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Abstract

This paper discusses the theoretical properties and the empirical application of an improved version of

the ‘relative advantage maximising’ (RAM) model. This model shares several desirable features of a
set of models based on random regret minimisation (RRM), such as parsimony and choice set
dependence. Although model fit differences are small, a preliminary comparison shows that the

RAM model empirically outperforms the standard random utility maximisation (RUM) model,
the RRM model, and a hybrid RUM–RRM model in all eight data sets analysed. The paper
concludes with a discussion of the marginal willingness to pay (WTP) measures derived from the

RAM model.
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1.0 Introduction

Ever since discrete choice modelling became popular in the 1970s, the majority of
applications have used a context-independent specification to represent the utility of an
alternative. By context independence, it is usually assumed that the overall utility of an
alternative is determined by the level of its attributes multiplied by a weighting parameter
which accounts for the marginal (dis)utility input of that attribute. The modelled
component of utility is then described by the sum of these individual part-utilities. For
reasons of convenience and analytical tractability, the context-independent, linear additive
form remains popular even today. In this standard random utility maximisation (RUM)
specification, the utility of an alternative is assumed to be invariant to the presence or
absence of other alternatives, whether in the choice set or in the real world.

This is not to say that other representations of utility have not been considered in the
literature (see Leong and Hensher (2012a) for a review). More recently, a random regret
minimisation (RRM) approach, which is essentially a context-dependent utility specifica-
tion, has been advocated as a behavioural alternative to the context-independent RUM
model (Chorus et al., 2008; Chorus, 2010, 2012). In the RRM environment, rather than
assuming that people choose the alternative that provides the highest pay-off in terms of
the part-utilities described earlier, the main hypothesis is that people seek to minimise
the negative emotions associated with decision making. Quite plausibly, opting for any
chosen alternative creates a negative emotion or feeling of loss when the attributes of
that chosen alternative fare worse than those of the non-chosen alternatives. Hence, the
preference for an alternative in random regret minimisation explicitly makes references to
the attribute values of the competing alternatives in the choice set.

Another fairly robust empirical finding to emerge from the psychology and marketing
literature is that of a heuristic known as extremeness aversion (Simonson and Tversky,
1992; Tversky and Simonson, 1993). If an extreme alternative is defined as one with both
the best value on some subset of attributes, and the worst value on other attributes,
then a specific form of extremeness aversion known as the compromise effect is said to
occur when the inclusion of an extreme alternative in the choice set causes the pair-wise
choice share of the compromise or the in-between alternative to go up relative to the
other extreme alternative.1 It is normally supposed that a ‘betweenness inequality’ holds
in decision making, in which the middle alternative loses relatively more than an existing
extreme alternative when another extreme alternative is introduced (Tversky and Simonson,
1993). Hence, the compromise effect can be seen as a violation of the betweenness
inequality and its existence is generally attributed to a consequence of loss-aversive
behaviour (Kivetz et al., 2004).

Models that account for the compromise effect have been suggested in the literature
(Tverksy and Simonson, 1993; Kivetz et al., 2004; Chorus, 2010; Rooderkerk et al.,
2011). In this paper, we examine the performance of another model which, like the
RRM model, also explains the compromise effect; one that Tversky and Simonson
(1993) first called a ‘componential context model’. Their model representation was later

1This notion of ‘extremeness’ might be distinguished from ‘dominating/dominated’ alternatives, in which all

attributes of an alternative are better/worse than a competing alternative.
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rechristened as a ‘relative advantage model’ by Kivetz et al. (2004). In the context of
discrete choice modelling, we prefer to term this model as a ‘relative advantage maximising’
or RAM model, as it will become readily apparent in the description of the model that the
relative advantage of an alternative enters into its utility function as a context-dependent
component to be maximised.

The paper is organised as follows. Section 2 discusses the RRM model and the RAM
model. Section 3 discusses the empirical results and some policy implications of this
work. Section 4 provides the conclusions.

2.0 Models of Context Dependence

2.1 The Random Regret Minimisation (RRM) model

Regret-based theories and models are built on the premise that people aim to minimise
anticipated regret when making a choice. The RRM model was primarily developed to
analyse riskless choice involving multi-attribute alternatives and, in this context, regret is
said to occur when the attributes of a non-chosen alternative perform better than the
attributes of the chosen alternative (Chorus, 2012).

To describe the Chorus (2010) version of the RRM model, first define, in equation (1),
the binary or pair-wise regret associated with considering alternative j as opposed to
alternative j ′:

reg( j, j ′) =
∑
k

ln[1+ exp(bj ′kXj ′k − bjkXjk)]. (1)

As a matter of notation, Xjk refers to the value of attribute k in alternative j and bjk is its
corresponding taste parameter. The total regret associated with alternative j is the sum of
binary regrets over all alternatives j ′ in choice set S; that is, equation (2):

reg( j) =
∑
j ′[S
j ′ = j

reg( j, j ′). (2)

The RRM model can be estimated by observing that minimising the regret function is
equivalent to maximising the negative of regret.

In the RRM model, preferences for each alternative depend not only on the attribute
values for that alternative, but also on the relative performance of these attributes against
their counterpart attribute levels in all the other alternatives in the choice set. In other
words, preferences for an alternative are context dependent or choice-set specific. The
RRM allows preferences to change even if an alternative’s attribute levels remain constant
from choice set to choice set, as long as there is a change in the attribute levels of any of
the other alternatives to which an alternative is being compared.

