COPYRIGHT AND USE OF THIS THESIS

This thesis must be used in accordance with the provisions of the Copyright Act 1968.

Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright.

Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study.

The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity.

You may infringe the author’s moral rights if you:

- fail to acknowledge the author of this thesis if you quote sections from the work
- attribute this thesis to another author
- subject this thesis to derogatory treatment which may prejudice the author’s reputation

For further information contact the University’s Copyright Service.

sydney.edu.au/copyright
“THE UNDERLYING REASONS WHY INTERNATIONAL DEVELOPMENT PROJECTS (IDPs) FAIL: THE CASE OF AFRICAN DEVELOPMENT BANK (AfDB)-FUNDED PROJECTS”

LAWRENCE GYAMFI BOAKYE

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY

FACULTY OF ENGINEERING & INFORMATION TECHNOLOGIES
UNIVERSITY OF SYDNEY

2015
PREFACE AND ACKNOWLEDGEMENT

The study presented herein was undertaken at the Project Management Programme Unit of the School of Civil Engineering, Faculty of Engineering and Information Technologies at The University of Sydney, Australia under the auspices of the Australia Awards Scholarship (AAS) scheme.

My thanks, first and foremost, goes to the Almighty God for His strength, guidance and protection, and for seeing me through my education thus far.

I am highly indebted to my project supervisor, Dr. Li Liu and my auxiliary supervisor, Prof. Andy Dong for their commitment, support, inspiring and invaluable guidance throughout my research candidature. Special thanks also go to the Faculty of Engineering and Information Technologies for the supportive role it played, which contributed immensely to the realisation of this thesis. To all the panel members of my Annual Progress Reviews (APRs) during my candidature, I say thank you. Your comments and suggestions were useful.

I am very grateful to the Franklin family in Australia for their care and support throughout my stay in Australia. You became the family I left home. I am grateful to Niwa Mburuja as well for being a friend.

Special thanks again go to my parents, Mr. and Rev. Mrs. Boakye-Yiadom, for their love, care, support and encouragement without which I would not have been who I am today. I am forever indebted to you, mum and dad. To my uncle, Prof. S. Y. Annor, I say thank you for your encouragement and support. Thank you, Mr. Tabi Karikari of Ghana Field Office, African Development Bank (GhFO-AfDB), for your encouragement and support as well. My appreciation also goes to my uncles, Kyei-Serfour Andrews and Adu-Poku Frank, to my friends, Abedi-Addae Kingsley and Addo-Gema Kwarteye, as well as everyone who in one way or another, was helpful during my studies.

My warmest thanks to the Australia Awards Unit at The University of Sydney, as well as all my acquaintances and colleagues at The University of Sydney; it was a pleasure working with you all.
Finally, I am forever grateful to the Commonwealth of Australia for granting me a scholarship under the AAS scheme, without which this study would not have materialised.

May the good Lord bless you all.
DECLARATION

This thesis is my own work. It does not incorporate, to the best of my knowledge, any material previously published or written without due recognition. Neither does it reproduce any material that has been submitted and/or accepted for the award of any other degree or diploma without making due acknowledgement in the text.

Signed:

Lawrence Gyamfi BOAKYE
ABSTRACT

As pointed out by the United Nations (UN), the kernel of the project concept lies in its application to other than routine activities of an organisation or government agency, for purposes of special emphasis and action. Projects are thus appropriate ways to especially organise highly innovative, experimental/risky endeavours or those with high priority in development policy. As such, International Development Projects (IDPs), usually implemented to stimulate economic growth and development in developing countries, have become a major way through which development assistance is channelled into the developing world. However projects are especially difficult to plan and manage even in advanced industrial nations, but particularly so in less developed countries. The unique characteristic of projects, coupled with the nature of IDPs and the resource-constraint environment within which they are implemented, has produced disappointing results for the stakeholder-beneficiary dyad. The record of IDPs is therefore not so good; they have been reported to have ironically turned failure into a rule rather than an exception. Through empirical analysis, the study herein presented utilises completion reports of 53 African Development Bank (AfDB)-funded projects to investigate the reasons underlying the failure of IDPs. It identifies poor project Quality-at-Entry (QAE), weak project structure, poor control mechanisms, weak implementation capability and cognitive bias as the underlying reasons for their failure. It further identifies poor project QAE, poor control mechanisms and cognitive bias as the most prominent predictors of their failure. Findings of the study are especially beneficial to professionals in International Development Project Management (IDPM), development-oriented organisations as well as to the body of knowledge on international development. The findings also provide a useful platform for the incremental accumulation of further research on IDPs.
LIST OF PUBLICATIONS ARISING FROM STUDY

CONFERENCE PROCEEDINGS

JOURNAL PUBLICATION

TABLE OF CONTENTS

Preface and Acknowledgement i
Declaration iii
Abstract iv
List of Publications Arising from Study v
Table of Contents vi
List of Abbreviations ix
List of Figures x
List of Tables xi
List of Appendices xii

Chapter One

Introduction
1.1 Introduction 1
1.2 Problem Statement 3
1.3 Objectives of Study 4
1.4 Expectation 5
1.5 Research Approach 5
1.6 Significance of Study 6
1.7 Outline of Thesis 7

Chapter Two

International Development Projects (IDPs)
2.1 Introduction 8
2.2 Overview of IDPs 8
 2.2.1 What IDPs are 8
 2.2.2 Types of IDPs 9
 2.2.3 Characteristics and Peculiarities of IDPs 11
 2.2.4 Life Cycle of IDPs 13
 2.2.5 Management of IDPs 14
Chapter Three

Literature Review

3.1 Introduction

3.2 The Concept of Project Success
 3.2.1 Project Success Defined
 3.2.2 Measures of Project Success
 3.2.3 Success Criteria of Projects
 3.2.4 Critical Success Factors of Projects

3.3 The Concept of Project Failure
 3.3.1 Project Failure Defined
 3.3.2 Generic Factors of Failure of Projects
 3.3.3 Factors of Failure of International Development Projects (IDPs)

3.4 Conclusion

Chapter Four

Research Method

4.1 Introduction

4.2 Research Framework

4.3 Literature Review

4.4 Data Collection
 4.4.1 Sample Size

4.5 Data Analysis
 4.5.1 Factor Analysis
 4.5.2 Binary Logistic Regression Analysis

Chapter Five

Results and Discussions

5.1 Introduction

5.2 Results of Data Analysis
 5.2.1 Reliability Test Results
 5.2.2 Factor Analysis Results
 5.2.3 Binary Logistic Regression Analysis Results

5.3 Discussions
 5.3.1 Poor Project Quality-at-Entry (QAE)
5.3.2 Weak Project Structure 62
5.3.3 Poor Control Mechanisms 63
5.3.4 Weak Implementation Capability 64
5.3.5 Cognitive Bias 66
5.4 Research Contribution 67

Chapter Six

Conclusion

6.1 Introduction 69
6.2 Conclusion 69
6.3 Implications of Research 70
 6.3.1 Managerial Implications 71
 6.3.2 Theoretical Implications 72
6.4 Limitations 73
6.5 Research Outlook 73

References 74
Appendices 85
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AfDB</td>
<td>African Development Bank</td>
</tr>
<tr>
<td>AusAID</td>
<td>Australian Agency for International Development</td>
</tr>
<tr>
<td>CIDA</td>
<td>Canadian International Development Agency</td>
</tr>
<tr>
<td>CompTIA</td>
<td>Computing Technology Industry Association</td>
</tr>
<tr>
<td>CSFs</td>
<td>Critical Success Factors</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EIRFP</td>
<td>Eastern India Rain-fed Farming Project</td>
</tr>
<tr>
<td>EWS</td>
<td>Early Warning Signs</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>IDP</td>
<td>International Development Project</td>
</tr>
<tr>
<td>IDPM</td>
<td>International Development Project Management</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>IVRDP</td>
<td>Inland Valleys Rice Development Project</td>
</tr>
<tr>
<td>KIP</td>
<td>Kpong Irrigation Project</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin</td>
</tr>
<tr>
<td>LFA</td>
<td>Logical Framework Approach</td>
</tr>
<tr>
<td>LFA-M</td>
<td>Logical Framework Approach – Millennium</td>
</tr>
<tr>
<td>MDAs</td>
<td>Multilateral Development Agencies</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organisation</td>
</tr>
<tr>
<td>NOK</td>
<td>Norwegian Krone</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Project Completion Report</td>
</tr>
<tr>
<td>QAE</td>
<td>Quality-at-Entry</td>
</tr>
<tr>
<td>PM</td>
<td>Project Management</td>
</tr>
<tr>
<td>PMBoK</td>
<td>Project Management Body of Knowledge</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Science</td>
</tr>
<tr>
<td>SSIDP</td>
<td>Small-Scale Irrigation Development Project</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.0</td>
<td>Project Cycle of IDPs</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.0</td>
<td>Classes of Project Failure</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.0</td>
<td>Research Framework</td>
<td>45</td>
</tr>
<tr>
<td>Figure 5.0</td>
<td>Scree Plot of Principal Components</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.0 Basic Structure of a Logical Framework 14
Table 3.0 The Dozen EWS of Project Failure 28
Table 4.0 Description of Extracted Factors of IDP Failure 49
Table 5.0 Reliability Test of Variables 54
Table 5.1 KMO Measure and Bartlett’s Test 54
Table 5.2 Total Variance Explained 55
Table 5.3 Rotated Component Matrix of Variables Using Principal Component Analysis and Varimax with Kaiser Normalisation with a Substantial Factor Loading of .40 56
Table 5.4 The Underlying Reasons for IDP Failure with Factor Loadings 57
Table 5.5 Variables in the Equation 59
Table 5.6 Omnibus Tests of Model Coefficients 58
Table 5.7 Hosmer and Lemeshow Test 58
Table 5.8 Casewise List 58
Table 5.9 Model Summary 58
Table 5.10 Classification Tablea 59
Table 5.11 Classification Tablea,b 59
Table 5.12 Structure of the Underlying Reasons of Failure 60
Table 5.13 Quality-at-Entry and Development Outcomes in World Bank Projects 61
LIST OF APPENDICES

Appendix 1 Table of Projects Sampled for Study
Appendix 2 Table of Projects Excluded from Study
Appendix 3 Comparison Statistics after Double Data-Extraction
Appendix 4 Exported SPSS Factor Scores of Extracted Components following Factor Analysis
Appendix 5 Publications Arising from Study
CHAPTER ONE
INTRODUCTION

1.1 INTRODUCTION

Projects are especially appropriate ways of organising highly innovative, experimental or risky ventures or those with high priority in development policy [1]. As cited in Rondinelli’s article [ibid], the United Nations (UN) points out that “the kernel of the project concept lies in its application to other than routine activities of an organisation or government agency, for purposes of special emphasis and action.” (Page 49)

Projects are unique and challenging undertakings. Andersen [2] explains that they are special tasks that have not been done before whose full complement of activities, owing to their uniqueness, are impossible to be determined at the initial planning stage. Projects offer important advantages to all participants because by definition they are, or should be, manageable units of activity [1]. Organising a task as a project provides the freedom to create an organisation more or less from scratch [3]. In addition, Project Management (PM) techniques often seem the best approach to tasks which are not effectively handled through traditional methods [4]. As such, the world is being projectised as huge sums of money are spent on projects. It is reported that one-fifth of the world’s Gross Domestic Product (GDP) is spent on projects [5].

In a perfect world, every project would be “on time and within budget” but because no such thing as a perfect world exists, reality (especially the proven statistics) tells a very different story [6]. Failure in real life is therefore more frequent than we would like it occur [7]. Some organisations have project failure rates that threaten their existence; 70% of projects was identified to have failed in most organisations when a study was conducted using the project success definition of “a project is successful when it produces the desired deliverables within budget and on time” [8]. Barely a week goes by without a large-scale project failure hitting the headlines in the United Kingdom (UK) despite the fact that planning on long-term projects now takes up more time and resources than ever before [9].
Because projects are often the most appropriate means of organising innovative or untried activities, they are especially difficult to plan and manage even in advanced industrial nations, but particularly so in less developed countries [1]. Even with the best of intentions or solid plans, projects can go awry if they are not managed properly [6]. As such, the record of projects in the world is mixed; whilst some succeed, most also fail to achieve their goals. An investigation into government projects in the UK revealed billions of British Pounds in wasted efforts as a result of failed projects [10]. A global Information Technology (IT) PM survey of 600 organisations also revealed some startling results – in just a 12-month period, 49% of organisations had suffered project failure with only 2% of organisations reporting the achievement of desired benefits by all their projects [ibid]. In fact, one only has to do a cursory search in literature to see compelling examples of projects that have failed, usually with serious consequences [7].

The high incidence of project failure is not so much of a surprise. This is because a major challenge of the much used PM techniques is the provision of full responsibility for all aspects of the distinctly defined elements of a project to a single selected individual who often negotiates for the support necessary for project success [4]. With the increased usage of such techniques, it should be expected that without adequate training and realistic expectations, many new projects will ultimately fail [11] because projects are unique and challenging endeavours and are characterised as such by a lack of predictability.

One important class of projects is International Development Projects (IDPs), which are implemented in developing countries. They have become a major means through which development assistance is used to activate and achieve national and sectoral development in the developing world. Governments, national ministries, international lending institutions and private corporations use PM as a means of planning and executing billions of dollars of investments to stimulate economic growth in developing countries since World War II [1]. This is as a result of the important advantages a project offers. However, IDPs like other conventional types of projects are not immune to failure. Despite lengthy planning processes and genuine management efforts, they are not being left out of this problem of rampant project failure. They therefore continue to result in disappointing results for the stakeholder-beneficiary dyad.
Failure per se is not bad. A French adage goes “One learns by failing”, which means we gain wisdom every bit as much from failure as from success; so do we often discover what works by finding out what does not [7]. Just as a child relentlessly learns to walk by falling down repeatedly until the act is perfected, so should it have been with projects.

This study is structured to improve our conceptual understanding of project failure, particularly IDPs and the reasons that underlie their failure. Following an examination of defunct IDPs, important predictors of their failure will be identified. This chapter gives the problem statement and outlines the objectives, expectation, research approach and the significance of the study.

1.2 PROBLEM STATEMENT

The financing and implementation of development activities through physical, economic and social investment projects has been an integral part of public planning and management in the developing world for a long time [1]. Thus national ministries, international lending institutions and private corporations use PM as a means of planning and executing billions of dollars of investments to stimulate economic growth in developing countries since World War II [ibid]. Procedures have evolved to ensure that such development projects are properly managed to aid success; covenants, conditions precedent and procurement regulations continue to be inserted into legal contracts to compel acceptable behaviour [12]. The logical framework is also used to plan and implement such development interventions, all in attempts to ensure their success.

Although project success in mainstream PM has received a lot more attention than project failure, there is quite an appreciable level of studies on project failure. Researchers such as Avots [4], Keider [13], Hughes [14], Pinto and Mantel [15], Pinto and Kharbanda [11], Murray [16] and Lawrence and Scanlan [17], to mention but a few, have investigated why projects fail and have provided factors believed to contribute to project failure. Accordingly, poor project design, poor project leadership, unrealistic budget estimates, unrealistic time-frames, lack of communication, insufficient resources, institutional weakness, political expediency and poor risk analysis, among others, abound in extant project management literature as some of the causes of project failure. At the same time, factors identified as
essential to the success of projects, usually referred to as Critical Success Factors (CSFs) are also replete in literature.

However, despite the availability of these project success/failure factors, lengthy planning processes, several years of both individual and collective experience in managing projects as well as genuine management efforts, the record of IDPs has not been good - most of them simply fail. For instance, we learn from Sahibzada and Mahmood [18] that one will come across numerous examples of development projects that have failed due to ineffective planning if one is to write the project history of Pakistan. It is also reported that several development projects have failed to have a significant positive impact on the quality of life in the Ngie, NW Province of Cameroon [19]. In addition, the Abyei Development Project in Sudan, having fallen far short of its objectives - both original and amended - was recommended for termination, and terminated it was [20]. The Kpong Irrigation Project (KIP) in Ghana was terminated in 2004 after a schedule overrun of over 90 months. And more recently, the Inland Valleys Rice Development Project (IVRDP) in Ghana was terminated with many uncompleted civil works. For those IDPs that succeed, whilst some produce only temporary or narrowly distributed benefits, others do not generate the rate of return or the flow of goods and services anticipated in their conception and design [1].

It happens that IDPs are sometimes even used to salvage other IDPs (see [21]). In fact, failure of IDPs is so prevalent that Hermano et al [22] commented that IDPs have turned project failure into a rule rather than an exception. Based on the foregoing, a major question looms - why should IDP failure be rampant with the availability of project success/failure factors, years of experience in managing projects, lengthy planning processes and genuine management efforts? Do we need new paradigms in their management, as suggested by Williams [23] in the face of this rampant failure? An attempt to unravel this problem leads to the primary purpose of this study, which is to uncover the underlying reasons why IDPs fail so as to improve our understanding of IDP failure.

