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Abstract 
 

There is a small but growing interest in traveller behaviour research on investigating ways to 

identify and quantify degrees of belief (as subjective probabilities or other propositions) 

associated with behavioural responses, especially in the context of popular travel choice 

methods such as stated choice experiments, as a way of adding to our understanding of 

decision making in real-world contexts that are associated with inevitable risk and 

uncertainty. This paper reviews three major theories that are not well known in the 

transportation literature that have been developed in psychology and decision sciences to 

accommodate belief, namely Subjective Probability Theory, Dempster-Shafer Theory and 

Possibility Theory. We focus on how degrees of belief are measured in these theories. The 

key elements of each theoretical approach are compared, including their mathematical 

properties and evidence patterns. Despite their being few applications to date in 

transportation, the review promotes the relevance of accounting for degrees of belief in travel 

choice analysis. 
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Introduction 
 

The economic environment is characterised by unmeasurable uncertainty rather than 

measurable risk (Knight 1921). If a choice is made under risk, the probability distribution of 

all possible outcomes is known or can be calculated. Uncertainty is defined as “a quality 

depending on the amount, type, reliability and unanimity of information, and giving rise to 

one’s degree of confidence in an estimate of relative likelihoods” (Ellsberg 1961, p.657), 

under which decision makers have to assess the probabilities of potential outcomes with some 

degree of vagueness, and rely on their beliefs to make the assessment. A person’s confidence 

may vary with respect to different propositions, which are the objects of belief, i.e., sets of 

possible worlds or truth conditions (Huber 2009). For example, she or he is more confident 

that the bus will arrive at the station on time than that it will be a rainy day tomorrow. The 

strength of confidence is measured by the degree of belief. Individuals use judgments of 

numerical probability to represent their degrees of beliefs, which are collected systematically 

and viewed as an approximation to the degrees of belief implicit in decision making (Idison 

et al. 2001). The degree of belief of a proposition is typically determined by evidence such as 

data information, and knowledge, which enable a decision maker to make a judgment and 

draw a conclusion (Kronprasert 2012). 

 

Given that belief plays a key role in decision making under uncertainty, it is useful to 

understand belief and to measure degrees of belief. A number of theories have been 

developed that focus on degrees of belief including Subjective Probability Theory (Ramsey 

1931; Savage 1954), Dempster-Shafer Theory (Dempster 1967, 1968; Shafer 1976), and 

Possibility Theory (Zadeh 1978; Dubois and Prade 1988). The essential difference between 

the three theories can be best summarized as different mathematical properties (defined in 

detail in later sections but noting that A and B are any two variables or events or subsets of 

variables) that are used to account for degrees of belief. Under Subjective Probability Theory, 

degrees of belief are assumed to be additive (i.e., Pr(A) + Pr(B) = Pr(A∪B) if A∩B = ∅). 

Dempster-Shafer Theory treats degrees of belief as super-additive (i.e., Bel(A) + Bel(B) ≤ 

Bel(A∪B)); while Possibility Theory postulates degrees of belief to be sub-additive (i.e., Π(A) 

+ Π(B) ≥ max{Π(A), Π(B)} = Π(A∪B)). The aim of this paper is to provide an overview of 

these theories, with a focus on how the degree of belief is measured, and to promote the need 

to incorporate degrees of belief into studies of choice making behaviour in transportation. To 

date, such theories have attracted little attention by traveller behavior researchers and it  can 

be argued, given the accumulated evidence in psychology and decision sciences, that 

conditioning choice responses in methods such as stated choice experiments on the 

‘believability’ of a hypothetical response reflecting real behaviour may offer a way of 

weighting such responses by some suitable metric representing the believability or 

confidence the analyst has in the evidence offered up by respondents in surveys. This is also a 

way of recognizing and accounting for the confidence that the respondent has in their 

judgment and choice. 

 

Subjective Probability Theory 
 

The best developed account of degrees of belief is Subjective Probability Theory (Huber 

2012). The concept of subjective probability was originally proposed by Ramsay (1931) and 
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further developed by Savage (1954). The entire theory of subjective probability is established 

around the notion of ‘degree of belief’ (Eriksson and Hάjek 2007). The operational 

explanation of subjective probability is “the probability of an uncertain event is the quantified 

measure of one’s belief or confidence in the outcome, according to their state of knowledge at 

the time it is assessed” (Vick 2002, p.3). Subjective probabilities represent “degrees of belief 

in the truth of particular propositions”, which reflect individuals’ assessment based on their 

knowledge and opinions (Ayton and Wright 1994, p.164). Therefore, subjective probabilities 

actually represent the facts about a decision maker, not about the world, which arise as a 

response to the failure of frequency-based objective probability theory, when there is the 

occurrence of uncertain events (Pollock 2006). Anscombe and Aumann (1963) use the horse 

race as a descriptive example of subjective probability, where individuals made bets 

according to their subjective probabilities of each horse winning with uncertain 

consequences. However, risky gambles, such as a roulette wheel, have a finite set of terminal 

outcomes associated with objective probabilities. Ferrell (1994, p.413) concluded that 

“subjective probability can enter at any stage of the decision analysis process, implicitly and 

explicitly as a way of dealing with uncertainty … as the means of quantifying the 

uncertainties in the models that relate the alternatives to possible consequences.” Decision 

makers use “subjective probabilities to represent their beliefs about the likelihood of future 

events or their degree of confidence in the truth of uncertain propositions” (Brenner 2003, 

p.87). Consequently, to understand the nature of subjective probability can offer important 

insights into the structure of human knowledge and belief.  

 
Subjective probabilities are constrained by axioms of classical probability theory and follow 

the laws of probability (Ayton and Wright 1994). Under Subjective Probability Theory, 

degrees of belief (i.e., subjective probabilities) are additive (Huber 2012). A probability space 

(S, ℜ, Pr) consists of a set S (i.e., the sample space), a σ-algebra ℜ of subsets of S whose 

elements are called measurable sets, and a probability function Pr: ℜ → [0, 1], satisfying the 

following properties: 

 

Pr(X) ≥ 0 for all X ℜ       (1) 

Pr(S) = 1         (2) 

Pr 1 2( ... ...)nX X X     = Pr(X1) + Pr(X2)+…+Pr(Xn)+…, if theXn’s are 

pairwise disjoint members of ℜ                             (3) 

Property (3) is referred to as countable additivity, which can be simplified to finite additivity 

if ℜ is a finite set: 

 

Pr(X1∪X2) = Pr(X1) + Pr(X2) if X1∩X2 = ∅    (3´)            

 