Arising from the convexity property of the regret function, it has been observed that
the RRM model is able to capture semi-compensatory behaviour2 as well (Chorus,

2Semi-compensatory behaviour occurs when a disproportionately large improvement in an attribute is required

to offset a given decline in the performance of another attribute. If the decline in the performance of the latter

attribute is large enough, no amount of improvement in the first attribute will compensate sufficiently.
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2010). The extent to which an improvement in an attribute can compensate for the
deterioration in the value of another attribute depends very much on its value relative to
the other alternatives. For example, an improvement in an attribute that is already far
superior to its counterparts in the other alternatives leads to a minimal reduction in regret,
while a worsening of another attribute that was comparing poorly to begin with can lead
to a substantial increase in regret. This property also allows the RRM model to explain
the compromise effect. As defined earlier, since extreme alternatives contain both best- and
worst-performing attributes in the choice set, the higher amount of regret engendered by
their worst-performing attributes, described in equation (1), is not fully offset by their
best-performing attributes, and this can lead to the extreme alternative being relatively
less preferred and the compromise alternative being relatively more preferred.

Parsimony is another frequently cited advantage of the RRM model (Chorus, 2010).
The RRM model captures context dependence without the need to estimate additional
parameters beyond what is needed for the linear additive multinomial logit (MNL)
RUM model. Despite these desirable properties, empirical work has shown that the
RRM model delivers a somewhat mixed performance in terms of improving the goodness
of fit relative to the standard RUM models, especially for stated preference data (Chorus,
2012).

One attempt to refine the RRM model is to introduce heterogeneity in decision making
along the dimension of how attributes are processed. For example, in a hybrid RRM/linear
additive RUM model, respondents are assumed to process a subset of attributes according
to RRM, and the remaining attributes of the alternatives according to a linear additive
processing rule (Chorus et al., 2013). If it is assumed that attributes 1, . . . , m of alternative
j are processed according to linear additive RUM and attributes m+ 1, . . . ,K are
processed according to RRM, then the observed component of utility can be described
by equation (3):

Vj = b0, j +
∑

k= 1,...,m

bjkXjk −
∑
j ′ [S
j ′= j

∑
k=m+ 1,...,K

ln[1+ exp(bj ′kXj ′k − bjkXjk)]. (3)

As there is no theory to determine a priori which attributes are RUM-processed and
which are RRM-processed, one approach that can be adopted is to search over all possible
RUM/RRM combinations of attributes to find the one combination that results in the best
model fit.

2.2 The Relative Advantage Maximisation (RAM) model

2.2.1 Model specification
Like the RRM model, the RAM model assumes that each alternative is assessed against all
other alternatives in the choice set. However, one key difference between RAM and RRM is
that the RAM model explicitly considers the disadvantages and advantages of an alterna-
tive, with the advantages of an alternative expressed as a ratio to the sum of advantage and
disadvantage.

The RAM model described and estimated in this paper is conceptually similar to the
model discussed by Kivetz et al. (2004). The main differences are the functional form
used to represent the advantage and disadvantage function, as well as the imposition of
an additional assumption of symmetry between advantage and disadvantage.
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Before describing the RAMmodel itself, it will be useful first to define the disadvantage
of j over j ′ for an attribute k, denoted by Dk( j, j ′). We depart from the piecewise functions
used by Kivetz et al. (2004), and suggest that an improvement over the original RAMmodel
might be to note that regret and disadvantage are practically synonymous, and so the
smoothed regret function proposed in Chorus (2010) may be used to represent Dk( j, j ′),
such as in equation (4):

Dk( j, j ′) = ln[1+ exp(bj ′kXj ′k − bjkXjk)]. (4)

How the advantage variable Ak( j, j ′) is to be specified is derived from various assumptions
about the model. In the simplest case, if symmetry between advantage and disadvantage is
assumed — that is, if the advantage of alternative j over alternative j ′ with respect to an
attribute k is the corresponding disadvantage of j ′ over j with respect to the same attribute
— then equation (5) follows:

Ak( j, j ′) = Dk( j ′, j) = ln[1+ exp(bjkXjk − bj ′kXj ′k)]. (5)

This assumption of symmetry in the advantage and disadvantage functions allows a
parsimonious representation for the RAM model and will be used for the remainder of
this paper.

Having now defined Ak( j, j ′) and Dk( j, j ′), we proceed to define A( j, j ′), the binary
advantage of alternative j over alternative j ′, and D( j, j ′), the binary disadvantage of j
over j ′, according to equation (6):

A( j, j ′) =
∑
k

Ak( j, j ′) and D( j, j ′) =
∑
k

Dk( j, j ′). (6)

The relative advantage of alternative j over alternative j ′, denoted by RA( j, j ′), may now be
defined in equation (7) as:

RA( j, j ′) = A( j, j ′)
A( j, j ′) +D( j, j ′) . (7)

By this definition, RA( j, j ′) only takes values in the open interval between zero and one.
A graph of the function

f (z) = ln(1+ exp(z))
ln(1+ exp(z)) + ln(1+ exp(−z))

is plotted in Figure 1 as a means of visualising RA( j, j ′) in the case of a single attribute.
Where the alternatives contain multiple attributes, changing the value of one attribute
holding all else constant, is akin to adding a constant to both the numerator and the
denominator, and this does not fundamentally alter the shape of the function.