1.3 OBJECTIVES OF STUDY

The primary objective of this study is to uncover the underlying reasons why IDPs fail. The specific objectives are to:
• Identify those underlying reasons of IDP failure that have significant correlation with IDP failure (predictors of IDP failure).
• Find out how the identified significant underlying reasons of failure impact IDP failure.

1.4 EXPECTATION

Based on findings in literature in relation to project planning and the challenging nature of IDPs as well as a personal experience working on IDPs, it is expected that a lack of project flexibility and poor quality of projects at outset will be identified as significant underlying reasons for the failure of IDPs.

1.5 RESEARCH APPROACH

The study is based on secondary data from Project Completion Reports (PCRs) of defunct projects financed by African Development Bank (AfDB), which are available on the bank’s website as a knowledge base. Secondary data, when used for research, offers many advantages as outlined in Chapter 4 of this thesis.

Projects undertaken in Ghana and Mali were chosen for the study. The choice of these two countries was guided by a criterion used by AfDB in one of its evaluation reports (see the section on research framework, page 46).

Content analysis was employed to analyse and extract data from the PCRs. Double-data extraction was used to reduce the level of errors in the data extraction process so as to increase the reliability. The data was then subjected to factor analysis in order to reduce it and provide the underlying structure. Binary logistic regression analysis was then carried out to identify how the underlying structures impact IDP failure. A comprehensive description of the research method employed is discussed in Chapter 4.
1.6 SIGNIFICANCE OF STUDY

The importance of development assistance, usually channelled through IDPs, to the developing world cannot be over-emphasised. It is estimated to account for 10% of Ghana’s GDP annually [24]. Similarly, approximately US$3 billion is available through donors and international agencies for developmental purposes in Vietnam [25]. IDPs have thus become and will remain a dominant means of activating and achieving development in developing countries in the foreseeable future owing to the advantages offered by projects to all participants. However, the uniqueness of projects makes IDPs challenging to implement. And this has led to many reported cases of failed IDPs with dire consequences to both host governments and beneficiaries alike such as debt accrual and leaving beneficiaries worse-off.

As mentioned earlier in this chapter, failure in itself is not bad. Experiences and lessons that can be used to guide future IDPs are presented by failures. However, when it comes to development-oriented projects in resource constraint countries, the cost of learning from incessant real-world failure is painfully high to all stakeholders. As such, much as a child relentlessly learns to walk by falling down repeatedly until the act is perfected, so should we learn from the continuous failure of IDPs by drawing lessons from failed ones to improve the management and chances of success of future ones. Project failure becomes inevitable and its implications are only made more severe when, instead of studying them to learn from our mistakes and generate useful insights for future projects, they are quietly filed away. Accordingly, studies like this are the cheapest ways to learn from IDP failure.

This study will provide useful insights on the reasons for IDP failure. It will enhance our understanding of why IDPs failure. It will thus help in the planning and management of future IDPs in Africa and the developing world at large. This is because all IDPs by default, are implemented in developing countries who share common characteristics such as a lack of adequate infrastructure, a short supply of resources as well as the dependence on agriculture and raw materials as the main source of foreign income [26].

In addition, IDPs and their failure, as a sub-sector of PM, have received narrow-focused research. It is thus less represented in PM literature despite its usefulness to the developing world ([27]; [28]; [29]). The study will therefore be useful to academia, as it will enrich
available literature on IDP failure in International Development Project Management (IDPM). It will also provide useful bases to generate further studies on IDP failure.

1.7 OUTLINE OF THESIS

This chapter, i.e. chapter one (1), provides a background to the study. The objectives, expectation, research approach and significance of the study are also provided.

Chapter two (2) presents an overview of IDPs.

The review of pertinent literature on project failure is presented in Chapter three (3). This chapter aims to provide a comprehensive understanding of project failure. Because failure is the converse of success and knowledge of project success is necessary to comprehend project failure, the concept of project success is also briefly reviewed.

Chapter four (4) describes the research approach of the study. It covers the data collection process, the sample used and the statistical techniques used in analysing the data.

In chapter five (5), the results from the statistical tests are reported and discussed. The chapter also highlights the research contribution.

Chapter six (6) concludes the study. The implications, limitations and outlook of the study are also presented.
CHAPTER TWO
INTERNATIONAL DEVELOPMENT PROJECTS (IDPs)

2.1 INTRODUCTION

With an aim to improve the living conditions in developing countries, development-oriented institutions like World Bank, African Development Bank (AfDB), Asian Development Bank, Islamic Development Bank, European Development Bank, etc as well as governmental and Non-Governmental Organisations (NGOs) plan and implement development interventions for emerging, developing or least developed countries through projects. Such projects, usually geared towards international development, are known as International Development Projects (IDPs).

In this chapter, an overview of IDPs is presented. First, an explanation of IDPs is provided. Then, they are analysed by looking at their characteristics and peculiarities and their life cycle as well as their management.

2.2 OVERVIEW OF IDPs

2.2.1 WHAT IDPs ARE

IDPs are major instruments through which development assistance is channelled into the developing world. They are medium to large size public projects and/or programmes in all sectors of developing countries financed by multilateral development banks such as World Bank and regional development banks, United Nations associated agencies, bilateral and multilateral government agencies such as European Union, Non-Governmental Organisations (NGOs) such as Catholic Relief Services and government agencies in developing countries [30]. The aim of development projects is to concentrate resources and attention on activities that will produce change - to stimulate economic growth, for example or to promote employment, introduce more productive technology, increase the effectiveness of service delivery or extend services, facilities, infrastructure and productive activities to new groups of consumers or geographic areas [1]. Recipient governments either implement IDPs under a
bilateral agreement with the donor country, or through an “implementing partner” of the donor which is frequently an NGO or professional contractor [31].

IDPs differ from the conventional industrial or commercial projects in that their objectives usually concern poverty alleviation and improvement of living standards, environment and basic human rights protection, assistance for victims of natural or people-caused disasters, capacity building and development of basic physical and social infrastructures [32]. They have thus become important means for initiating and attaining both national and sectoral development in the developing world.

Most IDPs are pieces of longer-range programmes and all are, by definition, in developing countries, are at least partially externally financed and involve a number of different actors including donor agencies (often more than one), government organisations at several levels, consultants, contractors, trainers, evaluators, researchers, and local beneficiaries including local organisations [30].

2.2.2 TYPES OF IDPs

Most IDPs were originally “hard” type construction-based projects involving civil works. These were called “enclave” projects and had clear goals [ibid]. However, in recent times, majority of these projects have turned out to be “soft” type projects involving social services which deals with people or even revising government programmes such as pension schemes as well as construction works [33]. These “soft” types of IDPs have objectives that are much less visible, harder to define and measure, and turn out to be difficult to manage. They also require a greater involvement of local stakeholders [30]. A myriad of problems/challenges thus unfold during their implementation. That notwithstanding, contemporary IDPs have some hard elements although they frequently concern soft issues like social or human development [31].

IDPs could also be classified into four (4) types based on Rondinelli’s [1] framework. These four (4) types could also be treated as the stages through which an IDP could be designed and developed.
• Experimental projects which are needed when little is known about the problems to be solved or the most effective means of reaching objectives. These projects must be small in scale and are designed to explore and test alternatives under highly controlled conditions. Experimental projects are often used for agricultural, scientific, health and some types of social services problems. However, they can be applied to a whole range of ill-defined development problems. They require highly trained and technically skilled staff, must remain flexible in design, have access to specialised inputs and resources and be located in areas where conditions are appropriate for solving the problem under consideration.

• Pilot projects which are used to test the results of experimental projects under less controlled or a greater variety of conditions. They are also used to adapt or modify methods, technologies or organisational arrangements tested and proven successful in other countries to local conditions and needs. They are primarily designed to test methods and technology, determine their relevance, transferability and acceptability, and to explore alternative dissemination or delivery systems. Pilot projects are thus appropriate when the problem or objective is relatively well defined and something is known about alternatives for problem solving. They must be designed to protect their managers from undue political interference or pressures to show quick results since implementation is primarily by trial and error, requiring creative and flexible management.

• Demonstration projects which are designed to primarily exhibit the effectiveness of solutions and to increase the acceptability of new methods and techniques on a broader scale. Although they are less risky and uncertain than experimental and pilot projects, innovative and creative management is still required in gaining acceptance. They should include all components required to support successful adaptations, be relatively simple to understand and apply with a minimum level of skill on the part of the client, be relatively inexpensive and make use of accessible materials or tools. Demonstration projects must have highly visible results which are easily communicable and can be reliably replicated with minimum supervision and training. A major problem with demonstration projects is not to necessarily protect them from political criticism but often, to moderate political enthusiasm for their widespread replication until applicability under a variety of conditions is adequately tested.
• Replication projects which are also known as *full production projects*. These are the final stage of evolution in an experimental series of projects or a type that can be used when all uncertainties and problems inherent in other types have been already solved. Their primary design problems include testing full-scale production technology and developing delivery and distribution systems for project outputs. Scheduling, programming, co-ordination, production and distribution activities must be carefully adapted to local conditions to ensure efficient and economical operations.

There are also the emergency-type IDPs, which are usually initiated in response to natural disasters like a hurricane. These are different from the normal development projects, especially in relation to timing [30].

2.2.3 CHARACTERISTICS AND PECULIARITIES OF IDPs

IDPs are implemented to address the socio-economic needs of the developing world. This often involves poverty alleviation with the usual profit motives of projects often missing [ibid]. They usually comprise mostly soft elements, which are difficult to visualise and measure, and some hard aspects like civil works such as construction of dams. Their objectives and deliverables are thus mostly intangible, which raise a special challenge in their management and evaluation. This challenge, as stated by Khang and Moe [32], require an adaptation of the existing Project Management Body of Knowledge (PMBoK).

All projects can have a variety of interested parties known as stakeholders. One important peculiarity of IDPs lies in the extent of stakeholder involvement. IDPs usually have a large array of stakeholders, all of whose views must be considered [30]. They commonly include three (3) key parties – the funding agency who pays for the project to be implemented but does not use the project output directly, the project implementation unit and the target beneficiaries who benefit from the project output but do not usually pay for the project [28]. The success of IDPs thus depends on all these stakeholders who have varying objectives and come from different backgrounds.

As a result of the cross-functional nature of activities, projects often typically comprise a degree of complexity that is not found within other functional departments [34]. However,
IDPs tend to be more complex than the usual conventional projects. The project financier is often solely involved in the process of planning and development, which results in the local stakeholders feeling sidelined. After project development, the local project manager as well as the project team who are usually not involved in the project planning and development process and are usually also not given the required functional support, are given full responsibility of the project but with minimal authority over the resources needed to implement the project successfully ([12]; [35]; [4]; [33]). The environments within which IDPs are implemented are also difficult as they are resource constraint and have limited availability of requisite infrastructure. In addition, IDPs have closely linked activities where a decision to undertake an activity depends on the outcome of preceding one(s). Even those on a small-scale of short duration involve a myriad of administrative, technical and coordinative tasks that must be carefully scheduled and integrated [1]. These, coupled with their multi-stakeholder involvement and economic factors, increase the complexity of IDPs far beyond that of projects executed in developed countries [36].

Certain project characteristics provide a basis for determining the appropriate managerial actions required to complete the project successfully [37]. As noted by Andersen [2], it is impossible to anticipate all the activities required of a project to succeed at the initial planning stage. Neither is there any guarantee that all originally-planned project activities will be executed to the latter during implementation. These challenges are compounded in IDPs since they are intended to generate change, not just any change but a positive change. Accordingly, another characteristic of IDPs is that they are somewhat experimental and that even seemingly routine replications often meet unanticipated difficulties when transferred from one cultural setting to another [1].

IDPs are also usually cross-border projects as the financiers are mostly outside the host country and in some cases, foreign partners such as consultants might also be involved. As such, geographic distances, language barriers, and cross-cultural gaps are typical of them [36]. These present communication problems and hamper smooth project implementation.

The afore-mentioned characteristics and peculiarities, coupled with a lack of appropriate and essential human and institutional capacities of developing countries for the management of IDPs, have rendered them difficult to manage, as noted by Youker [33]. It has also made them unpredictable in nature and highly susceptible to failure. These explain the presence of
major pitfalls such as time overruns and scope changes associated with their implementation as well as their frequently reported failures.

2.2.4 LIFE CYCLE OF IDPs

Just like all other projects, IDPs go through a project life cycle – stages linking the start of a project to its end. This life cycle typically consists of a number of progressive phases that lead from identification of needs and objectives, through planning and implementation of activities to address those needs and objectives, to assessment of the outcomes [38].

Baum [39] outlined a specific six progressive-phase life cycle of IDPs as shown in Figure 2.0. Majority of development agencies such as European Commission (EC), Canadian International Development Agency (CIDA) and Australian Agency for International Development (AusAID) have differing project cycles usually consisting of five or six phases, which is very similar to Baum’s but with differences in content and in the names of the phases [40]. For example, whilst planning, identification and assessment, preparing activity designs, appraisal and approval, activity implementation and completion and evaluation is the project cycle of the Australian Agency for International Development (AusAID), the United States Agency for International Development (USAID) has planning, achieving results and assessing and learning as its project cycle [39].

![Figure 2.0: Project Cycle of IDPs (Baum, 1978)](image-url)
2.2.5 MANAGEMENT OF IDPs

The Logical Framework Approach (LFA), commonly referred to as “logframe”, is typically used in the management of IDPs. It is a tool for planning programmes and projects in the broader context of development goals that consist of a four-by-four matrix and which summarises the most important aspects of the programme/project under consideration [41]. The structure of a logframe is shown in Table 2.0. It summarises why a project should be undertaken, what it intends to do, what its outputs/end results are, and the assumptions that must be fulfilled for the project to be carried out; one of the main objectives of the logframe is to provide a common vision and understanding of a project [42].

<table>
<thead>
<tr>
<th>Narrative Summary</th>
<th>Verifiable Indicators</th>
<th>Means of Verification</th>
<th>Critical Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Baur (2001)

Almost every international co-operation agency has incorporated the framework as part of its project cycle after it was first adopted by USAID in the late 1960s [41]. And although the logframe has proved to be effective as a project design and evaluation tool in many cases, many pitfalls have dented its use as a project management tool [42].

The logframe is considered inflexible, complex and difficult to integrate with other project management tools due to the lack of clear process leading to its development, its confusing nature evident in the difference between goal and purpose and a lack of stakeholders’ involvement which often compromise its validity ([42]; [43]; [44]). Significant differences have therefore emerged concerning the adoption of the logframe in managing IDPs, which has led to its removal by some development agencies like USAID and CIDA [40]. These pitfalls and differences in adoption have also led to the proposition of updated tools such as the Logical Framework Approach-Millennium [LFA-M] (see [42]). Accordingly, even though the logframe is still used by some development organisations, its usage, as reported by Sartorius [45], began to decline in the late 1970s.
CHAPTER THREE
LITERATURE REVIEW

3.1 INTRODUCTION

Generally, projects delivered in time, within budget and to the required specifications are regarded as successful. However, there are many cases where projects are executed as planned, on time, on budget and achieve planned performance goals, but turn out to be complete failures because they failed to produce actual benefits to the customer or adequate revenue and profit for the performing organisation [46]. In some cases too, a project succeeds in some aspects but fail in others, in which case the project is said to have been both a success and a failure. Thus, determining whether a project is a success or failure is far more complex [47] because different people perceive success differently. As such, there can be an ambiguity in determining whether a project is a success or a failure [ibid.]. There are therefore several lines of research that exist in a growing body of literature dealing with the subject [15].

In this chapter, an extensive review of project failure is provided. Project failure is the converse of project success. Thus, the body of literature on project success also encompasses project failures [48]. This means an understanding of project success is necessary to comprehend project failure. Therefore, in addition to the review of project failure, project success is also briefly reviewed.

This chapter is organised into four (4) sections. Section 1, above, is an introduction to the chapter. The second section reviews the concept of project success. In the third section, the concept of project failure is reviewed in terms of the definition of project failure, the generic causes of failure of projects in extant Project Management (PM) literature and the causes of failure of International Development Projects (IDPs). Finally, a conclusion to the literature review is presented in Section four (4).
3.2 THE CONCEPT OF PROJECT SUCCESS

Project success has, for several decades now, been inextricably linked with cost, time and quality, usually referred to as “The Iron Triangle”. The definition of project success thus continue to include cost, time and quality, which according to Atkinson [49], are no more than two best guesses and a phenomenon.

Projects that are completed on time, on budget and to the right specifications producing the desired benefits/profit are explicitly regarded as successful. However, there are projects that suffer from time and cost overruns and yet are able to generate desired benefits/profit. A classic example is the Sydney Opera House which took 13 years to build at a cost of over AU$100 million against the original cost of AU$7 million and time schedule of five (5) years [50]. A more recent example is the 2012 London Olympic Games which had a 100% cost overrun [51]. How would such projects be regarded - as successful or failures? Then again and as an example, projects of African Development Bank (AfDB) have been found to be less effective as they are good at delivering outputs but weak in translating the outputs into outcomes and impact [52]. Would such projects or similar ones executed as planned, on time, on budget and achieve planned performance goals but fail to generate the required outcome/impact be regarded as successful or failures? Customarily, time and cost overruns are seen as a failure in PM, which when extreme could be a disaster; unfortunately in many projects, especially large-scale ones, overruns are the norm rather than the exception that they ought to be [7].