Ramsey (1931) proposed two ways to identify subjective probability: (i) introspective 

interpretation, i.e., measuring subjective probabilities by asking respondents; and (ii) 

behaviourist interpretation, i.e., defining subjective probabilities as a theoretical entity 

inferred from a choice. The behaviourist interpretation (i.e., subjective probabilities can be 

estimated from observed preference) was the dominant approach to the elicitation of 

subjective probabilities before the Ellsberg paradox (Ellsberg 1961).  
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Subjective probabilities elicited from choice (i.e., the behaviourist interpretation) are always 

calculated based on a linear functional form (essentially all elements of influence are additive 

in the parameters and the attributes). So, coherent probabilities cannot be obtained, unless an 

individual’s attitude toward uncertainty is neutral (Baron and Frisch 1994). Given the 

limitation of the behaviourist interpretation, the introspective interpretation represents a more 

appealing way to measuring subjective probabilities. Since the 1980s, there have been an 

increasing number of studies in the area of psychology, behavioural and experimental 

economics, which directly asked respondents for their probability judgements over uncertain 

outcomes (see e.g., Kahneman et al. 1982; Heath and Tversky 1991; Fox and Tversky 1998; 

Wu and Gonzalez 1999; Takahashi et al. 2007). For example, Heath and Tversky (1991) 

asked respondents to give probability assessments on football predictions and political 

predictions, and found that uncertainty has an impact on preference. In Wu and Gonzalez 

(1999), respondents were asked to provide their personal probability assessments on a 

number of events (e.g., national election and the number of University of Washington 

football team victories), and their judged probabilities were mapped into decision weights 

through the non-linear probability weighting function, which they referred to as a two-stage 

modelling process. Beach and Connolly (2005) defined the elicitation of subjective 

probability as “asking people to give a number to represent their opinion about the probability 

of an event”. 

 

Based on the behaviourist interpretation, Savage (1954) also suggested that the decision rule 

under uncertainty is to maximise expected utility based on assigned probabilities (i.e., 

Subjective Expected Utility Theory (SEUT)). In Savage’s model, subjective probability and 

utility can be inferred simultaneously from observed preferences. For example, if there is no 

difference in a subject choosing: (1) winning $10 if tomorrow rains and nothing if not, and 

(2) an expected win of $5 (winning $10 for a head when tossing a coin (with an objective 

probability of 0.5)), then we can infer a subjective probability of 0.5. The monetary value of 

the sure win can be varied so as to identify individuals’ beliefs (subjective probabilities). This 

normative theory has no distinctive difference between risk and uncertainty, which also 

suggested that uncertainty may be equivalent to risk for a rational person. Ellsberg’s two-

colour example (see Appendix A for details), however, suggests that people are more willing 

to bet in the situation with known probabilities than without known probabilities. This typical 

behaviour is referred to as ‘uncertainty or ambiguity aversion’, which in turn highlights the 

important distinction between risk and uncertainty.  

 

In a transportation context, Hensher et al. (2013) introduced subjective belief in a mixed 

multinomial logit choice model to identify ex ante support for specific road pricing schemes, 

such that the evidence in making a choice in a voting model is believable1. The approach is 

centred on a referendum voting choice model for alternative road pricing schemes in which 

they incorporated information that accounts for the degree of belief of the extent to which 

such schemes will make voters better or worse off. They capture the extent of deviation 

between an obtained belief probability and a perceptually conditioned belief probability, 

identifying a probability weighting parameter which measures the degree of curvature of the 

                                                 
1 We used the following scale: ‘To what extent do you think that each of these schemes will make you 

better (or worse) off? (0=not at all, 100=definitely). Also, ‘In answering this question, how well 

informed do you think you are that each of the schemes will make you better off’? 1-6 (1=totally 

uninformed, 2=strongly uninformed, 3=moderately uninformed, 4=moderately informed, 5=strongly 

informed, 6=totally informed); and ‘In answering this question, how well informed do you think you are 

that each of the schemes will make you worse off’? 
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belief weighting function. The overall goodness of fit of the model with embedded belief 

(adjusted pseudo R2 of 0.353) was significantly better than the model that ignores the role of 

belief (adjusted pseudo R2 of 0.291). The specific model form is similar to the prospect 

theoretic form, with the belief expression being equivalent to the decision weights used in 

conditioning a parameterised explanatory variable. It is well recognised in the psychology 

literature (see Tversky and Kahneman 1992) that degrees of belief are implicit in most 

decisions whose outcomes depend on uncertain events. In quantitative theories of decision 

making such as subjective expected utility theory or prospect theory, degrees of belief are 

related to decision weights and are typically identified by either prescribed levels as part of 

alternatives in a choice experiment or in a more direct manner using a linguistic device such 

as judgments of numerical probability. Such estimates are often viewed as an approximation 

to the degrees of belief implicit in decisions or preference revelation (see Fox 1999). It is well 

recognised that numerical probability judgments are often based on heuristics that produce 

biases. One of the methods proposed to accommodate some aspects of such potential bias 

was the idea of a decision weight (Kahneman and Tversky 1979) which accounts for the 

presence of perceptual conditioning in the way that information reported by decision makers 

or information offered to decision makers is heuristically processed. Specifically, the value of 

an outcome is weighted not by its probability but instead by a decision (or belief) weight, w 

(·), that represents the impact of the relevant probability on the valuation of the prospect. w(.) 

need not be interpreted as a measure of subjective belief – a person may believe that the 

probability of a road pricing scheme making them better off is, for example 0.5, but afford 

this event a weight of more or less than 0.5 in the evaluation of a prospect. See Hensher et al. 

(2013) for more details. 

 

Under Subjective Probability Theory, the measures of beliefs (i.e., subjective probabilities) 

are assumed to be additive. However, Ellsberg’s paradox (Ellsberg 1961) revealed evidence 

which violates this additive assumption (see Ellsberg’s three-colour example summarised in 

Appendix A). Two theories that relax the additive assumption are introduced in the following 

sections.  

 

Dempster-Shafer Theory 

Like Subjective Probability Theory, a number of alternative theories use either direct 

judgments or choices between alternatives to quantify degrees of belief. However, they relax 

the additive assumption (Tversky and Koehler 1994).  Among them, the Dempster-Shafer 

Theory (Dempster 1967, 1968; Shafer 1976) is the most systematic (Mongin 1994; Huber 

2012). The Dempster-Shafer (DS) Theory offers an alternative way to assigning likelihoods 

to events.  

Dempster-Shafer Theory has three fundamental elements: frame of discernment (), basic 

belief assignment (m), and belief (Bel) and plausibility (Pl) functions. The frame of 

discernment contains all mutually exclusive outcomes of a set S, in which each outcome is 

called a focal element, representing a proposition that can be either true or false. The power 

set of S, 2S
, contains all possible subsets of the frame of discernment, which is called a body 

of evidence. Suppose that the set S is {X1, X2, X3}, a body of evidence consists of: {X1}, 

{X2}, {X3}, {X1, X2}, {X1, X3}, {X2, X3}, X, and ∅. A basic belief assignment (m) defined 

on a body of evidence 2S
, is characterised by the following axioms (Ayyub and Klir 2006): 
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m: 2S[0,1]           (4) 

m(∅) = 0            (5)  

           m(S) = 1            (6) 

           m(A∪B) ≥ m(A) + m(B) if A∩B = ∅         (7) 

 
Equation (7) shows that a belief mass (m) under DS Theory is not additive, rather it is a 

super-additive measure. 