It is immediately obvious from Figure 1 that RA( j, j ′) follows an S-shaped curve
reminiscent of the value function from prospect theory (Kahneman and Tversky, 1979),
and that it captures the notion of concavity in gains and convexity in the losses. This is
a rather nice result which suggests that the use of the symmetry assumption Ak( j, j ′) =
Dk( j ′, j) is not entirely inappropriate. The difficulties in model estimation experienced by
Kivetz et al. (2004) may have been related to their use of a kinked relative advantage
function, and this issue is avoided as the improved RA( j, j ′) is now a smooth function.
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The observed component of utility for alternative j is then written as a linear combi-
nation of the linear additive RUM component and the relative advantage component, as
shown in equation (8):

VRAM
j = b0,j +

∑
k

bjkXjk +
∑
j ′[S
j ′=j

RA( j, j ′). (8)

Unlike the standard RRM model (for example, Chorus, 2010), the RAM model allows for
a combination of context-independent (‘inherent’) preferences and context-dependent
preferences, which is consistent with Kivetz et al.’s (2008) hypothesis that preferences
may not be entirely context dependent. The RAM model acknowledges that preferences
are to a certain extent shaped by the choice context, but also allows each person a set of
context-free, innate preferences which are brought to bear on each choice situation.

For this paper, it will be assumed that all attributes which appear in the context-
independent RUM component will also be included in the relative advantage component
of VRAM

j . It might also be observed that both the context-independent component and the
relative advantage component are for the moment given equal weights in VRAM

j . In future
extensions of the RAM model, the weight of the relative advantage component of utility
can be conditioned by means of certain socio-economic characteristics or even choice-set
characteristics, using a multiple heuristics approach in the utility function (Leong and
Hensher, 2012b).

Following standard practice, the total utility for an alternative is the sum of the observed
component and an unobserved error component 1j , or Uj = Vj + 1j. We assume that 1j is
i.i.d. EV type I distributed, so that all models estimated are of the MNL form.3 Extensions
of the model to account for random parameters will be left for future work.

Figure 1
Graph of the R( j, j ′) Function
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3Note, however, that the RAM model does not display the IIA property because of the embedded context-

dependent effects.
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3.0 Empirical Application

3.1 Description of the data sets

Eight stated choice (SC) data sets are used in the empirical application. The first seven data
sets (DS 1–DS 7) are from five Australian and two New Zealand toll road studies that were
conducted between 1999 and 2008. The choice experiments involved each sampled respon-
dent answering sixteen choice scenario questions. In each choice question, the respondent
was required to make a choice among three alternatives, one of which was described by a
recent trip, and the other twowere unlabelled alternatives defined by attribute levels pivoted
off of the recent (or reference) trip profile. DS 8 involved mode choice in a context of tra-
velling within the Central Business District in which a proposed Metro system is offered as
one of the alternatives. Each of the six choice questions put to the respondents in this data set
were described by labelled alternatives, viz. bus, rail, proposed metro, walk, and taxi. All eight
surveys were conducted as computer-aided personal interviews (CAPI).

We briefly describe each data set below. Further details of the toll-road data sets are
provided in Hensher et al. (2012). The metro data set is extensively described in Hensher
et al. (2011).

3.1.1 Data set 1
Undertaken in 2008, this study uses a D-efficient experimental design structured to increase
the statistical performance of models with relatively smaller samples than are required for
other less-efficient (statistically) designs such as orthogonal designs (see, for example, Rose
et al., 2008). In total, 280 car commuters (with less than 120 minutes’ trip length) were
sampled.

The three alternatives shown in each choice set were described in terms of free flow time,
slowed down time, stop/start/crawling time, running cost, toll cost, and travel time varia-
bility (see Figure 2). For all attributes except the toll cost, the values for the SC alternatives
are variations around the values for the current trip.

3.1.2 Data sets 2–7
DS 2 (Australia, 2000), DS 3 (New Zealand, 1999), DS 4 (Australia, 2005), DS 5 (Australia,
2004), DS 6 (Australia, 2004), and DS 7 (New Zealand, 2007) used a survey similar to that
shown in Figure 3. An orthogonal design was used in DS 2 and DS 3, and a D-efficient
design was used for DS 4–DS 7. All studies allowed the disaggregation of trip cost into
the running cost and the toll cost. In terms of travel time, respondents in DS 3 and DS 4
were given three time components, which were free flow time, slowed down time, and
stop/start/crawling time; while respondents in DS 2, DS 5, DS 6, and DS 7 were given
two time components, which were free flow time and congestion time.

In all the seven toll-road data sets, we exclude trip time variability in all model
estimation, given previous evidence using these data sets that, with the exception of DS 1,
the variability attribute was poorly specified and often not statistically significant. Hence
in DS 1, DS 3, and DS 4, the attributes of the alternatives that are modelled in the utility
function are: free flow time (FF), slowed down time (SDT), stop/start/crawling time (SST),
running cost (RC), and toll cost (TC). In DS 2, DS 5, DS 6, and DS 7, the attributes
modelled in the utility function are: free flow time (FF), congestion time (CT), running
cost (RC), and toll cost (TC).
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Figure 2
Illustrative Screenshot of Choice Experiment Used in Study 1

Figure 3

Illustrative Screenshot of Choice Experiment Used in Studies 2–7
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The sample size for car commuters ranges from 57 in DS 5 to 280 in DS 1. Given that
the sampled New Zealand’s car commuters had no tolling experience before they were
interviewed, self-reported toll costs are only available for Australian studies.