Such is the concept of project success; it seems to be a rather elusive one [53]. According to the Collins English Dictionary [54], success is “the favourable outcome of something attempted”. Jugdev and Muller [48] referred to it as an interesting word which is very context-dependent and connotes different things to different people. Success, without doubt, is a large motivator in the outcome of any project [55]. Project success is an important project management issue, yet defining it is one major controversial issue in PM ([56]; [25]). Prabhakar [53], after reviewing articles on the topic, reported that the only agreement seemed to be the disagreement on what constitutes project success because neither practitioners nor academicians seemed to agree on what it constitutes. When it comes to project success, the only thing that is certain in PM is that success, which can be framed in terms of other.
concepts such as efficiency and effectiveness, is an ambiguous, inclusive and multidimensional concept whose definition is bound to a specific context [57].

Project success has often been measured with a simplistic formula, perceiving it to be unequivocal and easily assessable - such measures often define success as meeting the objectives of the project budget and schedule and achieving an acceptable level of performance [25]. This makes the success of a project seem measurable as soon as a project is completed. However, as pointed out by McCoy [58], before an attempt is made to categorise a project as a success or failure, it is necessary to determine the criteria upon which the evaluation will be made. What then is project success?

3.2.1 PROJECT SUCCESS DEFINED

Project success is something much more complex than simply meeting cost, schedule and performance specifications [59]. On the surface, defining success in itself might be thought of as relatively simple but in practice, different people define success in different ways [50]. Freeman and Beale [60] showed how diverse it can mean to different people when they provided this interesting illustration of peoples’ varying viewpoints: an architect may consider success in terms of aesthetic appearance; an engineer in terms of technical competence; an accountant in terms of dollars spent under budget, a human resource manager in terms of employee satisfaction, and chief executive officers rate their success in the stock market. It therefore comes as no surprise that so many definitions of success abound in PM literature.

Until Kerzner’s [61] definitions of project success, which included quality and stakeholder satisfaction dimensions, earlier attempts to define it often excluded both of these dimensions [62]. Earlier definitions were often based on the criterion of cost, time and quality – “The Iron Triangle.” Kerzner defined a successful project thus: one which has been accomplished within the following constraints - within time, within cost or budget, at the desired performance or quality level, within the original scope or mutually agreed upon scope changes, without disturbing the corporate culture or corporate values and with well-documented, post-audit analysis [61], and also as one that meets the internal performance measures of cost, time and technical performance and is accepted by the customer [63]. But
time and cost, as Atkinson [49] argued, are at best only guesses which are calculated at a time when least is known about the project and quality is a phenomenon, an emergent property of the differing attitudes and beliefs of people, which often change over the development lifecycle of a project.

Moreover, the key performance measures of cost, time and quality used to measure project delivery in an operational perspective is an inadequate measure of success since the tactical and strategic perspectives are not taken into consideration; let us not forget that what might seem to be a successful project in an operational perspective may be a disaster from a tactical and/or a strategic perspective [64]. We can therefore no longer afford to confuse strict adherence to the “time/cost/quality triangle” which is the most common objective of PM with project success. Such definitions put the focus exclusively on the efficient delivery of projects, ignoring the effectiveness aspects of projects. Adhering to such definitions means PM can be thought of as committing a Type II error – an error Handy [65] explained as the sin of omission which occurs when something is forgotten or not done as well as it could have been done.

Subsequent definitions have been of varying dimensions. Baccarini [66] and Duncan [62] defined project success as a combination of project success and PM success. Their argument is that project success should be viewed as consisting of two different components, which are PM success - which indicates the degree of efficiency of project delivery, and project product success - which relates to the effectiveness of the project deliverable(s), that is:

\[\text{Project Success} = \text{PM Success} + \text{Project Product Success} \]

A definition such as above substantiates Prabhakar’s [53] statement that it is not uncommon for PM literature to combine the two separate components of project success and present them as single and homogenous. However, some project managers prefer this definition, which is understandable in the sense that many key decisions that influence the value created, and by extension the success of the product, are out of their direct control and therefore they do not want to be held accountable for things over which they have no direct control [50]. But while this is an understandable perspective, the definition of project success should be from the customer’s perspective rather than from the one hired to manage the delivery of the project because putting the PM process at the forefront of the definition of project success is
akin to saying that the sun resolves around the earth, that is to say, PM success is more
ingredient than product success [ibid]. Such interconnectedness between the dimensions of
PM success and product success on which basis project success is judged is one reason
people have difficulty agreeing on a definition of project success [ibid].

However, de Wit [67], who is against such a definition argued that in attempts to measure
success, the distinction between project success and the success of the PM effort must be
made as the two, although related, are very different. Moreover, it is not impossible for a
project to succeed in spite of poor PM effort.

Following discussions with a wide variety of project participants and observation of peoples’
actual behaviours in real-life, the different definitions of project success have been classified
into five (5) tiers more recently [50], viz.:

Tier 1: A project is a success if it delivers all or most of what it said it would (the
scope), regardless of schedule or budget performance.
Tier 2: A project is a success if it delivers what it said it would on schedule and/or
within the agreed budget.
Tier 3: A project is a success if it delivers what it said it would on schedule, within the
agreed budget and to the expected quality standards.
Tier 4: A project is a success if it delivers on all agreed project objectives, be it scope,
schedule, budget, quality or outcomes-based (that is, goals to be achieved or
strategic positions to be attained).
Tier 5: A project is a success if the product produced by the project creates significant
net value for the organisation after the project is completed.

The classic textbook definition says that a project is a success if it achieves all of the agreed
“project objectives”, which is the Tier 4 definition but because schedule and budget are the
most visible dimensions in a project, many people behave as if either Tier 2 or 3 is the
definitive answer to project success [ibid]. Such people forget that once a project is over and
the product by the project is to be used, the perspective sometimes changes with people often
turning to the Tier 5 definition to make their final retrospective judgement [ibid]. According
to Goatham [ibid], although project sponsors usually do think about projects and project
success in terms of the value created, some project managers prefer the Tier 3 or 4
definitions. This is because they dislike any definition of project success that encompasses value creation, the reason, once again, being that they do not want to be held accountable for things over which they have no direct control [ibid].

Keider [13] also defined a successful project as one that produces a user-effective system on time and within budget. He was however quick to add that targeted dates, costs, and specifications are subject to change as a project progresses. His definition is justifiable because the fundamental rationale of projects in general is to satisfy certain needs and generate positive impact. Accordingly, project success should be assessed from an operational perspective measured in terms of efficiency; from a tactical perspective measured in terms of effectiveness and also explored in a strategic perspective in terms of the project’s impact, relevance and sustainability [64].

Of all the definitions provided for project success, that of Baker, Murphy and Fisher (given below) has a high level of agreement in PM literature [53]. This is because their definition subsumes the dimensions of time, budget, quality/specifications and stakeholder/end-user satisfaction. Baker et al [68] view project success as a matter of perception and thus, from their point of view, a project is perceived to be an overall success “if the project meets the technical performance specifications and/or mission to be performed, and if there is a high level of satisfaction concerning the project outcome among key people in the parent organisation, key people in the client organisation, key people on the project team, and key users or clientele of the project effort.” (Page 903)

As noted earlier, a project can both be a success and a failure simultaneously. In some cases, the project succeeds in some aspects but fail in others. But because the stakeholders of a project usually have different objectives, it appears unlikely for a project to be a complete success during its entire life to all of its stakeholders. Thus, de Wit [67] categorically stated that referring to a project as being a success or a failure without any qualification is a nonsense. To this end, Duncan [62] suggested that instead of asking “Was your project a success?”, we should rather ask “How successful was your project?”.
3.2.2 MEASURES OF PROJECT SUCCESS

Measuring the success of a project can be difficult in that success means something different to each person involved in the project [60]. This difficulty is the main driver behind the numerous studies that have been done to uncover factors that lead to project success. This difficulty, according to Scott-Young and Samson [69], has driven researchers to aggregate separate measures of project performance success criteria into a single, overarching measure of success.

Two forms of project success measures exist in literature, viz. project success criteria and Critical Success Factors (CSFs) of projects. Studies related to project success generally falls into one of these categories [57]. Such studies, considered as a means of helping to attain successful projects, started as early as the late 1960s.

Measuring success, according to de Wit [67], involves an evaluation of the degree to which the objectives of the project have been achieved. These objectives, according to him become the success criteria, that is, the yardsticks against which project success is assessed, in the measurement process. On the other hand, CSFs are those inputs to the PM system that lead either directly or indirectly to the success of the project [53]. Although publications in Europe discussed success criteria and success factors back in the late 1980s, some of the North American publications introduced these concepts almost a decade later [48].

The focus of this study is on project failure, but not project success. As such, the success criteria and CSFs of projects will not be reviewed in detail.

3.2.2.1 SUCCESS CRITERIA OF PROJECTS

The success criteria of a project can be said to be “the set of principles or standards by which favourable outcomes can be completed within a set specification” [70]. Various criteria for project success abound in PM literature owing to the fact that different people and organisations see project success differently. Then also, one’s notion of success can be different from one project to another. For example, whilst the direct beneficiaries of a project will see the project to be successful only when it is able to make the anticipated positive
impact on their lives, the implementation unit of that project might see it to be successful if the project was delivered within the specified time, cost and budget, even if it does not generate the desired outcome or make the anticipated positive impact on the beneficiaries.

“The Iron Triangle” – time, cost and quality dimensions used for determining project success, as suggested by Oisen (see [71]) over 40 years ago, is perhaps the first of the success criteria measures to be identified. It has become the basic criterion to project success, identified and discussed in almost every article on project success in PM literature [70]. It is also mostly included in alternative definitions of project success developed in literature [49].

Other project success criteria measures available in PM literature include, but are not limited to:

- The satisfaction criterion, which is becoming increasingly important because once a project is complete, short-term memories fade and the focus shifts from the completion criterion “are we done?” to the satisfaction criterion “are we happy?” [48]. This is referred to as the “acid test of the original concept of the project” [72]. The higher the level of user satisfaction of a project, the higher the perceived success level of the project [ibid]. According to Lim and Mohammed [ibid], satisfaction is the second criterion of project success measurement. In contrast, Shenhar et al [73] has placed customer/client satisfaction as the number one criterion for overall project success measurement.

- The user effectiveness criterion, which from Keider’s [13] perspective, is the only lasting measure of success but also the most difficult criterion to measure.

- The legal claims and issues of litigation criterion. Pocock et al [74] suggested an absence of legal claims as one criterion of project success. This is because the full benefits of a project cannot be realised if it suffers from legal and litigation issues. In some cases, this can lead to non-utilisation of the project deliverable(s).

- The health, safety and friendliness of the project to the environment criterion, as suggested by authors such as Kumaraswamy and Thorpe [75]. Different projects impact the environment in different ways. For example, a construction project will affect the environment to a greater extent than a non-construction project. A project is intended to generate a positive change and/or impact but it can have unintended
consequences on the environment and eventually cause harm. Issues relating to the environment are always a global concern and can have severe impact on project outcome. As such, a project that poses threats to both beneficiaries and non-beneficiaries alike, either directly or indirectly or one that results in environmental problems will have no satisfaction and cannot be regarded as a success.

3.2.2.2 CRITICAL SUCCESS FACTORS OF PROJECTS

Different essential factors compete for attention and impact project implementation at varying degrees, with some leading to dire consequences if not checked. But getting the entire project team to pull in the same direction and focus on the true essentials is extremely difficult, hence the concept of success factors [76]. This concept, first presented in management literature by D. Ronald Daniel (see [77]) in 1961, was refined into Critical Success Factors (CSFs) by John F. Rockart between 1979 and 1981 ([78]; [79]). It has since evolved and been used extensively in different ways to help businesses implement their strategies and projects [76]. Targeting the main problems and issues in a project using the critical (key) success factors as a focus could make a significant difference to the effectiveness of PM [80].

CSFs must exist within the organisation in order to create an environment where projects may be managed with excellence on a consistent basis [61]. Since CSFs dictate managerial or organisational success [81], they are those areas of activity that should receive constant and careful attention from management [78], through a focus on the most important areas so as to get to the very heart of both what is to be achieved and how to achieve it [76]. Rockart [78] defined them as “the limited number of areas in which results, if satisfactory, will ensure successful competitive performance for the organisation. They are the few key areas where ‘things must go right’ for the business to flourish and if results in these areas are not adequate, the organisations efforts for the period will be less than desired.” (Page 85)

Bullen and Rockart [79] also view CSFs as the few key areas of an activity in which favourable results are absolutely necessary for goals to be reached. According to them, these areas when identified, lead to the creation of a common point of reference which helps direct and measure the success of the project. CSFs are those few things that must go well to ensure
success for a manager or an organisation and thus represent those managerial or enterprise areas that must be given special and continual attention to bring about high performance [81].

PM literature is replete with CSFs of projects. This is because generally, CSFs are not ubiquitous in all projects because different success factors affect different projects [82]. Available list of CSFs thus varies in scope and purpose [47] and have increased in number with time. This substantiates Bambrick’s [55] statement that in the intervening period between Daniel’s work (see [77]) in 1961 and Cooke-Davies’ (see [83]) in 2002, the list of CSFs available through studies is at times repetitive and overlaps with one another whilst increasing and decreasing in number.

Recent lists of CSFs are not devoid of this. Nguyen et al [84] in 2004, identified from among 20 factors of project success, five (5) CSFs. These are competent project manager, provision of adequate financial resources to the end of the project, competent and multidisciplinary project team, commitment to the project and access to resources. This list overlaps with Morris and Hough’s [85] list of attitudes, project definition, external factors, finance, organisation and contract strategy, schedule, communications and control, human qualities and resource management. So does it also overlap with Thi and Swierczek’s [25] recent list of project manager competencies, team member competencies, stability of external environment and organisation and project characteristics as CSFs. Contemporary studies on CSFs of projects thus continue to yield lists, which are repetitive, overlap with one another and vary in number. This is because as per Pinto and Covin’s [86] observation, whilst some CSFs are common to projects regardless of the type of project, others are specific to project groupings and their relative importance varies over the course of the lifecycle of a project. CSFs may vary in each project because they are subject to changing environmental variables. This suggests that there is no one best route to success [87].

Instead of providing individual CSFs, some studies attempted to classify them. These classifications are important as they provide a clear understanding of which aspects of projects are critical to their successful completion as well as their combined effects on project outcome and hence aid a better evaluation of projects [47]. The first of such classifications was carried out by Schultz, Slevin and Pinto (see [88]) when they classified success factors as either strategic – which include factors such as project mission and top management support or tactical – which include factors such as client consultation and personnel training [47].
Belassi and Tukel [ibid] also reviewed CSFs and categorised them into four (4) groups. These are factors related to the project, factors related to the project manager and the team members, factors related to the organisation and factors related to the external environment. This holistic framework included within-firm and industry factors which enables readers to clearly see what category certain CSFs belong to, and it also allows for an examination of the inter-relationships among CSFs [48].

Cooke-Davies [83] identified that, in one way or another, factors critical to project success can be categorised into factors relating to on-time performance, factors relating to on-cost performance and factors that lead to consistent corporate success. After conducting a thorough review on literature related to CSFs in seven major management journals, Chan et al [89] also categorised CSFs into project-related factors, project procedures, project management actions, human-related factors and the external environment.

An overarching view on CSFs of projects was given by Cooke-Davies [83] when he indicated that a comprehensive answer to the question of which factors are critical to project success depends on answering three separate questions. These are: “what factors lead to PM success?”, “what factors lead to a successful project?” and “what factors lead to consistently successful projects?”.

3.3 THE CONCEPT OF PROJECT FAILURE

The phrase “project failure”, as reported by Pinto and Mantel [15], is usually used to refer to projects that are terminated before they are completed. Reasons for such terminations are many and may include changes in legal, social, political, technological, and/or economic environments. Force majeure might also lead to the withdrawal of funds from the project and cause its termination. A project might also be obviated but will be considered a success. Pinto and Mantel [ibid] are therefore of the opinion that it is inappropriate to refer to a project that suffers from termination before completion as a failure. Besides, as indicated earlier, a project might be completed on time, within budget and to the required specification but might turn out to be a failure. Would a project that is completed to the required specification but outside its planned implementation period and budget and yet makes the required impact be considered as a failure? These make the concept of project failure vague.
With general PM literature being flooded with various factors of failure, the continuous inclusion of “The Iron Triangle” in attempts to define project success and the “dressing” of project failure with phrases such as “uncompleted but closed” by development-oriented institutions like the development banks, it is not wrong to say that the concept of project failure is still as nebulous as it has always been. This nebulous nature of project failure, despite its seemingly ubiquitous reality, could be said to be attributable to the four (4) under-listed reasons as outlined by Pinto and Samuel [15].