The belief in A is measured by a belief function Bel(A), which is a value in the interval [0, 1]. 

Bel(A) represents a lower bound on the likelihood of A, and the corresponding upper bound is 

called the plausibility of A (Pl(A)), both defined on the same body of evidence. Therefore, A 

is measured by an uncertainty interval [Bel(A), Pl(A)], shown in Figure 1.  

 

Figure 1: Dempster–Shafer uncertainty interval for a proposition 
Source: Klein et al. (2002) 

 

Table 1 further explains the meaning of an uncertainty interval. For example, given that there 

is no direct supporting evidence and no refuting evidence, an uncertainty interval [0,1] 

suggests total ignorance about A. [0.7,0.7] is an interval with equal support and plausibility, 

which implies a definite probability of 0.6. [0,0] represents that A is false (or zero probability 

of occurrence).     

 

Table 1: Interpretation of uncertainty intervals for A  

Uncertainty interval 

[Bel(A), Pl(A)] 
Interpretation 

[0,1] Total ignorance about A 

[0.7,0.7] A definite probability of 0.7 for A 

[0,0] A is false. 

[1,1] A is true. 

[0.3,1] Evidence provides partial support for A. 

[0,0.8] Evidence provides partial support for the complement of A 

(i. e. , 𝐴̅) 

[0.3,0.8] Evidence simultaneously provides support for both A and 𝐴̅ 

 

Compared to the probability function introduced in the previous section, which assigns a 

number between 0 and 1 to some subsets of a set, a belief function assigns a number to all 
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subsets of a set (Halpern and Fagin 1992). Moreover, the DS belief function (Bel) is super-

additive (i.e., Bel: 2S[0,1]; Bel(A∪B) ≥ Bel(A) + Bel(B) if A∩B = ∅). The theory of DS 

belief functions is established under two ideas: (1) obtaining degrees of belief for one 

question from subjective probabilities for a related question, and (2) combining such degrees 

of belief when they are based on independent items of evidence. An example to illustrate 

these ideas is as follows. Peter told me that if he could not use his car to go to work he would 

take the bus. My subjective probability that Peter is reliable is 0.8, and my subjective 

probability that he is unreliable is 0.2, given that they are additive. However Peter’s 

statement, which must be true if he is reliable, is not necessarily false if he is not reliable. 

Therefore to me, his response alone justifies a 0.8 degree of belief that he would take the bus, 

but a zero probability of belief (not 0.2 under Subjective Probability Theory) that he would 

not take the bus given that his response gave me no reason to believe that he would not take 

the bus. As such, this belief function is described by the 0.8 and zero together2.  

The degree of belief of A (Bel(A)) is the sum of all the basic belief assignments given to the 

proposition P of the set of outcomes where PA and P≠; while the degree of plausibility 

(Pl(A)) is the sum of all the basic probability assignments of the focal elements P that 

intersect the focal element A (Malpica et al. 2007). 

            
|

( ) ( )
P P A

Bel A m P


          (8) 



 
|

( ) ( )
P P A

Pl A m P         (9) 

Dempster's rule of combination (see equation 10) offers a mathematical approach to 

combining two belief functions to produce a new belief function, which is different to the 

standard operator used in probability theory. Let 1m  and 2m  be the basic belief assignments 

from two independent sources. The combined basic belief assignment (m) is given in the 

following equation (Kronprasert 2012): 

 

 

 

  





1 2, |

1 2

1 2, |

( ) ( )
( ) ( ) ( )

1 ( ) ( )

X Y X Y A

X Y X Y

m X m Y
m A m X m Y

m X m Y
    (10)  

 

where A  , the numerator of  Equation (10) is the sum of the product of the belief values 

associated with evidence from two sources supporting Set X, and the denominator is the sum 

of the product of the belief values associated with all possible combinations of evidence that 

are not in conflict. 

 

                                                 

2 The example often cited is from Shafer (1990): Betty told me that a tree limb fell on my car. My subjective 

probability that Betty is reliable is 0.9, and my subjective probability that she is unreliable is 0.1, given that they 

are additive. However Betty’s statement, which must be true if she is reliable, is not necessarily false if she is 

not reliable. Therefore to me, her testimony alone justifies a 0.9 degree of belief that a tree limb fell on my car, 

but a zero probability of belief (not 0.1 under Subjective Probability Theory) that no limb fell on my car given 

that Betty's testimony gave me no reason to believe that no limb fell on my car. As such, this belief function is 

described by the 0.9 and zero together.  
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Suppose the set X={X1,X2}, and 1m  and 
2m  are the basic belief assignments from two 

independent sources: m1({X1})=0.1, m1({X2})=0.4,  m1({X1,X2})=0.5,  

                                   m2({X1})=0.3, m2({X2})=0.1, m2({X1,X2})=0.6.  

 

The combined basic belief assignment for each focal element is calculated as: 

 

   


 
1 1 2 1 1 1 2 1 2 1 1 2 2 1

1

1 1 2 2 1 2 2 1

( ) ( ) ( ) ( ) ( ) ( )
( )

1 [ ( ) ( ) ( ) ( )]

m X m X m X m X X m X X m X
m X

m X m X m X m X
 

 

            
0.1*0.3 0.1*0.6 0.5*0.1

1 (0.1*0.1 0.4*0.3)

 


 
 

0.03 0.06 0.05
0.161

1 (0.01 0.12)

 
 

 
        

 

1 2 2 2 1 2 2 1 2 1 1 2 2 2
2

1 1 2 2 1 2 2 1

( ) ( ) ( ) ( ) ( ) ( )
( )

1 [ ( ) ( ) ( ) ( )]

m X m X m X m X X m X X m X
m X

m X m X m X m X

   


 
 

 
0.4*0.1 0.4*0.6 0.5*0.1

1 (0.01 0.12)

 


 
 

            
0.04 0.24 0.05

0.397
1 (0.01 0.12)

 
 

 
        

 

 

1 1 2 2 1 2
1 2

1 1 2 2 1 2 2 1

( ) ( )
( )

1 [ ( ) ( ) ( ) ( )]

m X X m X X
m X X

m X m X m X m X

 
 

 
  

          
0.5*0.6

1 (0.01 0.12)


 
   

                     
0.15

0.345
1 (0.01 0.12)

 
 

 

 

 

The measures of belief and plausibility functions are: 

 

1 1

1 1

| |

( ) ( ) 0.161; ( ) ( ) 0.161 0.345 0.506
  

      
X X X X X X

Bel X m X Pl X m X  

2 2

2 2

| |

( ) ( ) 0.397; ( ) ( ) 0.397 0.345 0.742
  

      
X X X X X X

Bel X m X Pl X m X  

| |

( ) ( ) 0.345; ( ) ( ) 0.161 0.397 0.345 0.903
 

         
X X X X

Bel m X Pl m X  

 

In addition to its application in psychology and philosophy (Shafer 1990), the Dempster-

Shafer Theory has also been adopted to deal with real-world problems. For example, Tayyebi 

et al. (2010) used the combination rule of Dempster-Shafer Theory to better choose the 

landfill site for a city. In this study, three experts’ opinions were asked in terms of weights to 

weight a number of criteria for landfill site selection including distance from roads, distance 

from residential areas, distance from water centres and slopes, with the sum of the weights 
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being 1.0 for each expert. The rule of combination then was used to get the final weights. 