3.1.3 Data set 8
DS 8 provides some variation from the choice contexts of the previous data sets. This mode
choice study used a Bayesian D-efficient design (see, for example, Bliemer et al., 2008), with
screenshots illustrated in Figure 4. Among other attributes, the five labelled alternatives
were described in terms of access and egress modes (where applicable), one-way cost,
and attributes that attempt to capture travel time variability. As with the toll-road studies,
respondents were asked to provide information, either real or perceived, related to the levels
of the relevant alternatives for a recent trip that they undertook. The SC experiment then
‘pivots’ the attribute levels of the various alternatives around this recent trip profile. The
sample size for this data set is 269. For this data set, the attributes modelled in the utility
function are fare and average travel time.

3.2 Empirical results

As a result of the unlabelled nature of the choice experiments in each of the toll-road data
sets, we modelled taste parameters as being generic across all alternatives. For convenience,

Figure 4
Illustrative Screenshot of Choice Experiment Used in Study 8
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the cost and time parameters in DS 8 were also modelled generically. All models were
estimated with Nlogit 5.0.

As reported in previous studies (see, for example, Chorus, 2012), we find that the full RRM
model, compared to the standard linear additive RUM, offers a very small improvement
in model fit in some, but not all, of the data sets considered (see Table 1 for a summary of
model fit across all model types). Out of the eight data sets studied, the RRM model only
fits DS 3 and DS 5 slightly better. We also report the results of the best performing hybrid
RRM–RUM model, where some attributes are processed according to regret minimisation
and the rest according to linear additive RUM. The empirical evidence for the hybrid
model is also somewhat mixed. In DS 3, DS 5, DS 6, and DS 7, some marginal improvement
over the RUMmodel in the log likelihood ratios can be observed, while in the other data sets,
the hybrid model performs slightly worse than the RUMmodel. In all data sets, however, the
hybrid model is a better performer compared to the full RRM model.

Turning to the symmetric RAMmodel, though, we find some improvement in model fit
(albeit small) compared to the standard RUM, the RRM, and the hybrid RRM–RUM
models, in almost all of the data sets studied, with the single exception that the hybrid
model outperforms the RAM model in DS 5.4 This improvement can be somewhat
larger, as seen in DS 2, DS 3, and DS 4, even if it is modest in some other cases. Overall,
this initial finding from a small sample of data sets is noteworthy considering that all
models contain the same number of estimated parameters. Besides the seven unlabelled
toll-road studies with three alternatives per choice task, it is also worth mentioning that
even when the choice context is varied (DS 8), the RAM model remains the best performer
among all the models compared.

Our results stand in contrast to the conclusion obtained by Kivetz et al. (2004). They
found that the RAM model was a consistently poorer performer on a series of consumer
choice data sets. As alluded to in Section 2.2, Kivetz et al. (2004) had to circumvent the
difficulties of estimating a highly non-linear disadvantage function by imposing a priori
restrictions on certain parameters in the disadvantage function and then employing a
grid search to find an optimal estimate for other key parameters. With the suggested
improvement in the specification of the functional form of the RAM model, and with
advances in software, such arbitrary restrictions and grid searches are no longer required.

4Results for the symmetric version of the RAM model, using piecewise functions as advocated by Kivetz et al.

(2004), are available from the corresponding author upon request.

Table 1
Summary of Overall Goodness of Fit of all Models

DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 DS 8

Australia Australia NZ Australia Australia Australia NZ Australia

2008 2000 1999 2005 2004 2004 2007 2009

Log-likelihood

Linear additive RUM −3434.58 −1862.23 −1694.93 −2670.14 −847.75 −3031.58 −1631.79 −2278.73

RRM −3439.32 −1951.54 −1691.55 −2683.70 −847.55 −3044.06 −1639.22 −2285.18

Hybrid RRM–RUM −3434.79 −1872.09 −1690.49 −2670.20 −846.53 −3029.70 −1631.14 −2277.98

Symmetric RAM −3433.77 −1854.09 −1688.83 −2664.50 −847.29 −3027.75 −1630.32 −2276.73
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We also find that the estimation of the model was not particularly sensitive to the choice
of starting values, despite the highly non-linear nature of the utility function. While the
actual run times are highly dependent on the choice of starting values, in our experience,
none of the run times exceeded three minutes.

An examination of the parameter estimates (see Tables A.1 to A.8 in Appendix 1) shows
that the symmetric RAM model is able to replicate the results of the RUM model, where
the latter model produces parameter estimates that are of the expected sign and are statisti-
cally significant at the 5 per cent level. Moreover, the z-ratios of the estimates in the RAM
model are comparable to the RUM, the RRM, and the hybrid models. The only instance
where the RRM model might be said to be preferable to the RAM model occurs in DS 2,
where the RC parameter weight is statistically significant only in the RRM model, and not
in any of the other three models. However, in this case, the RRM model displays a large
deterioration in the LL statistic, which raises concerns about the predictive validity of
the RRM model.

3.3 Marginal willingness to pay measures (value of travel-time savings)

3.3.1 Linear additive RUM model
The value of travel-time savings (VTTS) in $/person-hour or the marginal willingness to
pay for a one unit reduction in travel time is given in equation (9) by:5

VTTSj = 60×
∂Vj/∂(time)
∂Vj/∂(cost)

. (9)

Equation (9) is the ratio of the marginal utility with respect to time to the marginal utility
with respect to cost. In the toll-road data sets, since there are generally two cost components
modelled in the utility function, ∂Vj/∂(cost) can be expressed as a weighted average of
∂Vj/∂RCj and ∂Vj/∂TCj, as shown in equation (10):

∂Vj

∂(cost) =
RCj

RCj + TCj

×
∂Vj

∂RCj

+
TCj

RCj + TCj

×
∂Vj

∂TCj

. (10)

For the RUM model, (∂Vj/∂RCj) = bRC and (∂Vj/∂TCj) = bTC.