1. Few people agree on how to exactly define project failure since there abound a variety of definitions and distinctive examples of project failure in PM literature. This suggests a basic lack of consensus and/or parsimony with regards to the topic.

2. Few attempts had been made to employ empirical methods in a more systematic study of the causes of project failure. Much of the research on project failure has been conceptual or based on anecdotes although such approaches are not necessarily bad.

3. There is the possibility that the causes of failure may vary by the type of project being studied. Distinctive patterns of causes may therefore be associated with the failure of specific types of projects.

4. The causes of project failure may be contingent on the stage of the lifecycle in which the project resides.

It is argued that projects do not fail but rather people do. Diana [90] pointed out that development processes do not fail but rather the people involved with the project fail, the reason being that processes are rarely followed the way they are written. From his point of view, the parts that fail are the people adding scope without following the process, the people underestimating the complexity of the task, or the people shortening the project duration due to external factors. Keider [13] sides with Diana [90] in that regard. According to him, it is the people rather, usually project managers, who fail and the failure is most often caused by ignoring the ABCs of good management, that is, Anticipation, Brains and Courage.

In an attempt to provide a better explanation to project failure, Kerzner [91] introduced the term “perceived failure” when he suggested that failed projects are the results of some combination of both “actual failure” and “planning failure”. He indicated that there could be “actual failure” of projects which occurs when there are discrepancies between what was planned and what was accomplished. And so could there also be what he termed as “planning
failure” which occurs when discrepancies exist in what was planned to be achieved and what was actually achievable. This means “planning failure” can even occur before a project is rolled out as a result of optimism bias.

It is said that the project ends when the project closes and it is at that moment in time that the project should be judged [50]. However, many current projects cannot do more than offer imprecise evidence of their future success at the time of their introduction and as such, although organisations may have positive feelings about a project’s viability, only time will tell that story [7]. Neither can the future success of projects, in some cases, be determined immediately upon project closure. Kharbanda and Pinto [ibid] thus advised, from past research and experience, that when it comes to categorising a project as a failure the decision to judge should not be done too immediately after the project’s introduction. Neither should it be too immediate after project closure in some cases. This is so because as they pointed out, the truth always comes out in the product and the clients are the ultimate determinants of the outcome of a project, which makes them the ultimate arbiters when it comes to project failure.

Projects that fail usually start to fail very early but there are numerous signs which can alert management of the possibility of failure such as inadequate status reporting, isolationism, lack of schedule changes, over-emphasis on how a system will be built, premature programming, staff re-assignments and monolithic achievement [13]. Long before the failure of a project, there are significant symptoms, which according to Kappelman et al [92], can be categorised into people-related and process-related as shown in Table 3.0 overleaf. Kappelman et al [ibid] refer to these symptoms as Early Warning Signs (EWS), defined as events or indications that predict, caution, or alert one of possible or impending problems. The earlier in the project’s life cycle that these EWS are known and given attention, the better as they increase the probability of successful project outcomes [ibid].
Table 3.0: The Dozen EWS of Project Failure

<table>
<thead>
<tr>
<th>PEOPLE-RELATED</th>
<th>PROCESS-RELATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of top management support</td>
<td>Lack of documented requirements and/or success</td>
</tr>
<tr>
<td>Weak project manager</td>
<td>requirements and/or success criteria</td>
</tr>
<tr>
<td>No stakeholder involvement and/or participation</td>
<td>No change control process (change management)</td>
</tr>
<tr>
<td>Weak commitment of project team</td>
<td>Ineffective schedule planning and/or management</td>
</tr>
<tr>
<td>Team members lack requisite knowledge and/or skills</td>
<td>Communication breakdown among stakeholders</td>
</tr>
<tr>
<td>Subject matter experts are over-scheduled</td>
<td>Resources assigned to a higher priority project</td>
</tr>
</tbody>
</table>

Extracted from Kappelman et al (2006)

3.3.1 PROJECT FAILURE DEFINED

The subject of failure lends itself to a certain degree of passion, particularly among those who have worked on a “failed” or “supposedly failed” project in the past [7]. Accordingly, any attempt to define project failure is by no means a simple one because just like beauty, “failure” is often in the eye of the beholder and until we establish a set of criteria that have some generally-accepted basis for assessing projects, we run the risk, at best, of mislabelling successful projects as failed ones [ibid]. Several definitions of project failure thus abound in literature.

A lot of literature seems to regard failure as any cost or schedule overrun, or not delivering feature/capability/specification to the customer [93]. With such a definition, a project that is just a day late but is able to generate the revenue it is supposed to is treated the same way as a project which blows out of schedule, gets cancelled, and never realises a dime’s worth of revenue or improved productivity [ibid]. Mar [94] provided five (5) definitions of project failure based on five (5) criteria, viz:

1. Judgement Call: A project is a failure if its stakeholders consider it so. This, according to her, is the most commonly accepted definition of project failure.
2. Delivery to Plan: A project that fails to meet time, budget and quality targets is a failure, a definition she termed as relatively strict and might cause project managers to falsify schedules and budgets with excessive contingency.
3. On-time Delivery: Any project that is delivered late is considered a failure.
4. Financial Results Match Projections: Any project that fails to meet the financial forecasts set out in its business plan is considered a failure. This, from her point of view, is the most effective definition in many ways.

5. Minimum Return: A project is a failure if it fails to meet the minimum return criteria, e.g. a minimum Return on Investment (ROI) target. This definition, she indicated, marks a project as successful when it pays back even if it falls short of the financial forecasts in the business case.

Project failure in literature has been simplified with this interesting definition: “the company lost 20 million (they had planned on making 120 million, but they only made 100 million) [93]. Such a definition has a focus on the financial results of the project and is an indication of how effective the project was. It could be classified under category 4 of Mar’s [94] definitions. Project failure has also been defined in terms of the objectives of the project. A project is a failure if its objective has to be redefined [93]. This could be illustrated with a project deliverable that does not meet its objectives in the first instance but does so following changes or modifications in objectives. With such a definition, a project could be argued to have been both a success and a failure – successful based on modified objectives but a failure on the basis of original objectives. Cases such as this make Duncan’s [62] suggestion of asking “how successful was your project?” instead of “was your project a success?” more meaningful.

Lyytinen and Hirschheim [95] also defined project failure by classifying them into four (4) categories. These are:

1. Correspondence failure: Occurs when the objectives of project design or specifications are not met.
2. Process failure: Occurs when the project cannot be developed within the allocated budget/schedule or both.
3. Interaction failure: This is when user attitude, satisfaction and frequency of use of project deliverable do not correspond to the level of usage. It occurs when the project is implemented out of necessity and without increased task performance.
4. Expectation failure: Occurs when the project deliverable does not meet stakeholder requirements, expectations or values.
Perhaps, the simplest definition to project failure is the “opposite of project success”. In this case, the definition of project success should be known to be able to ascertain project failure.

The above clearly shows that it is not easy to define project failure. It is practically impossible to have one generalised definition of project failure. However, even though it is difficult to define exactly what constitutes a failed project, there appears to be some common aspects. This suggests certain characteristics are strongly related to perceived project failure, as observed by Pinto and Mantel [15] after they examined a variety of failed projects. These aspects, according to them, are the implementation process itself, the perceived value of the project and the client satisfaction with the project. These can also be used as benchmarks to determine whether a project is a failure or not.

3.3.2 GENERIC FACTORS OF FAILURE OF PROJECTS

At least, there are two (2) types of projects to consider when evaluating the causes of project failure – Type 1 projects and Type 2 projects [96]. Meredith and Mantel [ibid] explained that Type 1 projects are well understood, less complex, routine projects which have a clearly defined scope, few unknowns, may run late or over budget and which will only fail if technical expertise to handle unexpected deviations is lacking. But Type 2 projects, from their explanation, are considered complex, typically have many unknowns and an unclear scope, may face difficulties even at the beginning, the client will often not approve the project itself and generally have planning problems as a major cause of failure - especially those that deal with defining project scope.

Studies on the reasons for project failure dates back to the 1960s. A review of literature shows that prior to the early 1990s, most of the early studies on projects focussed mainly on the reasons for project failure other than success.

From Pinto and Mantel’s perspective [15], a cause of project failure is the deficiency or lack of a critical success factor. Avots [4] has articulated that to understand the reasons for failure, we must ask why companies turn to PM because the many instances where PM fails overshadow the stories of successful projects. The many symptoms of PM failure are high costs or schedule overruns, poor-quality products, and failure to meet project objectives
[ibid], which could also be seen as symptoms of project failure. Accordingly, some studies in PM literature chose to unravel why PM fails in attempts to identify the causes of project failure.

There is a broad spectrum of factors identified as causes of project failure in PM literature. These lists, just as is the case with project success, are repetitive and overlapping. The number of factors also increases and decreases with each list. Keider [13] reported the lack of project plan as the number one single reason why projects fail, and added that although some projects fail because of technological or design problems, most of the reasons for project failure indicate a lack of basic understanding of PM which leads to the violation of basic management principles such as planning and control. Hughes [14] observed that projects fail because of improper basic managerial principles such as improper focus of the management system through the rewarding of wrong actions and lack of communication of goals. Avots [4] identified the following as the reasons why projects fail: the basis for the project is not sound, the wrong man is chosen as project manager, company (top) management is unsupportive, tasks are inadequately defined, the PM system is not adequately controlled, management techniques are misused and project termination is not planned.

Stewart [97] considered, in an ascending order, scope creep, over-allocated resources, poor communication, bad stakeholder management, unreliable estimates, no risk management, unsupported project culture, the accidental project manager, lack of team planning sessions and monitoring and control as the top 10 reasons why projects fail. Oates [9] also reported that large-scale project failures hit the headlines in the United Kingdom (UK) owing to the under-listed causes despite the fact that planning on long-term projects now takes up more time and resources than ever before.

- Companies do not have visibility into on-going activities, and consequently, cannot retain control once the project is underway.
- Underestimation of the importance of real-time collaboration – project managers relying on weekly and monthly reports, which can allow problems to escalate in the meantime instead of continually monitoring project status to keep staff in the loop regarding changes or overruns.
- Lack of communication.
Sometimes it is a single trigger event that leads to failure, but more often than not, a complex entwined set of problems combine and cumulatively result in failure; there are therefore many causes of project failure with every failed project having its own set of issues [98]. The aforementioned factors, as well as those in the succeeding review, go to show how PM literature is populated with factors responsible for project failure. The causes of project failure (both simple and complex) can thus be infinite and differ at both the early strategic phase and the tactical phase of a project’s lifecycle. They also vary widely depending upon the type of project examined ([6]; [15]).

In many cases the reason for failure is obvious and although one common reason for project failure is an impossible business case, some other main reasons include addressing the wrong business requirements, poor governance, poor implementation, people losing focus on the project’s benefits and environmental changes, which is probably the trickiest area [99]. This is because a fast changing environment creates a lot of risks for the project. Besides, Pinto and Mantel [15] have also indicated environmental factors such as unforeseen economic downturns, development of a superior technical alternative, or changes in governmental regulations, as important causes of project failure. As they rightly indicated, changes in the project’s environment, beyond the control of management can cause projects to fail.

Any number of events beyond the control of the project team and parent organisation, from the viewpoint of Pinto and Kharbanda [11], can hinder a project’s chances of success. According to them, the real causes of failure in the vast majority of failed projects are often difficult to ascertain, thanks to human ingenuity for sweeping unpleasant facts under the carpet – a situation they term as a pity. Following their research and experience and considering those activities and decisions that can play an important role in a project’s failure, they pointed to some important contributing ways of ensuring a project’s failure. These factors, which they term as a list of sure-fire methods for ruining a project’s chances of success, are as outlined below.

1. Ignore the project environment (including stakeholders).
2. Push a new technology to market too quickly.
3. Do not bother building in fall-back options.
4. When problems occur, shoot the one most visible.
5. Let new ideas starve to death from inertia.
6. Do not bother conducting feasibility studies.
7. Never admit a project is a failure.
8. Over manage project managers and their teams.
10. Never bother to understand project trade-offs.
11. Allow political expediency and infighting to dictate crucial project decisions.
12. Make sure the project is run by a weak leader.

The last factor of failure in the list above could be seen to be a bit awkward. “How can a leader be weak?” might be one question that will be asked. However, Pinto and Kharbanda [ibid] explained that the term “weak leader” is oxymoronic because a fundamental weakness is not one of the many traits of leaders. They further explained that projects, in their natural state, are more often chaotic and disorderly than are logical and pragmatic. As such, projects require strong leaders to keep the project team on track but some leaders could be lax and weak and are therefore, not only unhelpful but also actively counterproductive to projects. According to them, in the preponderance of projects that failed, the project manager either was essentially invisible to team members or exhibited the worst sorts of characteristics a project manager can have, i.e. weakness and laxity instead of decisiveness and determination.

Bad project management and poor planning remain major problems in project implementation [35]. Bad managerial decisions and/or actions such as ignoring the environment of the project, rewarding wrong actions and lack of communication of goals as reported by Hughes [14], continue to plague IDPs and cause their eventual failure. A weak plan fails to identify important risk factors of projects as well as their mitigation measures. As such, poor project planning creates challenges in management. The weakness of a plan is probably an expression of the weakness of not understanding the development process of projects [35]. Bad project management and poor planning remain major problems because as rightly stated by Strachan [12] and Saunders [35], the people who plan the projects are often not necessarily those who implement them.

The problem of project failure is not in ability, skill or knowledge; it is in a project system that is almost certainly doomed to failure [100]. Neither does it, as per Lawrence and Scanlan’s [17] finding, has to do with incompetence since they identified from their study that project managers and their teams were well educated, intelligent, highly motivated and
very capable people. Acord [100] likened project failure to the Student Syndrome – students putting off papers, assignments, projects, etc. due for submission until the very last minute and then cramming to get them submitted. Much of our approach to projects, as indicated by Acord [ibid], are in a much similar way; we have so many things to get done that we cannot possibly complete them so big projects or tasks get put off until time runs out for them, which leads to resource conflict.

Then again, per Acord’s [ibid] perspective, projects fail because they are approached wrongly from the very beginning. There is a “slack time” between operations in all projects but the reason why projects fail, after practically sleeping at the office and spending many months to plan them, is that project team members tend to eat the “slack time” by delaying the start of their projects or activities, when this time is really there to protect them from unforeseen problems that might arise in the cause of implementation [ibid]. This is a real problem with PM - projects that do not meet their goals are so common that Cheop’s Law (below), named after the king associated with the Great Egyptian Pyramid, was developed for them [ibid].

“No project ever comes in on time or under budget.”

Unproven technologies also cause project failure. Continuous changes in technology could fuel failure rates of projects. However, studies show that immature technologies cause project failures only less than five per cent (5%) of the time [101]. Moreover, although technology may be evolving at lightning speed, project success rates are improving at a snail’s pace [ibid]. That notwithstanding, the ultimate finding as to why major engineering projects fail, per Lawrence and Scanlan’s [17] study, has to do with technology – the very technology available for managing projects today is inadequate. From their point of view, modern, complex projects cannot be planned and executed using 50-year-old PM tools.

Based on the foregoing, Biggs [101] commented that technology will not end project failure but rather, communication is the key because according to Standish Group figures, the bulk of project failures continue to be the result of poor communication. Technical skills are clearly no longer enough to ensure the success of projects; there must be solid communication skills, both verbal and written, in order to complete projects on time, at or under budget and which provide promised benefits [102]. Perhaps, this could be true since the results of a web poll released by the Computing Technology Industry Association
(CompTIA) also revealed poor communication as the factor that most often causes a project to fail. Nearly 28 per cent of over 1,000 respondents to the web poll singled out poor communication as the number one cause of project failure ([ibid]; [103]). It therefore sounds obvious that basic communication between project teams will reduce the likelihood of problems occurring and thus reduce project failure but in reality, effective communication is something which is not always that easy to achieve as projects could be based across multiple sites or time zones and may involve numerous teams of workers who require different types of information and who may also be assigned to several concurrent projects [9].

The best way to understand the causes of project failure, as Kharbanda and Pinto [7] put across, is to study prior projects that have failed. As such, based on a catalogue of catastrophe of projects and discussions with over 300 people who have been involved in both successful and failed projects, the generic causes of project failure have been divided into eight (8) primary categories as presented in Figure 3.0 below [104].

![Figure 3.0: Classes of Project Failure (Source: Calleam Consulting Ltd)](image)

3.3.3 FACTORS OF FAILURE OF INTERNATIONAL DEVELOPMENT PROJECTS (IDPs)

International Development Projects (IDPs), as already mentioned in the introductory chapter of this thesis, are usually designed and implemented with the sole involvement of the financing institution, resulting in local stakeholders feeling sidelined. More often than not, those who do the planning are not necessarily those who implement the project, leaving the
local project manager with a full responsibility of the project and very little authority over the resources needed to make the project succeed ([12]; [35]; [4]; [33]). This basics of interaction between the financing institution and host government in IDP development, compounded by an environment characterised by a lack of infrastructure and short supply of resources within which they are implemented, makes the application of good PM, which can solve most of the problems associated with IDPs difficult [33]. IDPs are also evolving into more of “softer” projects involving social and human development other than “hard” projects ([33]; [30]; [31]), rendering them more difficult to manage.

