple.

Yeast co-transformants containing NLS-NGFP$_N$-LMO4$_{LIMs}$ and NLS-CGFP$_N$-Ldb1$_{LID}$ and a self-assembly control, NLS-NGFP$_N$ vs. NLS-CGFP$_N$, were tested for fluorescence (Figure 5.16A and B). The resulting complexes showed strong and localized signals in the nuclei for both co-transformants. Unfortunately, however, the self-assembly control showed the same strong level of fluorescence in a similar proportion of the cell population. This phenomenon is presumably caused by the increased local concentrations of GFP-fragments leading to self-assembly, and indicates that NLS-tagging was unsuitable for further experiments.
5.9 Split-GFPsol variant in the BiFC system

In an effort to improve the BiFC signal in these assays, a switch was made from using the split-GFPuv protein to a variant that contains the mutation S65T to improve the fluorescent properties of GFP, and F64L to increase the folding efficiency \[252\]. When these mutants are present on the background of the wild-type protein the resultant protein is called enhanced GFP (EGFP), and when on the background of GFPuv the resultant protein is referred to as GFPsol (or GFPuv3/GFP+). GFPsol is reported to have faster maturation and eight times more brightness than GFPuv \[274, 275\] and is more compatible with sensitive detection using standard FITC filters (Olympus BX51 System microscope manual). Thus, the mutations S65T and F64L were introduced into the split-GFPuv constructs in appropriate NGFP-containing vectors. The resulting vectors were named pW397-NGFPsol\textsubscript{N} and pW397-NGFPsol\textsubscript{C}.

The GFPsol-BiFC system was used to retest the interaction between full-length Lhx3a and Isl1\textalpha. The NGFPsol\textsubscript{N} vs. CGFP\textsubscript{N} orientation that was optimal for the head-to-tail interaction between LIMs and LBD domains might not be compatible with the full-length constructs as the GFPsol fragments might be too far apart to be able to complement. Thus, all eight different combinations of the fusion constructs were tested to find the optimal orientation for this interaction. Unfortunately, all self-assembly controls showed detectable fluorescence in cytoplasm (Figure 5.17D, H, L and P), and some of the other controls had signals comparable or
even stronger than those in the interaction tests (Figure 5.17G, O and Figure 5.18C, H, I and K). This background signal probably represents nonspecific interactions between a split-FP fragment and sticky full-length LIM-HD proteins (Figures 5.17 and 5.18).

False positives were more common in cells with CGFP-containing fusion constructs of either protein compared to cells containing NGFPsol-fusion constructs (Figure 5.17G, O and Figure 5.18C, I), and they include all cases where Isl1α has a C-terminal tag (whether it be NGFPsol or CGFP).

<table>
<thead>
<tr>
<th>Interactions tests</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGFPsol<sup>+</sup>-Lhx3a / CGFP<sub>c</sub>-Isl1α</td>
<td>NGFPsol<sup>+</sup>-Lhx3a / CGFP<sub>c</sub></td>
</tr>
<tr>
<td>NGFPsol<sup>+</sup>-Lhx3a / Isl1α-CGFP<sub>c</sub></td>
<td>NGFPsol<sup>+</sup> / CGFP<sub>c</sub>-Isl1α</td>
</tr>
<tr>
<td>Lhx3a-NGFPsol<sup>+</sup> / CGFP<sub>c</sub>-Isl1α</td>
<td>NGFPsol<sup>+</sup> / CGFP<sub>c</sub>-Isl1α</td>
</tr>
<tr>
<td>Lhx3a-NGFPsol<sup>+</sup> / Isl1α-CGFP<sub>c</sub></td>
<td>NGFPsol<sup>+</sup> / CGFP<sub>c</sub></td>
</tr>
</tbody>
</table>

Figure 5.6. Optimization of orientations in the split-GFPsol BiFC assay - First four combinations. Interaction tests are shown in the first column on the left (light green background) and the relevant controls are in rows next to each interaction. The rightmost column (light blue background) contains self-assembly controls. Images showing nuclear-localised signals are in red rectangles. The images are composites of FITC (green) and bright field (blue) micrographs. Exposure was 1 s.
Figure 5.7. Optimization of orientations in the split-GFPsol BiFC assay - Last four combinations.

Interaction tests are shown in the first column (light green background) on the left and the relevant controls are in rows next to each interaction. The self-assembly controls are shown in the previous figure. Images showing nuclear-localised signals are in red rectangles. The images are composites of FITC (green) and bright field (blue) micrographs. Exposure was 1 s.
Interestingly, nuclear localization was observed in interaction tests in all orientations, but only some controls showed a stronger ratio of nuclear to cytoplasmic signal. These controls all involved Lhx3a (Figure 5.18C, F, I and L). Fluorescing controls that involved Isl1α-containing constructs showed signals that were not specifically localized to the nucleus (i.e., were the same as the NGFP-CGFP construct alone).

5.10 Discussion

5.10.1 Comparison of BiFC and Y2H assays for detecting interactions between LIM-HD proteins

In this chapter, a BiFC assay was developed for detection of interactions between heterologous proteins in yeast. This assay was successful in detecting known interactions across a broad range of binding affinities for mouse and insect ZnF proteins including LIM domains. Although BiFC was able to detect an interaction between full-length Lhx3a and Isl1α proteins, the signals were not as robust as those observed for interactions between isolated domains. In BiFC assays that attempted to detect interactions between full-length Lhx3a and Ldb1LID, full-length Isl1α or Isl1LBD, fluorescent signals were predominantly localized in nuclei.

Yeast BiFC assays appear to be a viable approach for detecting LIM-peptide interactions, but ultimately did not reach the selectivity, signal to noise ratio and reproducibility achieved by standard Y2H assays. The assays described in this chapter apply epifluorescent microscopy for detection of protein-protein interactions, which limits the throughput of this assay format, in contrast to high throughput potential of Y2H assays. Although BiFC assays can detect an interaction, low confidence should be given to any analysis of relative interaction intensities or analysis of small mutagenesis effects based on this assay. The reason for this lies in the multitude of factors influencing the assay output. The lack of growth selection, irreversibility of BiFC complexes, variable levels of self-complementation, variable fluorophore maturation of different BiFC complexes (Figure 5.9) [276], greater sensitivity to steric effects, lack of proper negative controls, and different intracellular localization effects make BiFC assays in yeast inferior to Y2H assays for detection of heterologous protein interactions.
BiFC assays in yeast can be used as an alternative when autoactivation prevents detection in Y2H assays. Results from this chapter show that well optimized BiFC assay in yeast can be applied to test if separate constructs of LIM-HD C-terminal regions interact with LIM domains. In contrast to HD-containing constructs, subcellular localization is unlikely to cause false negative or false positive results when BiFC fusion constructs of C-terminal and LIM domain constructs are used.

5.10.2 Possible improvements of BiFC assays

Since this project began, numerous BiFC assays have been developed, which may provide possible improvements for the BiFC assays associated with LIM-HD proteins. The main areas for consideration are cell-to-cell variation in levels of fluorescence, detection, stability of constructs, and further consideration of localisation effects.

Cell to cell variation of fluorescence can be attributed in part to stochastic processes and in part to copy number variation from the multi-copy 2μ plasmids used in these assays [277, 278]. Copy number variation could be limited through the use of CEN/ARS plasmids or chromosome-integrated genes, although this approach tends to also lower overall fluorescence [279]. The temperature and time of yeast incubation are important factors that affect fluorophore maturation in BiFC assays. Automated fluorescence microscopy could be applied in time course experiments to compare the development of fluorescence between samples. However, variations in fluorescence intensity observed between replicates could lead to ambiguity. Some studies suggest that the population of highly fluorescent cells is higher when tested proteins interact and that flow cytometry can be applied to detect such differences between yeast cultures, leading to detection of protein-protein interactions [264, 270-272].

Levels of protein expression could be increased by optimizing the codon usage of the split GFP fragments for expression in yeast. The constructs used in this chapter had been optimised for expression in E. coli. Yeast-optimized split-yEGFP can give significantly higher expression levels [280] and was used in a previous BiFC study [281]. An additional approach would be to optimize the translation initiation site in BiFC plasmids [282]. Note, however, that overly high concentrations of fusion proteins can lead to self-assembly, which would lead to
more ambiguity in the assay outputs. Furthermore, high levels of recombinant proteins could be toxic to cells as might have occurred with His-tagged constructs in section 5.7.

Improved detection and stability of constructs could also help in the identification of interactions between unstable or transiently interacting constructs. Some attempts were made to improve brightness of FPs in this study and lower the interaction detection limit. Faster folding FPs could provide more protection of unstable proteolysis-prone fragments but could also lead to higher self-assembly rates. In these cases proper controls for self-assembly would be particularly important. Split-EYFP (enhanced YFP variant) could be applied instead of split-GFP, as it is reported to give about two times higher fluorescence and have relatively low self-assembly rates [254, 283].

Sub-cellular localisation. The main advantage of BiFC compared to Y2H experiments presented in chapters 3 and 4 is the potential for in situ, non-invasive, visual detection of protein interactions. Whereas Y2H vectors are directed into the nucleus via NLS tags from the plasmids, it is assumed (but usually not demonstrated) that both fusion constructs locate to the nucleus. In BiFC assays, the intrinsic properties of the proteins themselves play an important role for subcellular localisation. Fluorescence arising from interactions between domains that do not have known NLS sequences (LIMs vs. LID/LBD) were found in both the cytoplasm and the nucleus. Other constructs preferentially localised to the nucleus, most likely because of intrinsic NLS and HD sequences direct the protein into the nucleus where retention is enhanced by binding to DNA [284, 285]. In the case of full-length Isl1α:Lhx3a interactions, Isl1α could be protected from nuclear localisation because of intramolecular interactions (section 1.10) whereas Lhx3a is directed to the nucleus; different subcellular localisation prevents a robust interaction signal. Rather than promoting nuclear localisation, it might be possible to promote cytoplasmic localisation, through addition of nuclear export signals [286-288]. However, if some sequestered fusion constructs are reflecting in vivo protein localization, forced co-localization of such fusion constructs could only bring about biological artefacts (false positives that do not interact in vivo).

Note that even if improvements could be made for the BiFC assay, it is important to confirm and quantify interactions identified by this approach by orthogonal methods. The following chapters focus on attempts to develop assays to quantify LIM-partner interactions in vitro.
Chapter 6 Site-specific labelling of a LIMs-LID construct with fluorescein and competition fluorescent anisotropy binding assays

A part of this research focussed on determining the binding affinities of LIM-HD/LMO proteins for Ldb1. As the LIM domains of these proteins have limited solubility and tend to aggregate in solution, it was decided to take the approach of using fluorescence-based homologous competition assays based on tethered LIMs-LID complexes that contained protease sites in the linker (section 1.9.1). Thus, it was necessary to label the tethered LIMs-LID complexes. This chapter details the different strategies used to label the N-terminus of the LIM domains in the LIMs-LID constructs and attempts to use these proteins in fluorescence anisotropy experiments.

6.1 Methods for labelling proteins with synthetic fluorophores

The design of fluorescence-based assays requires selection of a fluorophore that is suited to monitor a particular property of a protein. For example, tryptophan fluorescence can be very useful to study the folding, conformational dynamics, and interactions of a protein, but it is limited to proteins that contain tryptophan residues and is complicated by the photophysical properties of tryptophan [289, 290]. The most frequent approach used to make fluorescent proteins is the attachment to the proteins of interest of fluorophores with emission spectra in the visible range of the electromagnetic spectrum. Another method is to use protein engineering to create a fusion construct in which an autonomously (intrinsically) fluorescent protein, such as the green fluorescent protein (GFP) or its variants, is tethered to the protein of interest (as described in Chapter 7). An alternative approach is to chemically attach a synthetic fluorescent compound to the protein. The advantage of this approach is that synthetic probes can be small, chemically stable and photo-stable. Compared to GFP proteins, they can have higher quantum yield (brightness), little-to-no nonspecific binding, are resistant to irreversible photobleaching, less sensitive to buffer conditions, and have simpler and better defined photophysical properties.
Table 6.1. Common methods for chemical labelling of proteins. Labelling of native functional groups. Reagents for labelling primary amines, thiols or carboxyl groups are shown.

<table>
<thead>
<tr>
<th>Labeling of native functional groups</th>
<th>Target groups</th>
<th>Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amine</td>
<td></td>
<td>Isothiocyanates, NHS esters, Sulfonated esters, Tetrafluorophenyl (TFP) esters, SDP esters, Carboxyl azides, Sulfonyl chlorides</td>
</tr>
<tr>
<td>Thiol</td>
<td></td>
<td>Maleimides, Iodoacetamides, Benzyl halides, Bromo methylketones</td>
</tr>
<tr>
<td>Carboxyl</td>
<td>Hydrazines, hydroxylamines or amines mediated by carbodiimide (e.g. EDC)</td>
<td></td>
</tr>
</tbody>
</table>

A large number of small fluorophores are commercially available, of which various fluorescein derivatives are most commonly used. Different derivatives have specific photophysical properties and contain specific reactive groups that target appropriate functional groups in proteins (Table 6.1) [291-293]. Fluorescein isothiocyanate (FITC) and NHS-fluorescein are often used for labelling primary amines (N-terminal amine groups and lysine side chains) and fluorescein-maleimide is used for labelling cysteine side-chains. These, and several other compounds, label their target functional groups in native proteins but generally lack site-specificity and may therefore not be optimal for investigating protein-protein interactions.

There are several approaches that do allow for site-specific (usually N- or C-terminal) chemical labelling of proteins [290-292, 294]. This is achieved with the introduction of unique target groups, usually via expressed tags modified by an enzymatic or autocatalytic reaction (Table 6.2).

The most common covalent labelling strategies involve native chemical ligation, different self-labelling enzymatic tags, enzyme-mediated labelling (especially with CP-tags and PPTase) or CLICK chemistries. Proteins can also be labelled site-specifically through non-covalent labelling by chelation of metal-/metaloid-dye conjugates (e.g., through His₆ or tetracysteine tags) or other types of protein-ligand binding (e.g., enzyme-inhibitor interactions of DHFR).
Table 6.2. Site-specific chemical labelling of proteins. Target groups (tags) and reagents are shown. In green and red font are the two methods applied in this study for labelling LIMs-LID constructs in vitro. EPL and IPL stand for Expressed and Intein-mediated protein ligation, respectively. H and S in superscript mark azide-alkyne Huisgen cycloaddition and Staudinger ligation, respectively.

<table>
<thead>
<tr>
<th>Site-specific labeling</th>
<th>Target groups</th>
<th>Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressed Protein Ligatin</td>
<td>N-terminal cysteine</td>
<td>Thioester-derivatives</td>
</tr>
<tr>
<td></td>
<td>C-terminal intein junction or C-terminal thioester</td>
<td>Cysteinyl/Cys-peptidyl derivatives</td>
</tr>
<tr>
<td>Protein trans-splicing Intein-mediated</td>
<td>N-terminal intein C</td>
<td>labeled peptide (amino acid) - intN</td>
</tr>
<tr>
<td></td>
<td>C-terminal intein N</td>
<td>intC - labeled peptide (amino acid)</td>
</tr>
<tr>
<td>Self-labeling enzyme tags</td>
<td>SNAP or CLIP</td>
<td>O<sup>ε</sup>-benzylguanine or O<sup>δ</sup>-benzy/gytosine derivatives</td>
</tr>
<tr>
<td></td>
<td>HaloTag</td>
<td>Primary alkylhalide-derivatives</td>
</tr>
<tr>
<td>Enzymatic labeling</td>
<td>Carrier protein (CP) tags</td>
<td>CoA derivatives & PPTases</td>
</tr>
<tr>
<td></td>
<td>Q-tag</td>
<td>Cadaverin derivatives & Transglutaminase</td>
</tr>
<tr>
<td></td>
<td>Farnesylation motif</td>
<td>Geranyl alkynediphosphate derivatives & farnesyltransferase</td>
</tr>
<tr>
<td></td>
<td>Sulfatase aldehyde tag</td>
<td>Formyl glycine generating enzyme & aminoxy or hydradize derivatives</td>
</tr>
<tr>
<td></td>
<td>N-terminal G<sub>1-5</sub>/A<sub>2-5</sub> tag</td>
<td>Labeled LPXTG/A peptide & sortase</td>
</tr>
<tr>
<td>Non-covalent labeling</td>
<td>Biotinelated tag (BirA ligase)</td>
<td>Labeled streptavidin</td>
</tr>
<tr>
<td></td>
<td>Tetracysteine tag</td>
<td>FIASH-EDT2 or ReAsH-EDT2</td>
</tr>
<tr>
<td></td>
<td>Fluorette tag</td>
<td>Texas red</td>
</tr>
<tr>
<td></td>
<td>FKBP12 (F36V) tag</td>
<td>SLF-derivatives</td>
</tr>
<tr>
<td></td>
<td>eDHFR tag</td>
<td>Methotrexate-derivatives</td>
</tr>
<tr>
<td>CUK chemistry</td>
<td>Azide or alkyn<sub>H</sub></td>
<td>Complementary alkyn or azide-derivatives</td>
</tr>
<tr>
<td></td>
<td>Azide<sub>S</sub></td>
<td>Phosphine/phosphite-derivatives</td>
</tr>
<tr>
<td></td>
<td>Oxyamine</td>
<td>Ketone-derivatives</td>
</tr>
</tbody>
</table>
6.2 Specific labelling of a SNAP-tagged LIMs-LID construct

The SNAP-tag was designed as a tool for the specific labelling of fusion proteins in living cells [295-297]. This labelling strategy depends on the ability of human DNA repair protein O^6-alkylguanine-DNA alkyltransferase (AGT), or its engineered version (SNAP-tag), to covalently label itself with a single molecule of an O^6-benzylguanine (BG) derivative (Figure 6.1A). For the BG-88 reagent, excitation and emission maximum are specified to be 506 nm and 526 nm, respectively [298].

For this project a commercially available pSNAP-tag(T7) vector was modified to introduce a His-tag (to aid in purification) and a TEV-protease site (for removal of the His$_6$-tag; Figure 6.1B) before the SNAP-tag. Both the original vector and the modified vector (named pT7HT-SNAP) appeared to be toxic to the standard cloning strain (DH5α), which made cloning very difficult (not shown). Successful transformants were extremely rare and any cell growth was slow, resulting in small colonies that often died.