In DS 2, DS 5, DS 6, and DS 7, where the only time components modelled are FF and
CT, the VTTS measure is obtained as a weighted average of ∂Vj/∂(FFj)/∂Vj/∂(cost) and
∂Vj/∂(CTj)/∂Vj/∂(cost), as in equation (11):

VTTSj = 60×
FFj

FFj + CTj

×
∂Vj/∂(FFj)
∂Vj/∂(cost)

+
CTj

FFj + CTj

×
∂Vj/∂(CTj)
∂Vj/∂(cost)

[ ]
. (11)

In DS 1, DS 3, and DS 4, where the FF, SDT, and SST time attributes are modelled in the
utility function, the VTTS expression is simply an extension of equation (11) — that is,
equation (12):

VTTSj = 60×
FFj

TTj

×
∂Vj/∂(FFj)
∂Vj/∂(cost)

+
SDTj

TTj

×
∂Vj/∂(SDTj)
∂Vj/∂(cost)

+
SSTj

TTj

×
∂Vj/∂(SSTj)
∂Vj/∂(cost)

[ ]
,

TTj = FFj + SDTj + SSTj .

(12)

5A multiplication by sixty is appropriate, since the time attributes were presented in minutes.
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3.3.2 The RRM model and the hybrid RRM–RUM model
As regret minimisation is equivalent to maximising the negative of regret, the choice
problem in the full RRM model may be stated as choosing an alternative j to maximise
Uj = Vj + 1j , where Vj = −reg( j) and 1j is i.i.d. EV type I.

Where an attribute is processed according to random regret minimisation, the marginal
utility ∂Vj/∂Xjk with respect to Xjk will be specific to the alternative and also specific to
the choice set, as the attribute value of the alternative and its counterpart values in all
competitor alternatives enter into this expression. Therefore, equation (13) follows:

∂Vj

∂Xjk

=
∑
j ′ [S
j ′ = j

bk

1+ exp[bk(Xjk − Xj ′k)]
. (13)

By appropriate substitution of ∂V/∂Xjk in equation (13) into equations (10) to (12), the
VTTS expressions in the case of the full RRM follow analogously.

In the hybrid RRM–RUM model, the expressions for the partial derivatives of Vj with
respect to Xjk will either follow equation (13) if the attribute is RRM-processed or will
simply be bk if the attribute is RUM-processed. Again, by the appropriate substitution,
the VTTS expressions can be derived from equations (10) to (12).

3.3.3 The RAM model
Recall the observed component of utility in the RAM model, replicated in equation (14):

VRAM
j = b0, j +

∑
k

bkXjk +
∑
j ′[S
j ′=j

R( j, j ′). (14)

As a result of the advantage function A( j, j ′) =
∑

k Ak( j, j ′) and the disadvantage function
D( j, j ′) =

∑
k Dk( j, j ′) appearing in R( j, j ′), the partial derivatives of R( j, j ′) and VRAM

j

with respect to Xjk will be a function of all attributes of all alternatives, and not simply a
function of attribute k alone. First, equation (15) follows directly from the definitions of
A( j, j ′) and D( j, j ′) :

∂A( j, j ′)
∂Xjk

= bk

1+ exp[−bk(Xjk − Xj ′k)]
and

∂D( j, j ′)
∂Xjk

= −bk

1+ exp[bk(Xjk − Xj ′k)]
. (15)

Equation (16) follows:

∂VRAM
j

∂Xjk

= bk +
∑
j ′[S
j ′=j

∂R( j, j ′)
∂Xjk

= bk +
∑
j ′[S
j ′=j

D( j, j ′) ∂A( j, j
′)

∂Xjk

− A( j, j ′) ∂D( j, j ′)
∂Xjk

A( j, j ′) +D( j, j ′)[ ]2
. (16)

Again, by appropriate substitutions into equations (10) to (12), the VTTS for the RAM
model may be obtained.
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3.3.4 Estimates and discussion
As a result of context dependency, each alternative in each choice set will have a unique
VTTS, but following Chorus et al. (2013) and restricting the VTTS calculations only to
those alternatives actually chosen by the respondents, the VTTS distribution for each
model type for the toll-road data sets was simulated using the Krinsky and Robb (1986)
procedure with 5,000 replications. A summary of the VTTS estimates is presented in
Table 2. These estimates are intended as a comparison across the four model types,
rather than a representation of respondents’ actual VTTS values, since hypothetical attri-
bute values generated in the experimental design are inserted into the VTTS equations
for the RRM, hybrid RRM–RUM, and RAM models.

Between the symmetric RAM model and the linear additive RUM model, there is
nothing much to suggest that the mean VTTS estimates are systematically higher or
lower in one model compared with the other. However, a more appropriate comparison
might be made between the RAM and RRM VTTS estimates, since these models are
most similar to each other in terms of requiring the attribute values of all competitor
alternatives to enter into the VTTS expression of the alternative being considered. In this
regard, there is again nothing much (at least in the toll-road data sets) to suggest that
the RAM model is producing consistently higher or lower mean VTTS estimates than
the RRM model, although the much lower estimate from the RRM in DS 2 might be
treated with more caution in light of the significantly poorer model fit of the RRM and
the wider 95 per cent confidence interval of the estimates. The z-ratios (mean/standard

Table 2

Summary of VTTS Measures Across Model Types

DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7

Australia Australia NZ Australia Australia Australia NZ

2008 2000 1999 2005 2004 2004 2007

Linear additive RUM

Mean ($/person-hour) 12.26 13.25 9.15 12.85 16.23 14.51 12.92

z-ratio 8.64 36.85 4.27 10.59 7.61 20.91 11.51

95% confidence interval 9.48–15.04 12.55–13.96 4.95–13.35 10.48–15.23 12.05–20.40 13.15–15.87 10.72–15.11