A special challenge therefore arise in their management and evaluation which requires adaptation to the existing Project Management Body of Knowledge (PMBoK) [32]. The many problems that unfold during the implementation of IDPs as well as their continuous reported failures evince their difficult and challenging nature. It will be impossible to pinpoint the sole root cause of failure for most of them [36]. Their failure is so frequent that as already noted in the introductory chapter, Hermano et al [22] commented that IDPs have turned project failure into a rule rather than an exception. This section reviews the factors responsible for IDP failure. It should be noted that some of these factors are common and overlap with the generic factors of project failure in PM literature.

One reason why IDPs fail is the basis on which they are developed and implemented, a factor Avots [4] termed as an unsound basis for the project. That is to say, IDPs fail because they are based on wrong assumptions as reported by Givewell [105], an American non-profit charity evaluator and effective altruism-focussed organisation. Projects in many developing countries are still primarily undertaken for political reasons [106] and project identification is largely based on political decisions [18]. Development assistance, with its resulting programmes and projects, is quintessentially political since it deals not only with the allocation of scarce resources among competing groups, but also with the achievement of specific goals – developmental or otherwise [107]. There are flagrant examples of projects which have been undertaken strictly for political reasons in defiance of economic logic [106]. Most of such projects usually suffer abandonment by successive governments following a change in power, resulting in the waste of scarce resources.

In addition and as articulated by Givewell [105], IDPs rest on some assumptions about the people they are intended to help, some conditions for successful implementation as well as
the environment within which they will operate. If these assumptions turn out to be wrong, the projects are rendered ineffective even if they are carried out as intended. For example, many health improvement projects focussed on improving water supply have failed substantially to improve health outcomes; the reason is that water-borne diseases are generally transmitted in many ways other than water supply so merely improving water supply may not be enough, and changing hygiene-related behaviour may be difficult [ibid].

It is also possible that IDPs are reportedly failing because they are judged wrongly or against wrong assumptions. Such cases are what Kharbanda and Pinto [7] advise against – that the decision to judge a project as a success or failure should not be done immediately after introduction or closure since the truth always come out in the product with time. Kumar and Corbridge [108] provides an illustration with the Eastern India Rain-fed Farming Project (EIRFP), which in many respects, is a model development project. According to them, it successfully improved farm-based livelihoods in Jharkhand, Orissa and West Bengal but because it had not persuaded the poorest villagers in Jharkhand to join or manage the self-help groups that are called for by the EIRFP’s Logical Framework, it might be considered a failure even though development projects cannot be expected to change local systems of politics or stratification. In the light of this, Kumar and Corbridge [ibid] conclude that an IDP will be destined to fail when it is judged against unrealistic/wrong assumptions about the possibilities and merits of “participation”. Successful projects could also be judged otherwise because most project evaluations are not rigorous – the same units who carried out the projects undertake the evaluations and might just look at whether the immediate objectives of the project have been achieved, but not whether the projects resulted in a meaningful impact for the beneficiaries [105].

Rotner [106] indicated that IDPs fails to deliver because of inappropriate project designs. The art of project design, so his argument goes, is to incorporate into the project a combination of existing and new “traits” suitable to the particular country and the particular project [ibid]. But this is not always the case. As per his illustration, an IDP can suffer the danger of increased costs and lowered quality of deliverables when, during the design, its success dwelt too heavily on local characteristics, say, performing most project activities by hand instead of machines because there is a surplus of labour. The soft objectives of the project like contributing to teaching new skills might also not be realised in such an instance. Excessive reliance on making new skills or traits, or worse yet, ignoring the question of whether the
required skills or traits exist or can be created by project designers is another cause of failure [ibid]. There is no doubt, according to Rotner [ibid], that Pakistan’s projects suffered from similar problems and were at the bottom of several of the more serious difficulties experienced by projects summarised in Hirschman’s book “Development Projects Observed”.

Autonomy is yet another cause of failure of IDPs. The autonomous agency is one device widely used to escape the restrictions which existing institutions place on development and for implementing more rapidly “modern” activities [ibid]. However, per Rotner [ibid], too much of it renders the project liable to failure as the highly autonomous project may be suspected to be subservient to foreign domination and might therefore not get the support and backing it needs to achieve its objectives from the host government. Other causes of IDP failure, from his review of development projects include excessive reliance on foreign imports of skills and technology, ignoring local conditions and the direct transplant of foreign processes and systems into an essentially incompatible environment as well as failure to build up local administrative and technical skills. Well-intended projects can fail if they are not well suited to local conditions, or are otherwise poorly carried out [105]. And too much reliance on foreign expertise results in a lack of development of local capacity in managing projects, which the developing world is reported to lack (see [109]).

As per Strachan’s [12] perspective, factors of failure of IDPs are recurring problems in administration which can be traced back to the “rational” paradigm guiding the evolution of the aid control system. These recurring problems are long lead times in programme development, high administrative costs, implementation delays and obstacles, and managerial passivity and subterfuge.

Lead-time could be defined as the length of time taken for the start of project implementation activities following project identification or conception. The reasons for long lead times, just as Strachan [ibid] reported, are basically the nature of the decision-making process which involves a number of layers of bureaucracy and requires participation from a wide number of people, as well as the amount of work in planning and evaluation which must be performed before a project is approved. An interesting twist to this long gestation period of IDPs is that the people who design and plan the projects are hardly even involved in their implementation ([ibid]; [35]).
The actual administrative costs of IDPs may be considerably higher because some of the costs of project evaluation, supervision, and control tend to be classified as technical assistance and varies tremendously among different types of projects; it is thus hard to come by reliable objective data for evaluating implementation delays [12]. However, evidence of implementation problems in IDPs can be seen in cost overruns, scope changes and the significant percentage of project funds that are not disbursed or fall behind schedule in the implementation phase ([ibid]; [110]). Strachan [12] indicated the lack of adequate prior planning and design, not adequately anticipating problems, faulty information and analysis as well as unanticipated events as some of the reasons for implementation problems. However, from his point of view, the reason for implementation delays most cited are lack of effective management because the project’s administration team usually lack formal education or managerial experience or even the motivation to work as hard as necessary to push programmes through to completion.

The obstacles and difficulties that inhibit overall economic growth and efficient public administration also constrain effective project planning, organisation and execution of IDPs [1], leading to failure in most cases. Both Gow and Morss [107] and Rondinelli [1] reported that the problems of planning and managing IDPs are varied, are not all equally amenable to change, are sometimes virtually intractable and they occur frequently enough to consistently impede progress of implementation. These problems include overambitious or technically deficient designs, inappropriate or ineffective appraisal, cost and schedule overruns, scope creep, political expediency, faulty planning, weak supervision, poor monitoring and control systems, laxity in evaluating project results and poor assessment of risks and mitigation measures, to mention but a few.

People are the most valuable resource in all developing countries but due to grave unemployment and underemployment in such countries, a lack of optimum utilisation of human abilities remains a cause of failure of IDPs [111]. Project impact is not immediate as it is usually realised after some time following completion. However, due to the general absence of routine maintenance in developing countries, most IDPs are unable to generate their intended impact for the beneficiaries over time because their outputs run down much faster and where the impact is generated, it is short-lived and narrowly distributed ([ibid]; [1]).
Sahibzada and Mahmood [18] provided yet another plausible explanation for the failure of development projects – that they fail due to ineffective planning, a factor supported by several other researchers such as Agheneza [19] and Saunders [35]. They indicated that the process of project planning and implementation suffers from inherent problems ranging from conceptual differences about the projects, hurriedly prepared feasibility studies deficient in proper technical and economic underpinnings as well as the lack of basic information obtained through insufficient investigation and surveys to inadequate project monitoring and an almost non-existent in-depth evaluation studies. As a result of this, development projects tend to suffer from weak links between sectoral planning and project identification, between project identification/feasibility and formulation, and between project preparation/project appraisal and project implementation [18].

A characteristic of poor planning is ignoring beneficiaries during the planning process. If there is no input from local stakeholders and direct beneficiaries or their views and experiences from previous projects are not sought during project planning, they see the project to have been imposed on them. As such, they remain indifferent to the project – a situation known as lack of project ownership. IDPs thus also fail because they lack ownership - no one is responsible for ensuring that they succeed [112].

Freedman and Katz [36] pointed out that leadership across borders is another cause of failure of IDPs. In addition to adaptation issues, leaders of international projects, from their perspective, face significant development issues as international work at the project level could still be regarded as a new territory for those involved. According to them, even those with many years of experience report they are still learning how best to understand and communicate with their international colleagues. Thus, to Freedman and Katz [ibid], IDP success requires mastering numerous challenges in a complex context since implementing projects in different countries with unique legal and political environments, security issues, economic factors, and infrastructure limitations and requirements, increases complexity far beyond that of conventional projects. They went on further to explain that geographical distances, language barriers and cross-cultural gaps that are typical of an international project’s environment introduce further leadership challenges and additional risks that cause IDP failure. As such, pinpointing any one factor as the sole root cause for IDP failure is impossible [ibid].
Development projects are neither designed nor implemented in a vacuum [107]. As such, there is bound to be challenges during implementation. Although several of the failure modes of projects involve the “The Iron Triangle”, there are other ways that projects can fail, some of which involve “softer” issues such as human factors. These “softer” people issues are harder to identify immediately and rectify and can cause project failure just as surely as any other issue [113]. Accordingly, most research shows that the major causes of project failure continue to be people-related issues [101]. The “softer” the project, the more complex it becomes. Complexity and uncertainty are inherent in projects, particularly IDPs, by virtue of their nature. They are compounded through the foisting of unwanted or exploitative projects on governments by multinational corporations as well as the usage of culturally incompatible management methods by foreign consultants [1]. Many of the causes of project failure thus appear to be manifested as by-products of two enveloped root causes: a lack of adequate and sufficient resources (including skilled management personnel provided for the project) and the complexity inherent within the project itself [114]. And because the success of IDPs become less certain as their strategies become more complex [1], Whitney and Daniels [114] believe that the root cause of failure in complex projects such as IDPs is complexity itself.

Ika [29] has provided some insightful views as to why IDPs are failing. According to him, certain traps in their management are responsible for the problems they encounter and their eventual failure. From his point of view, IDPs get caught in one or more of the four (4) traps, not to say all of them together, and it is only when they break free from them that their chances for success can increase. He suggested that the problems associated with managing IDPs might fall into one (1) or more of the four (4) under-listed main traps.

- The **one-size-fits-all** trap where there is the notion that all types of projects share similar characteristics.
- The **accountability-for-results** trap which occurs when too much emphasis is placed on strong procedures and guidelines, resulting in “accountability for results” to the neglect of “managing projects for results”.
- The **lack-of-project-management-capacity** trap due to lack of and shortages of personnel skilled in PM.
• The cultural trap where there is no consideration of the cultural setting of IDPs. Cultural problems in PM, which arise out of the cultural trap are exacerbated by the use of inadequate tools in managing projects [17].

Many project failures are more institutional than technical [29]. Institutional/sustainability problems that render IDPs susceptible to failure include, but are not limited to endemic corruption, capacity building setbacks, recurrent costs of projects, lack of political support and institutional capacity to deliver sustainable outcomes as well as incompatibility between host countries’ and donors’ management systems [ibid]. Therefore, as a result of the aforementioned and other institutional problems, IDPs all too frequently fail to achieve their goals due to a number of problems that are managerial/organisational in nature ([ibid]; [115]).

It can be drawn from Hermano et al’s [22] analysis on how to successfully manage IDPs that IDPs fail also because of the Logical Framework Approach (LFA) employed for their design and management. The LFA, based on its definition by one of its designers, is a methodology designed to ease and guide IDP design and evaluation the world over, and is the most widespread body of knowledge for managing IDPs [ibid]. Although the LFA has proved to be effective as a project design and evaluation tool in many cases, many pitfalls have dented its use as a PM tool [42]. It is proved to have several liabilities [22]. It is considered inflexible, complex and difficult to integrate with other PM tools due to the lack of clear process leading to its development and its confusing nature evident in the difference between goal and purpose as well as the lack of stakeholders’ involvement which often compromises its validity ([42]; [43]; [44]). Using such a framework for IDPs that are already usually challenging endeavours decreases their prospects of success.

3.4 CONCLUSION

Goatham [50] recently indicated that the wrong definition of success is a cause of failure of projects. From his point of view, if the organisation’s definition of success is wrong then the context within which decisions are made will also be wrong, which can easily become the trigger that leads to failure. Project failure also stems from different project stakeholders seeing success differently, which end up pulling the project in different directions [ibid].
This review shows that a myriad of factors are responsible for IDP failure, and by extension project failure as evident in extant PM literature. These factors vary in scope and purpose. So are they repetitive and overlapping in nature. It is therefore impossible for a general agreement on a specific set of factors as the only factors that are responsible for the failure of IDPs. This is because all development projects are somewhat experimental and even seemingly routine replications often meet unanticipated difficulties when transferred from one cultural setting to another [1]. Moreover, different factors affect projects at different stages of the project’s lifecycle. However, there could some underlying reason(s), which appears lacking in International Development Project Management (IDPM), responsible for IDP failure worth identifying.
CHAPTER FOUR
RESEARCH METHOD

4.1 INTRODUCTION

This chapter sets out the research method employed for this study. Following Kharbanda and Pinto [7], Olsson [116] and Osei-Tutu et al. [117], the research design involved an extensive extraction of data from reports, primarily Project Completion Reports (PCRs), of defunct projects of African Development Bank (AfDB). These reports are available on the website of AfDB for public access. They are based on the bank’s appraisal and supervision mission reports, aide memoires, and various studies and documents such as progress reports. They highlight both positive and negative aspects of project implementation and draw appropriate lessons for improving the chances of success of future projects. Data from them are thus credible, comprehensive and coherent because of the consistency in information. This is in contrast to Boyer and Swink’s opinion, as cited in Ahsan and Gunawan’s article [28] that most of data from such sources contain discrepancies. Moreover, secondary data from such reports, when used for research, offer numerous advantages as they are illuminating and provide a good basis to generate new and further research into identified phenomena. Secondary data allow for true research as they are more publicly available to a larger number of scholars [118]. They are also generally more objective than even primary survey data since they are free from contamination due to respondents’ perception(s) and/or memories of the phenomenon of interest [ibid].

Using secondary data is by far the cheapest way to research on a topic such as project failure. It requires less money, less time and fewer personnel [ibid]. In addition, projects are temporary in nature and as such, there is always the likelihood that the researcher would be unable to get project team members and key project personnel of defunct projects to source for primary data because they leave projects following completion. Thus, within the field of Project Management (PM), research based on secondary or archived data is promising [28]. Evidence of its usefulness is available in PM literature. For instance, in construction projects alone, Sun and Meng [119] identified 49 journal articles, out of a review of 101, whose research method employed documentation and record of completed projects.
The chapter is organised thus. The research framework is first presented followed by the data collection process. A section on how the data was analysed closes the chapter.

4.2 RESEARCH FRAMEWORK

Based on a proposed model for research by Sekaran cited in Walker’s article [120], the framework developed for this study is shown below in Figure 4.0.

![Research Framework Diagram](image)

Figure 4.0: Research Framework

Following a review of literature and based on observations from personal experience working on development projects, the author felt it is important to understand why International Development Projects (IDPs) fail to make meaningful and lasting impacts on beneficiaries. A research proposal around issues relating to the abysmal performance of most IDPs was thus initially framed, which established the broad area of general interest. The original scope was to investigate the success factors of such projects.
Despite the fact that project failure is a real-world problem with severe consequences and projects have been failing since the dawn of time, a preliminary review of pertinent literature yielded quite an appreciable number of studies on project success but not failure. Similarly, not many studies have been done on IDP failure in comparison to their success. There is therefore paucity of studies on IDP failure in PM literature. As noted earlier in the introductory chapters, much as a child learns to walk by falling down repeatedly until the act becomes ingrained, the success rate of IDPs could typically improve through the knowledge and experience gained from disastrous/failed ones. However, this can only be achieved if failed IDPs are examined to draw lessons for future ones rather than filing them away quietly. The line of research therefore shifted from the initial focus on success factors of IDPs to examining why IDPs fail.

To answer the research question, a sample of defunct real-world IDPs of AfDB was drawn from Ghana and Mali and analysed. The choice of these two countries was guided by the following criterion as used by AfDB in one of its evaluation reports: whilst Mali is an arid land-lock country, Ghana is a coastal (non-arid) country, as such the two countries face different technical and institutional challenges (see page 2 of [52]). Available PCRs were thus extensively analysed to identify factors/issues that militate against the success of IDPs so as to come out with underlying reasons for their failure.

4.3 LITERATURE REVIEW

The review of literature, which involved gathering of data from relevant sources on IDPs, project success and project failure and as presented in Chapter Three, paved way in establishing the direction of the study more clearly. It also helped in identifying the crux of this study, i.e. finding out the underlying reasons for IDP failure.