The LMO4$_{LIMs}$-Ldb1$_{LID}$ construct was chosen for the initial labelling trials as it is stable and well characterized. The corresponding DNA construct was sub-cloned into the pT7HT-SNAP vector (Figure 6.1B). Toxicity continued to be a problem in our standard bacterial expression strains, BL21(DE3) and Rosetta 2 cells, probably due to leaky expression. Fortunately, BL21-AI cells (Table 2.13 and section 2.3.2.4) were able to tolerate the vector and were successfully used in expression trials of the SNAP-tagged construct. The resultant protein was largely insoluble (estimated >80%; Figure 6.1C); however, some protein could be purified on Ni-NTA agarose beads. The His$_6$-tag could not be cleaved on beads by TEV protease (not shown) so the tag remained on the protein in subsequent steps. Further purification using anion-exchange chromatography resulted in >90% pure protein as estimated by Coomassie-stained SDS-PAGE (Figure 6.1C). Purified SNAP-tagged protein was labelled with the BG-488 reagent and the free reagent was removed by dialysis (section 2.10.1). Absorbances at 280 and 506 nm were measured and the labelling efficiency was calculated to be ~27% (section 2.10.3).

A fluorescence emission spectrum was recorded for the 50 nM sample of the partially labelled protein (excitation wavelength 506 nm; Figure 6.1D). The first peak in each emission
Figure 6.1. SNAP-tag enzymatic labelling of the LMO4_LIM_Ldb1_LID construct with the BG-488 reagent. (A) SNAP-tag labelling mechanism. SNAP-tag reacts with a benzylguanine derivative of a chosen fluorophore. Guanine is released and the SNAP-protein fusion construct becomes fluorescently labelled. (B) Amino acid sequence of the expressed protein construct His\textsubscript{6}-SNAP-LMO4_LIM_Ldb1_LID. Different domains are colour coded: the His\textsubscript{6}-tag is in green font, the TEV protease site is in red font and the Factor Xa site is in blue font, SNAP-tag is highlighted in yellow, LMO4_LIM_ is highlighted in blue and Ldb1_LID is highlighted in grey. (C) SDS-PAGE gels showing the solubility and purification of the construct with Ni-NTA agarose resin and anion-exchange chromatography. (D) Emission scans of the labelled and dialysed 50 nM sample, excited at 506 nm with different excitation slit widths. In both spectra, the first peak is an artefact of excitation and the second peak is the emission.
spectrum at 506 nm was likely due to reflected excitation light whereas the second peak at 526 nm is characteristic of the BG-488 label. The reflected emission peak, the intensity of which does not depend on the protein concentration, was significantly stronger than the emission peak at low labelled protein concentrations tested.

Unfortunately, the production of His\textsubscript{6}-SNAP-LMO\textsubscript{4\text{LIMs-Ldb1\text{LID}}} could not be repeated in subsequent attempts (not shown). It was considered that the low solubility of the expressed protein was an indicator of poor stability, including a tendency to aggregate, prompting the use of alternative labelling strategies.

6.3 **Expressed protein ligation as a method for fluorescent labelling of proteins**

Native chemical ligation (NCL) is a method commonly used in solid-phase peptide synthesis to join two synthetic unprotected peptides through formation of a native peptide bond, thereby producing an extended polypeptide. The C-terminal thioester of one molecule reacts with an N-terminal cysteine of the other. The first step of this process involves a reversible transthioesterification that is followed by a second, irreversible, S→N acyl shift step (Figure 6.2). Recombinant proteins can also be subjected to this general process in which case the method is called Expressed Protein Ligation (EPL). Both NCL and ECL are non-enzymatic, chemo-selective reactions that occur at physiological pH in aqueous solutions. These methods can also be used to attach fluorophores to protein termini in a site-specific manner [299].

Whereas C-terminal labelling involves attachment of a protein-thioester via a Cys-fluorophore reagent, proteins with N-terminal cysteines can be N-terminally labelled with fluorophore-thioesters. The former method usually requires an intein-mediated step to generate the thioester. The rate-limiting step in native chemical ligation is transthioesterification with the thiol group of the N-terminal cysteine [300, 301]. The most common thioesters used in NCL reactions are alkyl-thioesters as they are easy to produce and less susceptible to hydrolysis but are less reactive in transthioesterification.
The mechanism of Native Chemical Ligation used for N-terminal protein labelling. The reaction consists of two consecutive steps: a reversible transthioesterification and an irreversible acyl shift. The thioester-linked intermediate is in the red box. The blue box shows an optional step of thiol-thioester exchange when a thiol with a better leaving group is added to the reaction.

Sodium 2-sulfanylethanesulfonate (MESNA) is a thiol reagent commonly used for making alkyl-thioesters. In NCL reactions it acts as a reducing agent and reverses any non-productive transthioesterification with the thiol moieties of side chains from internal cysteine residues [300]. Added thiols, if more active than the one that generated the thioester, can also promote the in situ formation of thioesters with better leaving groups by thiol-thioester exchange (blue box in Figure 6.2) and thus increase the kinetics of ligation [301].
The requirement for an N-terminal cysteine is a potential limitation of N-terminal labelling by EPL. Fortunately, such cysteine residues can be introduced in several ways. If the protein is expressed with a methionine at the N-terminus and a cysteine as the second residue endogenous methionylaminopeptidases (MAP) can remove the methionine leaving cysteine as the N-terminal residue. This approach has been achieved with variable efficiency depending on the downstream amino acid residues [302, 303]. For example, intein-mediated protein splicing can produce Cys-proteins (Figure 6.3A) if the inteins have been mutated to induce cleavage at the C-terminal splice junction [289]. However, the most common method for generating Cys-proteins is the generation of fusion proteins in which modified protease sites for Factor Xa, tobacco etch virus (TEV) protease and some other proteases, are introduced into the linker at the N-terminus of the target protein (Figure 6.3B). These proteases will tolerate a cysteine residue in the P1’ site, so their proteolytic cleavage of constructs results in an N-terminal cysteine residue [289].

Figure 6.3. Methods for creating proteins with N-terminal cysteines. (A) Intein-mediated cleavage of expressed constructs on beads produces free Cys-polypeptides (green). (B) Modifications of FMDV 3C or TEV protease sites that generate an N-terminal cysteine upon cleavage, and the proteolytic cleavage of the GST-fusion constructs on beads.
6.4 Making the proteases and vectors

Initially it was intended to use the Foot and Mouth Disease Virus (FMDV) 3C protease, which had been used previously to generate Cys-proteins (Figure 6.3B)[304]. However, attempts to express FMDV3C protease were not successful. Thus, TEV protease was used [305]. His$_6$-tagged TEV protease was expressed in BL21(DE3) cells and purified on Ni-NTA agarose beads followed by size-exclusion chromatography (Figure 6.4). Target proteins were generated by editing the pGEX-6P vector to replace the HRV3C site with modified cleavage sites for TEV protease (ENLYFQC site; pGEX-TVC vector; Figure 6.3A). For details see Appendix B.

Figure 6.4. Purification of the His-tagged TEV protease. (A) Affinity purification on Ni-NTA agarose beads and elution with 250 mM imidazole. (B) Size-exclusion chromatography (SEC) of the His$_6$-TEV construct on a Superdex 200 column. The blue trace shows absorbance at 280 nm. The inserted photo shows an SDS-PAGE of SEC fractions.

6.5 Production of tethered constructs with N-terminal cysteines

Cleavable LIMs-LID constructs that contained either LMO4, or Lhx1–4 (for later experiments) were sub-cloned into the pGEX-TVC vector. GST-tagged constructs were expressed in BL21(DE3) cells and purified on GSH-agarose beads. TEV was added to remove the GST-tags and the free Cys-LIMs-LID constructs were collected. Proteolytic cleavage by
TEV was confirmed by SDS-PAGE (Figure 6.5A). Subsequent anion-exchange chromatography resulted in >90% pure protein as judged by Coomassie-stained SDS-PAGE (Figure 6.5B).

Figure 6.5. Purification of Cys-LIMs-LID constructs. (A) SDS-PAGE of samples from the affinity purification of GST-Cys-LIMs-LID constructs (labelled as GST-fusion constructs in this figure) immobilised on GSH-beads, subsequent overnight cleavage with TEV protease, and collection of untagged Cys-LIMs-LID constructs (labelled as Cys-polypeptides in this figure). Bw - fusion construct on beads after washing, Be - beads after cleavage, M - protein standard Mark12. (B) Anion-exchange chromatography of Cys-LMO4LIMs-Ldb1LID. Black trace is the absorbance at 280 nm and red trace shows % buffer B (with 1 M NaCl). Fractions 23–27 contained the pure protein, as indicated by SDS-PAGE (right).
Figure 6.6. Detection of the N-terminal peptide of Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID} by MALDI-TOF. (A) MALDI-TOF mass to charge (m/z) vs. % intensity diagram. (B) PeptideCutter prediction of peptides generated by the trypsin digest of Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID}. The CGSLSWK N-terminal peptide peak is indicated in each panel.

To confirm that the proteolysis did generate an N-terminal cysteine residue, a band expected to contain the Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID} construct was excised from an SDS-PAGE gel and subjected to in-gel tryptic digestion and MALDI-TOF mass spectrometry. The MALDI-TOF spectrum showed a 780.4291 m/z peak that most likely corresponds to the 7-residue N-terminal
CGSLSWK peptide (highlighted in red; Figure 6.6A). This value agrees with the mass predicted by the PeptideCutter tool (779.91, highlighted in red; Figure 6.6B) [306].

Cys-LMO4_{LIMs-Ldb1_{LID}} was characterized by far-UV circular dichroism (Figure 6.7A). The spectrum was essentially identical to spectra of similar tethered LIMs-LID complexes previously obtained in our laboratory, such as the spectrum of LMO2_{LIMs-Ldb1_{LID}} (Figure 6.7B), indicating that the N-terminal cysteine did not significantly alter the folding of Cys-LMO4_{LIMs-Ldb1_{LID}} [19, 150, 307].

Figure 6.7. Characterisation of the Cys-LMO4_{LIMs-Ldb1_{LID}} construct by far-UV circular dichroism. (A) spectrum of Cys-LMO4_{LIMs-Ldb1_{LID}}. (B) The spectrum of LMO2_{LIMs-Ldb1_{LID}} recorded by Dr Daniel Ryan (D. Ryan PhD thesis, Sydney University, 2005)
6.6 Production and purification of Fluorescein-2MES

The labelling reagent fluorescein-2MES (fluorescein-MESNA; Figure 6.8) was synthesised by combining 5-(6)-carboxyfluorescein succinimidyl ester (CFSE) with MESNA.

![Diagram of fluorescein-2MES synthesis]

Figure 6.8. Synthesis of the fluorescein-2MES reagent. CFSE reacts with the thiol MESNA to create the fluorescein-2MES product.

Initial attempts at synthesis attempts and purification (Figure 6.8, more details in section 2.10.2.1), included reverse-phase HPLC using a C18 column with different phase gradients of water-acetonitrile (0.1% TFA) or water-methanol (0.1% TFA). Under all conditions the separation of products was poor (Figure 6.9A), and MALDI-TOF mass spectrometry of collected samples showed the presence of multiple products, but not fluorescein-2MES. Given limited facilities for carrying out chemical synthesis in the laboratory, a collaboration was established with Dr Brendan Wilkinson (Payne laboratory, School of Chemistry, University of Sydney) to produce Fluorescein-2MES in DMF under an inert argon atmosphere, and subsequently purify the reagent using a C4 column with a water-methanol gradient (Figure 6.9B). Subsequent confirmation of the identity of the product by 1D 1H NMR was carried out as part of this project (Figure 6.9C).
Figure 6.9. Purification and detection of the fluorescent reagent fluorescein-2MES. (A) The reaction was performed as described in section 2.10.2.4 and the purification was attempted by reverse phase HPLC with a C18 column in an 0–1 M acetonitrile (0.1% TFA) gradient. (B) Fluorescein-2MES was successfully purified using a C4 column. (C) 1H NMR spectrum of the purified product. The chemical shifts in two ranges 2.4–4 ppm (bottom) and 6.5–8.5 ppm (top) are shown.
6.7 Labelling and purification of fluorescein-Cys-LIMs-LID constructs

Labelling of Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID} was initially performed as described in Gentle et al., (2004) [303] (see section 2.10.2), except that the protein was not lyophilized and subsequently re-solubilized to avoid possible folding problems associated with these steps. Fluorescence scans (using FITC filter sets) of the SDS-PAGE gels showed fluorescein-labelled Cys-constructs of approximately correct sizes (Figure 6.10, green stars). However, two strong fluorescent bands of low MW were also observed (red stars, Figure 6.10A).

Figure 6.10. Removal of non-covalently bound fluorescent contaminants by anion-exchange chromatography. (A) Anion exchange chromatography of column-desalted, labelled Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID}. The upper panel shows a Coomassie-stained SDS-PAGE gel of anion exchange fractions; the lower panel shows the fluorescence scan of the same gel. Labelled Cys-LIMs-LID is marked with a green star. Red stars indicate fluorescent bands of lower MW. (B) Absorbance scans of protein samples before and after the desalting and ion exchange. Vertical lines mark absorbance at 280 nm and 494 nm.
Attempts were made to remove unligated dye and purify the protein from the reaction mixture by various approaches including RP-HPLC, dialysis, use of a PD-10 desalting column (GE Healthcare), and buffer modifications. The best results were obtained when the stopped reaction was desalted with a PD-10 column and then purified by anion-exchange chromatography. The procedure removed a high percentage of the contaminating species and showed that the peak containing the labelled protein eluted with higher salt than the unlabelled protein. However, SDS-PAGE in combination with Coomassie staining and fluorescence scanning following anion-exchange chromatography showed that only a small percentage of protein was labelled, as fractions that showed fluorescence could not be detected by Coomassie staining (Figure 6.10A).

The labelled protein fractions were concentrated and absorbance scans at 280 nm and 494 nm of the samples before and after anion-exchange chromatography were compared (Figure 6.10B). The labelled protein now corresponded to ~40% of the total. Purified labelled proteins were desalted using Zip-tips (Millipore) and subjected to MALDI-TOF. Surprisingly, spectra showed only the unlabelled protein peaks (Figure 6.11). MALDI-TOF has been successfully

![Figure 6.11. MALDI-TOF spectra of labelled protein samples. (A) Labelled Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID} and (B) Labelled Cys-Lhx3\textsubscript{LIMs}-Ldb1\textsubscript{LID}. Spectra show only the unlabelled protein peaks.](image)
used to detect other fluorescently labelled proteins [303, 304], so it is possible that fluorescein-labelled LMO4-LID may not be readily detected by MALDI-TOF. ESI-MS may be a better approach for detection of labelled products [308, 309], but access to this approach was limited during this study.

Labelling of other purified Cys-LIMs-LID constructs (Appendix C) has been attempted using the same approach, but all showed similar inefficiency of labelling and difficulties in unligated fluorescein removal.

6.8 Labelling trial with a small unstructured protein

To determine if the unexpectedly inefficient labelling and difficulties in removal of unligated dye was a result of problems with the protocol or the reagents used, or if it related to the proteins (Cys-LIMs-LID tethered constructs) being labelled, a smaller unstructured peptide was labelled under the same conditions. DEAF1\textsubscript{404–438(T435D)} [164] was cloned into the pGEX-TVC vector, expressed and a Cys-tagged construct was purified as described above (Figure 6.12A). In this case the labelling of the Cys-DEAF1 peptide was very efficient (Figure 6.12B).

![Figure 6.12. Fluorescent labelling of DEAF1 peptide by EPL.](image)

(A) Cys-DEAF1\textsubscript{404–438(T435D)} peptide sequence. The construct contains additional residues (in grey). (B) Scanned and Coomassie-stained gel with unlabelled and labelled peptide samples. Mark12 molecular weight markers were used. (C) MALDI-TOF of the labelled sample shows a single 4448.5 m/z peak corresponding to unlabelled Cys-DEAF1 peptide.
The desalted sample gave rise to a single strong band by SDS-PAGE corresponding to the expected size of the labelled protein, with a labelling efficiency estimated to be \(>90\%\) (section 2.10.3).

The differences in labelling between the DEAF1 construct and tethered constructs could arise from the intrinsically disordered nature of the former, and the folded nature of the latter influencing the availability of the N-terminal cysteine. However, in the tethered constructs at least 4-5 unstructured residues separated the N-terminal cysteine and structured residues, making such an effect less likely.

6.9 The effects of different thiol reagents and protein concentration

The choice of a thioester type is an important factor for an NCL reaction rate (Figure 6.13A) [301]. Although MESNA-thioesters are thought to represent a good compromise between stability and reactivity, NCL reaction rates can be increased by the addition of more potent thiols. The effects of different Cys-protein concentrations and thiol reagents on NCL reactions were tested. Different molar ratios of Cys-protein:fluorescein-2MES (1:2–1:5), reaction times (2–16 h) and thiol regents (MESNA and MPAA) were trialled.

Labelling trials of Cys-LMO4\textsubscript{LIM\textsubscript{5}}-Ldb1\textsubscript{LID} were carried out in the presence of excess MESNA and MPAA in parallel for 5 h (Figure 6.13B). The more reactive MPAA gave higher levels of labelling, but also stronger signals attributed to non-covalently bound dye, or products of cross-reactions with buffer components [310, 311]. Some differences in the relative amounts of non-covalently bound dye and its separation from the protein in PD-10 columns are evident when different concentrations of Cys-proteins were used.

Finally, a Cys-LMO4\textsubscript{LIM\textsubscript{5}}-Ldb1\textsubscript{LID} labelling reaction with fluorescein-2MES in the presence of MESNA was incubated for > 48 h at room temperature. SDS-PAGE analysis of the PD-10 column-desalted sample showed strong labelling of the construct without the low MW fluorescent components that were characteristic of previous reactions (Figure 6.13C). The labelling efficiency was estimated to be \(>90\%\) (section 2.10.3).
Figure 6.13. SDS-PAGE of labelling trials for Cys-LMO4\textsubscript{LIM}-Ldb\textsubscript{1LID} with MESNA or MPAA as thiol reagents. (A) A comparison of reaction rates of two different thioesters with a Cys-peptide (adopted from Johnson et al., 2006 [301]). The formulas of peptide X-MESNA and -MPAA thioesters are shown. Dashed lines mark yields observed after 5 h at room temperature. (B) SDS-PAGE gel of desalting column fractions F1 (and F2) obtained after labelling reactions with either MESNA or MPAA thiol present. The effects of incubation time as well as of a lower and a higher concentration of Cys-protein in the reaction are shown. The gel was scanned for fluorescence. The green star indicates labelled Cys-LMO4\textsubscript{LIM}-Ldb\textsubscript{1LID} and red stars indicate fluorescent species from unreacted dye and side-reactions with buffer components. Note that the gel on the right was scanned at lower intensity setting.

Although the yields of purified labelled proteins were low, a sufficient amount of Fl-Cys-LMO4\textsubscript{LIM}-Ldb\textsubscript{1LID} was obtained, which allowed the homologous competition binding experiments to be performed using fluorescence anisotropy.