RRM

Mean ($/person-hour) 13.04 8.67 10.02 11.41 16.34 14.74 13.50

z-ratio 8.33 2.36 3.16 10.87 7.54 20.21 10.39

95% confidence interval 9.97–16.11 1.46–15.88 3.81–16.24 9.35–13.47 12.09–20.58 13.31–16.17 10.95–16.05

Hybrid RRM–RUM

Mean ($/person-hour) 12.94 11.53 8.86 11.76 15.57 15.80 14.59

z-ratio 8.47 32.83 3.55 10.77 7.28 22.94 11.02

95% confidence interval 9.95–15.94 10.85–12.22 3.96–13.75 9.62–13.90 11.38–19.76 14.45–17.14 12.00–17.18

Symmetric RAM

Mean ($/person-hour) 12.17 13.51 8.79 12.87 16.18 14.52 12.86

z-ratio 10.73 35.22 6.67 11.90 8.38 22.42 12.70

95% confidence interval 9.95–14.39 12.76–14.27 6.21–11.37 10.75–14.99 12.39–19.97 13.25–15.79 10.88–14.85

Note: VTTS estimates presented in the currency of the country where the experiment was conducted.

Contrasts of Relative Advantage Maximisation Leong and Hensher

179



deviation) of the RAM VTTS estimates are comparable to the RUM and hybrid models,
and in all cases are higher than their counterpart RRM z-ratios, suggesting that the
RAM model offers a good degree of precision in estimating VTTS.

In terms of comparisons across different heuristics, tests of differences between pairs of
models RUM–RRM, RUM–Hybrid, RUM–RAM, RRM–Hybrid, RRM–RAM and
Hybrid–RAM show that the differences in mean VTTS between models is small and
statistically insignificant, with the exception of the Hybrid–RUM and Hybrid–RAM
model pair in DS 2. However, in practice, only mean VTTS values are generally used,
and the differences in means do reveal substantial time-benefit differences when applied
to specific projects. For example, in DS 4, the hybrid model predicts a mean VTTS of
$11.76, while the RAM predicts a mean VTTS of $12.87.

Since the attribute values of all available alternatives enter the RAM-based VTTS
equation, the RAM VTTS measures will generally change when the attributes of
alternatives that compete with a considered alternative change. This is fully in line with
the notion that the RAM model, together with the RRM and hybrid models, implies
choice set-specific preferences. We could not agree more with the argument advocated by
Chorus et al. (2013) that this allows for a richer interpretation of the implied trade-offs
that are made as choice set composition is varied.

Allowing preferences to be choice set-specific may seemingly imply that models like the
RAM, RRM, and hybrid RRM–RUM are less suitable for the derivation of VTTS
measures. After all, the VTTS measures are now a function of hypothetical attribute
values, which are a function of the experiment design. For the policy analyst, the task of
deciding an appropriate VTTS estimate appears to be even more challenging than
before. However, a careful assessment of the VTTS equation will reveal that the range of
policy options may actually be expanded under the assumption of choice set-specific
preferences. The policy maker can influence VTTS quite substantially simply by framing
and appropriately defining alternatives and choice sets in the public eye. For example, to
increase VTTS and perhaps the chance of a transport project being approved, the policy
maker could paint an alternative scenario with very poor attribute values (if nothing is
done), so that the transport project, in comparison, will appear to have a very large relative
advantage compared with the status quo or no-improvement alternative.

4.0 Conclusion

This paper has introduced and discussed an improved version of the RAM model. In light
of relatively unsuccessful attempts at estimating a RAM model in the past (Kivetz et al.,
2004), the major innovation of this paper has been to suggest an easily estimable form of
the RAMmodel, based on the smoothed regret function of the RRMmodel. The proposed
symmetric RAM model is just as parsimonious as the RUM, RRM, and hybrid RRM–
RUM models. A preliminary comparison of the RAM model with these other models
reveals that even though model fit differences are small, there is a lot of potential in the
RAM model in terms of providing a better fit for the data and in obtaining more precise
model outputs, such as willingness to pay measures. More fundamentally, the results
indicate a need seriously to consider and incorporate context-dependent effects into a
literature that has hitherto mainly relied on context-independent models.
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It is very early days yet for the RAM model and a number of very fruitful areas of
research can be pursued. The analysis in this paper is based on a small sample of data
sets with some, but not much, variation in choice context. While the results are highly
suggestive, further testing of the symmetric RAM model in other data sets — for example,
in revealed preference data where attribute values across alternatives could be quite similar
to one another — would be necessary. Allowing for heterogeneous weights on the context-
independent RUM component and the context-dependent relative advantage component is
another potential avenue of inquiry.

We have also assumed that all attributes attended to in the context-independent RUM
component of the model are also attended to in the relative advantage component. This
assumption can also be tested in future work by allowing some subset of attributes to
appear in either one component only. Where data on attribute processing are available,
such as whether a respondent reported ignoring an attribute (see Hensher (2010)) for details
of such models), the link between attribute processing and the relative advantage can also
be explored.
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Appendix 1

In the results for the hybrid RRM–RUM model, (U) refers to attribute processing by the
linear additive RUM rule and (R) refers to attribute processing by the RRM rule.

In all tables in this Appendix, ∗∗ denotes significance at the 5 per cent level and ∗∗∗

denotes significance at the 1 per cent level.