Extant literature was reviewed with a focus on failure. However, since failure is the converse of success and can be determined only when we know what success is, project success was also reviewed but not into detail. The review, which aided the collection of data, provided useful insights into the factors, issues and/or circumstances that cause failure of IDPs.
4.4 DATA COLLECTION

In November 2014, data for the study was sourced from PCRs of defunct AfDB-funded projects in Ghana and Mali using a simple manual search. The PCRs are available on AfDB’s website as a knowledge base for the general public.

These PCRs were prepared at the end of the projects, in consultation with the project staff, host governments, project beneficiaries and all stakeholders following the submission of the project’s own PCR, by teams fielded by AfDB. As such, as indicated earlier they were found to be comprehensive with useful information on project implementation and challenges, lessons learnt and recommendations. The search criteria applied for retrieving the PCRs, for both Ghana and Mali, is as outlined below.

AfDB website (www.afdb.org)

Documents

Projects & Operations

Project/Programme Completion Reports

After retrieving the PCRs, they were extensively analysed using both latent and manifest content analysis to identify the factors/issues/circumstances that militated against the success of the projects. This is because content analysis offers a pragmatic method of developing and extending knowledge [121]. In doing so, attention was paid to the project implementation, lessons learnt and recommendations sections of the reports as key units. For illustrative purposes, a statement such as “…the bank did not monitor the project regularly, since it only carried out a few monitoring and supervision missions throughout the project, whereas the scale of the work to be carried out required at least one supervision mission per year.” (Page 17/18) [122] was interpreted that the project suffered from improper supervision and was recorded as such. In contrast, a statement as follows: “The bank conducted supervision missions according to the required frequency, with diversified teams of experts.” (Page 12) [123] is an indication of a project that had no issues with supervision. Similarly, statements such as “…bottlenecks in the procurement process both at the level of the Bank and of the
Malian government (average procurement time-limit of 23 months instead of the projected 5 months)” [Page 11] [ibid] and “… since the project did not include headings devoted to cases of force majeure, the temporary relocation of the ADB’s headquarters to Tunis immensely disturbed the monitoring by the Bank of the project’s implementation.” (Page 9) [124] demonstrated projects whose success was constrained by procurement challenges and exogenous factors respectively and were recorded as such.

The factors/issues/circumstances identified from the reports to cause IDPs to underperform, become distressed and eventually fail are as presented in Table 4.0.

Double-data extraction controls random errors in data extraction; it minimizes errors in the data collected as it leads to fewer errors [125]. Hence, to improve reliability of the extracted data, double-data extraction was employed. Data extraction from the PCRs was done again about four (4) months from the initial analysis. The two results were then compared for consistency and accuracy. The comparison statistics is provided as Appendix 3.
Table 4.0: Description of Extracted Factors of IDP Failure

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Inadequacy</td>
<td>Overlooking certain key elements in project formulation, e.g., lack of feasibility and baseline studies, poor/no assessment of risks and mitigation measures, not incorporating lessons learnt from similar, previous projects as well as no stakeholder and beneficiary input. Effects include ill-defined roles, responsibilities and processes, scope changes as well as unrealistic time-frames, budgets and targets.</td>
</tr>
<tr>
<td>Deficient Designs</td>
<td>Designs that are technically weak and which lack relevant details and contingency plans to aid project implementation.</td>
</tr>
<tr>
<td>Inappropriate Procurement Methods/Systems</td>
<td>Selecting unsuitable procurement modes such as National Competitive Bidding (NCB) or International Competitive Bidding (ICB) instead of local shopping for relatively smaller contracts, the result of which is lengthy procurement processes.</td>
</tr>
<tr>
<td>Bad Project Management Actions</td>
<td>Inappropriate managerial decisions and/or actions during project delivery, e.g. cutting down the scope of a project component without assessing its impact on other component(s), ignoring the project environment during implementation, over-managing project teams with many layers of oversight and bureaucracy, and poor communication in project teams and stakeholders.</td>
</tr>
<tr>
<td>Lack of Appropriate Institutional PM Capacities</td>
<td>Weak managerial skills and experience of personnel, as well as weak structural/systemic attributes of institutions to manage projects, e.g., weak project managers, weak ICT base, insufficient vehicles and poor inter-department relations.</td>
</tr>
<tr>
<td>Personnel Inadequacy/Understaffing</td>
<td>Management of projects without the full complement of competent personnel. This results in extra workloads for staff that might not even have the requisite experience.</td>
</tr>
<tr>
<td>Inadequate Support to Project</td>
<td>Low level of commitment by host government and other stakeholders to the project evident in the untimely and irregular release of counterpart funds/resources.</td>
</tr>
<tr>
<td>Lack of Project Ownership</td>
<td>Project beneficiaries not regarding projects as their own and thus remain indifferent to the project. It usually happens as a result of not consulting and/or involving beneficiaries so as to understand their needs during project planning.</td>
</tr>
<tr>
<td>Exogenous Factors</td>
<td>Factors beyond the control of the project management team, e.g. economic downturns, restructuring/relocation of stakeholder institutions, political unrest, conflicts, bad weather conditions, etc. that hinder project implementation and success.</td>
</tr>
<tr>
<td>Political Expediency</td>
<td>Making decisions and/or undertaking activities that are convenient to politicians or that will advance the self-serving motives of politicians to the detriment of the project.</td>
</tr>
<tr>
<td>Poor Quality of Project at Entry</td>
<td>An unsound project in terms of fineness and appropriateness for implementation at outset.</td>
</tr>
<tr>
<td>Lack of Project Flexibility</td>
<td>No element(s) of responsiveness built into projects to enable them respond rapidly to changing conditions.</td>
</tr>
<tr>
<td>Optimism Bias</td>
<td>The tendency of being overly-confident of attaining the desired outcome of the planned project/activity and overlooking/underestimating the possibility of experiencing unexpected events which are usually negative during project implementation.</td>
</tr>
<tr>
<td>Supervision Related Issues</td>
<td>Issues such as no or irregular project supervisions, poor skill-mix of supervisory team, wrong timing and limited duration of supervisions.</td>
</tr>
</tbody>
</table>

Source: Knowledge gained through personal experience working on IDPs

4.4.1 SAMPLE SIZE

The search for project reports yielded 31 PCRs for projects undertaken in Ghana and 29, for Mali. In the case of Ghana, six (6) additional projects, whose reports were available in a review document on AfDB’s assistance to the agriculture & rural development sector of
Ghana from 1990 to 2010, was added to the sample population. The PCR of Inland Valleys Rice Development Project (IVRDP) was also sighted and added, bringing the total number of projects with available PCR to 38. Out of the 38 reports, seven (7) were excluded from the analysis – two (2) had their PCRs in French Language, four (4) appeared as duplicates from the search and one (1) was an incomplete report as it had only a single page available out of its complete PCR. This brought the total number of PCRs analysed for projects in Ghana to 31.

In the case of Mali, the total number of PCRs analysed was 22 as seven (7) were also excluded - two (2) appeared as duplicates from the search, one (1) was for a project undertaken in a country other than Mali, two (2) were in French Language and the remaining two (2) were multinational projects undertaken in several countries including Ghana and thus had a single report. The list of projects that were included in the study as well as those excluded from the study is presented in Appendix 1 and 2 respectively.

The sample size for the study was thus 53 projects, which were implemented between 1974 and 2011. Although these projects spanned several sectors including but not limited to education, transport, industry and health, majority of them were in the agricultural sector. It is worth noting that out of the 53 projects sampled for the study, three (3), viz. Small-Scale Irrigation Development Project (SSIDP), IVRDP and Kpong Irrigation Project (KIP), implemented in Ghana are being salvaged through another development project ([21]; [personal communication]), which makes them very useful for such a study.

4.5 DATA ANALYSIS

To aid analysis, the identified factors/issues/circumstances that lead to project failure were coded. A code of zero (0) was assigned to the factors/issues/circumstances in cases where they were not identified in the PCRs to have militated against or hindered the success of the project and one (1) was assigned when identified otherwise. Analysis of the data for the study was then carried out using two (2) statistical tools, namely factor analysis and binary logistic regression analysis. The Cronbach’s alpha of the dataset was computed first to ascertain how reliable the dataset was before running the statistical tests. The analyses were conducted with the help of the Statistical Package for the Social Science (SPSS) software.
4.5.1 FACTOR ANALYSIS

Factor analysis is a statistical technique used to reduce data for easy exploration. It does this by seeking underlying unobservable (latent) variables that are reflected in the observed (manifest) variables [126]. As the main thrust of the study was to identify the underlying reasons for the failure of IDPs, factor analysis was thus employed in order to come out with an underlying factor structure for the variables, i.e. the factors/issues/circumstances identified to cause IDP failure.

The Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy and Bartlett’s Test were first used to ascertain the suitability of the data for factor analysis.

4.5.2 BINARY LOGISTIC REGRESSION ANALYSIS

A binomial or binary logistic regression, often referred to simply as logistic regression, predicts the probability that an observation falls into one of two categories of a dichotomous dependent variable based on one or more independent variables that can be either continuous or categorical [127]. It is used to predict the occurrence of an event on a dichotomous scale from a set of predictor variables. It was thus employed to determine whether the outcome of an IDP, measured on a dichotomous scale – “a success” or “a failure”, could be predicted based on the underlying constructs of failure derived from factor analysis. As part of the analysis, the data was checked to ensure that it could be analysed using binary logistic regression.

The outcome of the sampled projects was obtained using the overall project outcome score available from the PCRs. An overall project outcome score, which is computed from the following criteria, measures the performance of an AfDB project: achievement of outputs, achievement of outcomes and timeliness. AfDB ranks project performance on a four (4)-point scale with 4 representing a very good performance (fully achieved with no shortcomings) and 1 representing a poor performance (very limited achievement with extensive shortcomings). A score of 3 denotes a good performance (mostly achieved despite a few shortcomings) and 2, a fair performance (partial achievement where shortcomings and achievements are roughly balanced). To simplify the project outcome of the sampled IDPs for analysis, the study
grouped, based on the interpretation of the scores, IDPs with an overall outcome score of 3 and 4 as successful projects (coded 0) and those with a score of 1 and 2 as failures (coded 1). Scores with decimal places were rounded up or down to the nearest whole number. It should be noted here that categorising projects with a score of 1 and 2 as failures does not necessarily mean those projects are complete failures but rather, they failed to a much greater extent as per the interpretation of the scores.
CHAPTER FIVE
RESULTS AND DISCUSSIONS

5.1 INTRODUCTION

This chapter presents and discusses the results of the statistical tests undertaken on the collected data. The research contribution is also elaborated. As mentioned in the previous chapter, the main statistical methods employed are factor and binary logistic regression analyses. Whilst factor analysis was used to reduce the dimensionality of the variables, regression analysis was employed to determine whether the outcome of an International Development Project (IDP) could be predicted based on the underlying independent constructs of failure derived from the factor analysis.

Content review of the Project Completion Reports (PCRs) of the sampled IDPs yielded 14 factors of failure (variables). Because some of these variables could possibly be interrelated, factor analysis was conducted to identify their underlying structure. Five (5) components were extracted whose factor scores Statistical Package for the Social Science (SPSS) was commanded to save for a further regression analysis. The factor scores of the extracted components were then used as independent variables to run the binary logistic regression analysis in order to understand their significance and impact on IDP failure. A truncated SPSS output with the factor scores is provided as Appendix 4.

5.2 RESULTS OF DATA ANALYSIS

5.2.1 RELIABILITY TEST RESULTS

To find out whether the set of variables was reliable, i.e. internally consistent as a group, Cronbach’s alpha was computed from SPSS. The reliability score, as shown in Table 5.0, was .742, which indicates a high level of internal consistency of the variables.
Table 5.0: Reliability Test of Variables

<table>
<thead>
<tr>
<th>Reliability Statistics</th>
<th>Cronbach's Alpha</th>
<th>Cronbach's Alpha Based on Standardised Items</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.742</td>
<td>.744</td>
<td>14</td>
</tr>
</tbody>
</table>

5.2.2 FACTOR ANALYSIS RESULTS

Since the presence of interrelations among variables could affect the outcome of a binary logistic regression analysis, the data was subjected to factor analysis using Principal Component Analysis (PCA) and Varimax rotation with Kaiser Normalisation so as to reduce the 14 variables by grouping together those that measure similar dimensions.

The determinant score was .002, which is above the rule of thumb score of .00001 [128], indicating an absence of multicollinearity with the data. The Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy was .643, above the cut-off of .50, which indicates that the data was sufficient for PCA. The result of the Bartlett’s Test of Sphericity, that is, $x^2(91) = 284.131$, $p<.000$ showed that there were patterned relationships between the variables. These, as presented in Table 5.1, confirmed the suitability of using factor analysis for the identification of the underlying structure of the variables.

Table 5.1: KMO Measure and Bartlett’s Test

<table>
<thead>
<tr>
<th>Kaiser-Meyer-Olkin Measure of Sampling Adequacy</th>
<th>.643</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlett's Test of Sphericity</td>
<td></td>
</tr>
<tr>
<td>Approx. Chi-Square</td>
<td>284.131</td>
</tr>
<tr>
<td>df</td>
<td>91</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

Using an eigenvalue cut-off of 1.0, five (5) components that explain a cumulative variance of 67.289% as shown in Table 5.2, were retained as components.
The scree test is also useful in determining the number of components to retain in PCA. The number of components to retain from a scree test is the number of data points above the point of inflexion, which is the meeting point of a horizontal line and a vertical line drawn from each end of the curve by the researcher in the scree plot; the test is however reliable with a sample size of at least 200 [128]. Although such a test is reliable with a sample size of at least 200, the resultant plot from the analysis, as shown in Figure 5.0, also confirmed the retention of five (5) components.
Table 5.3 shows the factor loadings after rotation using a time-honoured rule of thumb of a substantial loading of .40 or higher [129]. “Inadequate Support to Project” was identified to be a complex variable but because its loading on component 5 was higher than that of component 1, it was treated as a variable of component 5. “Political Expediency” did not load significantly on any of the components.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 4</th>
<th>Component 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficient Designs</td>
<td>.953</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor Quality of Project at Entry</td>
<td>.947</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning Inadequacy</td>
<td>.833</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inappropriate Procurement Methods/Systems</td>
<td>.711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogenous Factors</td>
<td>.660</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of Project Flexibility</td>
<td>.635</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political Expediency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad Project Management Actions</td>
<td>.867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervision Related Issues</td>
<td>.745</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of Appropriate Institutional PM Capacities</td>
<td>.823</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personnel Inadequacy/Understaffing</td>
<td>.657</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of Project Ownership</td>
<td>-.608</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimism Bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.826</td>
</tr>
<tr>
<td>Inadequate Support to Project</td>
<td>.413</td>
<td></td>
<td></td>
<td>.471</td>
<td></td>
</tr>
</tbody>
</table>

The components in Table 5.3 above represent the underlying structure of the variables that cause failure of IDPs. Based on the variable loadings on the various components, the components 1, 2, 3, 4, and 5 were named as *poor project Quality-at-Entry (QAE)*, *weak project structure*, *poor control mechanisms*, *weak implementation capability* and *cognitive bias respectively*, as presented in Table 5.4.
Table 5.4: The Underlying Reasons for IDP Failure with Factor Loadings

<table>
<thead>
<tr>
<th>Variable</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poor Project Quality-at-Entry (QAE)</td>
</tr>
<tr>
<td>Deficient Designs</td>
<td>.953</td>
</tr>
<tr>
<td>Poor Quality of Project at Entry</td>
<td>.947</td>
</tr>
<tr>
<td>Planning Inadequacy</td>
<td>.833</td>
</tr>
<tr>
<td>Inappropriate Procurement Methods/Systems</td>
<td>.711</td>
</tr>
<tr>
<td>Exogenous Factors</td>
<td>.660</td>
</tr>
<tr>
<td>Lack of Project Flexibility</td>
<td>.635</td>
</tr>
<tr>
<td>Bad Project Management Actions</td>
<td>.867</td>
</tr>
<tr>
<td>Supervision Related Issues</td>
<td>.745</td>
</tr>
<tr>
<td>Lack of Appropriate Institutional PM Capacities</td>
<td>.823</td>
</tr>
<tr>
<td>Personnel Inadequacy/Understaffing</td>
<td>.657</td>
</tr>
<tr>
<td>Lack of Project Ownership</td>
<td>-.608</td>
</tr>
<tr>
<td>Optimism Bias</td>
<td>.826</td>
</tr>
<tr>
<td>Inadequate Support to Project</td>
<td>.413</td>
</tr>
</tbody>
</table>

5.2.3 BINARY LOGISTIC REGRESSION ANALYSIS RESULTS

In order to understand the significance and impact of the five (5) identified underlying reasons of failure on IDP failure, a binary logistic regression analysis was selected as a result of the dichotomous nature of the outcome of IDPs. The regression analysis was done with project outcome as the dependent variable and the five (5) reasons for IDP failure, i.e. poor project QAE, weak project structure, poor control mechanisms, weak implementation capability and cognitive bias, as the independent variables.