Dempster-Shafer Theory has also been used in mineral exploration.  For example, it was 

applied by Likkason et al. (1997) to integrate geological, geophysical, geochemical, and 

remotely-sensed data for gold exploration, in which the belief and plausibility measures were 

used to investigate possible areas for gold. A sensitivity test shows that the final results are 

robust, given that they are marginally influenced by small changes to the basic probability 

assignation. The rule of combination (equation 10) has also been used for data fusion in 

different applications (see e.g., Rottensteiner et al. 2005; Basir et al. 2005; Fan et al. 2006). 

The Theory has also been applied to model multi-criteria decision making (see e.g., Beynon 

et al. 2000; Hua et al. 2008). 

 

In the context of transportation, Klein et al. (2002) applied Dempster-Shafer Theory as a data 

fusion technique to combine traffic incident information from multiple sources including 

cellular telephones, traffic operation centers and citizens band radio. The database consists of 

a number of incidents caused by crashes, vehicle blocking lane, unanticipated construction 

signals or malfunctions. The accuracy rates of the major field data sources are also available, 

which specifies the percentage of time each data source reported the same incident event as 

did the highway patrol or city police. For example, a 70% accuracy rate of vehicle blocking 

lane for a CB radio report describing a vehicle blocking a lane indicates that such a report is 

correct 70% of the time. 12 incidents were further analysed. For each of them, incident 

reports were obtained from the data sources, and a probability mass matrix derived from 

information from each source was created each time an incident was reported. The rule of 

combination under Dempster-Shafer Theory was used to identify the event with the highest 

probability as the most likely cause of the incident. By comparing the actual field conditions, 

this technique delivered an accuracy rate of 75 percent. Zeng et al. (2008) also combined 

multiple multi-class probability support vector machines using Dempster-Shafer Theory for 

more accurate traffic incident detection.  

 

Using the belief reasoning method, Kronprasert (2012) compared two public transport 

alternatives and evaluated their relative degree of support of the goals of the Columbia Pike 

Transit Initiative project in the Washington Metropolitan Area. For this project, five goals 

were expected to be achieved by the proposed transit alternatives, namely (i) Improvement of 

mobility within the corridor; (ii) Enhancement of community and economic development; 

(iii) Livability and long-term sustainable community; (iv) Development of an integrated 

multi-modal transport system; and (v) Provision of a safe environment for the citizens and all 

travel modes. Two alternatives (Bus Rapid Transit (BRT) and streetcar) were evaluated, 

where the proposed electric-diesel hybrid BRT vehicles are 40 to 60 feet long and can carry 

approximately 60 to 120 passengers, and the proposed electric streetcar vehicles are 30 to 70 

feet long with low-floor and wide doors and they can carry 45 to 190 passengers per vehicle.  

 

The method consists of two stages. First, the reasoning map was constructed (see Figure B1 

in Appendix B for an example of reasoning map structure), in which the attributes of 

alternatives which may impact five goals of the project and their causal relations were 

identified from a number of interviews with experts , and reviews of transit plans and reports, 

and relevant literature. In the second stage, experts including local and regional transit 

planners, local experts, and public transit scholars were asked to assign the degrees of belief 

to the characteristics of alternatives (for example, the degree of belief for the operating speed 

of Bus Rapid Transit being medium is 0.6) and to the causal relations between variables (for 

example, if the number of transit station/stops is medium or high, then the travel time 

reliability is low, with the degree of belief being 0.9) in the proposed reasoning map. The rule 
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of combination is used to aggregate individuals’ beliefs. The degrees of goal achievement for 

alternative modes are obtained. For each goal, five possible states of outcomes are set, i.e., 

“Much Higher,” “Higher,” “Same,” “Lower,” “Much Lower”, and “I don’t know”. These 

relative measures are defined based on the degrees of belief that the streetcar alternative 

achieves the goals of the project relative to the BRT alternative.  

 

Possibility Theory 
 

Possibility Theory (Zadeh 1978; Dubois and Prade 1988), based on Fuzzy Set Theory (Zadeh 

1965), is another paradigm that accounts for degrees of belief. Possibility Theory is 

established on set-functions (maxitive and minitive set-functions), in which the degree of 

belief of a proposition is measured by an interval between a possiblity measure and a 

necessity measure, representing the degree of belief in an optimistic view and a pessimistic 

view respectively. 

 

The possibility distribution is the basic object of Possibility Theory. The possibility 

distribution (x) assigns to each element s in a set S of alternatives a degree of possibility of 

being the correct description of a state of affairs, and represents what an individual knows 

about the value of some unknown quantity x ranging on S (Dubois 2006). x(s)=0  for some s 

means that x=s is impossible; x(s)=1 is considered a normal or unsurprising situation. 

s,x(s)=1 is the normalisation condition, which claims that there is at least one value  

regarded as completely possible.  

 

The simplest form of a possibility distribution on the set S is the characterstic function of a 

subset E of S, i.e., x(s)=1 if xE; x(s)=0   if xE. A possibility function, built from E, is: 

 

  
1,   

 0,     
E

if A E
A

otherwise


  



        (11) 

 

E(A)=1 means that xE, xA is possible, as the intersection between set A and set E is not 

empty. A possibility function satisfies the “maxitivity” axiom (Equation 12). 

   ( )  },{E E EA B max A B          (12) 

The corresponding necessity measure (NE) is: 

 

 
1,    

 0,    
E

if E A
N A

otherwise


 


       (13) 

 

and 

 

  
__

1E EN A A
 

   
 

        (14) 

 

Where A   is the complement of A. That is, A is necessarily true if and only if ‘not A’ is 

impossible. NE (neccessity measure) satisfies the “minitivity” axiom (Equation 15). 
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   ( )  ,{ }
E E E

A B min A BN N N       (15) 

 

 

According to Dubois (2006), the possibility degree of an event A, understood as a subset of S, 

is measured in Equation (16), which is calculated based on the most plausible value of x in A. 