6.10 Fluorescence anisotropy

Fluorescence-based methods are routinely used in protein binding affinity studies due to their ease of use, safety, sensitivity, time scale (in μs), reproducibility and adaptability to different assay formats [312]. Commonly used steady-state and time-resolved approaches include: fluorescence anisotropy (or polarization), fluorescence resonance energy transfer (FRET), fluorescence correlation spectroscopy (FCS) and related fluorescence cross-correlation spectroscopy (FCCS).

Both fluorescence anisotropy assays (FA assays), which measure anisotropy values (r), and polarization assays (measure P) report the same phenomenon, and are interconvertible, but
are calculated in slightly different ways. The phenomenon involves excitation by polarized light, which results in a partially polarized emission of the sample because a proportion of excited fluorophores do not change orientation during the short lifetime of fluorescecence (~1–10 ns). Smaller species can rotate rapidly in solution meaning that a smaller proportion of the sample remains polarised (leading to lower anisotropy). Larger fluorescent species, such as complexes, tend to have higher anisotropies as they rotate more slowly in solution. The extent of the rotational diffusion depends on the size and shape of the rotating molecule [313]. Steady-state FA assays require that the complex has a significantly increased anisotropy compared to the anisotropy of a free fluorescently-labelled complex component (Figure 6.14).

Figure 6.14. A diagram of the principle behind a fluorescence anisotropy assay. Larger complexes tumble more slowly in solution than their components so when the fluorescent tag is excited by a polarised light, complex-associated fluorophores give more polarised light on average than free protein-associated ones. Figure adapted from http://www.hi-techsci.com/techniques/anisotropy/. The fluorophore is shown as a yellow star and polarisation filters are shown as blue rectangles with black stripes. Anisotropy of the complex AB is seen in the yellow rectangle.

Assays presented in this chapter involve a specific version of the homologous competition assay where the small 4.3 kDa Ldb1\textsubscript{LID} peptide ligand is N-terminally tagged with a 43 kDa MBP domain and tandem LIM-domains (LIMs, which are the receptors) are fluorescently labelled with either fluorescein or GFP (Figure 6.15A). Titration of the bulky MBP-Ldb1\textsubscript{LID} ligand should result in the formation of larger complexes that can be detected by changes in anisotropy (Figure 6.15B).
Figure 6.15. Homologous competition between different-sized LID constructs for fluorescently-labelled LIMs and the basis for an anisotropy assay. (A) An equilibrium between the Fl-LIMs:LID and Fl-LIMs:MBP-LID complexes, with colons representing protein-protein interactions. Fl-Cys-LMO4$_{\text{LIMs}}$:Ldb1$_{\text{LID}}$ is a complex obtained by Factor Xa cleavage of the respective tethered construct. Green stars represent fluorescence, whereas Fl is short for fluorescein. (B) By adding MBP-LID, the equilibrium shifts towards the formation of a larger fluorescent complex, which is expected to exhibit a higher anisotropy.

6.10.1 MBP-Ldb1$_{\text{LID}}$ and MBP

For the purpose of the experiments described in this chapter Ldb1$_{\text{LID}}$ spanning residues 331–375 was cloned into the pIH1121 vector. MBP-Ldb1$_{\text{LID}}$ and MBP-only were purified by amylose-affinity chromatography (section 2.7.3; Figure 6.16A). MBP-Ldb1$_{\text{LID}}$ was additionally purified by anion-exchange chromatography (section 2.7.5.2; Figure 6.16B).

Initial tests showed that the vertically polarized fluorescence intensity of a sample containing 10 nM Fl-Cys-LMO4$_{\text{LIMs}}$:Ldb1$_{\text{LID}}$ complex or the Fl-Cys-LMO4$_{\text{LIMs}}$–Ldb1$_{\text{LID}}$ tethered construct dropped with every consecutive measurement (Figure 6.17A). In contrast, 5' fluorescein-labelled 17 bp RNA (Dharmacon, Chicago, USA), obtained from Dr. Cuong Nguyen, and Fl-Cys-DEAF1, showed constant polarized emission intensities under the same conditions. When MBP-Ldb1$_{\text{LID}}$ was titrated into a solution containing Fl-Cys-LMO4$_{\text{LIMs}}$:Ldb1$_{\text{LID}}$ (10 nM), the anisotropy (r) increased from about 0.15 at the start of the
Figure 6.16. Purification of MBP-Ldb1\textsubscript{LID}. (A) Comassie-stained SDS-PAGE reporting the affinity purification of MBP-Ldb1\textsubscript{LID} on amylose beads. (B) Anion-exchange chromatography of MBP-Ldb1\textsubscript{LID} on a UnoQ6 column in 50 mM Tris pH 8 buffer and a gradient of 0–1M NaCl. The peak containing MBP-Ldb1\textsubscript{LID} is marked in yellow. The grey line indicates % of buffer B, red line is conductivity and the blue line is the UV trace.

titration to >0.26 at the highest concentrations of MBP-Ldb1\textsubscript{LID}, but displayed significant fluctuation (Figure 6.17B). However, the overall loss of fluorescence signal throughout the experiment made the anisotropy measurements unreliable.

The protocol included inversion of the cuvette after each titration step to mix the solutions. After comparing mixing techniques including no mixing, inverting the cuvette in the presence and absence of BSA, and mixing by pipetting, it was concluded that the drop of emission intensities is caused by mixing, but this can be minimized by the addition of 100 µg/mL BSA (Figure 6.17C). BSA is a commonly used to minimize non-specific binding in ELISA and other in vitro bioassays [314-316], suggesting that signal loss was due to non-specific adsorption of the fluorescent LMO4\textsubscript{LIM5}-containing proteins to various surfaces during mixing. BSA was included in Competition assay buffer (Table 2.7) for all subsequent experiments.
Figure 6.17. LIM-domain specific loss of fluorescence signal. (A) VV-polarized emission intensity of different fluorescent samples measured after inverting the cuvette seven times at each point. Fl-RNA is 5’ fluorescein-labelled RNA. (B) Raw data for titration of MBP-Ldb1_LID into a sample with Fl-LMO4_LIMs:Ldb1_LID complex. Anisotropy (r) and the polarised emission light intensities (I_{vv} and I_{vh}) are shown. The last 2 points are repeated measurements. Red arrows indicate the decreasing emission intensities with increasing MBP-Ldb1_LID. (C) VV-polarized emission intensity of Fl-Cys-LMO4_LIMs:Ldb1_LID measured after different sample treatments. The sample containing 100 µg/mL monomeric BSA in the buffer is marked.

6.10.2 FA assay results and analysis

Two experiments were carried out in which Fl-Cys-LMO4_LIMs:Ldb1_LID (10 nM) was titrated with MBP-Ldb1_LID (1 nM to 2 µM). The r-values were normalized (r_n, Appendix F) and plotted against the concentration of MBP-Ldb1_LID (Figure 6.18A–B). The data was apparently monophasic and was fitted well by a 3-parameter SLogistic1 function. IC$_{50}$ values of 24 nM (95% CI of 16–37 nM) and 31 nM (95% CI of 11–53 nM) were obtained for these two different experiments. The overlap of these data indicated that the experiment was reproducible. A control experiment with MBP-only titration was performed which did not show non-specific binding.

Assuming a number of conditions are met, IC$_{50}$ is approximately equal to K_d for homologous competition experiments. However, one of these assumptions is that the concentration of the ligand is in excess of the receptor so that the free and total ligand concentrations are essentially the same. At the initial stages of the titration, this assumption does not hold true for this experiment because prior to the addition of any MBP-Ldb1_LID, the
concentrations of free Fl-Cys-LMO4LIMs and free Ldb1LID are the same. This phenomenon of ligand depletion can be accounted for using the Equation F.20 (Appendix F). The data from Figure 6.18A yielded a K_d of 14 ± 3 nM (the error is the reported standard error of the fit to a single data set; Figure 6.18C), but the second data set (Figure 6.18B) did not give a good fit data. It appears that this approach could be a useful way to assess LIM-LID interactions, if problems associated with production of Fl-Cys-LMO4LIMs:Ldb1LID could be resolved. However, the lack of available material did not allow further assessment of the method using FA for this thesis and other binding assays were pursued.

![FA homogenous competition assays with the fluorescein-Cys-LMO4LIMs:Ldb1LID complex](image)

Figure 6.18. FA homogenous competition assays with the fluorescein-Cys-LMO4LIMs:Ldb1LID complex. (A) and (B) Two titration experiments were fitted in Origin9.1 with a sigmoid logistic function to yield IC50 values. (C) Data from titration shown in (A) was fitted with the Equation F.20 (Appendix F) to provide an estimate of K_d.
6.11 Summary

Although the LMO4\textsubscript{LIMs}-Ldb\textsubscript{1LID} construct was initially labelled using the self-labelling enzymatic SNAP-tag with a commercial fluorescent dye, this approach was not reproducible. However, using EPL approaches, small amounts of LMO4\textsubscript{LIMs}-Ldb\textsubscript{1LID} were fluorescently labelled. The yield of the purified labelled protein was relatively low but it was still useful for assessing the use of fluorescence anisotropy to assay LIM-LID interactions. The homologous competition FA assay was used to obtain an IC\textsubscript{50} of 24 nM ($K_d = 14\pm3$ nM for ligand depletion) in one assay and IC\textsubscript{50} of 31 nM in the second assay for the LMO4\textsubscript{LIMs} interaction with Ldb\textsubscript{1LID}. The problems encountered in labelling, subsequent purification of LIMs-LID constructs and fluorescence measurements were specific to these constructs and were not encountered with Cys-DEAF1 peptide. The nonspecific adsorption of LIMs-containing samples to cuvettes and other surfaces in the FA assays was minimized by including BSA in the Competition assay buffer.

6.12 Discussion

6.12.1 Fluorescent labelling of LIMs-LID constructs

Although small amounts of several fluorescein-labelled Cys-LIMs-LID proteins were generated for use in binding studies, two key limitations of EPL labelling were noted: the long reaction times needed for Cys-LIMs-LID labelling compared to shorter peptide constructs; and, difficulties in removing the contaminating low molecular weight fluorescent species. In particular Cys-DEAF1-peptide labelling was much faster than Cys-LMO4\textsubscript{LIMs}-Ldb\textsubscript{1LID} labelling, suggesting that the labelling reagents and experimental conditions were fundamentally sound, but something about the Cys-LMO4\textsubscript{LIMs}-Ldb\textsubscript{1LID} construct affects the reaction efficiency. Burial of the N-terminal Cys, or interactions with hydrophobic residues of the LMO4\textsubscript{LIMs}-Ldb\textsubscript{1LID} complex might account for the observed lower reaction rates. Denaturants such as guanidium-HCL (Gdn-HCL) or urea can often be used to prevent this type of problem and increase labelling efficiency [317]. Unfortunately, LIMs-LID constructs are not amenable to refolding, so such conditions could not be used.
Alternatively, zinc-coordination in the LIM domains could have contributed to poor labelling efficiency and slow reaction rates for Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID}. Although only the N-terminal cysteine contains an α-amino group that reacts irreversibly with the thioester, trans-thioesterification of exposed internal cysteine residues is a reversible side-reaction in NCL (Figure 6.2) and the cause of side-products [303, 308, 318]. The zinc-coordinating cysteine residues in LMO4 might become involved in this type of side-reaction, especially if any of the reducing agents used was able to displace cysteine side chains as zinc-coordinating groups. Displacing the zinc could also lead to protein unfolding and aggregation [319], which would likely reduce accessibility of the target and further reduce labelling efficiency. At least one ZnF protein has previously been semi-synthesised by EPL, but that protein was labelled under denaturing conditions and refolded [320]. As noted above, the same approach is not feasible for Cys-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID}.

Although MESNA thioesters, as used here, have been shown to rapidly label some targets [303] [304], other studies suggest that they can be slow, at least for some other targets, and that it may be possible to enhance labelling efficiency through the use of more reactive thioesters [321]. However, data from this chapter showed that although MPAA enhanced the reaction rate and improved labelling of LIMs-LID over MESNA, it resulted in higher levels of non-covalently bound dye. A compromise that might assist labelling efficiency but minimise problems with purification could be modulation of activity by lowering the temperature [309]. Similar types of contamination have been observed in the initial products from other labelling studies [322], but no purification problems were reported, so at this stage it is difficult to know how they could be avoided, or easily purified away from LIMs-LID constructs.

Alternatively, other labelling techniques that require milder conditions, without the need for potentially denaturising chemicals, could be performed. For example, some enzymatic labelling techniques such as sortase-mediated labelling (Table 6.2) could allow for highly specific labelling under physiologic conditions.
6.12.2 Possible improvements in FA assays

The preliminary FA assays that were carried out in this chapter suggest some potential improvements, if fluorescently labelled protein could be reliably generated. In order to prevent nonspecific binding of LIM-constructs to surfaces, PEG-coating of quartz cuvette walls could be a more effective alternative to BSA buffer additive \[314\]. A relatively small change in mass of the fluorescent species (21 kDa to 69 kDa, Figure 6.15) likely affected the reproducibility and reliability of the data. For this reason, future FA assays should be carried out using fluorescent N-terminally-labelled LID-LIMs complexes (i.e., with a cleavable tether between the C-terminus of Ldb1_{LID} and the N-terminus of LMO4_{LIMs}), using non-fluorescent MBP-tagged LID peptides as the competitors. The displacement of Fl-LID (5 kDa to 69 kDa change in mass of fluorescent species) would likely result in a larger drop in anisotropy (a wider dynamic range of the assay), giving improved signal-to-noise data. This type of experiment is also closer in design to classical 'cold saturation' experiments, where the LID peptides take the place of labelled and cold ligands and the LIMs mimic unlabelled receptors. Data from this type of experiment may be fitted more easily with established binding equations \[323\]. However, rather than pursuing this approach, for this thesis it was decided to use an alternative approach to generating fluorescently tagged complexes, which is described in the following chapter.
Chapter 7 **Competition assays with GFP-LIMs-LID constructs**

As an alternative to fluorescence anisotropy assays, it was decided to use native gel-shift assays to investigate LIM-LID binding and determine if this approach could be used to measure binding affinities using homologous competition experiments. Given that the site-specific labelling approach described in the previous approach was problematic, GFP-labelled proteins were generated. The first part of this chapter describes the production and characterisation of these proteins, and the second part of the chapter focuses on testing these proteins in blue native PAGE (BN-PAGE) and colourless native PAGE (CN-PAGE) gel shift assays.

7.1 **Protein Preparation**

GFPuv-tagged LMO4_LIM_Ldb1_LID complex was used in blue native PAGE assays only. GFPsol-labelled complexes were used in colourless native PAGE (CN-PAGE) gel shift assays, with GFPsol-LMO4_LIM_Ldb1_LID being used in FA assays. MBP-tagged Ldb1_LID constructs were generated for use in all experiments and MBP-only was used as a control in gel shift assays.

7.1.1 **GFP-LIMs:LID complexes**

GFPuv was created from the split-GFPuv sequence used in experiments described in Chapter 5. The inserted linker was removed by PCR method to create pET15bBE-GFPuv, pHisGB1.3C-GFPuv, and pGEX6P-GFPuv vectors (see Appendix B for sequences). Into each of these vectors LMO4_LIM_Ldb1_LID was subcloned to allow the expression of this protein with an N-terminal affinity tag (6_His, 6_His_GB1 from the pET15bBE-GFPuv and pHisGB1.3C-GFPuv vectors, respectively, or GST from the pGEX6P-GFPuv vector) and a GFP moiety as indicated. The affinity tags could each be removed by treatment with thrombin (pet15bBE-GFPuv) or HRV3C protease (all other vectors). Small scale overexpression and purification studies were carried out to determine which affinity tags resulted in the best overall yield and final purity. The GST-tagged protein showed the lowest level of contamination or degradation products in purification (Figure 7.1A). Thus, GST-GFPuv-LMO4_LIM_Ldb1_LID was produced on a larger scale. The protein was purified by GSH-affinity chromatography, followed by on-bead
Figure 7.1. SDS-PAGE analysis of the affinity purification of GFP-LIMs-LID fusion proteins. (A) Small scale purification trials of GFPuv-LMO4 LIMs-Ldb1 LID constructs with different affinity tags. An overlay of Coomassie-stained gel (pink) and its fluorescence scan (black). The names of corresponding vectors from which tagged constructs were expressed are shown. Note that proteins containing GFP proteins often show a double banding effect due to incomplete denaturation of GFP. The lower bands (black+pink) contain natively folded GFPuv (labelled N) while the upper bands (pink) contain the non-fluorescent denatured GFPuv (labelled D). B_w - tagged-fusion construct bound to beads; B_p - bound tagged-fusion construct cleaved with HRV3C protease to release the GFPuv-LMO4 LIMs-Ldb1 LID from the beads; FT_p - flow-through fraction with released soluble GFPuv-LMO4 LIMs-Ldb1 LID; White star - 6xHis-GFPuv-LMO4 LIMs-Ldb1 LID; Red rectangle - purification of the GST-tagged fusion construct. (B) GFPsol-LMO4 LIMs-Ldb1 LID after affinity purification. A fluorescence scan detected GFPsol-only degradation product. (C) Purification of GFPsol-Isl1 LIMs-Ldb1 LID. (D) Purification of GFPsol-Lhx3 LIMs-Ldb1 LID.
HRV3C protease cleavage to remove the GST-tag, and elution of the GFPuv-fusion protein from the GSH-beads (Figure 7.1A).

GFPsol was created from GFPuv by mutagenesis (section 2.4.1.2) and subcloned into the pGEX6P vector to make pGEX6P-GFPsol for expression of GST-GFPuv-LIMs-LID complexes and generation of GFPsol-LIMs-LID constructs, as described above for the GFPuv versions. Three different GFPsol-LIMs-LID constructs were created: GFPsol-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID}, GFPsol-Lhx3\textsubscript{LIMs}-Ldb1\textsubscript{LID} and GFPsol-Is1\textsubscript{LIMs}-Ldb1\textsubscript{LID} (Figure 7.1B, C and D). Each of these constructs contained a Factor-Xa site in the linker between the LIM and LID domains for use in competition binding experiments.

A common feature of the SDS-PAGE gels featuring GFP proteins is a double banding effect. This arises from incomplete denaturation of GFP under standard protocols (heating samples in SDS-containing sample loading buffer to 80 °C prior to sample loading). Although this protocol is sufficient to denature most proteins, the GFP-fold is very resistant to denaturation [324]. For example, when the gel in Figure 7.1A was scanned for fluorescence, it could be seen that the lower bands contained natively fluorescent GFP.