Binary logistic regression analysis was performed to predict project failure for 53 IDPs using the aforementioned predictors of failure. No numerical problems, such as multicollinearity among the predictors, was found in the analysis since none of the independent variables had a standard error larger than 2.0 as shown in Table 5.5 on page 59.
A test of the full model against a constant only model (Table 5.6 above) was statistically significant, which indicates that the predictors as a set reliably distinguished between failure and success of IDPs [$\chi^2(5) = 29.705, p < .000$]. This means the existence of a relationship between the independent variables and the dependent variable was supported. The model was found to be quite a good fit as the $H-L$ statistic had a significance of .669 (Table 5.7) and also had only one case, no. 12, (outlier) that didn’t fit the model well (Table 5.8).

Nagelkerke’s R^2 of .627 in the model summary (Table 5.9) indicated a moderately strong relationship of 62.70% between the predictors and prediction.

The overall prediction success was 79.60%, i.e. 84.40% for success and 70.60% for failure (see Table 5.10), a considerable improvement on the 65.30% (see Table 5.11) correct classification with the constant model, thereby satisfying the criteria for classification accuracy. This also indicates that the model with predictors is a good one.
Table 5.10: Classification Tablea

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project Outcome</td>
<td>Success</td>
</tr>
<tr>
<td>Step 1</td>
<td>Success</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Failure</td>
<td>5</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The cut value is .500

Table 5.11: Classification Tablea,b

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project Outcome</td>
<td>Success</td>
</tr>
<tr>
<td>Step 0</td>
<td>Success</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Failure</td>
<td>17</td>
</tr>
<tr>
<td>Overall Percentage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Constant is included in the model.
b. The cut value is .500

The Wald criterion showed that poor project QAE made a significant contribution to the prediction (p = 0.029), likewise poor control mechanisms (p = 0.034) and cognitive bias (p = 0.012). Weak project structure and weak implementation capability were not significant predictors (Table 5.5).

Table 5.5: Variables in the Equation

<table>
<thead>
<tr>
<th>Variables in the Equation</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor Project QAE</td>
<td>2.401</td>
<td>1.098</td>
<td>4.781</td>
<td>1</td>
<td>.029</td>
<td>11.039</td>
</tr>
<tr>
<td>Weak Project Structure</td>
<td>.440</td>
<td>.471</td>
<td>.872</td>
<td>1</td>
<td>.351</td>
<td>1.552</td>
</tr>
<tr>
<td>Poor Control Mechanisms</td>
<td>1.073</td>
<td>.507</td>
<td>4.473</td>
<td>1</td>
<td>.034</td>
<td>2.925</td>
</tr>
<tr>
<td>Weak Implementation Capability</td>
<td>-.569</td>
<td>.481</td>
<td>1.402</td>
<td>1</td>
<td>.236</td>
<td>.566</td>
</tr>
<tr>
<td>Cognitive Bias</td>
<td>1.320</td>
<td>.525</td>
<td>6.314</td>
<td>1</td>
<td>.012</td>
<td>3.742</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.861</td>
<td>.822</td>
<td>5.133</td>
<td>1</td>
<td>.023</td>
<td>.155</td>
</tr>
</tbody>
</table>

a. Variable(s) entered on step 1: Poor Project QAE, Weak Project Structure, Poor Control Mechanisms, Weak Implementation Capability, Cognitive Bias.

Increasing the significant predictors (poor project QAE, poor control mechanisms and cognitive bias) was found to be associated with an increased likelihood of project failure. Exp(B) values in Table 5.5 for the significant predictors indicate that when poor project QAE is increased by one unit, the odds ratio is 11.039 times as large. This means IDPs are 11.039 times more likely to fail with a unit increase in poor QAE of the project. Similarly, when
poor control mechanisms increases by one unit, the odds ratio is 2.925 times as large and therefore IDPs are 2.925 times more likely to fail with one unit increase in poor control mechanisms. The odds ratio is 3.742 times as large for cognitive bias and thus increasing cognitive bias by one unit makes an IDP 3.742 times more likely to fail.

5.3 DISCUSSIONS

With the aid of factor analysis by way of PCA, five (5) factors, viz. poor project QAE, weak project structure, poor control mechanisms, weak implementation capacity and cognitive bias have been identified as the underlying reasons for the failure of IDPs. Their structures, as per the results of the principal components and binary logistic regression analyses and as extracted from Tables 5.4 and 5.5, are as summarised below in Table 5.12.

<table>
<thead>
<tr>
<th>No</th>
<th>Factor</th>
<th>Value of Significance</th>
<th>Effect Size [Exp(B)]</th>
<th>Dimensions</th>
<th>Factor Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poor Project QAE</td>
<td>.029</td>
<td>11.039</td>
<td>Deficient Designs</td>
<td>.953</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poor Quality of Project at Entry</td>
<td>.947</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planning Inadequacy</td>
<td>.833</td>
</tr>
<tr>
<td>2</td>
<td>Weak Project Structure</td>
<td>.351</td>
<td>1.552</td>
<td>Inappropriate Procurement Methods/Systems</td>
<td>.711</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exogenous Factors</td>
<td>.660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lack of Project Flexibility</td>
<td>.635</td>
</tr>
<tr>
<td>3</td>
<td>Poor Control Mechanisms</td>
<td>.034</td>
<td>2.925</td>
<td>Bad Project Management Actions</td>
<td>.867</td>
</tr>
<tr>
<td></td>
<td>Weak Implementation Capability</td>
<td>.236</td>
<td>.566</td>
<td>Supervision Related Issues</td>
<td>.745</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lack of Appropriate Institutional PM Capacities</td>
<td>.823</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Personnel Inadequacy/Understaffing</td>
<td>.657</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lack of Project Ownership</td>
<td>-.608</td>
</tr>
<tr>
<td>5</td>
<td>Cognitive Bias</td>
<td>.012</td>
<td>3.742</td>
<td>Optimism Bias</td>
<td>.826</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inadequate Support to Project</td>
<td>.471</td>
</tr>
</tbody>
</table>

Three (3) out the five (5) factors were, through binary logistic regression analysis, found to be significant predictors of IDP failure. These are poor project QAE, poor control mechanisms and cognitive bias. An increase in any of these three (3) factors in the planning and implementation of an IDP is associated with an increased likelihood of project failure since the values of their Exp(B) exceed one (1).
5.3.1 POOR PROJECT QUALITY-AT-ENTRY (QAE)

The QAE of a project provides a measure of the project with respect to its level of appropriateness and/or fineness for implementation. It is marked by the extent of planning and commitment put into the preparation of a project. As per the study, it consists of deficient designs, poor quality of project at entry and inadequate project planning. The high individual factor loadings of its dimensions indicate its level of importance to the outcome of a project. With an Exp(B) value of 11.039, poor QAE has a very high effect in determining the possibility of IDP failure; it is approximately 11 times as important as poor control mechanisms and cognitive bias.

If the output of a project is to contain quality, then this quality must be properly planned for in the early stages of the project [61]. QAE has thus become an important operational consideration for many development institutions, including multilateral development banks [130]. It has been reported as a prime determinant of successful development outcomes as well as the foundation on which a successful project implementation is built [ibid]. A study undertaken by the World Bank’s independent evaluation office (summarised in Table 5.13) identified a strong correlation between QAE and successful development outcomes [131].

| Table 5.13: Quality-at-Entry and Development Outcomes in World Bank Projects |
|---|-----------------|-----------------|
| Adequate Quality-at-Entry | 20 | 80 |
| Inadequate Quality-at-Entry | 65 | 35 |
| | *(n= 1125)* | |

Source: L. G. Morra & U. R. W. Thumm, 1997

QAE analyses could therefore be seen as a solution to the poor planning of IDPs. In the year 2000, The Finance Ministry of Norway, introduced and implemented a QAE regime to regulate mandatory quality assurance and uncertainty analysis of all large governmental projects (projects with budget exceeding NOK 500 million) prior to their appropriation by parliament so as to avoid cost overrun and ensure success [132]. A major study of the effects of the scheme indicated that there is an increased awareness about cost estimates of major governmental projects and issues that affect project success; it has led to an improved decision basis before projects are submitted to parliament and it also provides a “second opinion” of projects ([133]; [64]). Based on the foregoing, the statistically significant
relationship between poor project QAE and IDP failure identified in the study is supported by the limited available literature on QAE.

5.3.2 WEAK PROJECT STRUCTURE

Weak project structure was identified as another underlying reason why IDPs fail. However, results of the binary regression analysis showed that it is not a significant predictor of IDP failure. Perhaps, it is rather a determinant of project success. The structure of a project gives an indication of how the project is organised. There are several instances where wrong procurement decisions, rigid decisions and procedures as well as external factors such as economic downturns, poor weather conditions, restructuring and relocation activities of stakeholder institutions of projects have hindered the success of IDPs.

A flexible project structure, which enables projects to adapt to changing conditions and to utilise opportunities that arise in the course of project implementation, is seen to be a means of improving project effectiveness. Shahu et al [134] reported that flexibility is the factor that could fit well in project effectiveness. Their empirical study on flexibility revealed that projects which had a scope of flexibility in process, decision making, design, etc. showed higher levels of success rates as compared to those with rigid systems. There is also evidence of the usefulness of project flexibility in IDPs. A classical case of its utility can be seen from the Kpong Irrigation Project (KIP), a defunct African Development Bank (AfDB)-funded project, which was considered a failed operation and terminated by the AfDB after several years of implementation but got its fortunes turned around by a private company through flexibility [52]. Thus says the report:

“In Ghana, the transformation of a failed operation (KIP) into a success story through the use of infrastructure for a high-value crop by a private company illustrates the need for the Bank to have a more open and flexible approach on the finality of the infrastructure.”(Page 17)

Nonetheless, there is a dilemma in its application [116] with some researchers such as Miller and Lessard [135] arguing against it on the premise that it involves cost.
IDPs, unlike other conventional projects, are complex and unpredictable in nature. They operate in difficult environments where there is often a lack of basic infrastructure with all resources in short supply [30]. They have closely interconnected activities where a decision to undertake a successive activity is dependent on the outcome of preceding one(s). All IDPs are also somewhat experimental and even their seemingly routine replications often meet unanticipated difficulties when they are transferred from one cultural setting to another [1]. As such, the structure of a project is a key project component. Hence, the identification of weak project structure, whose dimensions, as per the study are inappropriate procurement methods/systems, exogenous factors and lack of project flexibility, as one of the underlying reasons for the failure of IDPs is justifiable based on literature.

5.3.3 POOR CONTROL MECHANISMS

The volatility of the environment makes control mechanisms necessary to anticipate problems, adjust plans, and take corrective action as needed [136]. Control is a continuous, managerial foreseeing action critical to organisational performance whose objective, according to Fenwick et al [137], is to measure and monitor performance so that behaviours and outputs are aligned with the organisation’s goals. To paraphrase Jaeger and Baliga [138], project control is an important component of the managerial function, responsible for ensuring that goals are met and that deviations from standards are corrected for successful development outcomes. Youker identified “poor feedback and control mechanisms for early detection of problems” as a major recurring problem in the management of IDPs [33]. The need for control mechanisms in projects is thus generally unquestioned [139]. It therefore comes as no surprise that it was identified as the third underlying reason for IDP failure and also as a significant predictor of IDP failure. In terms of effect size, it is approximately three (3) times as important as the other significant predictors of failure as its Exp(B) value is 2.925.

The study identified bad project management actions and supervision related issues as the dimensions of poor control mechanisms. As explained in Table 4.0, bad project management decisions include, but are not limited to, reducing the scope of a project component without assessing its impact on other component(s), over-managing project teams with many layers of
oversight and bureaucracy as well as poor communication in project teams and stakeholders. It has already been reported as a factor that affects project success [89].

Project supervision is also key to ensuring project success. Issues that affect proper supervision of projects include limited number of supervision missions, the duration of individual supervision missions and the skill-mix of the supervision team. Project reviews, which are as a result of findings from supervision missions, are necessary for project success. O'Connor and Reinsborough [140] reviewed over 90 projects to deduce that project reviews contributed to the successful completion of projects. They found out that projects that obtained an “A” rating from their review obtained it late in the project cycle, in some cases after the first project review.

The adoption of the organisational control concept could help in alleviating or mitigating the problem of poor control mechanisms in IDPs. Organisational control is seen as an important component of the managerial function responsible for ensuring that the organisation’s strategic goals are met and that deviations from standards are corrected for effective performance outcomes [138]. It utilises means of controls such as behaviour, output, input and clan controls, referred to as control modes, to achieve desirable outcomes (see, for example [141]; [142]; [143]). It has evolved into the balance of control modes concept proposed by Cardinal et al. [144]. The central argument of this concept is that the use of multiple control modes simultaneously outperforms that of a single control mode.

5.3.4 WEAK IMPLEMENTATION CAPABILITY

Weak implementation capability is yet another underlying reason identified for the failure of IDPs. However, just like weak project structure, it was also not found to be a significant predictor of IDP failure. It refers to the ability or capacity to implement a project successfully. It is tied to the availability of resources and the level of expertise in Project Management (PM) of available personnel.

Weak implementation capability was identified by the study to be characterised by a lack of appropriate institutional PM capacities, personnel inadequacy/understaffing and a lack of project ownership. Owing to the lack of necessary resources needed for effective project
implementation, institutions of the developing world, more often than not, lack the requisite capacity to implement projects successfully. So is there a shortage of personnel with the appropriate and essential PM expertise to handle projects [109]. Generally speaking, many countries in the third world have only a small cadre of trained people but because their labour force often lacks technical and administrative skills, this cadre is severely overstretched [107]. There are instances where an existing implementation unit handling an ongoing project is tasked with the management of another project, leading to extra and multiple workloads on the sleeves of the staff [110]. And in cases where the requisite personnel are available, projects try to run with part-time or fewer people than required until the project runs into trouble, then somehow, the required people become available for the project to get it “back on track” [140].

The problem of lack of project ownership also hinders the implementation capability of IDPs but in an opposing sense, hence its negative factor loading of -608 as seen in Tables 5.5 and 5.12. Project ownership has to do with the level of acceptance of the project by the beneficiaries. When there is a lack of it, it hampers the smooth implementation of project activities even when the capacity to implement is available. The lack of project ownership usually arises partly due to the failure of project planners to involve/consult clients or ultimate beneficiaries in the formulation and preparation of projects. In such cases, the target beneficiaries see the project to have been imposed on them and thus see the project not to be of any relevance to them. They remain indifferent to the project. And in extreme cases, they might use the project output(s) alternatively or to a much lesser extent, which leads to a limited realisation of project benefit(s).

Three (3) plausible reasons account for the identification of weak implementation capability as an underlying cause of failure of IDPs, viz.:

- The nature of IDPs. IDPs are somewhat experimental and extremely complex activities where even small-scale projects of short duration involve a myriad of administrative, technical and coordinative tasks that must be carefully scheduled and integrated [1].
- The environments of developing countries are difficult ones, often lacking infrastructure with all resources in short supply [30]. Implementing projects in
developing countries with unique environments, economic factors and infrastructure limitations and requirements, increases complexity far beyond that of projects executed in the developed countries [36].

- The necessary skills for effective management of projects have not been successfully developed in the PM-related workforce in developing countries [109]. This explains why despite several years of both individual and collective experience in managing projects as well as genuine management efforts, IDPs continue to fail.

5.3.5 COGNITIVE BIAS

This is the last factor identified as the underlying reason for IDP failure. Results of the binary logistic regression analysis also confirmed it as a significant predictor of IDP failure. With an \(\exp(B) \) value of approximately 4, i.e. 3.742, it is almost four (4) times as important as poor QAE and poor control mechanisms in predicting IDP failure.

The term “cognitive bias” was introduced in the early 1970s by Amos Tversky and Daniel Kahneman to describe people’s systematic but purportedly flawed patterns of responses to judgement and decision problems [145]. It is a genuine deficiency or limitation in our thinking [146]. Cognitive bias is a systematic error common to all human beings, a flaw in judgement that arises from errors of memory, social attribution, miscalculations (such as statistical errors or a false sense of probability), individual motivations, emotions, and limits on the mind's ability to process information ([145]; [146]; [147]). It is a key factor responsible for deficient designs in projects as well as the unrealistic time-frames and budgets for project implementation, to mention but a few. It is also a contributing factor that influences the level of support, usually inadequate, that host governments give IDPs - there are often miscalculations and misjudgements about the needs of projects making the government come to the conclusion that the funding received from the donor/project financier and/or the resources they (the host governments) have provided would be enough to ensure project success.

Accordingly, cognitive bias as per the study comprises optimism bias and results in inadequate support/assistance to projects. Optimism bias is the tendency of individuals to underestimate the likelihood they will experience adverse events [148]. It was originally
referred to as unrealistic optimism [149] and includes overestimating the likelihood of positive events whilst underestimating the likelihood of negative events [51]. As a result of this tendency, planners and promoters of IDPs are usually overly confident of positive outcomes. Force majeure is under-assessed and lessons from previous projects are under-considered leading to the over-estimation of benefits and under-estimation of costs. Flyvbjerg [150] reported that they (project planners and promoters) involuntarily spin scenarios of success and overlook the potential for mistakes and miscalculations leading to the pursuance of initiatives that are unlikely to come in on budget or on time, or to ever deliver the expected returns.