 

   sup x
s A

A s


                                                                                    (16) 

 

The neccessity degree is: 

 

   
_

1 infs A xN A A s

 
   

 
                  (17) 

 
It is essential to have the possibility distribution in order to measure the degrees of 

possibility/necessity (i.e., degrees of belief under Possibility Theory). Kikuchi and 

Chakroborty (2006) provided different approaches to developing the possibility distribution. 

Using travel time variability as an example, a group of travellers are asked to provide the 

levels of acceptable delay for their commuter trips. Each of them draws a line that represents 

an individual’s feeling of acceptability on a graph, where the y-axis is the acceptability level 

between 0 (totally unacceptable) and 1 (totally acceptable), and the x-axis is the delay time 

(see Figure 2a). Each line starts from the situation that is ‘totally acceptable’ (y=1) without 

any delay (x=0), and ends at the point where the delay time is totally unacceptable (y=0, and 

the values of x vary according to the subjects). The combination of the lines drawn by all the 

subjects (e.g., using the medium line) delivers a representative possibility distribution (see 

Figure 2b). 

 

 
Figure 2: Approach 1 to constructing a probability distribution 

Source: Kikuchi and Chakroborty (2006) 

 

Another approach is illustrated in Figure 3, in which each subject provides the limit of their 

acceptable delay, and a horizontal line corresponding to the range of acceptable delay is 

drawn by the analyst. The analyst stacks all the responses in a same figure (Figure 3a), and 

joins the rightmost ends of the lines to show the possibility distribution (Figure 3b).   
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Figure 3: Approach 2 to constructing a probability distribution 

Source: Kikuchi and Chakroborty (2006) 

 

 

Henn and Ottomanelli (2006) proposed a model based on Possibility Theory within which to 

investigate route choice behaviour. Their model follows the specification of Dubois et al. 

(2001), and the preference index for each route is given as: 

     inf   max 1 ;i iv C     , where   iC  is a preference measure on the fuzzy 

perceived cost for a given situation .When a driver faces alternative routes with prefer 

indices ( )iv , she or he is assumed to choose route *i  with the maximum preference index, 

that is,  * max ii
v v . However, Henn and Ottomanelli did not apply their proposed model to 

investigate real behaviour, but only provided a numerical application of this model, in which 

a simple two-route network was assumed, the cost function by the American Bureau of 

Public Roads was used, and a possibility distribution with values only in [0,1] was 

considered. 

 

Following Henn and Ottomanelli (2006), Ottomanelli et al. (2011) presented a numerical 

application of Possibility Theory to parking choice, which assumes that the parking user has 

incomplete information about the supply system, and the perceived cost of each parking 

alternative (three alternatives were assumed: free parking, illegal parking and charged 

parking) is represented by a possibility distribution, and the user chooses the one with the 

lowest perceived cost. The key outcomes are the values of choice probability (Pr) and 

possibility () for three alternative parking methods under corresponding supply scenarios 

obtained by varying the dwell time and the controls frequency, given in Table 2, where  

  Pr Pr Pr  1;Pr( ) ( ) ( ) (   , ,  1.) ( ) { ) )}A B C A B C A B C max A B B              

 

Table 2: Probability (Pr) and possibility (𝜫) for three alternative parking methods 

under three scenarios 

Alternative Scenario 1: 

Short dwell time & 

weak controls 

frequency 

Scenario 2: 

Average dwell time & 

average controls 

frequency 

Scenario 3: 

Average dwell time 

& 

strong controls 

frequency 

A:Free parking Pr=0.06;=0.56 Pr=0.19; =0.89 Pr=0.32;  =0.89 

B:Illegal parking Pr=0.55; =1.0 Pr=0.28;  =0.93 Pr=0.10;  =0.74 

C:Charged 

parking 

Pr=0.39;  =0.92 Pr=0.53;  =1.0 Pr=0.58;  =0.58 
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An Illustration of how D-S may be implemented in a travel 
choice study 
 

A growing number of travel choice studies ask supplementary questions to elicit how 

respondents processed specific attributes in a stated choice experiment (e.g., Hensher 2010). 

The reliability of responses to such questions (e.g., ‘which attributes did you ignore?’ or 

‘which attributes did you add up?’) is not without controversy (see Bertrand and 

Mullainathan 2001), with preliminary evidence suggesting that the willingness to pay (WTP), 

when the responses to supplementary intention questions are used to condition the treatment 

of an attribute in model estimation, are sometimes higher and sometimes lower than when 

processing is excluded. In contrast, the evidence is consistently in the upwards direction 

when heuristics are tested through the functional specification of non-linear utility 

expressions (Hensher 2010). So which tendency is ‘correct’? The answer is far from clear; 

yet the implication on empirical evidence is profound (Hess and Hensher in press). 

 

In this section we focus on the Dempster-Shafer approach to build up an example in some 

detail of how the method might be used in future traveller behaviour applications, repeating 

material (in a different way) that was presented above in order to highlight the main elements 

of the method that need to be translated into an operational model framework. Although we 

have not tested this example with real data, we would encourage researchers to progress 

empirical applications within the growing literature on process heuristics and travel choice. 

(see Hensher 2014 for an overview). 

 

One potentially fruitful way forward is to transform the responses for self-stated processing 

responses to recognise the potential for error in response. One way worthy of investigation is 

the belief-function perspective as set out in a previous section. Although not focused on 

attribute processing per se, the sentiment is aligned. The focus is on the uncertainty that arises 

because of the lack of knowledge of the true state of nature, where we not only lack the 

knowledge of a stable frequency (i.e., how can we be sure that the heuristic adopted is stable, 

as implied by the selected process heuristics), but also we lack the means to specify fully the 

conditions under which repetitions can be performed (Shafer and Srivastava 1990). The D-S 

theory of belief functions can be used to assess reliability of evidence that is supplementary 

to a stated choice experiment, which provides support for the presence or absence of such a 

variable in situations where the event cannot be treated as a random variable. As set out 

above, Dempster (1967) introduces belief functions from a statistical perspective in terms of a 

(frequentist) probability measure from a ‘space of observations’ to a ‘space of interpretations 

of these observations’ by a ‘point-to-set mapping’ (Dubois & Prade 1988).  

 

We need to find ways in which we can triangulate evidence from various sources, to establish 

a measure of belief of the evidence offered by an individual on how they processed specific 

attributes associated with travel choice alternatives. The level of belief on whether the person 

in question processed an attribute using a specific rule or not, depends on the items of 

evidence and their credibility. A belief function treatment provides an appealing framework 

using the two key constructs - belief functions (BF) and plausibility functions (PF). When 

combined, especially BF and PF, we obtain Dempster’s rule of what we term ‘rule 

reliability’.  We now explain this rule in detail, given it will not be familiar to transportation 

researchers, in language different to the theoretical exposition above, and suggest (through an 
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example), the nature of data required in future studies to embed the rule reliability measure 

into the estimation of travel choice models. 