Additional purification was carried out as required, and in all cases involved a SEC step to remove large aggregates and smaller degradation products (Figure 7.2A). In cases where there was significant contamination by GST or some degradation products close in size to the full constructs, as was the case for GFPsol-Lhx3\textsubscript{LIMs}-Ldb1\textsubscript{LID} (Figure 7.1D), an additional anion-exchange chromatography step was carried out (Figure 7.2B).

Purified GFPsol-Lhx3\textsubscript{LIMs}-Ldb1\textsubscript{LID} was subjected to MALLS analysis to confirm that it is monomeric and not aggregated in solution (Figure 7.3). The experimental weight average molecular weight was 47.5 kDa compared to a theoretic molecular weight of 48 kDa, indicating monomeric protein. Purified and concentrated GFPsol-LIMs-LID fusion proteins (Figure 7.4A) were diluted to 1 µM and cleaved by Factor Xa for 6 h at room temperature, or at 4 °C for 48 h to create the corresponding GFPsol-LIMs:LID complexes (note the use of a colon to indicate the cut complex versus a hyphen to indicate the uncut tethered complex). As longer incubation times showed some evidence of degradation and aggregation (Figure 7.4B), subsequent reactions were performed at room temperature for 6 h to generate the proteins used in fluorescent gel shift assays.
Figure 7.2. Further purification of GFP-labelled fusion proteins. (A) SEC of GFPsol-Is1LIMs-Ldb1LID using a Sephadex75 column in 20 mM Tris pH8 buffer, 150 mM NaCl and 1 mM DTT. Fractions containing non-aggregated proteins were collected (yellow rectangle). (B) Anion-exchange chromatography purification of GFPsol-Is1LIMs-Ldb1LID was carried out using a UnoQ6 column in 20 mM Tris pH 8 buffer with 0–1 M NaCl gradient and 1 mM DTT. The yellow rectangle indicates fractions containing pure protein. Blue traces in both chromatograms (A and B) show absorbance at 280 nm, grey traces show the % of buffer B and red traces show conductivity.
Figure 7.3. SEC-MALLS chromatogram showing analysis of an uncleaved GFPsol-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID} sample. Monomeric BSA protein was run for comparison and spectra overlayed. Yellow zone marks fractions of the aggregate-free protein that were collected.

Figure 7.4. Concentrated GFPsol-fusion proteins and Factor Xa digestion of the linker. SDS-PAGE showing (A) Concentrated purified GFPsol-fusion proteins. (B) Factor Xa digestion of GFPsol-LMO4\textsubscript{LIMs}-Ldb1\textsubscript{LID} for 6 h at room temperature or 2 days at 4 °C. Note that the (~5 kDa) LID peptide is typically not visible in gels due to its small size and poor staining properties.
7.2 Fluorescent protein gel shift assays

The binding of a labelled protein to an unlabelled partner protein can be detected through native (non-denaturing) PAGE, which separates bound (shifted) and unbound components. The labelled protein is held at a constant concentration while the second component is added at increasing concentrations. Binding affinities can be estimated by quantifying the band shifts at each concentration of the second component [325, 326].

The migration of the free and bound complexes in classic native PAGE depends on the charge and shape of the species involved, and only proteins and complexes with $pI < pH_{buffer}$ migrate towards the anode [327]. In contrast, Blue Native PAGE (BN-PAGE) uses Coomassie G-250 dye in the cathode and sample loading buffers, the dye to coat (but not denature) most proteins in a sample by binding non-specifically to exposed hydrophobic surfaces. This gives the proteins a net negative charge while maintaining their native conformation, allowing visualization of protein species and their separation according to differences in size and shape at near neutral pH (e.g., Figure 7.5) [328, 329].

![Homologous competition between different sized LID-constructs for GFP-labelled LIMs and the detection of the resulting complex](image)

Figure 7.5. Homologous competition between different sized LID-constructs for GFP-labelled LIMs and the detection of the resulting complex. An equilibrium between the two complexes at a specific MBP-LID concentration. Colons represent protein-protein interactions in the complex. The size of the fluorescent-LIMs : LID complex dominant at low (left) or high MBP-LID concentrations (right).
Colourless PAGE (CN-PAGE) does not use the blue Coomassie dye throughout electrophoresis. Although it gives lower resolution than BN-PAGE or SDS-PAGE it omits additives that might interfere with protein binding and detection, and allows characterisation of complex formation under mildest possible conditions. BN-PAGE and CN-PAGE gel shifts were assessed to see if either was suitable for estimating LIMs-LID interaction affinities in competition style experiments.

7.2.1 BN-PAGE gel shift with the GFPuv-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID}

Preliminary gel shift experiments using BN-PAGE were carried out using GFPuv-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID} and titrating in MBP-Ldb1\textsubscript{LID} as part of a competition assay. The addition of 1 μM MBP-Ldb1\textsubscript{LID} to 100 nM GFPuv-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID} resulted in a new GFPuv-LMO4\textsubscript{LIMs}:MBP-Ldb1\textsubscript{LID} complex that appeared as a band well separated from GFPuv-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID}. However, even though the BN-PAGE gels showed excellent resolution, they did not provide the necessary sensitivity to detect shifts at lower concentrations (≤ 50 nM GFPuv-LMO4\textsubscript{LIMs} with ≤ 50 nM MBP-Ldb1\textsubscript{LID}) (Figure 7.6).

<table>
<thead>
<tr>
<th>GFPuv–LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID}</th>
<th>100 nM</th>
<th>50 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP–Ldb1\textsubscript{LID}</td>
<td>–</td>
<td>1 μM</td>
</tr>
<tr>
<td>fluorescence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shifted bands are indicated; non-shifted bands are near the buffer front at the bottom of each panel.

Figure 7.6. Sensitivity of the BN-PAGE shift competition assays with the GFPuv-labelled complexes. Competition binding of GFPuv-LMO4\textsubscript{LIMs} with MBP-Ldb1\textsubscript{LID} was investigated on 3-12% polyacrylamide gels using BN-PAGE. The photographs show fluorescence scanned and Coomassie stained BN-PAGE gels. Two separate gels are shown: with 100 nM GFPuv-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID} (left) and with 50 nM GFPuv-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID} (right). Shifted bands are indicated; non-shifted bands are near the buffer front at the bottom of each panel.
Since the expected K_d for the LMO4$_{LIMs}$ vs. Ldb1$_{LID}$ interaction was around 10 nM, a titration would have to cover at least an order of magnitude above and below this concentration of MBP-Ldb1$_{LID}$. Also, to minimize ligand depletion (section 6.10.2), labelled LMO4$_{LIMs}$ should be ≤ 10 nM. As this did not appear to be feasible for BN-PAGE with GFPuv-tagged attempts were made to use CN-PAGE.

7.2.2 CN-PAGE gel shifts with the GFP$_{sol}$-labelled complexes

GFP$_{S65T}$ and related FP versions give more intense fluorescent signals so GFPuv-LMO4$_{LIMs}$-Ldb1$_{LID}$ was replaced with a GFPsol version for CN-PAGE gel-shift experiments. In the absence of MBP-Ldb1$_{LID}$, GFPsol-LMO4$_{LIMs}$-Ldb1$_{LID}$ appeared as multiple fluorescent bands that were not detected by Coomassie staining (Figure 7.7). These bands might correspond to GFPsol-LMO4$_{LIMs}$-Ldb1$_{LID}$, GFPsol-LMO4$_{LIMs}$, GFPsol-LMO4$_{LIMs}$-Ldb1$_{LID}$ and GFPsol-only degradation product that was noted during early stages of purification (Figure 7.1). In samples containing MBP-Ldb1$_{LID}$ a single, well-resolved, shifted band was observed (Figure 7.7). In these initial experiments, glycerol (5%) was used to help sample loading. As glycerol could potentially affect protein interactions [330], it was replaced with 5% Ficoll in subsequent experiments.

For initial experiments the samples were incubated for 15 min at room temperature prior to loading on the gel. These shifted bands had relatively low intensities compared to total fluorescence even at the highest concentrations of MBP-Ldb1$_{LID}$. To assess the optimal time of incubation, samples containing 20 nM GFPsol-LMO4$_{LIMs}$-Ldb1$_{LID}$ complex and 100 nM MBP-Ldb1$_{LID}$ were incubated at times ranging from 0–60 min before electrophoresis (Figure 7.7A). Fluorescent bands were quantified and the fraction in complex was plotted against incubation time (Figure 7.7B). These data indicated that under the conditions used the exchange between Ldb1$_{LID}$ and MBP-Ldb1$_{LID}$ competition reaches equilibrium plateau by \sim60 minutes ($t_{1/2} \sim$30 min). The fraction of shifted fluorescence increased from about 30% at 15 min to about 45% at 60 min.
Figure 7.7. Optimization of fluorescent protein-based gel shift assays for competition binding analysis of MBP-Ldb1LID with GFPsol-LMO4LIMs:Ldb1LID. (A) Time course experiment with GFPsol-LMO4LIMs:Ldb1LID (20 nM) and MBP-Ldb1LID (100 nM) detected by fluorescence scanning of the gel. The position of the shifted bands corresponding to GFPsol-LIMs:MBP-LID are marked with red rectangles. Bands corresponding to unbound GFPsol-LMO4LIMs:Ldb1LID construct are marked with a black box. The buffer front is indicated with a black dot. (B) The boxed areas from the time course gel scan were analysed in ImageJ (see sample inset for red box from panel A). The fraction of the total fluorescence in each lane that makes a shifted band was plotted against time. (C) Fluorescence scan comparing the effects of MBP-Ldb1LID and the MBP-only samples. (D) Coomassie-stained gel from (C).

A control experiment was carried out in which 3–25 µM MBP and 1.5–12.5 µM MBP-Ldb1LID were each titrated into GFPsol-LMO4LIMs:Ldb1LID. MBP by itself does not cause a band shift, but the overall fluorescence signal appears to be higher in the presence of MBP and the signal noticeably increases for MBP concentrations above 3 µM. A similar effect was detected for MBP-Ldb1LID (Figure 7.7C–D). This effect may be because MBP blocks non-specific
adsorption of the LIM-domain construct to surfaces. The gel shifts gave best results when \(\geq 10 \) nM GFPsol-LMO4\(_{\text{LIMs}}\) : Ldb1\(_{\text{LID}}\) complex was used because this allowed detection of the shifted complex even at low nM concentrations of MBP-Ldb1\(_{\text{LID}}\). Although this concentration is much lower than that required for the BN-PAGE experiments, it may still be too high for this type of analysis to be meaningful, especially using the IC\(_{50}\) as an indicator of \(K_d \).

Nevertheless, several exploratory experiments were carried out in which MBP-Ldb1\(_{\text{LID}}\) was titrated into GFPsol-LMO4\(_{\text{LIMs}}\) : Ldb1\(_{\text{LID}}\) (Figure 7.8A and D), and the relative intensity of the shifted bands was determined (Figure 7.8B and E). These normalised data were fitted by the SLogistic1 equation to obtain estimates of IC\(_{50}\) (Figure 7.8C and F). Note that the first experiment suggests that the main binding event occurred in the early stages of the titration (Figure 7A–C). The second experiment included more points at the lower end of the concentration range. The same procedure was performed using additional titrations of MBP-Ldb1\(_{\text{LID}}\) into GFPsol-Lhx3\(_{\text{LIMs}}\) : Ldb1\(_{\text{LID}}\) and GFPsol-Isl1\(_{\text{LIMs}}\) : Ldb1\(_{\text{LID}}\) (Figure 7.9).

The data were also fitted by the ligand depletion model to obtain estimates of \(K_d \) (Appendix F). Whereas the IC\(_{50}\) values for LMO4:Ldb1 interactions were similar (~10 nM), the data from the ligand depletion model differ more substantially and are associated with high errors (particularly for the second data set), \(K_d = 7 \pm 2 \) and \(0.48 \pm 0.47 \) nM, respectively (Figure 7.10A). Values of \(K_d \) were estimated based single experiments for Lhx3\(_{\text{LIMs}}\) vs. Ldb1\(_{\text{LID}}\) (\(K_d = 30 \pm 6 \) nM; Figure 7.10B) and for Isl1\(_{\text{LIMs}}\) vs. Ldb1\(_{\text{LID}}\) (\(K_d = 81 \pm 16 \) nM; Figure 7.10C). If these estimates are correct, then it is possible that the method is appropriate for a subset of interactions of this class. Unfortunately it was not possible to collect additional data for these constructs due to time constraints.
Figure 7.8. Gel shift assays with GFPsol-LMO4_{LIM2,LID} vs. MBP-Ldb1_{LID}. (A and D) native gel scans show the shifted complexes (in red rectangles), characteristic additional bands (black stars) and the buffer front in (D) marked with black dot. (B and E) show ImageJ plots of band intensities. (C and F) Sigmoid logarithmic curves fitted to experimental data in Origin9.1 and the IC_{50} values obtained. The lowest MBP-Ldb1_{LID} concentration was set to appropriately low values of 2 nM (C) and 0.1 nM (F), because log[0] is not mathematically defined.
Figure 7.9. GFP gel shift assays with LIM-domains from LIM-HD proteins. (A–C) GFPsol-Is11LIMs:Ldb1LID vs. MBP-Ldb1LID. (D–F) GFPsol-Lhx3LIMs:Ldb1LID vs. MBP-Ldb1LID. (A and D) Native gel scans show the shifted complexes (in red rectangles). Bands corresponding to non-shifted GFP-fusion constructs are marked with black stars. The buffer front in (A) is marked with a black dot. (B and E) ImageJ plots of shifted band intensities. (C and F) Sigmoid logarithmic curves fitted to experimental data in Origin9.1 and the IC50 values obtained. In (F), the lowest MBP-Ldb1LID concentration was set to appropriately low value of 0.5 nM because log[0] is not mathematically defined.
Chapter 7

7.3 Fluorescent anisotropy assays with GFP-tagged proteins

In theory it should be possible to carry out FA experiments with GFP-LIM:LID complexes in the same manner as described in section 6.10 for Fl-LIM:LID complexes. Unfortunately, the intrinsic anisotropy of GFP-fusion proteins is already close to the theoretically
maximal anisotropy value of 0.4 [331, 332], meaning that change in anisotropy on binding is limiting (e.g., [333, 334]). Attempts to carry out such experiments confirmed high starting anisotropies for GFPsol-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID} (r = 0.33–0.34) and YPet-LMO4\textsubscript{LIMs}:Ldb1\textsubscript{LID} (r = 0.32). The r-values did not change with titration of the MBP-Ldb1\textsubscript{LID} competitor into the cut complexes (not shown), indicating that the approach was impractical.

7.4 Discussion

The experiments in this chapter show that LIMs-LID fusion constructs can be generated with an N-terminal GFP-based tag, and that these proteins can be used to generate binding curves for fluorescence gel-shift-based homologous competition experiments. Similar experiments could not be found in the literature suggesting that these are the first such experiments to be reported. However, there are some limitations to these assays that would need to be overcome before they could be used to assess LIM:LID interactions for the LMO and LIM-HD families.

7.4.1 Limitations of fluorescence gel shift assays.

One of the main limitations of this gel shift assay is that the concentrations of GFP-labelled proteins required for detection are potentially too high for the accurate determination of K_d (see later for a more detailed explanation). In most previous reports of fluorescence gel shift experiments for protein:protein interactions concentrations were ≥ 0.5 µM for GFP-labelled proteins [325, 326, 333-341]. In this study it was possible to drop the concentration to ~10 nM using CN-PAGE and GFPsol-labelled proteins. By using brighter FP variants, this detection limit could potentially be lowered in future experiments. Apart from brightness of the GFP, the detection limit in native gels depends on their ability to focus protein bands during electrophoresis. It may be possible to do this using horizontal submarine polyacrylamide gels with larger wells. A modified version of BN-PAGE [342] using GFPsol-fusion constructs also hold some promise for improved resolution and sensitivity. Improved separation in clear native gel might be achieved with supercharged scGFP variants [343, 344].

An important consideration is that this approach is that it is not a true equilibrium method - complexes with fast off rates can dissociate during electrophoresis [335]. While this problem
can be at least partly overcome by incubation at low temperatures (e.g., 4 °C) to reduce off-rates, it is probably not an issue for LIM-LID interactions. Indeed the reverse is probably the case. An approximate half-life of the initial LMO4_{LIMs}:Ldb1_{LID} complex was estimated to be about 30 minutes, which represents a moderate-to-slow off-rate. In retrospect, the concentrations at which the half-life was measured were too high and could underestimate t_{1/2} of dissociation [345]. A recommendation of incubation time as 5 x \(t_{1/2} \) [345] suggests that reactions probably did not reach equilibrium within the 1 h incubation period. This discrepancy could explain why the shifted band from the exploratory gel shift experiments did not reach 50% of total fluorescence.

For all of the binding experiments in this and the previous chapter it would be reasonable to assume that with complete equilibration, the curves are likely to shift to the left, towards low nM \(K_d \) values or even lower. As different complexes could have different \(t_{1/2} \), each should be determined independently.

Based on observations that MBP appeared to enhance overall fluorescence for GFP-LMO4_{LIMs}-Ldb1_{LID} constructs (section 7.2.2), it may be generally useful to add BSA in the buffers for any binding assay using this class of proteins.

7.4.2 A comparison of binding affinity studies

Although the fluorescence based binding studies reported in this and the previous chapter are preliminary in nature, they were compared to existing data from our laboratory for this class of interaction [18, 167]. For consistency all of the original raw data from those papers were refitted using Origin9.1 using the same equation without fixing any parameters (Table 7.1).

All of the estimates of IC_{50} are in general agreement. However, in analogy with standard cold homologous competition experiments, IC_{50} \approx \text{[starting complex]} + K_d, meaning that if the concentration of the starting complex is high relative to the \(K_d \), then the IC_{50} is not discriminatory. Aside from the possibility that data are compromised by insufficient equilibration times, ligand depletion will have occurred at low concentrations of titrant because of limits of fluorescence detection, making simple estimates of \(K_d \) from IC_{50} invalid [176]. Fitting the data for homologous competition assays with ligand depletion, should provide a better estimate of \(K_d \). An alternative solution to the ligand depletion problem would be to carry out a series of titration experiments at different concentrations of the labelled starting complex and carry out a global fit.
by a single site competitive binding model. However, variability in the data obtained indicates that further optimisation of existing assays, including detection of more points in the initial stages of the titration to get more complete binding curves (as suggested in the previous section) are required. If this is not viable alternative methodological approaches will be required.