Table A.1

Estimation Results from DS 1

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

FF (min) −0.0516∗∗∗

(−7.36)

−0.0332∗∗∗

(−7.05)

−0.0515∗∗∗

(−7.35) (U)

−0.0427∗∗∗

(−7.84)

SDT (min) −0.0723∗∗∗

(−9.92)

−0.0472∗∗∗

(−9.36)

−0.0725∗∗∗

(−9.94) (U)

−0.0599∗∗∗

(−10.12)

SST (min) −0.0805∗∗∗

(−14.28)

−0.0549∗∗∗

(−13.50)

−0.0804∗∗∗

(−14.26) (U)

−0.0669∗∗∗

(−14.98)

RC ($) −0.3425∗∗∗

(−9.19)

−0.2171∗∗∗

(−8.54)

−0.3417∗∗∗

(−9.17) (U)

−0.2866∗∗∗

(−10.88)

TC ($) −0.2770∗∗∗

(−12.46)

−0.1813∗∗∗

(−12.46)

−0.1823∗∗∗

(−12.50) (R)

−0.2302∗∗∗

(−13.19)

ASCs
b0,curr 0.9116∗∗∗

(17.62)

0.9156∗∗∗

(18.32)

0.9294∗∗∗

(18.64)

0.9076∗∗∗

(18.62)

Number of observations 4,480 4,480 4,480 4,480
Initial LL (constants only) −3694.75 −3694.75 −3694.75 −3694.75
Model LL −3434.58 −3439.32 −3434.79 −3433.77
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Table A.2
Estimation Results from DS 2

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

FF (min) −0.1256∗∗∗

(−14.97)

−0.0308∗∗∗

(−5.21)

−0.1214∗∗∗

(−14.56) (U)

−0.1030∗∗∗

(−14.39)

CT (min) −0.1192∗∗∗

(−14.04)

−0.0358∗∗∗

(−7.23)

−0.0686∗∗∗

(−13.22) (R)

−0.0983∗∗∗

(−13.32)

RC ($) Not statistically
significant

−0.2727∗∗∗

(−3.05)

Not statistically
significant

Not statistically
significant

TC ($) −0.5568∗∗∗

(−21.42)

−0.2328∗∗∗

(−17.96)

−0.5281∗∗∗

(−21.14) (U)

−0.4578∗∗∗

(−21.62)

ASCs
b0,curr 0.5984∗∗∗

(8.55)

0.6599∗∗∗

(11.46)

0.6105∗∗∗

(8.74)

0.5991∗∗∗

(8.13)

b0,alt A 0.1434∗∗

(2.02)

0.1348
(1.93)

0.1432∗∗

(2.02)

0.1447∗∗

(2.04)

Number of observations 2,352 2,352 2,352 2,352
Initial LL (constants only) −2192.64 −2192.64 −2192.64 −2192.64
Model LL −1862.23 −1949.69 −1872.09 −1854.09

Table A.3

Estimation Results from DS 3

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

FF (min) Not statistically
significant

Not statistically
significant

Not statistically
significant

Not statistically
significant

SDT (min) −0.0788∗∗∗

(−6.45)

−0.05448∗∗∗

(−6.02)

−0.0543∗∗∗

(−6.01) (R)

−0.0650∗∗∗

(−6.62)

SST (min) −0.1701∗∗∗

(−9.76)

−0.1160∗∗∗

(−9.29)

−0.1701∗∗∗

(−9.68) (U)

−0.1389∗∗∗

(−9.42)

RC ($) −0.2597∗∗∗

(−4.05)

−0.1653∗∗∗

(−3.45)

−0.2605∗∗∗

(−4.05) (U)

−0.2214∗∗∗

(−6.35)

TC ($) −0.8152∗∗∗

(−13.39)

−0.5757∗∗∗

(−13.08)

−0.5796∗∗∗

(−13.11) (R)

−0.7037∗∗∗

(−20.83)

ASCs
b0,curr 1.0937∗∗∗

(14.72)

1.0784∗∗∗

(14.62)

1.0851∗∗∗

(14.69)

1.0561∗∗∗

(14.77)

b0,alt A 0.2295∗∗∗

(2.84)

0.2319∗∗∗

(2.86)

0.2324∗∗∗

(2.86)

0.2321∗∗∗

(2.74)

Number of observations 2,432 2,432 2,432 2,432
Initial LL (constants only) −1897.63 −1897.63 −1897.63 −1897.63
Model LL −1694.93 −1691.55 −1690.49 −1688.83
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Table A.4
Estimation Results from DS 4

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

FF (min) −0.0761∗∗∗

(−7.94)

−0.0504∗∗∗

(−7.86)

−0.0507∗∗∗

(−7.89) (R)

−0.0649∗∗∗

(−8.87)

SDT (min) −0.1167∗∗∗

(−13.60)

−0.0754∗∗∗

(−12.92)

−0.1163∗∗∗

(−13.58) (U)

−0.0985∗∗∗

(−15.26)

SST (min) −0.1684∗∗∗

(−20.29)

−0.1114∗∗∗

(−19.03)

−0.1682∗∗∗

(−20.28) (U)

−0.1418∗∗∗

(−21.37)

RC ($) −0.5629∗∗∗

(−10.16)

−0.4142∗∗∗

(−10.77)

−0.5649∗∗∗

(−10.19) (U)

−0.4732∗∗∗

(−11.04)

TC ($) −0.5041∗∗∗

(−22.85)

−0.3390∗∗∗

(−21.84)