 

The D-S theory of belief functions is similar to probability theory, with one difference. Under 

probability theory, uncertainty is assigned to the state of nature based on the knowledge of 

frequency of occurrence. However, under belief functions, uncertainty is assigned to the state 

of nature or assertion of interest in an indirect way, based on the probability knowledge in 

another frame, by mapping that knowledge onto the frame of interest. This mapping may not 

necessarily be one-to-one. To illustrate, suppose we have a variable, A, with n possible 

mutually exclusive and exhaustive set of values: a
1
, a

2
, a

3
,  . . . , a

n
. These values could be 

alternative ways that an attribute such as a specific congestion charging regime or associated 

charge is processed, including a simple binary statement of ‘ignored or did not ignore’ the 

attribute, or ‘added up or did not add up two attributes of a common metric’. Define the 

frame,  = {a
1
, a

2
, a

3
,  . . . , a

n
} of discernment for the variable A (i.e., the quality of being 

able to grasp and comprehend what is obscure). Under probability theory, for such a set, we 

assign a probability mass, P(a
i
), to each state a

i
 such that 

n

i

i=1

P(a ) = 1 . However, under the 

D-S theory of belief functions, uncertainties are assigned in terms of belief masses to not only 

singletons, but also to all the sub-sets of the frame, and to the entire frame . The entire 

frame  in our example might be a binary setting of ignored (a1) and not ignored (a2) for a 

specific attribute associated with an alternative and/or a choice task. (It could also be degrees 

of attribute relevance (a1, a2 ,…, an) from totally relevant (not ignored) to totally irrelevant 

(ignored)).These belief masses define a function called the basic belief mass function (Shafer, 

1976). We write a belief mass assigned to a subset B as m(B), where B could be a single 

element, or a subset of two, a sub-set of three (e.g., degrees of attribute preservation), and so 

on, or the entire frame, . The sum of such belief masses equals one, i.e., m(B)=1
B



. When 

the non-zero belief masses are only defined on the singletons, the belief function reduces to 

probability theory.  

 

To crystallise this distinction in a numerical example, suppose we were able to determine, 

from a number of sources, that m(IG) =0.3 and m(NIG)=0 and m(IG,NIG)=0.7. IG stands for 

‘the ignore response being a reasonable representation of reality’, and NIG stands for ‘the 

ignored response being either materially misstated or not reflecting acceptable views of 

others’.3 The belief function interpretation of these belief masses is that the analyst has 0.3 

level of support for 'IG', no support for 'NIG, and 0.7 level of support remains uncommitted 

which represents ignorance (Dubois and Prade 1988). However, if we had to express the 

above judgment in terms of probabilities, we would assign P(IG) = 0.3 and P(NIG) = 0.7, 

which implies that there is a 70 percent chance that the response to the question is ‘materially 

misstated or does not reflect acceptable views of others’. However this is not what the 

analyst’s judgment is; they have no information or evidence that ignoring an attribute is 

materially misstated.  Simply knowing that the response appears to be reasonable, compared 

to the predicted values based on the average views of others, including additional information 

obtained from the specific individual, provides no evidence that the response to the question 

                                                 
3 Information to gauge the reliability of stated self-intentions could be sought from the very same person along 

similar lines to supplementary questions used in reducing the hypothetical bias gap in WTP. An example is a 

certainty scale question, as suggested by Johannesson et al. (1999), on a scale 0 (very unsure) to 10 (very sure), 

to indicate how sure or certain the respondent is that they would actually chose that route (or not at all) at the 

indicated price and travel time. 
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on whether an attribute is ignored is materially misstated. It only provides some level of 

support that the subjective response is accurately stated. Formally, the Belief Function is 

defined as follows: The belief in B, Bel(B), for a subset B of elements of a frame, , 

represents the total belief in B, and is equal to the belief mass, m(B), assigned to B plus the 

sum of all the belief masses assigned to the set of elements that are contained in B.  In terms 

of symbols: Bel(B) = 
C B

m(C)

  (equation 8). The Plausibility Function Pl(B) (equation 9) 

represents the maximum belief that could be assigned to B, given that all the evidence 

collected in the future support B. For example, for two independent items of evidence 

pertaining to a frame of discernment, , we can write the combined belief mass for a sub-set 

B in  using Dempster’s rule: 

 

1 2
C1 C2 = B

m(B) = m (C1)m (C2)/K

 ,   (18a)         

C1 C2 = 

1 2K = 1  m (C1)m (C2) 
 

   (18b) 

 

The symbols m
1
(C1) and m

2
(C2) determine the belief masses of C1 and C2, respectively, 

from the two independent items of evidence represented by the subscripts. K is a re-

normalisation constant. The second term in K represents the conflict between the two items 

of evidence (Shafer 1976); the two items of evidence are not combinable if the conflict term 

is 1. Let us bring this framework together in an example. Suppose we have the following sets 

of belief masses obtained from two independent items of evidence related to the accurate 

representation of whether an attribute such a congestion charging regime (as distinct from the 

actual charge) is ignored (IG) or not (NIG): 

 

Evidence 1: m
1
(IG) = 0.3, m

1
(NIG) = 0.0, m

1
({IG, NIG}) = 0.7, 

Evidence 2: m
2
(IG) = 0.6, m

2
(NIG) = 0.1, m

2
({IG, NIG }) = 0.3. 

 

The re-normalisation constant for the above case is: 

 

K = 1 – [m
1
(IG)m

2
(NIG) + m

1
(NIG)m

2
(IG)] = 1 – [0.3*0.1 + 0.0*0.6] = 0.97. 