Table 7.1. A comparison of IC_{50} values of LIM-LID interactions obtained by fitting previously reported and new data with binding curves through non-linear regression analysis. (*) The original raw data was standardized and fitted by a sigmoid logarithmic curve, yielding log_{10}(IC_{50}) and associated SE. IC_{50} values and CI 95% were calculated as in Motulsky and Christopoulos, 2003 [176]. All experiments performed in this thesis used the same (10 nM) concentration of the labelled LIMs:LID complexes. This concentration was not determined for previously reported ELISA assays.

<table>
<thead>
<tr>
<th>Binding to Ldb1_{LID}</th>
<th>IC_{50} (nM)</th>
<th>CI 95% (nM)</th>
<th>Competitive binding assay</th>
<th>Reported in</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMO4_{LIMs}</td>
<td>8</td>
<td>3–26</td>
<td>ELISA</td>
<td>[167]*</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7–51</td>
<td>gel shift assay</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4–27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>16–37</td>
<td>fluorescence anisotropy</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>18–53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMO2_{LIMs}</td>
<td>19</td>
<td>7–53</td>
<td>ELISA</td>
<td>[167]*</td>
</tr>
<tr>
<td>Lhx3_{LIMs}</td>
<td>38</td>
<td>9–171</td>
<td>ELISA</td>
<td>[18]*</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>16–124</td>
<td>gel shift assay</td>
<td>this study</td>
</tr>
<tr>
<td>Isl1_{LIMs}</td>
<td>192</td>
<td>43–856</td>
<td>ELISA</td>
<td>[18]*</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>30–269</td>
<td>gel shift assay</td>
<td>this study</td>
</tr>
</tbody>
</table>
Chapter 8 **Final discussion**

8.1 **The biological implications of LIM-HD interactions**

A large portion of this thesis was focussed on trying to map interactions between LIM-HD proteins. Y2H mating arrays from chapter 3 of this thesis showed that robust LIM-mediated interactions between LIM-HD proteins exist only between Lhx3/4 and Isl1/2 proteins (Figure 8.1). Weaker interactions were identified between Isl1_{LBD} and the LIM domains of Lmx1a/b, and the Isl2_{LBD} and Lmx1b. BiFC experiments from Chapter 5 didn't give additional information about interactions.

![Diagram of interactions between LIM-HD proteins](image)

Figure 8.1. Schematic of interactions between LIM-HD proteins. Proteins are depicted as differently coloured lines, arranged in a circle. Tandem LIM domains are shown as small coloured circles. Interactions between proteins are represented by connecting lines. Black and grey lines represent interactions mediated by Isl1 and Isl2, respectively. Line width indicates apparent strength of an interaction detected by Y2H assays.
8.2 Additional evidence for Lmx1a/b vs. Isl1/2 protein interactions

Interactions between Isl1/2 proteins and Lhx3/4 proteins have been highly characterised and are established as important in various developmental processes (section 1.8). According to the Mouse Gene Expression Database Lmx1a/b and Isl1/2 proteins are co-expressed in various tissues during development (Table 8.1) [86, 191], and in the adult mouse gut [346], but it is unclear if they are co-expressed in the same cells.

Table 8.1 Co-expression of Lmx1a/b and Isl1/2 proteins in different stages of mouse development. Structures in which co-expression was detected are shown for embryonic stages E10.5–E15.5 and postnatal stages P(postnatal) and P1(postnatal day 1).
Lmx1a/b share a common ancestral gene with Lhx3/4 (Figure 1.3) and Lhx1/5. As Lhx3/4 and Lhx1/5 are more closely related than Lhx3/4 and Lmx1a/b, it is probably less surprising that Lmx1a/b\textsubscript{LIMs} exhibit some Isl1/2 binding activity than the fact that Lhx1/5\textsubscript{LIMs} do not. The interactions between Lmx1a/b\textsubscript{LIMs} and Isl1α/2\textsubscript{LBD} domains are apparently very weak compared to the interaction of Lmx1a/b\textsubscript{LIMs} with the widely expressed Ldb1\textsubscript{LID}, but it is not clear if Lmx1a/b can take part in ternary transcription factors complexes with Isl1/2. Additional experiments are required to confirm if interactions between Lmx1a/b and Isl1/2 are real and biologically relevant. It is possible that Lhx1/5 did not show interaction with Isl1/2 because some common core hydrophobic residues (positions 30, 90, 110 and 118 in Figure 1.10) are specific for Lhx1/5.

8.3 Interactions involving Lhx8

Lhx8 showed some evidence of a potentially weak interaction (some yeast growth but no colour development under routinely used selection conditions, except when extended incubation times resulted in the development of blue colour) with the LIM domains of all LIM-HD proteins (e.g., Fig 3.7). The AD-Lhx8 construct showed evidence of autoactivation under weak selection conditions (Figure 3.3), suggesting that most of the yeast growth probably stems from additive effects of autoactivation and sticky DBD-LIMs constructs. It is interesting to note that an interaction between Isl1α and Lhx8 in cholinergic cells was recently reported [347]. The authors of that paper used the results of GST-pulldown and co-IP experiments from cell lysates to suggest that Isl1α and Lhx8 form a complex similar to Isl1α and Lhx3 complex. The data presented in this thesis do not support those findings as DBD-Lhx8\textsubscript{LIMs} did not show any evidence of an interaction with any of full-length Isl1α, Isl2 or Isl1\textsubscript{LBD} (Figures 3.6 and 3.7). However, it is possible that the affinity of such an interaction lies below the limit of detection by Y2H, or that direct Lhx8:Isl1 interaction cannot be detected in yeast for various other reasons (see section 3.8.1).
8.4 Contribution of separate LIM domains to binding

In Chapter 4 it was shown that both LIM domains of mouse LIM-HD proteins are required for high affinity binding to Ldb1\textsubscript{LID}, but that different subsets of LIM-HD proteins display higher levels of binding through their LIM1 or LIM2 domains. Note that the overall binding affinity is thought to result from negative cooperative binding of two LIM domains to Ldb1\textsubscript{LID}, as it is likely that $K_{d\text{LIMs}} > K_{d\text{LIM1}} \cdot K_{d\text{LIM2}}$ [167].

A simple comparison of protein sequences between paralogous pairs of mouse LIM-HD proteins indicates that the dominant Ldb1-binding LIM domains are generally more conserved than the non-dominant domain, as defined by Y2H (Table 8.3). The exception here is for Lhx2/9 where there are relatively few sequence differences. Note that Lhx1/5, for which no dominant domains were identified, have the same number of sequence differences between each domain. However, at this stage it is not known if any of these sequence differences are more relevant to Ldb1 binding.

Table 8.3. The number of differences in the primary sequence of LIM1 or LIM2 domains between LIM-HD proteins in each paralogue pair in mice. Yellow fields mark domains which were shown to separately interact with Ldb1\textsubscript{LID}.

<table>
<thead>
<tr>
<th>The number of differences in the primary sequence of each domain</th>
<th>LIM1</th>
<th>LIM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isl1 vs. Isl2</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Lhx3 vs. Lhx4</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Lhx1 vs. Lhx5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Lmx1a vs. Lmx1b</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Lhx2 vs. Lhx9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Lhx6 vs. Lhx8</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>
Some structure and sequence-based explanations have been previously put forward to rationalise the differences between LIM1 and LIM2 dominance in terms of Ldb1-binding [162]. However, to date only one LIM2-dominant LIMs-LID structure has been determined (compared with structures for several LIM1-dominant LIM-LID structures) and a full explanation of these differences is speculative until more information is available.

Previous studies have shown that whereas Isl1LIM1 is the preferential Ldb1LID binder, Lhx3LIM2 preferentially binds both Ldb1LID and Isl1LBD [18]. In the same study strand exchange of Isl1LBD was observed for one molecule in the asymmetric unit of the crystal structure of Lhx3LIMs-Isl1LBD (i.e., Lhx3LIM2 binds the N-terminal half of Isl1LBD from one tethered complex but Lhx3LIM1 binds the C-terminal of Isl1LBD from a symmetry related molecule to form a symmetry related dimer: pdb code 2RGT, chain a). Given these properties and the modular nature of LIM-peptide binding, a putative mechanism for cofactor exchange for the switch from Lhx3:Ldb1 complexes to Lhx3:Isl1:Ldb1 was proposed. In this mechanism intermediate states would involve Ldb1LID binding simultaneously to the Isl1LIM1 and Lhx3LIM2 [18]. However, there is no biological evidence to support or refute this hypothetical mechanism.

Previous Y2H experiments with C. elegans Lhx3/4 orthologue Ceh-14 showed that its LIM2 can independently bind the Isl1/2 orthologue Lim7, whereas LIM1 cannot [155]. This indicates that the mode of tandem LIM-domain binding could be conserved, at least for some proteins.

The strong conservation of Ldb1LID in metazoans implies that every residue in this sequence contributes to complex formation, in terms of making productive protein-protein interactions while preventing non-specific interactions. The Ldb1LID domain is mostly disordered but the charged DEDER region in the sequence has some helical propensity which is evident in the unbound state (pdb code 2LXD) [161]. The LMO2:Ldb1 (pdb code 2XJY) and Lhx3:Ldb1 complexes (pdb code 2JTN) show that this sequence can retain a degree of helicity in the bound state. This is not uncommon for proteins with internal intrinsic disorder where smaller elements of secondary structure (e.g., alpha helices) form prior to binding to function as molecular recognition elements [348, 349].
8.5 Considerations for binding assays

The yeast two-hybrid data provide some measure of relative binding affinities for similar sets of constructs, but are affected by stability of constructs in yeast, background binding events, and possible steric effects as detailed in section 3.8. The original ELISA-based homologous competition binding experiments appear to have been compromised by invalid assumptions about available concentrations of proteins and other experimental considerations as noted in sections 1.11 and 7.4.2. Thus, there is still a need for methodologies that can assay binding between LIM-HD and LMO family proteins and their peptide binding partners. The fluorescence-based binding assays described in chapters 6 and 7 have not yet resulted in high confidence binding data, but have provided useful information for design of future experiments.

Nonspecific adsorption of LIM domain constructs to surfaces in vitro leads to significant losses of LIM-domains at low concentrations. This effect can be minimized by including BSA in the buffer. Tubes, cuvettes or wells could alternatively be pre-coated with PEG or similar polymers, provided that LIM domains do not bind non-specifically to those polymers.

Future experiments that aim to determine binding affinities of LIM domains by competition assays should first determine half-lives of cleaved tethered complexes at very low complex concentrations. The incubation times should be long (> 5·t_{1/2}) in order for reactions to come sufficiently close to equilibrium as discussed in section 7.4.1.

Due to the use of tethered complexes, ligand depletion can affect competition assays and, depending on the assay, specific equations may need to be derived to adequately fit the data.

Finally, strong interactions require assays that are sensitive enough to detect very low concentrations of the label. Site-specific labelling of proteins with radioactive reagents could potentially provide such sensitivity.

8.6 Concluding remarks

In conclusion, this thesis has used a series of different experimental approaches to explore protein interactions between LIM-HD proteins and between LIM-HD proteins and their key binding partner Ldb1. Although many technical challenges were overcome during the course of the project, additional experiments will be required to fully characterise the networks of proteins.
associated with this biologically important class of proteins. This body of work provides a good platform for such experiments.
References

References

References

169. Craig, V. 2006, University of Sydney.
References

184.

214. Thieu, K., in *School of Molecular Biosciences*. 2008, University of Sydney.
References

References

References

References

189

Appendix A LIM-HD proteins: names, isoforms and homozygous knockout mice phenotypes

As the discovery of many genes predates the genome sequencing projects and the modern gene classification, different names were used for the same proteins in literature, which lead to confusion in many cases. In particular, the paralogue of Lhx6 was originally identified and named L3 (Matsumoto 1996), but was later renamed to Lhx8 (Kitanaka 1998). It was then 'rediscovered' as Lhx7 (Grigoriou 1998) and before the controversy was resolved, a newly identified paralogue of Lhx2 was named Lhx9 (Retaux 1999, Fai1li 2000). Identification of several alternatively spliced mRNA/protein isoforms of Lhx6 and Lhx8 additionally complicated this issue. Since no additional LIM-HD genes were identified, Lhx8 is sometimes referred to as Lhx7/8 (Hobert 2000).

Lhx and Lmx both stand for LIM-homeobox, but because of historical reasons, Lmx1 as well as Isl proteins retained their original names. LIM-HD proteins in Drosophila and Nematoda have alternative, historical names (Bach 2000).

Most isoforms of LIM-HD proteins (Table A1) are results of alternatively spliced N-terminal and/or C-terminal exons. Isl1β isoform is an exception because it is apparently a result of an alternative splice acceptor site located within the nearest downstream exon. Consequently, the beginning of exon 5 which contains the first half of Isl1LBD is not spliced in this isoform. Lhx2b is a validated RefSeq sequence but no data on detected protein is provided in either database. NM_027397.2 version of Isl2 was replaced on Jul 28, 2007 by the correct version NP_081673.2.
Table A.1. Protein-coding, CDS-complete protein isoforms of mouse LIM-HD proteins. Protein names from NCBI RefSeq, ENSEMBL and Uniprot databases are shown along with NCBI and EBI protein IDs and the numbers of amino acids in parallel. Double EBI IDs for some proteins indicate the same isoform translated from different transcripts. Red stars mark isoforms that are not in the NCBI Consensus CDS (CCDS) protein set. P in superscript indicates predicted isoforms (NCBI). Lhx3 isoforms from the Uniprot database have opposite names to the RefSeq entries (likely database error) and are marked in red. Lmx1b entry in Uniprot has a 23 a.a. extension of the N-terminal exon due to erroneous translation initiation and is marked with E. Some isoforms have additional alternative names in the Uniprot database and they are shown in brackets.

<table>
<thead>
<tr>
<th>RefSeq protein</th>
<th>NCBI Protein ID</th>
<th>ENSEMBL protein</th>
<th>EBI Protein ID</th>
<th>UniProt protein</th>
<th>Number of residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lhx1</td>
<td>NP_032524.1</td>
<td>Lhx1-001</td>
<td>ENSMUSP0000018842</td>
<td>Lhx1</td>
<td>406</td>
</tr>
<tr>
<td>Lhx2a</td>
<td>NP_034840.1</td>
<td>Lhx2-001</td>
<td>ENSMUSP000000253</td>
<td>Lhx2</td>
<td>406</td>
</tr>
<tr>
<td>*Lhx2b</td>
<td>NP_001277575.1</td>
<td>Lhx2-003</td>
<td>ENSMUSP0000114797</td>
<td></td>
<td>365</td>
</tr>
<tr>
<td>Lhx3a</td>
<td>NP_001034742.1</td>
<td>Lhx3-001</td>
<td>ENSMUSP0000028302</td>
<td>Lhx3b</td>
<td>402</td>
</tr>
<tr>
<td>*Lhx3b</td>
<td>NP_034841.2</td>
<td>Lhx3-002</td>
<td>ENSMUSP0000056822</td>
<td>Lhx3a</td>
<td>400</td>
</tr>
<tr>
<td>Lhx4</td>
<td>NP_034842.2</td>
<td>Lhx4-001</td>
<td>ENSMUSP0000027740</td>
<td>Lhx4</td>
<td>390</td>
</tr>
<tr>
<td>Lhx5</td>
<td>NP_032525.1</td>
<td>Lhx5-001</td>
<td>ENSMUSP0000031591</td>
<td>Lhx5</td>
<td>402</td>
</tr>
<tr>
<td>Lhx6.1</td>
<td>NP_032526.2</td>
<td>Lhx6-003</td>
<td>ENSMUSP00000108564</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>Lhx6.3</td>
<td>NP_001076595.1</td>
<td>Lhx6-001</td>
<td>ENSMUSP00000108585</td>
<td>Lhx6.1a</td>
<td>363</td>
</tr>
<tr>
<td>Lhx6.2</td>
<td>NP_001076594.1</td>
<td>Lhx6-007</td>
<td>ENSMUSP00000108591</td>
<td></td>
<td>377</td>
</tr>
<tr>
<td>Lhx6.4</td>
<td>NP_001076596.1</td>
<td>Lhx6-002</td>
<td>ENSMUSP00000108590</td>
<td>Lhx6.1b</td>
<td>348</td>
</tr>
<tr>
<td>Lhx8</td>
<td>NP_034843.2</td>
<td>Lhx8-001</td>
<td>ENSMUSP0000136047</td>
<td>Lhx8</td>
<td>367</td>
</tr>
<tr>
<td>*Lhx8 X1^P or X2^P</td>
<td>XP_006501134.1 XP_006501135.1</td>
<td>Lhx8-003</td>
<td>ENSMUSP0000134853</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>Lhx9a</td>
<td>NP_001020736.1</td>
<td>Lhx9-002</td>
<td>ENSMUSP0000019374</td>
<td>Lhx9.4</td>
<td>330</td>
</tr>
<tr>
<td>Lhx9b</td>
<td>NP_034844.1</td>
<td>Lhx9-004</td>
<td>ENSMUSP00000107661 ENSMUSP0000091198</td>
<td>Lhx9.2 (Lhx9α)</td>
<td>321</td>
</tr>
<tr>
<td>Lhx9c</td>
<td>NP_001036042.1</td>
<td>Lhx9-005</td>
<td>ENSMUSP0000107657</td>
<td>Lhx9.3</td>
<td>397</td>
</tr>
<tr>
<td>*Lhx9 X2^P</td>
<td>XP_006529234.1</td>
<td>Lhx9-001</td>
<td>ENSMUSP0000036480</td>
<td>Lhx9.1 (Lhx9β)</td>
<td>388</td>
</tr>
<tr>
<td>Lmx1a</td>
<td>NP_387501.1</td>
<td>Lmx1a-001 or -002</td>
<td>ENSMUSP0000028003 ENSMUSP0000107006</td>
<td></td>
<td>382</td>
</tr>
<tr>
<td>Lmx1b</td>
<td>NP_034855.2</td>
<td>Lmx1b-001</td>
<td>ENSMUSP0000043616</td>
<td>Lmx1b</td>
<td>372</td>
</tr>
<tr>
<td>ISL-1</td>
<td>NP_067434.3</td>
<td>Isl1-001</td>
<td>ENSMUSP0000044879</td>
<td>Isl1α</td>
<td>349</td>
</tr>
<tr>
<td>*ISL-1 X1^P</td>
<td>XP_006517596.1</td>
<td>Isl1-002</td>
<td>ENSMUSP0000135567</td>
<td>Isl1β</td>
<td>326</td>
</tr>
<tr>
<td>ISL-2</td>
<td>NP_081673.2</td>
<td>Isl2-001</td>
<td>ENSMUSP0000034869</td>
<td>Isl2</td>
<td>359</td>
</tr>
</tbody>
</table>
Table A.2. Phenotypes of mice with homozygous knockout mutations of LIM-HD proteins. Each column shows closely related paralogue genes.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Phenotype Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lhx3</td>
<td>Perinatal lethal (within 24 hours of birth); failure of growth and differentiation of Rathke’s pouch, lack of both anterior and intermediate lobes of the pituitary gland.</td>
</tr>
<tr>
<td>lhx1</td>
<td>Embryonic lethal: embryos are small, fail to develop head structures anterior to rhombomere 3 in the hindbrain, lack kidneys and gonads, and show aberrant trajectories of limb motor axons; most die around embryonic day 10.</td>
</tr>
<tr>
<td>lmx1a</td>
<td>Prenatal to preweaning lethality: fewer dopaminergic neurons, neurological and skeletal abnormalities, inner ear defects, deafness</td>
</tr>
<tr>
<td>lhx2</td>
<td>Embryonic to perinatal lethal: abnormal liver, telencephalon, olfactory bulb, basal ganglion, and eye morphology</td>
</tr>
<tr>
<td>lhx6</td>
<td>Postnatal or preweaning lethal: results in impaired migration as well as specification of cortical interneurons, general weakness</td>
</tr>
<tr>
<td>isl1</td>
<td>Embryonic lethal: mice fail to develop motor neurons and die by embryonic day 11.5 with abnormal heart and pancreas development.</td>
</tr>
<tr>
<td>lhx4</td>
<td>Neonatal lethal: abnormal lung development, pituitary and decreased hormone levels.</td>
</tr>
<tr>
<td>lhx5</td>
<td>Neonatal lethal: defective hippocampal development. Postmitotic hippocampal cells are unable to differentiate properly and migrate to correct positions, resulting in structural anomalies of the Ammon’s horn and the dentate gyrus.</td>
</tr>
<tr>
<td>lmx1b</td>
<td>Neonatal lethal: exhibit various skeletal, kidney, and eye defects. Pups also fail to suckle.</td>
</tr>
<tr>
<td>lhx9</td>
<td>Not lethal: failed proliferation of the somatic cells of the genital ridge resulting in lack of discrete gonad formation, infertility in both sexes, and female-like genitalia in genetically male mice</td>
</tr>
<tr>
<td>lhx8</td>
<td>Neonatal lethal with incomplete penetrance: cleft secondary palate. Those without cleft palate survive to adulthood. Both have decreased or absent forebrain cholinergic neurons.</td>
</tr>
<tr>
<td>isl2</td>
<td>Neonatal lethal: motor neuron migration defects and impaired visceral motor neuron differentiation.</td>
</tr>
</tbody>
</table>
Appendix B Design of bacterial overexpression plasmids

pIH1119 (source plasmid)

```
tcgagctcgaacacacaacaataacaatgacgcttcctcgga
S S N N N N N N N N N N
```

```
ctcg CCCatggggctcgaagtactttcaaggaccggatcc
L G P W G L E V L F O G G S
```