−0.5055∗∗∗

(−22.84) (U)

−0.4307∗∗∗

(−25.69)

ASCs
b0,curr 0.3621∗∗∗

(6.49)

0.3578∗∗∗

(6.34)

0.3571∗∗∗

(6.33)

0.3405∗∗∗

(6.23)

Number of observations 4,864 4,864 4,864 4,864
Initial LL (constants only) −3537.96 −3537.96 −3537.96 −3537.96
Model LL −2670.14 −2683.70 −2670.20 −2664.50

Table A.5

Estimation Results from DS 5

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

FF (min) −0.0351∗∗∗

(−8.37)

−0.0238∗∗∗

(−7.96)

−0.0351∗∗∗

(−8.36) (U)

−0.0280∗∗∗

(−8.46)

CT (min) −0.0351∗∗∗

(−7.40)

−0.0242∗∗∗

(−7.17)

−0.0243∗∗∗

(−7.19) (R)

−0.0282∗∗∗

(−8.24)

RC ($) −0.1166∗∗∗

(−6.54)

−0.0770∗∗∗

(−6.36)

−0.1172∗∗∗

(−6.55) (U)

−0.0937∗∗∗

(−7.29)

TC ($) −0.1575∗∗∗

(−9.34)

−0.1083∗∗∗

(−9.49)

−0.1083∗∗∗

(−9.48) (R)

−0.1261∗∗∗

(−9.72)

ASCs
b0,curr −0.5491∗∗∗

(−5.17)

−0.5837∗∗∗

(−5.59)

−0.5597∗∗∗

(−5.32)

−0.5521∗∗∗

(−5.30)

b0,alt A 0.2396∗∗∗

(2.79)

0.2394∗∗∗

(2.79)

0.2409∗∗∗

(2.80)

0.2397∗∗∗

(2.77)

Number of observations 912 912 912 912
Initial LL (constants only) −976.78 −976.78 −976.78 −976.78
Model LL −847.75 −847.55 −846.53 −847.29
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Table A.6
Estimation Results from DS 6

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

FF (min) −0.0683∗∗∗

(−17.71)

−0.0465∗∗∗

(−16.92)

−0.0472∗∗∗

(−17.04) (R)

−0.0553∗∗∗

(−19.05)

CT (min) −0.0904∗∗∗

(−28.53)

−0.0631∗∗∗

(−26.50)

−0.0898∗∗∗

(−28.70) (U)

−0.0733∗∗∗

(−29.68)

RC ($) −0.3159∗∗∗

(−14.40)

−0.2091∗∗∗

(−14.15)

−0.2131∗∗∗

(−14.34) (R)

−0.2554∗∗∗

(−14.81)

TC ($) −0.3633∗∗∗

(−28.74)

−0.2578∗∗∗

(−27.77)

−0.3693∗∗∗

(−29.69) (U)

−0.2948∗∗∗

(−29.69)

ASCs
b0,curr 0.0920∗∗

(2.17)

0.0122
(0.30)

0.0614
(1.47)

0.0897∗∗

(2.08)

Number of observations 3,888 3,888 3,888 3,888
Initial LL (constants only) −4271.07 −4271.07 −4271.07 −4271.07
Model LL −3031.58 −3044.06 −3029.70 −3027.75

Table A.7

Estimation Results from DS 7

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

FF (min) −0.0994∗∗∗

(−14.67)

−0.0622∗∗∗

(−14.31)

−0.0998∗∗∗

(−14.74) (U)

−0.0804∗∗∗

(−16.07)

CT (min) −0.1271∗∗∗

(−10.06)

−0.0837∗∗∗

(−9.51)

−0.1280∗∗∗

(−10.12) (U)

−0.1028∗∗∗

(−11.00)

RC ($) −0.4671∗∗∗

(−10.27)

−0.2872∗∗∗

(−9.51)

−0.4475∗∗∗

(−9.95) (U)

−0.3806∗∗∗

(−11.21)

TC ($) −0.6488∗∗∗

(−21.95)

−0.4175∗∗∗

(−21.28)

−0.4385∗∗∗

(−21.27) (R)

−0.5240∗∗∗

(−22.17)

Number of observations 1,840 1,840 1,840 1,840
Initial LL (constants only) −1918.79 −1918.79 −1918.79 −1918.79
Model LL −1631.79 −1639.22 −1631.14 −1630.32
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Table A.8
Estimation Results from DS 8

Linear additive
RUM RRM

Hybrid
RRM–RUM

Symmetric
RAM

Attribute b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio) b̂ (z-ratio)

Fare ($) −0.4648∗∗∗

(−18.83)

−0.1686∗∗∗

(−18.61)

−0.4630∗∗∗

(−18.86) (U)

−0.2612∗∗∗

(−18.63)

Travel time (min) −0.1341∗∗∗

(−16.66)

−0.0455∗∗∗

(−16.89)

−0.0509∗∗∗

(−17.38) (R)

−0.0740∗∗∗

(−16.36)

ASCs
ASC_bus −0.3894∗∗∗

(−5.11)

−0.4449∗∗∗

(−5.85)

−0.3987∗∗∗

(−5.24)

−0.3891∗∗∗

(−5.19)

ASC_metro 0.4132∗∗∗

(6.89)

0.3383∗∗∗

(5.61)

0.3890∗∗∗

(6.43)

0.4171∗∗∗

(6.87)

Number of observations 1,614 1,614 1,614 1,614
Initial (constants only) −2440.98 −2440.98 −2440.98 −2440.98
Model LL −2278.73 −2285.18 −2277.98 −2276.73
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