Towards sustainable metal cycles:
the case of copper

Damien Giurco

Thesis presented for the degree of
DOCTOR OF PHILOSOPHY
in the Department of Chemical Engineering
UNIVERSITY OF SYDNEY

March 2005
Cover illustration: Stall roasting of copper matte

From *De Re Metallica* by Georgius Agricola, 1556

Per

Giorgio Giurco

and

Francis Crowe
DECLARATION

I declare that all work in this thesis is my own original work, unless stated otherwise.

This thesis is submitted for the degree:
Doctor of Philosophy, at the University of Sydney.
Material in this thesis has not been submitted for any other degree.

Damien Giurco

© Damien Giurco 2005
Developing an approach that delivers improved environmental performance for metal cycles is the aim of this thesis. Integral to the sustainable use of metals is the need to reduce environmental impacts associated with the mining, refining and recycling activities that supply metal to the economy. Currently, the links between the location and duration of these activities, their resultant impacts and the responsible parties are poorly characterised. Consequently, the changes to technology infrastructure and material flow patterns that are required to achieve sustainable metal cycles remain unclear to both industry and government actors. To address this problem, a holistic two-part methodology is developed.

Firstly, a reference schema is developed to address the complexity of structuring analyses of the material chain at different geographical and time scales. The schema identifies actors and system variables at each scale of analysis and guides the level of information detail and performance indicators to be used in material chain characterisation. Material chain characterisation involves modelling material and energy flows for current activities as a series of connected nodes and linking these flows to resultant environmental impacts. The approach identifies the material chain activity responsible for each environmental impact and makes trade-offs between impacts explicit. Sensitivity analysis of the models identifies the key variables that enhance performance. The influence of actors over these variables is assessed to target areas for improvement.

This first part of the methodology is illustrated using case studies that assess the current performance of copper material chain configurations at different geographical scales within the reference schema.

The analysis of global material and energy flows indicates that the majority of environmental burden in the copper material chain is attributable to primary refining of metal from ore. Modelling of the dominant primary refining technologies using region-specific information for ore grade, technology mix and energy mix reveals that the total environmental impact differs by factors of 2–10 between world regions. The study of refined copper imports to Europe from various regions outside of Europe reveals that lower global warming impacts are achieved at the expense of increased local impacts from the producing regions. Overall, only limited improvements are possible without investing in new technology infrastructure.
Evaluation of an innovative copper refining technology finds that collaboration with clean energy suppliers reduces global warming impacts more than changing process design parameters. To better assess the local impacts that are directly controllable by the technology operator, a new indicator incorporating the stability of solid waste is developed.

In the second part of the methodology, the link established between actors, their control over key system variables and resultant impacts is used to design preferred future configurations for the material chain. Dynamic models are developed to evaluate transition paths towards preferred futures for individual and collaborative action by industry in the context of externally changing variables (for example, increasing demand for copper and declining available ore grades).

Both new copper technology infrastructure and new material flow patterns are assessed in transitions toward preferred futures for a case study of the United States. The improvements resulting from the introduction of new primary refining technology by individual actors are negated by increasing impacts from declining copper ore grades over time. Achieving a combined reduction in local and global environmental impacts requires collaboration between industry actors to immediately increase the recycling of secondary scrap.

Significantly, this methodology links actor decisions with their impacts across scales to prompt accountability for current performance and guide useful collaborations between actors. The methodology then delivers a comprehensive assessment of the scale and timing of required interventions to achieve more sustainable metal cycles.
ACKNOWLEDGMENTS

Many people have supported me on the journey toward submitting this thesis, for which I am very grateful.

I wish to sincerely thank my supervisor Prof. Jim Petrie, for his support and his encouragement to strive for excellence in academic scholarship.

Financial assistance from the F. H. Loxton Postgraduate Studentship, the Department of Chemical Engineering and Prof. Jim Petrie are gratefully acknowledged.

Thank you to staff at BHP Billiton and Intec Copper for fruitful collaborations, especially to Heather Thompson for help with process modelling.

Special thanks to Peter Holt, Mary Stewart, Mary Tomsic, Brett Alexander, Matthew Warnken and Martin Treitz for generously giving their time to support my work and to Flavio Giorco for invaluable proofreading. Thank you also to the University of Sydney library staff for their willing assistance with obtaining reference material.

Thank you to Prof. Jannie van Deventer (University of Melbourne) for first suggesting that postgraduate study at The University of Sydney would be a worthwhile pursuit, and to all my friends and colleagues who have contributed to making this time in my life so enjoyable.

Thank you to my family for their steadfast support in everything I do.

Lucy, thank you for your patience and love which I treasure.
CONTENTS

Abstract ii
Acknowledgments iv
Figures vii
Tables ix
Acronyms & terms xi

1. INTRODUCTION 1
 1.1 Background 1
 1.2 Motivation and aim 2
 1.3 Structure of thesis 3

2. METAL CYCLES AND THEIR ENVIRONMENTAL IMPACT 6
 2.1 Background to metal cycles 7
 2.2 Sustainability and environmental drivers 27
 2.3 Addressing challenges for metal cycles: hypotheses 44

3. UNDERSTANDING SCALE: A REFERENCE SCHEMA 51
 3.1 Improving classification of decision types 52
 3.2 Creating a reference schema 56
 3.3 Using the reference schema 61
 3.4 Review of literature at each scale within reference schema 69
 3.5 Conclusions 86

4. CHARACTERISING CURRENT MATERIAL CHAIN CONFIGURATIONS AND PERFORMANCE 88
 4.1 Background and motivation 89
 4.2 Objectives and performance measures 94
 4.3 Approaches to modelling system flows 104
 4.4 Generic characterisation of flows and performance across scales 110
 4.5 Sensitivities analysis and actor influence 126
 4.6 Implications for decision making 133
 4.7 Conclusions 135

5. TRANSITIONS TOWARD PREFERRED FUTURES 136
 5.1 Differing perspectives of the future 137
 5.2 Generating preferred future states 148
 5.3 Comparison of future states 152
 5.4 Dynamic path toward preferred futures 154
 5.5 Assessing performance of transition paths 167
 5.6 Informing sustainable choices 174
 5.7 Conclusions 177