Factor Xa cleavage site

Derivatives:

- **pIH1121** codes for a HRV3C-cleavable fusion linker.

```
ctcgggccatggggctcgaagtactttcaaggaccggatcc
L G P W G L E V L F O G G S
```

HRV3C Pro cleavage site

- **pIH1122nc** codes for a non-cleavable short GS linker.

```
actaattcgccaaggcccgaatctgtggccggatccgaattcaattc
T N S S S G G G S E L E F
```

pGEX-2TKE (source plasmid)

```
gggtggtgccgaccatctctccaatatcggatcgtgtccagcgtcgggccggatccgaattccat
G G G D H P P K S D L V P R G S P G I H
```

Thrombin cleavage site

Derivative:

- **pGEX-TEVC**

```
catctccaaatatcggatgaaacccgatattttcgtgcggatccccggatccat
H P P K S D E N L Y F Q C G S P G I H
```

TEV cleavage site
pSNAP-tag®(T7) (source plasmid)

gagatacatactgacaaagattgcgaa...

SNAP-tag

Derivative:

- **pT7-HSNA** P codes for a TEV-cleavable His-tag, N-terminal to SNAP-tag

pET15b (source vector)

AACTTTAAGAGAGGAGATATA

Derivatives:

- **pET1bBE** has a BamHI-EcoRI cloning site and lacks the downstream EcoRI site

- **pET1bBE-GFPsol** has a BglII-GFPsol-BamHI-2×STOP-EcoRI sequence inserted between BamHI and EcoRI sites.
pGEX-6P (source vector)

\[
\begin{align*}
&\text{caaaatcggatctggaagtctgctccaggggccctg} \\
&\text{K S D L E V L F Q G P L G S P E F}
\end{align*}
\]

HRV3C Pro cleavage site

Derivative:

- **pGEX-6P-GFPsol** has a BglII-GFPsol-BamHI-2×STOP-EcoRI sequence inserted between BamHI and EcoRI sites.

\[
\begin{align*}
&\text{...GACCATCCTCAAAAATCGGATCTGGAAGTTTCTCCAGGGGCCCTGECATCTGCAATCTAAGGGCCAA} \\
&\text{GAACATGGTATTACGGGACCTCTCTCTGACGGGAGTATGTGATGGCGGATCACTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTTATGTTCAGGAACGCACTATCAGCTTCAAA} \\
&\text{GATGACGGTAACTACAAAACCCGTGCGGAAGTGAAATTCGAAGGTGATACCCTGGTTAACCGTATCGAGCTGAAAGGTATTGACTTCAAAGAAGACGGTAACATCCTGGGCCACAACTGGAGTACAACTATAATTCTCACAAGTTCTCCGTTCCGGCGAAGGTGAAGGCGACGCAACCTACGGCAAACTGACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCCAGTACCTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTTATGTTCAGGAACGCACTATCAGCTTCAAA}
\end{align*}
\]
Appendix C Tethered LIMs-LID constructs with Factor Xa-cleavable linkers

C.1 Protein constructs expressed from pGEX-TEVC and pGEX-6P-GFPsol plasmids

LMO4_{LIMs-Ldb1_{LID}}
LSWKRCAGCGKIAEADRLYAMDSYWHSRCLKCSSCQALGDIGTSSYTSGMILCRNDYIRLGNGSACGQSI
FASELVMRAQGNVYHLKCFTCTCRNRLVPGDFHYINGSLFCEHDRPTALINGHLNSGSI TGSGGSSGVWPGLSGEFGDEDERLITRLENTQFDAANGIDDE-

Lhx3_{LIMs-Ldb1_{LID}}
TPEIPMCACGQDHILDFILKALDRWHSHKCKLCSDCVPLAERCFSRGEVYCKDDFKFRGKCAACQLGIPPTQ
VVRRAQDFVYHLHCFCACVCKRQLATGDEFYLMEDSRVLCKADYETAKQGSGI TGSGGSSGVWPGLSGEFGDEDERLITRLENTQFDAANGIDDE-

Isl1_{LIMs-Ldb1_{LID}}
KRLISLCVCACGNQIHDOIQYILRVSPDELWHAACLCHELCAECNQLDESCTCFVRDGKTYCKDYOIRLGYIHKCAKCSIGFS
KNDFVMRARSKVYHIECFRCVACSRLQIPGDFALREDGLFCRAHDLVVERGSGI TGSGGSSGVWPGLSGEFGDEDERLITRLENTQFDAANGIDDE-

C.2 Protein constructs expressed from pGEX-TEVC plasmids only

Lhx1_{LIMs-Ldb1_{LID}}
MVHCAGKRPILDRFLNVDRAWHVKCVCCECKCNLTKETSREGKYCKNDFFRFCGTCAGCAQGISPSDLVR
RARSKVFLCHNCFCTCMCNKQSLSTGEEYYIIDENKFCCKEDYLNSGSGI TGSGGSSGVWPGLSGEFGDEDERLITRLENTQFDAANGIDDE-

Lhx2_{LIMs-Ldb1_{LID}}
SDRAALCAGCGKISDRYULLAVDKIWHRMCLKCCECKLNLESELTCFSKDKGSIYCKEDYRRFSVQRCARCHLGIS
ASEMVMRARDLVYHLNCFTCTCNMLTTYGDFMDLVLVYCRHFEALLQGSGI TGSGGSSGVWPGLSGEFGDEDERLITRLENTQFDAANGIDDE-

Lhx4_{LIMs-Ldb1_{LID}}
DNA sequences coding for similar constructs containing tandem LIM-domains of Lhx5, Lhx6, Lhx8, Lmx1a, Lmx1b and Isl2 were also cloned into pGEX-TVC vectors. LMO4\textsubscript{LIMs-Ldb1\textsubscript{LID}} DNA construct was designed by Dr J. Matthews and other DNA constructs were made by Dr M. O’Connell.

All GST-fusion constructs expressed from pGEX-TEVC plasmids contained a modified TEV site in the GST-insert linker. TEV cleavage of these fusion constructs produced tethered LIMs-LID fusion constructs with N-terminal CGS sequence. All GST-fusion constructs expressed from pGEX-6P-GFPsol plasmids were cleaved with HRV3C protease on the GSH-resin and the released proteins had a GPLGS-GFPsol-GS-LIMs-LID.

Table C.1. Molecular weights and extinction coefficients of purified constructs.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Molecular weight (Da)</th>
<th>ϵ_{280} (M$^{-1}$cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>His\textsubscript{6}-SNAP-LMO4\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>42148.9</td>
<td>42400</td>
</tr>
<tr>
<td>Cys-LMO4\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>20474</td>
<td>19940</td>
</tr>
<tr>
<td>GFPsol-LMO4\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>47463.3</td>
<td>41830</td>
</tr>
<tr>
<td>Cys-Lhx3\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>20057.7</td>
<td>11460</td>
</tr>
<tr>
<td>GFPsol-Lhx3\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>47047.1</td>
<td>33350</td>
</tr>
<tr>
<td>Cys-Isl1\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>20347</td>
<td>14440</td>
</tr>
<tr>
<td>GFPsol-Isl1\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>47336.4</td>
<td>36330</td>
</tr>
<tr>
<td>Cys-Lhx1\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>19691.4</td>
<td>9970</td>
</tr>
<tr>
<td>Cys-Lhx2\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>20312.1</td>
<td>15930</td>
</tr>
<tr>
<td>Cys-Lhx4\textsubscript{LIMs-Ldb1\textsubscript{LID}}</td>
<td>20111.7</td>
<td>11460</td>
</tr>
<tr>
<td>His\textsubscript{6}-TEV</td>
<td>-27000</td>
<td>see [183, 184]</td>
</tr>
<tr>
<td>MBP-Ldb1\textsubscript{LID(331-375)}</td>
<td>48275.2</td>
<td>71850</td>
</tr>
<tr>
<td>Cys-DEAF1\textsubscript{404-438(T435D)}</td>
<td>4436.2</td>
<td>\sim0</td>
</tr>
</tbody>
</table>
Appendix D BiFC-related DNA and protein constructs

D.1 Split-GFP DNA constructs and BiFC plasmids

Constructs that did not contain F64L and S65T mutations that provide enhanced UV properties were named as NGFP, CGFP and NGFP-CGFP (no uv suffix). Only NGFPsol and NGFPsol-CGFP construct names contained the sol suffix.

Restriction sites:

- GGATCC - BamHI
- GAATTC - EcoRI
- CGTCAG - PstI
- AAGCTT - HindIII
- AGATCT - BglII
- CATATG - NdeI
- CTGCAG - SmaI
- CTGCAG - XhoI
- GCATGC - SphI
- TGA/TAA/TAG - STOP codons

D.1.1 Removing Gal4 fragments from Y2H vectors

NpGBT9 (Gal4DBD, yADH1 promoter)

```plaintext
...TGTTCATTTCCTGCACAATATTTCAAGCTATACCAAGCATACAATCAACCGCCCGCTTGGTGAAGCAAGCCTCCTCG
AAAGTAAAGCTGACTATTAATAAGGCTAAGTCTTCCTGACATGATTTTGAAAATGGATTCTTTACAGGATTATTTGTACAAGGTA
TGGAGGCGACATCATGATTTTCTACTGATTTTTCCTCGAGAAGAGCATATGATTGGCTTCAGTGGAGACTGATATGCCTCTAACCAT
AGTGGCGACATCTACAGGATTATTTGTACAAGGTAATTTTGAAAAATGGATTCTTTACAGGATTATTTGTACAAGGTAAT
```

pW410

```plaintext
...TTCTTTTCTGCACAATATTTCAAGCTATACCAAGCATACAATCAACCGCCCGCTTGGTGAAGCAAGCCTCCTCG
AAAGTAAAGCTGACTATTAATAAGGCTAAGTCTTCCTGACATGATTTTGAAAATGGATTCTTTACAGGATTATTTGTACAAGGTA
TGGAGGCGACATCATGATTTTCTACTGATTTTTCCTCGAGAAGAGCATATGATTGGCTTCAGTGGAGACTGATATGCCTCTAACCAT
AGTGGCGACATCTACAGGATTATTTGTACAAGGTAATTTTGAAAAATGGATTCTTTACAGGATTATTTGTACAAGGTAAT
```
Appendix D

pGAD10 (Gal4DBD, yADH1 promoter)

...TGGTTTTTTTTCGACAATATTTTCAAGCTATACCAAGCATACAACTCCTGAGCTTTGCAAGAGTTGGAATAAACCGGGAATTTCCCGAGCCTCCAAAAAAAGAAGAGAAAGGTCGAATTGGGTACCGCCGCCAATTTTAATCAAAGTGGAATATTGCTGATAGCTCATTGTCCTTCACTTTCACTAACAGTAGCAACGGTCCGAACCTCATAACAACTCAAACAAATTCTCAAGCGCTTTCACAACCAATTGCTCTCTCTCTTCTTTATGAACATCTACTACTCTCTAACGTTCATGATAACTTCATGAATAATGAAATCACGGCTAGTAAAATTGATGATGGTAATAATTCAAAACCACTGTCACCTGGTTGGACGGACCAAACTGCGTATAACGCGTTTGGATCACTACAGGGATGTTTAATACCACTACAATGGATGATGTATATAACTATCTATTCGATGATGAAGATACCCCACCAACCCAAAAAAAGAGATCTCTCGACTCAATGAACTGTTTACGGGTGTTGTTCCAATCCTGGTAGAGCTGGACGGCGACGTTAACGGTCACAAGTTCTCCGTTTCCGGCGAAGGTGAAGGCGACGCAACCTACGGCAAACTGACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCGGTACCTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTGTTATGTTCAGGAACGCACTATCAGCTTCAAAGATGACGGTAACTACAAAACCCGTGCGGAAGTGAAATTCGAAGGTGATACCCTGGTTAACCGTATCGAGCTGAAAGGTATTGACTTCAAAGAAGACGGTAACATCCTGGGCCACAAACTGGAGTACAACTATAATTCTCACAATGTGTACATTACTGCGGATAAACAAAAAAGTGGTGGCGGCGGTTCTGGCGGTGGTAGGATCCCTCGAGGAATTCGGTGGCGGTGGTTCCGGTGGTGGCGGCACGCTAACGGCATTAAAGCGAACTTCAAAATCCGTCATAACATTGAGGATGGCGGTGTACAGCTGGCGGATCACTACCAGCAGAATACGCCGATTGGCGATGGCCCTGTGCTGCTGCCGGATAACCACTACCTGTCCACCCAGTCTAAACTGTCCAAAGACCCTAACGAAAAACGCGACCACATGGTGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCTAGGTATGGATGAGCTGTACAAGTAATGCTCGAG...

pL410

...TCTTTTTTCTCGACAATATTTTCAAGCTATACCAAGCATACAACTCCTGAGCTTTGCAAGAGTTGGAATAAACCGGGAATTTCCCGAGCCTCCAAAAAAAGAAGAGAAAGGTCGAATTGGGTACCGCCGCCAATTTTAATCAAAGTGGAATATTGCTGATAGCTCATTGTCCTTCACTTTCACTAACAGTAGCAACGGTCCGAACCTCATAACAACTCAAACAAATTCTCAAGCGCTTTCACAACCAATTGCTCTCTCTTCTTTATGAACATCTACTACTCTCTAACGTTCATGATAACTTCATGAATAATGAAATCACGGCTAGTAAAATTGATGATGGTAATAATTCAAAACCACTGTCACCTGGTTGGACGGACCAAACTGCGTATAACGCGTTTGGATCACTACAGGGATGTTTAATACCACTACAATGGATGATGTATATAACTATCTATTCGATGATGAAGATACCCCACCAACCCAAAAAAAGAGATCTCTCGACTCAATGAACTGTTTACGGGTGTTGTTCCAATCCTGGTAGAGCTGGACGGCGACGTTAACGGTCACAAGTTCTCCGTTTCCGGCGAAGGTGAAGGCGACGCAACCTACGGCAAACTGACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCGGTACCTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTGTTATGTTCAGGAACGCACTATCAGCTTCAAAGATGACGGTAACTACAAAACCCGTGCGGAAGTGAAATTCGAAGGTGATACCCTGGTTAACCGTATCGAGCTGAAAGGTATTGACTTCAAAGAAGACGGTAACATCCTGGGCCACAAACTGGAGTACAACTATAATTCTCACAATGTGTACATTACTGCGGATAAACAAAAAAGTGGTGGCGGCGGTTCTGGCGGTGGTAGGATCCCTCGAGGAATTCGGTGGCGGTGGTTCCGGTGGTGGCGGCACGCTAACGGCATTAAAGCGAACTTCAAAATCCGTCATAACATTGAGGATGGCGGTGTACAGCTGGCGGATCACTACCAGCAGAATACGCCGATTGGCGATGGCCCTGTGCTGCTGCCGGATAACCACTACCTGTCCACCCAGTCTAAACTGTCCAAAGACCCTAACGAAAAACGCGACCACATGGTGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCTAGGTATGGATGAGCTGTACAAGTAATGCTCGAG...