 

Using Dempster’s rule (18a), the combined belief masses for ‘IG’, ‘NIG’, and {IG, NIG} are: 

 

m(IG) = [m
1
(IG)m

2
(IG) + m

1
(IG)m

2
({IG, NIG }) + m

1
({IG, NIG })m

2
(IG)]/K 

        =  [0.3*0.6 + 0.3*0.3 + 0.7*0.6]/0.97 = 0.69/0.97 = 0.71134, 

m(NIG)=[m
1
(NIG)m

2
(NIG)+m

1
(NIG)m

2
({IG,NIG})+m

1
({IG,NIG })m

2
(NIG)]/K  

        = [0.0*0.1 + 0.0*0.3 + 0.7*0.1]/0.97 = 0.07/0.97 = 0.072165, 

m({IG, NIG }) = m
1
({IG, NIG })m

2
({IG, NIG })/K = 0.7*0.3/0.97 = 0.21/0.97 = 0.216495. (19) 

 

The combined beliefs and plausibilities that attribute processing is not misstated are: 

 

Bel(IG) = m(IG) = 0.71134, and Bel(NIG) = m(NIG) = 0.072165, (20a) 

Pl(IG) = 1 – Bel(NIG) = 0.927845, and Pl(NIG) = 1 – Bel(IG) = 0.28866.(20b) 

 

The choice model, for each individual observation, can have each attribute discounted by the 

‘plausibility factors’ Pl(IG) (=0.927845) and Pl(NIG) (=0.28866). This might be, for 

example, a decomposition of a random parameter in a generalised mixed logit (GMX) model 

or introduced as a latent construct in a latent variables mode (e.g., Hess and Hensher 2013).  
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These plausibility factors would be applied to all observations, based on evidence obtained 

from supplementary questions. The challenge for research into choice on congestion charging 

schemes, for example, is to identify a relevant set of questions posed to the respondent and 

other influencing agents that can be used to quantify evidence, suitable to deriving the belief 

and plausibility functions for each respondent. 

 

Krantz (1991) and Tversky and Koehler (1994) show that D-S’s model is most suitable for 

judgments of evidence strength than for judgments of probability. The judgments of evidence 

strength is the very role that the plausibility function plays in the context of specifying the 

way that a specific attribute is processed in the context of stated choice experiments. We are 

not using the belief theory to establish probabilities of outcomes, since that is accommodated 

though the choice model. For example, if we have seven attributes (x1 to x7), of which the 

first two have a common metric (e.g., running cost and toll cost), the next two have a 

common metric (e.g., free flow and congested time), and the next three define the congestion 

scheme (charge, regime and revenue disbursement), we might have a number of ways in 

which we can structure questions suitable for establishing how each specific attribute is 

processed (in the context of how the package of attributes is processed). This is crucial in the 

design, and hence acceptability, of congestion charging schemes. There are a number of 

possible ways of evaluating an attribute in arriving at a decision on how it will be processed 

in the context of a choice task. These might be based on five items of evidence in relation to 

the processing of x5, the congestion charge: (i) ignored or not, (ii) added up with another 

common-metric attribute (e.g., congestion charge and running cost), (iii) accepted subject to a 

threshold level of a congestion charge, (iv) the actual charging regime such as cordon charge 

which is less ambiguous than a distance based charge, and (v) how revenue raised is 

disbursed:  

 

E_ = E(x5): I evaluated only x5 in deciding what role x5 plays  

E_ = E(x5,x6); E(x5,x6); E(x5,x7);…E(E(x5,x6,x7): I evaluated x51 from a subset of attributes 

offered  

E_: = E(x5,x6): I evaluated x5 in the context of attributes that have a common metric with x5  

E_: = E(x5+x1,x3+x4): I evaluated x5 by adding up  attributes that have a common metric 

E_: = E(x1  to x7): I evaluated every attribute in deciding what role x5 plays. 

 

For each of these candidate heuristics, the analyst might ask, in a context of whether the 

congestion charge was ignored or not: ‘Please allocate 100 points between the three possible 

ways you might respond to reflect your assessment of how you believe you used each of the 

processing rules in determining the role of the congestion charge : 

 

I definitely ignored the congestion charge                 _______ 

I did not fully ignore, or fully not ignore, the congestion charge       _______ 

I definitely did not ignore the congestion charge        _______ 

 

These heuristics may be randomly assigned to each respondent or all might be assigned to 

each respondent (in a randomised order). There are some clear disadvantages of assigning all 

heuristics to each respondent, yet this may be necessary in order to obtain the required data to 

calculate a plausibility expression. A possibility is to initially get the respondent to order the 

heuristics in order of applicability (in the example above this is a rank from 1 to 5, where 1 = 

most applicable), followed by a response to the 100 point allocation question. If the focus is 

on whether a congestion charge was ignored or not, then we might identify the following 

evidence: 
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E_: E_(IG) = 0.4, E_(NIG) =  0.2, E_({IG,NIG})  = 0.4  rank = 4 

E_: E_ (IG) = 0.4, E_ (NIG) = 0.3, E_ ({IG,NIG}) = 0.3  rank =  3 

E_: E_ (IG)  = 0.5, E_ (NIG) =  0.3, E_ ({IG,NIG})  = 0.2  rank = 2  (21) 

E_: E_ (IG)  = 0.3, E_ (NIG) =  0.3, E_ ({IG,NIG})  = 0.6  rank = 5 

E_: E_ (IG) = 0.5, E_ (NIG) = 0.2, E_ ({IG,NIG}) = 0.3  rank = 1 

 

The responses to (21) can be fed into equation (19) to obtain the belief and plausibility values 

in (20a) and (20b), interacted with each attribute in the generalised mixed logit model 

(equation 22) through zi and hi (see below) to account for the attribute processing strategy of 

each respondent at an alternative and at a choice set level. This model form is detailed in 

Greene and Hensher (2010). 
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  

 
    X   (22) 

 

βir = σir[β  +  Δzi ]  + [γ + σir(1 – γ)] Γvir, ir = exp[-2/2 +  δ′hi + τwir], vir and wir = the R 

simulated draws on vi and wi, ditj = 1 if individual i makes choice j in choice situation t and 0 

otherwise. σi is the individual specific standard deviation of the idiosyncratic error term, hi is 

a set of L characteristics of individual i that may overlap with zi, δ are parameters in the 

observed heterogeneity in the scale term, wi is the unobserved heterogeneity standard 

normally distributed,  is a mean parameter in the variance,  is  the coefficient on the 

unobserved scale heterogeneity, and  is a weighting parameter that indicates how variance in 

residual preference heterogeneity varies with scale, with 0 <  < 1. 

 

Conclusions 
 

This paper has reviewed Subjective Probability Theory, Dempster-Shafer Theory and 

Possibility Theory, and his/her roles in accommodating belief and measuring degrees of 

belief. The characteristics of the three theories are summarised. To be able to capture belief 

and measure degrees of belief is recognised in the broad decision theory literature as 

important in understanding decision making under uncertainty. In the context of 

transportation, for example, travel time variability due to unpredictable fluctuations in traffic 

demand and supply is inherent to transport systems, and results in multiple possible travel 

times (arriving early, on time and late) for a future trip. However, this travel time distribution 

is not available or unclear to a traveller, and hence she or he has to assess the probabilities of 

potential outcomes based on their belief. The same logic, for example, applies to crowding 

(and getting a seat) in public transport. 