D.1.2 Split-GFP DNA fragments

NGFP-CGFp (This fragment was inserted in the pW410 plasmid)

CATATGCSCATCTAAGGGCGAAGAAGCTGTATTTAACGGGTGTTGTTTCGACAATTTCTGTGAGACTGCGAGCAGCTAAACCGCTACAGTCTCTCCTCTCCGGAAGGATACCATATGCTGTACCACTCTTCTTCTTTATTTTGAACATCTACTACTCTCTAACGTTCATGATAACTTCATGAATAATGAAATCACGGCTAGTAAAATTGATGATGGTAATAATTCAAAACCACTGTCACCTGGTTGGACGGACCAAACTGCGTATAACGCGTTTGGATCACTACAGGGATGTTTAATACCACTACAATGGATGATGTATATAACTATCTATTCGATGATGAAGATACCCCACCAACCCAAAAAAAGAGATCTCTCGACTCAATGAACTGTTTACGGGTGTTGTTCCAATCCTGGTAGAGCTGGACGGCGACGTTAACGGTCACAAGTTCTCCGTTTCCGGCGAAGGTGAAGGCGACGCAACCTACGGCAAACTGACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCGGTACCTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTGTTATGTTCAGGAACGCACTATCAGCTTCAAAGATGACGGTAACTACAAAACCCGTGCGGAAGTGAAATTCGAAGGTGATACCCTGGTTAACCGTATCGAGCTGAAAGGTATTGACTTCAAAGAAGACGGTAACATCCTGGGCCACAAACTGGAGTACAACTATAATTCTCACAATGTGTACATTACTGCGGATAAACAAAAAAGTGGTGGCGGCGGTTCTGGCGGTGGTAGGATCCCTCGAGGAATTCGGTGGCGGTGGTTCCGGTGGTGGCGGCACGCTAACGGCATTAAAGCGAACTTCAAAATCCGTCATAACATTGAGGATGGCGGTGTACAGCTGGCGGATCACTACCAGCAGAATACGCCGATTGGCGATGGCCCTGTGCTGCTGCCGGATAACCACTACCTGTCCACCCAGTCTAAACTGTCCAAAGACCCTAACGAAAAACGCGACCACATGGTGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCTAGGTATGGATGAGCTGTACAAGTAATGCTCGAG...

NGFP-CGFp (This fragment was inserted in the pL410 plasmid)

CATATGCSCATCTAAGGGCGAAGAAGCTGTATTTAACGGGTGTTGTTTCGACAATTTCTGTGAGACTGCGAGCAGCTAAACCGCTACAGTCTCTCCTCTCCGGAAGGATACCATATGCTGTACCACTCTTCTTCTTTATTTTGAACATCTACTACTCTCTAACGTTCATGATAACTTCATGAATAATGAAATCACGGCTAGTAAAATTGATGATGGTAATAATTCAAAACCACTGTCACCTGGTTGGACGGACCAAACTGCGTATAACGCGTTTGGATCACTACAGGGATGTTTAATACCACTACAATGGATGATGTATATAACTATCTATTCGATGATGAAGATACCCCACCAACCCAAAAAAAGAGATCTCTCGACTCAATGAACTGTTTACGGGTGTTGTTCCAATCCTGGTAGAGCTGGACGGCGACGTTAACGGTCACAAGTTCTCCGTTTCCGGCGAAGGTGAAGGCGACGCAACCTACGGCAAACTGACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCGGTACCTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTGTTATGTTCAGGAACGCACTATCAGCTTCAAAGATGACGGTAACTACAAAACCCGTGCGGAAGTGAAATTCGAAGGTGATACCCTGGTTAACCGTATCGAGCTGAAAGGTATTGACTTCAAAGAAGACGGTAACATCCTGGGCCACAAACTGGAGTACAACTATAATTCTCACAATGTGTACATTACTGCGGATAAACAAAAAAGTGGTGGCGGCGGTTCTGGCGGTGGTAGGATCCCTCGAGGAATTCGGTGGCGGTGGTTCCGGTGGTGGCGGCACGCTAACGGCATTAAAGCGAACTTCAAAATCCGTCATAACATTGAGGATGGCGGTGTACAGCTGGCGGATCACTACCAGCAGAATACGCCGATTGGCGATGGCCCTGTGCTGCTGCCGGATAACCACTACCTGTCCACCCAGTCTAAACTGTCCAAAGACCCTAACGAAAAACGCGACCACATGGTGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCTAGGTATGGATGAGCTGTACAAGTAATGCTCGAG...
Appendix D

NGFP

<table>
<thead>
<tr>
<th>CATATG</th>
<th>SCATCTAAGGGCAAGAAGAAGGCGGACCACATGTTGCTGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCATCT</td>
<td>AGGCGGTGCTGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</td>
</tr>
</tbody>
</table>

CGFP

<table>
<thead>
<tr>
<th>CATATGGCATCTAAGGGCAAGAAGAAGGCGGACCACATGTTGCTGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCATCT</td>
</tr>
</tbody>
</table>

NGFP (This fragment was inserted in the pW410 plasmid)

<table>
<thead>
<tr>
<th>GAATTC</th>
<th>GGTGGCGGTGGTTCGCGGTGGCTCAGCTGCAGTACAGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCATCT</td>
<td>AGGCGGTGCTGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</td>
</tr>
</tbody>
</table>

CGFP (This fragment was inserted in the pL410 plasmid)

<table>
<thead>
<tr>
<th>GAATTC</th>
<th>GGTGGCGGTGGTTCGCGGTGGCTCAGCTGCAGTACAGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCATCT</td>
<td>AGGCGGTGCTGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</td>
</tr>
</tbody>
</table>

D.1.3 BiFC plasmids

pW410-NGFP-CGFP

<table>
<thead>
<tr>
<th>GAATTC</th>
<th>GGTGGCGGTGGTTCGCGGTGGCTCAGCTGCAGTACAGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCATCT</td>
<td>AGGCGGTGCTGCTGGAATTGTGTATTCTGCAGCGGCGGTATTACTCA</td>
</tr>
</tbody>
</table>

This fragment was inserted in the pW410 plasmid.
Appendix D

TCTAAACTGTCCAAAGACCCCTAAACGCGGACCATGTCACCTACCTTACTTCGCGGCGGTATTAC
TCACGGTATGGGACCTGAGTTACATAGCTGGAATTTCTACTGCGGCGGGTATTAC
TCACGGTATGGGACCTGAGTTACATAGCTGGAATTTCTACTGCGGCGGGTATTAC

pW410-NGFP_N

* Initial construct w/o STOPs before EcoRI site.

pW410-NGFP_N

New construct with STOP codons between BamHI and EcoRI sites.

pW410-NGFP_C

pW410-NLS-NGFP_N
pW410-NLS-NGFP_C

...CATATGCGGGAATTAATTCCCGAGGCTCCTCCAAAAAAGAAGAGAAAGGTCAATTGGTACCGCCGATGATGTTG

pWAFL-NGFP_N plasmids are pW410-NGFP_N plasmids with the full-length yADH1 promoter (Appendix E).

pL410-NGFP-CGFP

...CATATGGCCGCAAGGAACCTTGTTTACGGGTGTCTGCAATGTTGAGCTGAGGTGACCAGCAGCGTAAACAGCTTTCCG

pL410-CGFP_N

...CATATGGCCGCAAGGAACCTTGTTTACGGGTGTCTGCAATGTTGAGCTGAGGTGACCAGCAGCGTAAACAGCTTTCCG

pL410-CGFP_C

...CATATGGCGGCAATTCGGTGCGGCGGCTGTTCCGCTGTTCCGCGACGGAACTGGGTACCGCCGATGATGTTG

pL410-NLS-CGFP_N

...CATATGGCGGGAATTAATTCCCGAGGCTCCTCCAAAAAAGAAGAGAAAGGTCAATTGGTACCGCCGATGATGTTG
Appendix D

D.1.4 Inserting constructs into BiFC plasmids

Inserts with STOP codons

e.g., GATATC construct STOPs GAATTC

were inserted in pW410-NGFP_N and pL410-CGFP_N plasmids.

Inserts without STOP codons

e.g., GATATC construct GAATTC

were inserted in pW410-NGFP_C and pL410-CGFP_C plasmids.

pW410-NGFP_N-construct

...CATATG CATCTAAGGGCGAAGAATTTAAGGTGGTTGTTCCAATCTGGTGAAGCTGACGCGACGTTAACGGTCACAAGTTCTCCGTTTCCGGCGAAGGTGAAGGCAGCACGCAACCTACGGCAAACTGACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCGGTACCTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTTATGTTCAGGAACGCACTATCAGCTTCAAAGATGACGGTAACTACAAAACCGTGCGGAAGTGAAATTCGAAGGTGATACCCTGGTTAACCGTATCGAGCTGAAAGGTATTGACTCAAAGAAGACGGTAACATCCTGGGCCACAAACTGGAGTACAACTATAATTCTACAAGTGTACATTACTGCGGATAAACAAAAA ACGGAAAAAACGCCACCACATGGTGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCACGGTATGGATGAGCTGTA CAAGGGCGGGTGGTTCCGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCACGGTATGGATGAGCTGTA...

pW410-NGFP_C-construct

...CATATG GATATC construct GAATTC GCCGGTGGCGGTTCCGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCACGGTATGGATGAGCTGTA CAAGGGCGGGTGGTTCCGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCACGGTATGGATGAGCTGTA...

pW410-NLS-NGFP_N-construct

...CATATG CCGGAATTAATTCCCGACCCCTCCCAAAAAAAGAAGAAGAAGAAGAAGAAGAATGGGTAACCCGCCC CATATG CATCTAAGGGCGAAGAATTTAAGGTGGTTGTTCCAATCTGGTGAAGCTGACGCGACGTTAACGGTCACAAGTTCTCCGTTTCCGGCGAAGGTGAAGGCAGCACGCAACCTACGGCAAACTGACCCTGAAGTTCATCTGCACTACTGGCAAACTGCCGGTACCTTGGCCGACTCTGGTAACCACTTTCAGCTACGGTGTTTCAGTGCTTCGCACGCTATCCGGATCACATGAAACAACATGATTTCTTCAAATCCGCTATGCCGGAAGGTTATGTTCAGGAACGCACTATCAGCTTCAAAGATGACGGTAACTACAAAACCGTGCGGAAGTGAAATTCGAAGGTGATACCCTGGTTAACCGTATCGAGCTGAAAGGTATTGACTTCAAAGAAGACGGTAACATCCTGGGCCACAAACTGGAGTACAACTATAATTCTACAAGTGTACATTACTGCGGATAAACAAAAA ACGGAAAAAACGCCACCACATGGTGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCACGGTATGGATGAGCTGTA CAAGGGCGGGTGGTTCCGCTGCTGGAATTTGTTACTGCGGCGGGTATTACTCACGGTATGGATGAGCTGTA...
AAAGAAGACGGTAACACATTCTGGCCCAAAACTGGAGTACAACTATAATTCTCACAATGTGTACATTACTGCGGATAA
ACAAAAAGTTGGCGGCCGTTCTGGCCGTTGAGTGGAGTGGCCGTTCTGGCTGGCC

pL410-CGFP_N-construct

...CATATG...GAATTCSTOPsGAATTC...CATATG...GAATTCSTOPsGAATTC...CATATG...GAATTCSTOPsGAATTC...

pL410-CGFP_C-construct

...CATATG...GAATTCSTOPsGAATTC...CATATG...GAATTCSTOPsGAATTC...CATATG...GAATTCSTOPsGAATTC...

pL410-NLS-CGFP_N-construct

...CATATG...GAATTCSTOPsGAATTC...CATATG...GAATTCSTOPsGAATTC...CATATG...GAATTCSTOPsGAATTC...

pW410-HGFPsol-construct and pL410-HGFPsol-construct plasmids were created by inserting a PCR copy of the NdeI-BamHI insert from pGEX-6P-GFPsol into NdeI/BamHI cut pW410-NGFP_N-construct and pL410-CGFP_N-construct plasmids.

D.2 BiFC protein constructs

NGFP-CGFP (expressed from either plasmid)

MASKGEELFTGVVIPILVELGDVNGHKFSVESEGEGDATYKLTLKFICTTGKLPVWPWPTLVTTSYGVQCFARYPD
HMKQHFDFKASMEGVYGVRQTSKFDGNYKTAEVKFEGDGTFLNRIELKIDFKEDGNYLHGHLYNYNSHYNT
ADKQRGSSHSSSHELFGGGSSGGSSNGIKANFKIRHNNEDGQVLADHYQQNTPIDGFPVLLPDNHYLSTQSK
LSKDPNEKRDHMVLLFVTAAGITHMDLEYK...

Molecular weight: 28629.9 Da
Appendix D

NGFP

Molecular weight: 20370.7 Da

Molecular weight: 33253.6 Da

Ldb1Lid-NGFP

Molecular weight: 20750.3 Da
Appendix D

HMKQHDFKKSAMPEGYVQERTISFKDDGNYKTRAEVKFEGDTLNRIELKIDFKEDGNILGHKLEYNYSHNVYIT

NGFP_N-Lhx3_LIMs

MAskGeElFtGvVPivpLveLDGVmgNHfsVSGegEgDatYgKltLkFicTTgkLPvPwPvlvTTfSyGvQCFaryPD

Molecular weight: 62534.4 Da

NGFP_N-IsI1

MAskGeElFtGvVPivpLveLDGVmgNHfsVSGegEgDatYgKltLkFicTTgkLPvPwPvlvTTfSyGvQCFaryPD

IsI1-NGFP_C

MAskGeElFtGvVPivpLveLDGVmgNHfsVSGegEgDatYgKltLkFicTTgkLPvPwPvlvTTfSyGvQCFaryPD

NLS-NGFP_N

MaeliPePPkKkKvLgCtAhMAAskGeElFtGvVPivpLveLDGVmgNHfsVSGegEgDatYgKltLkFicTTgkLPv

NLS-NGFP_N-LMO4_{LIMs}

MAELIPEPPKKRRKVELGTHMAKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGN

NLS-NGFP_C

MAELIPEPPKKRRKVELGTAHMGSRFGGGGGGGGGMSAKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGN

NGFPsol_N

MASKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGNHKLEYNNSHVITYADKQGGGGGGGGG-

NGFPsol_C

MGSRFGGGGGGGGGSMASKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGNHKLEYNNSHVITYADKQGGGGGGGGG-

NGFPsol-CGFP (expressed from either plasmid)

MASKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGNHKLEYNNSHVITYADKQGGGGGGGGLLEEFGGGGGGGGGGGNGIKANFKIRHNIEDGGGVLADHYQQNTPGVPDLLHNYLSTQSKLSDKPNEKRDHMVLLEFVTTAGITHGMDLEYK-

NGFPsol_N-LMO4_{LIMs}

MASKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGNHKLEYNNSHVITYADQRRGGGGGGGGSLLTCGGCQQNIGDRYFLKAIDQYWHEDCLSCDLCGRCLGVEVRGLYYKLGRKLCRRDYLRFQGDGLACSCDKIRAYETMRVKDVHLQHFCACACKHHCFVDYLLINSIVIQDIYETKINGII-

NGFPsol_N-LMO2_{LIMs}

MASKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGNHKLEYNNSHVITYADQRRGGGGGGGGSLWRCAGCGGKIADRFFLYAMDSYWHRSCLCSCSQAQLGDIQSTSYKGMILCRNYYLRFNGNGACSOCGQSIAPASELVMRAQGVNYHLKCFCTSTCRNRLEVPGDFHYINGSLFCEHDRTPTALINGHL-

NGFPsol_N-USH_{F1}

MASKGEELFTGVVPILVELDGDVNGHKFSVSVGEGEGDATYKLTKLFICTTTGKLVPWPWLVTTSYGVQCFARYPDHMKQHDFFKSAPEMYQVERTISFKDDGNYKTRAENVFEGLTLVNRIELKGFENDKFGNHKLEYNNSHVITYADQRRGGGGGGGGSLLEEGGGGGGSGGGGGGGGGGGNGIKANFKIRHNIEDGGGVLADHYQQNTPGVPDLLHNYLSTQSKLSDKPNEKRDHMVLLEFVTTAGITHGMDLEYK-
Appendix D

ADKQKGGGGSGGGGSDPTAQVEACPFLKPARFMCMLPCGIAFSSPSSTLEAHQAYYCISHRIKDTDEAGSDKGAGGS
GATAGDAAGLTGGSTEPPA-

NGFP_N-USH_{F9}

MASKGEELFTGVPVILVDELGDVGHKFVSQEGEDATYGKLTLKFICTTTGKPVPWPTLVTTFSGQFCARYPD
HMKDHFDFKSAMPEGYVQERTISFKDDGNYKTRAESKFGDTELVRNRELKGRDFEDGNIHELHKLKLYNNSNYVIT
ADKQKGGGGSGGGGSGNNSVAAAVAAAAAEEVMKCYCSTCDIFNYVKTYLAHHQFYCKNKPFEASDPSFPLHGG
GVAVGLującyVGHHGQKQK-

CGFP_N

MNGIKANFKIRRNIEDGGVQADHYQQNTPIGDGPVLPPDNHYLSTQSKLSKDPNEKRDMVLEFVTAAAGITGMEDYK-

Molecular weight: 10758.8 Da

CGFP_C

MGSEFGGGGGGSGNNGIKANFKIRRNIEDGGVQADHYQQNTPIGDGPVLPPDNHYLSTQSKLSKDPNEKRDMVLEFVTAAAGITGMEDYK-

CGFP_N-Ldb1_{LID}

MNGIKANFKIRRNIEDGGVQADHYQQNTPIGDGPVLPPDNHYLSTQSKLSKDPNEKRDMVLEFVTAAAGITGMEDYK-

Molecular weight: 13342.8 Da

Ldb1_{LID}-CGFP_C

MGSDVMVGGEPPTLMGGEGFEDERLITRLENTQFDAOOGIDEEFGGGGSGGGGSGNNGIKANFKIRRNIEDGGVQAD
HYQQNTPIGDGPVLPPDNHYLSTQSKLSKDPNEKRDMVLEFVTAAAGITGMEDYK-

CGFP_N-LMO4_{LRMs}

MNGIKANFKIRRNIEDGGVQADHYQQNTPIGDGPVLPPDNHYLSTQSKLSKDPNEKRDMVLEFVTAAAGITGMEDYK-

LMO4_{LRMs}-CGFP_C

MGSSWWKRCAGGKGKIAVRFLLYAMDSYWHSRCLCKSSCQACLGLDGTSSYTKSGMILCRNDYIRLFNGSGACSACGQSI
PASELVRMAQVNYLHCFCTCSTCRNLVPGDFHYINGSLFECRDRPTALINGHL-

CGFP_N-IsI1

MNGIKANFKIRRNIEDGGVQADHYQQNTPIGDGPVLPPDNHYLSTQSKLSKDPNEKRDMVLEFVTAAAGITGMEDYK-

LMO4_{LRMs}-CGFP_C

MGSSWWKRCAGGKGKIAVRFLLYAMDSYWHSRCLCKSSCQACLGLDGTSSYTKSGMILCRNDYIRLFNGSGACSACGQSI
PASELVRMAQVNYLHCFCTCSTCRNLVPGDFHYINGSLFECRDRPTALINGHL-

CGFP_N-IsI1

MNGIKANFKIRRNIEDGGVQADHYQQNTPIGDGPVLPPDNHYLSTQSKLSKDPNEKRDMVLEFVTAAAGITGMEDYK-
Appendix D

Molecular weight: 48879.6 Da

CGFP_N-Is1_{LBD}

MNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSLKSKDPNEKRDHMVLEFVTAAGITHGMD
ELYKGGGGSGGGGSGTGVMAASPERHDGGLQANPVEVQSYQPPW-

Is1-CGFP_C

MNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSLKSKDPNEKRDHMVLEFVTAAGITHGMD
ELYKGGGGSGGGGSGMMLAEELDCRHERPGAPGASALCTFSRTPEIPMCAGCQHILDRLFILKALDRHWKCLKC
SDCHVPLAERCFSRGESVYCKDDFKKRGFTKACACLQLGIPTPTQVVRRAQDFVYHLHCFCACVCKQRLATGDEFYLMED
SRVLCKADYETAKQREAATAKPRPTTITAKQLETLLKSYNTSPKPARHREQLSSGTGLMRVQVQNRRRAKKE
KRLKDAGRQRWGQYFRNMRKSRSGSSSDKDSIQEGQDSDADEVSTEPSMADMGPANGLYSSLGEPAPALGRPVGG
LGSSFTLDHGGLTGFEPYRELPSYGPSIPPSAPAFQSLPGFQPLLSSLYPDNLSLVPSGFPFGRPPMRVLAGNPG
SSDLSTESSSGYPDFPASWLPWDEVDHAQF-

CGFP_N-Lhx3

MNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSLKSKDPNEKRDHMVLEFVTAAGITHGMD
ELYKGGGGSGGGGSGMMLAEELDCRHERPGAPGASALCTFSRTPEIPMCAGCQHILDRLFILKALDRHWKCLKC
SDCHVPLAERCFSRGESVYCKDDFKKRGFTKACACLQLGIPTPTQVVRRAQDFVYHLHCFCACVCKQRLATGDEFYLMED
SRVLCKADYETAKQREAATAKPRPTTITAKQLETLLKSYNTSPKPARHREQLSSGTGLMRVQVQNRRRAKKE
KRLKDAGRQRWGQYFRNMRKSRSGSSSDKDSIQEGQDSDADEVSTEPSMADMGPANGLYSSLGEPAPALGRPVGG
LGSSFTLDHGGLTGFEPYRELPSYGPSIPPSAPAFQSLPGFQPLLSSLYPDNLSLVPSGFPFGRPPMRVLAGNPG
SSDLSTESSSGYPDFPASWLPWDEVDHAQF-

Lhx3-CGFP_C

MGSMLLEAEELDCRHERPGAPGASALCTFSRTPEIPMCAGCQHILDRLFILKALDRHWKCLKC
SDCHVPLAERCFSRGESVYCKDDFKKRGFTKACACLQLGIPTPTQVVRRAQDFVYHLHCFCACVCKQRLATGDEFYLMED
SRVLCKADYETAKQREAATAKPRPTTITAKQLETLLKSYNTSPKPARHREQLSSGTGLMRVQVQNRRRAKKE
KRLKDAGRQRWGQYFRNMRKSRSGSSSDKDSIQEGQDSDADEVSTEPSMADMGPANGLYSSLGEPAPALGRPVGG
LGSSFTLDHGGLTGFEPYRELPSYGPSIPPSAPAFQSLPGFQPLLSSLYPDNLSLVPSGFPFGRPPMRVLAGNPG
SSDLSTESSSGYPDFPASWLPWDEVDHAQF-

NLS-CGFP_N

MAELIPEPPKKRKVELGATAHMNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSLKSKDPNE
KRDMVLLEFVTAAGITHGMDELYKGGGGSGGGGSGSEFQIYES-

NLS-CGFP_N-Ldb1_{LBD}

MAELIPEPPKKRKVELGATAHMNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSTQSLKSKDPNE
KRDMVLLEFVTAAGITHGMDELYKGGGGSGGGGSGDVVMGGEPTLMGGEFEDERLITRLENTQF-
Appendix D

CGFP₅-PNRₙF

MNGIKANFKIRHNIEDGGVQLADHYQNTPIGDPVLLPDNHYLSTSQSLKDNPNEKRHDHMLLEFVTAAGITHGMDELYKGGGGSGGGGSSEGREGCNCGAI
STPLWRDGTGHYLCNACGLYHKMNMGMRPLIKPSKRL-

His₆-GFPsol-Lhx₃α

MRGSHHHHHHGLVPRGSASKGEELFTGVVPILVELDGDVNGHKFSVSGEGGADATYGKLTLKFICTTGGKVPWPITLVTTFSYGVQCPFARYPDHMKQDHFDFKSA
MPEGVYQERTISFKDDGVKNKRAEVKFEGLTDLVNFELKGIDKFEDGNILGHKLEYNHSNHNVYITADKQNIGIKANFKIRHNIEDGGVQLADHYQNTPIGDP
VLLPDNHYLSTSQSLKDNPNEKRHDHMLLEFVTAAGITHGMDELYKGSMLLASELCDHRERPAGPSALSACTFSTEIPMCAAGCDQHILDRLFILKALD
RHWSKCLKCSCHVLAERCFSRGESVYCKDFFKFRGKTCACACQNLGPITQPVRRAQDFVYHLHCAYCVCVKSLQATGDEFYLMEDSLVLVCKADYETAKQREAE
ATAKPRFTTITAKQLETLSAYNTSPKPARHVRQELSSSETGLDMRVQVVFQNRRAEKEKRLKDAQRQGWGQYFRNMKSRGSSKSDKISIQEGQDSDAEVSFT
DEPSAMDMPANGLYSSLEPAPALGRFVGGLGSLTDHGGLTGPEQYRELRPGPSYGIPPSAAPQSLPGFQPLLSSLVYPDTNLSSLVPSGPFGGPP
PMRVLACNGPSSDDLTTESSSGYPDFPASPAWLDEVDHAQF-

Molecular weight: 72776.0 Da

Theoretical pI: 6.82

His₆-GFPsol-Isl₁

MRGSHHHHHHGLVPRGSASKGEELFTGVVPILVELDGDVNGHKFSVSGEGGADATYGKLTLKFICTTGGKVPWPITLVTTFSYGVQCPFARYPDHMKQDHF
FKSA MPEGVYQERTISFKDDGVKNKRAEVKFEGLTDLVNFELKGIDKFEDGNILGHKLEYNHSNHNVYITADKQNIGIKANFKIRHNIEDGGVQLADHYQNTP
IGDPVLLPDNHYLSTSQSLKDNPNEKRHDHMLLEFVTAAGITHGMDELYKSMALLASELCDHRERPAGPSALSACTFSTEIPMCAAGCDQHILDRLFILKALD
RHWSKCLKCSCHVLAERCFSRGESVYCKDFFKFRGKTCACACQNLGPITQPVRRAQDFVYHLHCAYCVCVKSLQATGDEFYLMEDSLVLVCKADYETAKQRE
AEATAKPRFTTITAKQLETLSAYNTSPKPARHVRQELSSSETGLDMRVQVVFQNRRAEKEKRLKDAQRQGWGQYFRNMKSRGSSKSDKISIQEGQDSDAEVSFT
DEPSAMDMPANGLYSSLEPAPALGRFVGGLGSLTDHGGLTGPEQYRELRPGPSYGIPPSAAPQSLPGFQPLLSSLVYPDTNLSSLVPSGPFGGPP
PMRVLACNGPSSDDLTTESSSGYPDFPASPAWLDEVDHAQF-

Molecular weight: 67802.0 Da

Theoretical pI: 7.82

Linkers are in italic font and molecular weight was shown only for proteins that were subjected to Western blot.
Appendix E ADH1 promoters in BiFC plasmids

pW410 (with the short **yADH1 promoter**, 411 bp)

```
GCATGCAACCTCTTTTTTTTTTTTTCCCTCTCTCTCCCCCGTTGTGTCTCACCATATCCGCAATGACAAAAAAA
ATGATGGGAAGACCTAAAGGAAAAATAATACGACAAAGACAGCACCAACAGAGATGCTGTGTTTCAGAGCTGATGAGG
GGGATGTCCACACAGAAGCTTTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC
TCCTTCCAGTTACTGGAATTGAAATAAAAAAGTTTGCCGCTTTGCTATCAAATAGACCTGCAATTATT
```

pWAFL (with **full-length yADH1 promoter**, 1482 bp)

```
GCATGCCGTCAGGTCAGGATCGCGCAGAAGATGATGTAATGAAATAGGAAATCAAGGAGCATGAAGGCAAA
AGACATATAAAGGCTGCAAGGAAAAATATAGTGGAAATATGGAATGATGATGATGATGATGATGATGATGATGATG
AGGATTTACGCAATATGCAACTCATGCTGACTGCTGTCGGGAGCCGCCTTCGGCGCCCGCGGCGGACATAGCTG
CGTGAACTTCTTTTCTTTTTTTTTCTTTTCTCTCTCCCCGTTGTGTCTCACCATATCCGCAATGACAAAAAAA
ATGATGGGAAGACCTAAAGGAAAAATAATACGACAAAGACAGCACCAACAGATGTCGTTGTTCCAGAGCTGATGAGG
GGTATCTTCGACCACACGAACTTTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC
TCCTTCCAGTTACTGGAATTGAAATAAAAAAGTTTGCCGCTTTGCTATCAAATAGACCTGCAATTATT
```

pL410 (with the short **yADH1 promoter**, 411 b)

```
GCATGCAACCTCTTTTTTTTTTTTTCTCTCTCTCTCTCCCCCGTTGTGTCTCACCATATCCGCAATGACAAAAAAA
ATGATGGGAAGACCTAAAGGAAAAATAATACGACAAAGACAGCACCAACAGATGTCGTTGTTCCAGAGCTGATGAGG
GGGATGTCCACACAGAAGCTTTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC
TCCTTCCAGTTACTGGAATTGAAATAAAAAAGTTTGCCGCTTTGCTATCAAATAGACCTGCAATTATT
```
pLAF1 (with full-length yADH1 promoter, 1482 bp)

GCATGCCTCGAGTGCTGATCCGGCGGGAGTCGACGCGGGTTGCTGCTGTTTCTGGACATATGACGGATCCGAATTC
AGATCTTGCTGGGCTGAGGAATTCGCGCTGCTGAGGAATTCGAGCTGCTGAGGAATTCGCGCTGCTGAGGAATTC
GGATCC

AATCTTTTGTTTCTCGTCATTTCTCGTTCCTTCTTTTCTCCTTGGGTACCATATGACGGATCC

GroGATC - BamHI
GAAATTC - EcoRI
GCTCAG - PstI
AAGCTT - HindIII
AGATCT - BglII
CATATG - NdeI
CCGGG - SmaI
CTCGAG - XhoI
GCATGC - SphI
TGA/TAA/TA - STOP codons
Appendix F Calculations and curve fitting of data from binding affinity assays

In the competition binding assays described in this thesis, the cleaved Ldb1_{LID} peptide (4.7 kDa) should be displaced by the larger MBP-Ldb1_{LID} construct (48.3 kDa) with an assumed identical binding affinity. In this case there is a fluorescent 'receptor' (A= Fl-Cys-LMO4_{LIMs}, Table F.1) and two homologous non-fluorescent 'ligands' (B=Ldb1_{LID} and B'=MBP-Ldb1_{LID}) as opposed to standard FA competition formats where a smaller fluorescent ligand is displaced from the larger receptor protein resulting in reduced anisotropy. Therefore, instead of two fluorescent species, this assay contains three (free A and two complexes AB and AB'), which makes calculations of binding affinity complex. Note that the total concentrations of A and B are also equal ([A]_T=[B]_T).

Table F.1. Definition of terms.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fluorescently labelled LIMs construct</td>
</tr>
<tr>
<td>B</td>
<td>Ldb1_{LID}</td>
</tr>
<tr>
<td>B'</td>
<td>MBP-Ldb1_{LID}</td>
</tr>
<tr>
<td>AB</td>
<td>Fluorescent-LIMs : Ldb1_{LID} complex</td>
</tr>
<tr>
<td>AB'</td>
<td>Fluorescent-LIMs : MBP-Ldb1_{LID} complex</td>
</tr>
<tr>
<td>[A], [B] and [B']</td>
<td>Concentrations of relevant unbound (free) species</td>
</tr>
<tr>
<td>[AB] and [AB']</td>
<td>Concentrations of relevant complexes</td>
</tr>
<tr>
<td>[A]_T, [B]_T and [B']_T</td>
<td>Total concentrations. Sums of concentrations of a free species and relevant complex(es) it takes part in. [A]_T=[A]+[AB]+[AB'], [B]_T=[B]+[AB] and [B']_T=[B']+[AB']</td>
</tr>
<tr>
<td>r_{obs}</td>
<td>Observed (measured) anisotropy</td>
</tr>
<tr>
<td>r_A, r_AB and r_{AB'}</td>
<td>Anisotropy values of theoretical samples with 100% A, AB or AB' respectively</td>
</tr>
<tr>
<td>r_{max} and r_{min}</td>
<td>Maximal and minimal observed anisotropy for any specific titration (binding assay).</td>
</tr>
<tr>
<td>I_{shift}</td>
<td>Intensity of a shifted complex band in protein gel shift assays</td>
</tr>
<tr>
<td>I_{ns}</td>
<td>Intensity of a non-shifted band(s) in protein gel shift assays</td>
</tr>
<tr>
<td>I_{T}</td>
<td>Total fluorescence intensity in a gel lane. I_{T} = I_{shift} + I_{ns}</td>
</tr>
</tbody>
</table>
In this analysis it is assumed that the Ldb1\textsubscript{LID} peptide binds along the labelled LIMs construct without significantly changing shape and size of the labelled construct upon dissociation. Therefore, it can be assumed that the relevant anisotropy value of a sample with 100% of labelled-LIMs monomer (r\textsubscript{A}) or with a 100% labelled-LIMs:LID complex (r\textsubscript{AB}) are approximately the same.

\[r_A \approx r_{AB} \quad \text{Equation F.1} \]

The observed anisotropy (r\textsubscript{obs}) is a sum of anisotropies from the relevant labelled species,

\[r_{obs} = r_A \cdot f(A) + r_{AB} \cdot f(AB') + r_{AB} \cdot f(AB) \quad \text{Equation F.2} \]

By replacing the \(r_A \) with \(r_{AB} \) and some rearranging the following is obtained,

\[r_{obs} = r_{AB} \cdot (f(A) + f(AB)) + r_{AB} \cdot f(AB') \quad \text{Equation F.3} \]

and since \(f(A) + f(AB) + f(AB') = 1 \)

\(f(A) + f(AB) \) can be substituted to obtain

\[r_{obs} = r_{AB} \cdot (1 - f(AB')) + r_{AB} \cdot f(AB') \quad \text{Equation F.5} \]

which can be further rearranged to

\[r_{obs} = r_{AB} + f(AB') \cdot (r_{AB} - r_{AB}) \quad \text{Equation F.6} \]

and knowing that \(r_{AB'} = r_{max} \) and \(r_{AB} = r_{min} \), a normalized response \(r_n \) can be calculated

\[r_n = (r_{obs} - r_{min}) / (r_{max} - r_{min}) \quad \text{Equation F.7} \]

Since

\[r_n = f(AB') = [AB']/A_T \quad \text{Equation F.8} \]

\(r_n \) values can be used to plot the data.

In gel shift experiments, each lane contains bands with the free labelled monomer and/or the complex(es) containing it, whereas the band intensities are proportional to amounts of labelled monomer in each band. Even though the reaction is not at equilibrium during electrophoresis, it is assumed that for strong interactions (with low off rates) and at a low temperature (4° C in this case), the ratio of band intensities in each lane is a good approximation to a ratio of labelled species in the relevant sample. If the bands in a gradient gel do not have a significant smear, this assumption is likely to be true.

A ratio of the shifted band intensity (I\textsubscript{shift}) vs. the sum of shifted and non-shifted (I\textsubscript{ns}) band intensities equals the fraction of labelled protein that is in the complex:

\[I_{\text{shift}}/(I_{\text{shift}}+I_{\text{ns}}) = [AB']/[A]_T \quad \text{Equation F.9} \]
and if the following is defined
\[I_{\text{total}} = I_{\text{shift}} + I_{\text{ns}} \]
\[I_{\text{shift}}/I_T = [AB']/[A]_T \]
Equation F.10
Equation F.11

Since \(I_T \) calculations were not always reliable, and knowing that multiplying a function by a constant would not affect the IC\(_{50}\) estimate from the non-linear regression analysis [176], \(I_{\text{shift}} \) instead of \(I_{\text{shift}}/I_T \) values could be easily entered when the function is fitted, provided that the slope (k) parameter is not fixed.

F.1 Fitting the data for homologous competition binding with ligand depletion

A solution to the ligand depletion problem can be obtained [323, 350]. When two different constructs \(B = \text{Ldb1}_{LID} \) and \(B' = \text{MBP-Ldb1}_{LID} \) with the same binding affinity \(K_d \) for a fluorescently labelled protein (A) are in competition and total concentrations of A and B are the same and constant, assuming an equilibrium and no non-specific binding, the following equations can be worked out:

\[[AB'] = [A]_T[B']/([B] + [B'] + K_d) \]
Equation F.12

and the experimentally obtained responses (Y) to a titration of \([B']_T \) can be normalized,

\[(Y - Y_{\text{min}})/(Y_{\text{max}} - Y_{\text{min}}) = Y_N \]
Equation F.13

As

\[Y_N = [AB']/[A]_T \]
Equation F.14

using the F.12, the following can be obtained

\[Y_N = [B']/([B] + [B'] + K_d) \]
Equation F.15

At equilibrium, the fractions of free vs. total protein are the same for B and B', therefore

\[[B] = [B'] \cdot [B]/[B']_T \]
Equation F.16

and

\[[B'] = [B']_T - [AB'] \]
Equation F.17

so the following can be derived:

\[Y_N = ([B']_T - [AB'])/(([B']_T - [AB']) \cdot ([A]_T/[B']_T + 1) + K_d) \]
Equation F.18

and after exchanging \([AB'] = [A]_T \cdot Y_N\) the following is obtained

\[([A]_T^2/[B']_T + [A]_T) \cdot Y_N^2 - (K_d + 2 \cdot [A]_T + [B']_T) \cdot Y_N + [B']_T = 0 \]
Equation F.19

Consequently, the solution to this quadratic equation gives
\[Y_N = \left(-b - ((b)^2 - 4 \cdot a \cdot c)^{1/2} \right) / (2 \cdot a) \]

Equation F.20

where

\[a = \frac{[A]^T}{[B']^T} + [A]^T \]

Equation F.21

\[b = -(K_d + 2 \cdot [A]^T + [B']^T) \]

Equation F.22

\[c = [B']^T \]

Equation F.23

By entering values for \([A]^T\) and fitting this formula to experimental data for \([B']^T\) and \(Y\) (\(Y_N\)) in the Origin9.1 program, \(K_d\) values were determined.