 

Different mathematical properties are used to account for degrees of belief under the three 

theories. Under Subjective Probability Theory, degrees of belief are assumed to be additive 

(i.e., Pr(A) + Pr(B) = Pr(A∪B) if A∩B = ∅). Dempster-Shafer Theory treats degrees of belief 

as super-additive (i.e., Bel(A) + Bel(B) ≤ Bel(A∪B)); while Possibility Theory postulates 

degrees of belief to be sub-additive (i.e., Π(A) + Π(B) ≥ max{Π(A), Π(B)} = Π(A∪B)). The 

evidence pattern in Subjective Probability Theory is exclusive evidence (see Figure 4a in 

which each evidence (E) points to one outcome only (mutually exclusive)), while Possibility 

Theory is nested evidence (see Figure 4b in which E3 is a nested evidence to E4, E2 and E1); 
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while the Dempster-Shafer Theory is capable of handling the mix of all patterns of evidence 

(Kronprasert 2012). Other unique characteristics of three theories are summarised in Table 3. 

 

 
 

Figure 4: Exclusive and nested evidence patterns 

Source: Kronprasert (2012) 

 

 

Table 3: Characteristics of Subjective Probability Theory, Dempster-Shafer Theory, 

and Possibility Theory 

Characteristics  Subjective 

Probability Theory 

Dempster-Shafer 

Theory 

Possibility Theory 

Element xX xX xX 

Function Pr: Probability 

function 

m: Belief assignment   Possibility 

distribution 

Evidence pattern Exclusive Mixed Nested 

Degree of belief 

measure 

Subjective 

probability 

Belief & Plausibility Possibility & 

Necessity 

Property Additive Super-additive Sub-additive 

 

With rare exception (as cited in this paper), measures of degree of belief have been 

overlooked in the transportation literature, and we have found very few transportation studies 

which have applied these theories to capture belief and measure degrees of belief when 

modelling travel choices. This review highlights the appeal of accommodating degrees of 

belief, and provides important inputs for future transportation studies to incorporate degrees 

of belief into a better understanding of choice behaviour. We have set out an extended 

example of how the D-S method might be integrated into travel choice models. 

 

In addition to a focus on travel choice, the growing interest in understanding how we can 

increase buy-in from stakeholders to important policy issues such as road pricing reform, 

climate change and social inclusion, suggests a role for belief. Broadly interpreted, this 

includes evidence on the extent (e.g., subjective probability) to which a specific reform 

package will make a voter better off, supplemented by information to reveal the extent to 

which a voter believes that they are informed or uninformed that the road pricing reform 

package will make them better or worse off. 
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There is no conclusive evidence to suggest that one approach has necessarily delivered the 

greater behavioural insights over another approach. What would be an important future 

research activity would be a controlled comparison of the three approaches in terms of key 

behavioural outputs such as overall predictive power (with hold out samples), elasticities and 

willingness to pay estimates.  

 

A key challenge in implementing these theories is the collection of relevant data. We have 

found in a recent study (Hensher et al. 2013) that the specification of the required data is a 

relatively demanding task, and involves survey questions that are typically absent from 

transportation surveys, including the more advanced stated choice surveys. As an example, 

we reproduce a screen (Figure 5) from the Hensher et al. (2013) road pricing study that was 

considered by respondents as the most ‘difficult’ feature of the survey. Extensive training of 

interviewers in a face to face data collection setting was essential in order to ensure that 

respondents understood these questions. 

 



20 

 

 
 

Figure 5 An example of a set of belief questions 
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Appendix A 
 

Table A1: Ellsberg paradox: three-colour balls 

 30 balls 60 balls 

 Red Black Yellow 

A1 $100 0 0 

B1 0 $100 0 

A2 $100 0 $100 

B2 0 $100 $100 

 

Ellsberg paradox: three-colour balls. An urn contains 90 balls of three different colours 

(three states): 30 red balls and 60 balls either black or yellow (however the exact number of 

black (or yellow) balls is unknown). Respondents4 were asked to draw a ball from the urn 

without looking and were provided with two choices: between: (A1) win $100 if the ball 

drawn is red (and nothing if it is black or yellow) and (B1) win $100 if the ball drawn is black 

(and nothing if it is red or yellow); between: (A2) win $100 if the ball drawn is either red or 

yellow (and nothing if it is black); (B2) win $100 if the ball drawn is either black or yellow 

(and nothing if it is red). The majority of respondents favoured A1 over B1, and B2 over A2. 

 

However, based on the sure-thing principle of SEUT, if individuals prefer A1 over B1, they 

should also favour A2 over B2, and vice versa. Since the consequence of drawing a yellow 

ball is the same for the choice between alternatives A1 and B1 (i.e., 0) and same for the 

choice between A2 and B2 (i.e., $100), the state of a yellow ball (which provides the same 

consequence for A1 and B1 in one choice and A2 and B2 in another choice) should have no 

impact on an individual’s two choices (A1 or B1; A2 or B2) (i.e., state independent); while 

the consequence of drawing a red ball or a black ball is the same for alternative A1 in the first 

choice and alternative A2 in the second choice; and also the same for alternative B1 in the 

first choice and alternative B2 in the second choice. Therefore, under SEUT, if A1 is 

preferred over B1, then A2 should also be preferred over B2 (i.e., A1>B1 and A2>B2 ). 

However, Ellsberg’s finding ( A1>B1 and B2>A2 ) violates the sure-thing principle, which 

assumes subjective probabilities are linear-additive. 

 

For the choice between A1 and B1, it is less ambiguous to draw a red ball (a win for A1) than 

to draw a black ball (a win for B1). For the choice between A2 and B2, the ambiguity is 

associated with drawing a yellow ball (a win for A2); while either a black or yellow ball 

would yield a win for B2 (which is similar as drawing a red ball out of 30 red balls). Hence 

the pattern found by Ellsberg’s paradox ( A1>B1 and B2>A2 ) suggests that people prefer 

more precise knowledge of probabilities. This preference was also revealed in Ellsberg’s two-

colour paradox (Ellsberg 1961).  

 

Ellsberg paradox: two-colour balls. There are two urns: urn I has 50 red balls and 50 black 

balls, and urn II also contains 100 balls, however in which the exact numbers of black (b) 

balls and red (r) balls are unknown. The task is to guess the colour of a ball drawn from either 

urn I or urn II. You will win a prize if the guess is correct. Ellsberg found that people prefer 

to draw a red (or black) from urn I with the known probability than a black (or red) from urn 

II without the known probability; while there is no significant difference between drawing a 

ball from either urn I and urn II. That is, the colour itself has no impact on the choice, while 

                                                 
4 Ellsberg (1961) presented this experiment to many of his colleagues, including some decision theorists. 
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the preference is dependent on the ambiguity of the probabilities. When drawing a red or 

black ball from urn I, the likelihood is more direct (i.e., 0.5: 50 red balls and 50 black balls) 

relative to from urn II where people need to personally judge the possible combination of red 

and black balls.  

 

Appendix B 
 

 
 

Figure B1: Reasoning map for Goal 3 “Livability and Sustainable Community”  

Source: Kronprasert (2012) 
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