Optimism bias tends to subside when the problem is perceived as relatively prevalent [148]. However, this has not been the case with IDPs because even with the reported high rate of their failure, it still continues to be seen as a contributory factor to their failure. For instance, the management of the Women’s Empowerment and Poverty Reduction Support Project, implemented in Mali had to modify the overambitious project coverage area in terms of scope from an initial nine (9) administrative regions to five (5) in order to improve project effectiveness [151].

5.4 RESEARCH CONTRIBUTION

As reported by Freedman and Katz [36], it would be impossible to pinpoint the sole root cause of failure for most IDPs. A number of factors responsible for IDP failure thus abound in International Development Project Management (IDPM) literature (see, for example, [1]; [12]; [29]; [33]; [106]; [107]). These run the gamut from unsound project basis, poor planning, deficient project designs, low level of PM capacity, poor or no analysis of major risk factors to lack of project ownership and exogenous factors such as unfavourable weather conditions and conflicts. These factors vary in scope, are repetitive and overlap with the generic factors of project failure.

Specific to IDPs, although equally extendable to conventional projects, this study supports and extends literature on IDP failure by identifying 14 common factors responsible for failure. From these 14 factors, it further identifies five (5) underlying reasons for their failure, which are poor project QAE, weak project structure, poor control mechanisms, weak
implementation capability and cognitive bias. The study thus provides a framework for IDP failure that serves as a useful basis for further studies. Hence, it contributes to literature on IDP failure in IDPM as well as to the generic literature on factors of project failure in PM.

Specifically, the study identifies three (3) of the five (5) underlying reasons of IDP failure, i.e. poor project QAE, poor control mechanisms and cognitive bias as significant predictors of their failure. This suggests that poor project QAE, poor control mechanisms and cognitive bias are the most prominent reasons why IDPs fail. An increase in any of these factors will lead to a direct increase in the odds of IDP failure. In terms of their effect size, the findings reveal that poor QAE exerts the highest impact to project failure as it is 11 times as important as the other underlying reasons. Cognitive bias, which is almost 4 times as important as the others, follows with poor control mechanisms coming third as it is almost 3 times as important as the other underlying reasons (see Table 5.12).

The finding on the effects of QAE justifies the persistent efforts of Multilateral Development Agencies (MDAs) such as World Bank and AfDB in identifying how QAE impacts on IDPs (see, for example [130]). It also reinforces the usefulness of the QAE construct as a useful early-stage barometer of project health. The finding on the effects of poor control mechanisms and cognitive bias on project failure is consistent with general PM literature (see, for example, [12]; [150]; [152]; [153]). However, this study is an add-on to the literature since it identifies their extent of impact on IDP failure and also reveals that an increase in any of them will lead to a direct increase in the odds of the project failing. Having such knowledge will help project planning and implementation teams know where to concentrate their efforts in their bid to ensure project success.

This study was not devoid of unexpected findings. The lack of statistically significant relationships between IDP failure and weak project structure as well as weak implementation capability is somewhat unexpected. Studies have shown, for example, that the lack of project flexibility, scarcity of adequate resources and personnel constraints can cause IDPs to fail (see, for example, [134]; [154]; [111]). Probably, the small sample size of the study limits its statistical power to identify these two (2) underlying reasons of IDP failure as significant to their failure.
CHAPTER SIX
CONCLUSION

6.1 INTRODUCTION

An old Chinese saying states that failure is the mother of success. This study thus focuses on why IDPs projects fail to draw lessons to aid International Development Project (IDP) success. Its primary objective was to uncover the underlying reasons for the failure of IDPs. Project Completion Reports (PCRs) of African Development Bank (AfDB)-funded projects in Ghana and Mali were extensively analysed to identify reasons for failure for further analysis. This chapter concludes the study. It also highlights the implications of research, the limitations of the research and the research outlook.

6.2 CONCLUSION

Projects will remain the dominant means of initiating development in the foreseeable future because they offer important advantages to all participants in development as they are, or should be, manageable units of activity [1]. The developing world will continue to use IDPs as a major way of activating and attaining development irrespective of their continuous reported failures and the many challenges associated with their management.

A development project such as an IDP is not like a train trip to a ticketed destination; rather it is more like sailing on a ship, hopefully beyond the point where the internal rate of return becomes favourable, in the direction of a better and more generously endowed climate [155]. They are undertaken in a developing world characterised by scarcity of adequate resources. As such, IDPs are fraught with challenges during their delivery, which hamper their success. Continual failure of IDPs in the foreseeable future will be a likely outcome if we do not put structures in place to mitigate these challenges.

Failure in itself is not that bad as the French adage goes “One learns by failing”. We gain wisdom every bit as much from failure as from success since we often discover what works by finding out what does not [7]. Failed projects therefore offer useful lessons. However,
IDPs are turning project failure into a norm [22] because instead of examining their failures to generate insights for future ones, they are given pleasant names like “uncompleted but closed” and filed away. These compound their failure and make it become inevitable. But when it comes to development-oriented projects in resource constraint countries, such actions and the cost of learning from incessant real-world failure is painfully high to all stakeholders. Thus, a study of this nature, which provides insights into the reasons for IDP failure, provides an inexpensive way of learning how best to plan and manage IDPs to achieve development goals and their eventual success.

With an aim to exploring IDP failures, this study analysed data from PCRs of defunct AfDB projects and offers insights as to why they fail. It highlights five (5) underlying reasons why IDPs fail, viz. poor project Quality-at-Entry (QAE), weak project structure, poor control mechanisms, weak implementation capability and cognitive bias. A framework for the failure of IDPs is thus established. The study also identifies a statistically significant relationship between three (3) of the five (5) underlying reasons and IDP failure, namely poor project QAE, poor control mechanisms and cognitive bias. It reveals that increasing any of these three (3) reasons in an IDP will lead to a direct increase in the odds of the project failing. It also evinces poor QAE exerts the highest impact on IDPs to failure, followed by cognitive bias and poor control mechanisms.

The study thus serves as a useful guide to professionals in International Development Project Management (IDPM) and development-oriented institutions in the planning and management of IDPs. It will also benefit the body of knowledge on international development. It contributes to the generic literature on project failure in Project Management (PM). And it provides a sound basis for the generation of further research on IDP failure. It should be noted that the study focused on the reasons for IDP failure and not the measurement of their failure.

6.3 IMPLICATIONS OF RESEARCH

This study identifies poor project QAE, poor control mechanisms and cognitive bias as significant underlying reasons and predictors of IDP failure. In terms of their effects on failure, it identifies that an increase in any of them leads to a direct increase in the odds of IDP failure. In addition, it reveals that in predicting the odds of IDP failure, poor QAE has
the highest impact, followed by cognitive bias and poor control mechanisms. The study thus has implications for Multilateral Development Agencies (MDAs), IDPM professionals and the body of knowledge on international development as well as general PM literature.

6.3.1 MANAGERIAL IMPLICATIONS

The usefulness of the emerging QAE construct as a useful early-stage barometer of project health is reinforced. It is said that projects that fail usually starts to fail early because the project system is almost certainly doomed to fail from outset owing to their wrong approach [100]. With this finding, MDAs and project planners can avoid developing and implementing IDPs that are almost certainly doomed to fail by incorporating measures into IDP systems at outset that will reduce the number of problems that plague IDPs as well their impact and thus boost their prospects of success.

This, first of all, can be achieved by revisiting the covenants financing institutions, particularly MDAs, make for host governments to honour before the release of project funds to include measures that will ensure healthy (good quality) projects right from the beginning instead of placing greater emphasis on prior planning. This is because any system which promotes detailed planning years in advance, by people who are neither going to be responsible for implementation nor even likely to be involved in the implementation of the project, is almost surely going to be ineffectual [12]. Moreover, long-term written plans and projections quickly lose their accuracy because of the inability of most blue-print types of planning to anticipate the future in the degree of detail necessary [ibid]. Greater emphasis should rather be placed on a reiterative type of planning and control mechanisms of IDPs. Multiple control mechanisms, other than an over-reliance on submitted project reports, should be employed for more effective control systems. The concept of balance of control modes in organisational control as suggested by Cardinal et al [144], which suggests that using multiple control modes provides a much better performance than a single mode, could be useful in this regard.

Cognitive bias is a genuine and biological attribute of humans that cannot be done away with. However, its impact on projects could be moderated by employing reference class forecasting, as recommended by Flyvbjerg [153]. This is because in reference class
forecasting, accuracy in projections during project planning is achieved by basing the projections on actual performance in a reference class of comparable projects [ibid]. This reduces the impact of both optimism bias and the usage of personal experience as a basis for making projections.

Accordingly, in order to boost IDP success, there should always be concentrated efforts in improving their QAE and control mechanisms as well as reducing the impact of cognitive bias with reference class forecasting. Projects with a very good QAE have the lowest chances of failure. The findings of the study thus provide a useful guidance to professionals in IDPM and development-oriented institutions in planning and developing projects.

6.3.2 THEORETICAL IMPLICATIONS

This study provides an insight into the reasons for IDP failure. The study puts forward the notion that poor QAE, weak project structure, poor control mechanisms, weak implementation capability and cognitive bias are the underlying reasons why IDPs fail. Particularly, it suggests that poor project QAE, poor control mechanisms and cognitive bias are the most prominent reasons why IDPs fail. It thus contributes to the body of knowledge on international development as it supports and extends available literature on IDP failure. It also contributes to the generic literature on project failure in mainstream PM.

The study also evinces the QAE construct as a solution to deficiencies in IDP planning. The results confirm that healthy projects, by way of a sound QAE, effective control systems and reduced biases, are less likely to fail. The results further show that the weaker the project QAE and control systems as well the higher the biases inherent in an IDP, the more likely it will fail. This means that increasing the poor state of an IDP’s QAE and control systems, and an increase in biases by even a single unit will lead to a direct increase in the chances of the project failing. A useful platform for the incremental accumulation of further research on IDP failure is thus established.
6.4 LIMITATIONS

One limitation of this study is that the findings of the study reflect only AfDB-funded IDPs undertaken in two (2) countries in Africa. That notwithstanding, as noted in Chapter 1, the study is useful to all IDPs because they are, by default, implemented in developing countries that share common characteristics such as a lack of adequate infrastructure, a short supply of resources as well as the dependence on agriculture and raw materials as the main source of foreign income [26]. These findings can also be extrapolated to conventional projects as well.

Another limitation is that it does not emphasise the relationship among the five (5) underlying reasons of IDPs failure. This, however, goes beyond the purpose of the study.

6.5 RESEARCH OUTLOOK

This study is illuminating; it opens up opportunities and provides a basis for further research on IDP failure. Future research might choose to explore the relationships among the five (5) underlying reasons for IDP failure. In addition, the three (3) underlying reasons of IDP failure (poor project QAE, poor control mechanisms and cognitive bias) identified as significant predictors of their failure, could be explored further with a view to understanding their nature and importance to failure. An interesting research path will also be to investigate the relative importance of the five (5) underlying reasons why IDPs fail in relation to a project’s lifecycle.
REFERENCES

102. Ostrowski, S., *Poor Communications is the Most Frequent Cause of Project Failure*. Accessed on Feb 18, 2015 from
The Underlying Reasons Why Int’l Dev’t Projects (IDPs) Fail: The Case of African Dev’t Bank (AfDB)-Funded Projects

110. Author's Personal Observation Working on International Development Projects in Ghana.

123. AfDB, *Support Project for the Health and Social Development Programme in Sikasso Region [Health IV]-Project Completion Report*

124. AfDB, *Good Governance Support Project-Project Completion Report*

2003.

APPENDICES
Appendix 1

Table of Projects Sampled for Study
<table>
<thead>
<tr>
<th>No</th>
<th>Ghana</th>
<th>Mali</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agricultural Sector Rehabilitation Programme</td>
<td>Baguinéda Irrigation Scheme Intensification Project</td>
</tr>
<tr>
<td>2</td>
<td>Bonsa Tyre Rehabilitation Project</td>
<td>Basic Education Support Project</td>
</tr>
<tr>
<td>3</td>
<td>Capacity Building Programme for the Supervision of Aviation Safety in West & Central Africa (COSCAP Programme)*</td>
<td>Education Project III</td>
</tr>
<tr>
<td>4</td>
<td>Cocoa Rehabilitation Project</td>
<td>Fourth Structural Adjustment Programme</td>
</tr>
<tr>
<td>5</td>
<td>Community Forestry Management Project</td>
<td>Good Governance Support Project</td>
</tr>
<tr>
<td>7</td>
<td>First Line of Credit to Agricultural Development Bank</td>
<td>Health Facilities Strengthening Project in Koulikoro, Nara & Niafunke</td>
</tr>
<tr>
<td>8</td>
<td>Health Services Rehabilitation Project</td>
<td>Integrated Management of Invasive Aquatic Weeds in West Africa*</td>
</tr>
<tr>
<td>9</td>
<td>Industrial Sector Adjustmen Loan</td>
<td>Manantali Dam Project</td>
</tr>
<tr>
<td>10</td>
<td>Inland Valleys Rice Development Project</td>
<td>Middle Bani Plains Development Programme</td>
</tr>
<tr>
<td>11</td>
<td>Institutional Support to Two Ministries</td>
<td>Project for the Support to the Seed Sector</td>
</tr>
<tr>
<td>12</td>
<td>Integrated Management of Invasive Aquatic Weeds in West Africa*</td>
<td>Project in Support of Preventive Desert Locust Control in 4 CLCPRO Member States*</td>
</tr>
<tr>
<td>13</td>
<td>Kpong Irrigation Project</td>
<td>Project to Reform System & Means of Payment in UEMOA Countries*</td>
</tr>
<tr>
<td>14</td>
<td>Livestock Development Project</td>
<td>Regional Solar Energy Centre for CEAO Project</td>
</tr>
<tr>
<td>15</td>
<td>Mechanized Rain-fed Cotton Production Project</td>
<td>Rural Development Support Project of the Daye, Hamadja & Kouroum Plains</td>
</tr>
<tr>
<td>16</td>
<td>Nasia Rice Project</td>
<td>Second Line of Credit to BNDA</td>
</tr>
<tr>
<td>17</td>
<td>Nerica Rice Dissemination Project*</td>
<td>Second Line of Credit to Mali Development Bank</td>
</tr>
<tr>
<td>18</td>
<td>Palm Oil Milling Factories Project</td>
<td>Strengthening of the SAP</td>
</tr>
<tr>
<td>19</td>
<td>Poverty Reduction Project</td>
<td>Structural Adjustment Programme III</td>
</tr>
<tr>
<td>20</td>
<td>Poverty Reduction Support Loan</td>
<td>Supplementary Programme to the Structural Adjustment Programme III</td>
</tr>
<tr>
<td>21</td>
<td>Project for the Creation of Sustainable Tsetse & Trypanosomiasis Free Areas in East & West Africa*</td>
<td>Support Project for Health & Social Development Programme</td>
</tr>
<tr>
<td>22</td>
<td>Rural Financial Services Project</td>
<td>Women's Empowerment & Poverty Reduction Support Project</td>
</tr>
<tr>
<td>23</td>
<td>Second Economic Rehabilitation Support Loan</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Second Line of Credit to the Agricultural Development Bank</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Second Poverty Reduction Support Loan</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Small Scale Irrigation Development Project</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Subri Industrial Plantation Project</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Tertiary Education Rehabilitation Project</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Third Line of Credit to Agricultural Development Bank</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Third Poverty Reduction Support Loan</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Women's Community Development Project</td>
<td></td>
</tr>
</tbody>
</table>

*Multinational Project
Appendix 2

Table of Projects Excluded from Study
<table>
<thead>
<tr>
<th>No</th>
<th>Ghana</th>
<th>Mali</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Accra-Tema Water Supply Rehabilitation Project*</td>
<td>Capacity Building Programme for the Supervision of Aviation Safety in West & Central Africa (COSCAP Programme) [Multinational]*</td>
</tr>
<tr>
<td>2</td>
<td>Community Forestry Management Project**</td>
<td>Growth & Poverty Reduction Strategy Support Programme**</td>
</tr>
<tr>
<td>3</td>
<td>Institutional Support to Two Ministries**</td>
<td>Integrated Management of Invasive Aquatic Weeds in West Africa [Multinational]**</td>
</tr>
<tr>
<td>4</td>
<td>Projet d’irrigation de petites exploitations agricoles^</td>
<td>Livestock Development & Range Management Project@</td>
</tr>
<tr>
<td>5</td>
<td>Project for the Creation of Sustainable Tsetse & Trypanosomiasis Free Areas in East & West Africa [Multinational]**</td>
<td>Nerica Rice Dissemination Project [Multinational]^</td>
</tr>
<tr>
<td>6</td>
<td>Projet de Soutien Institutionnel Visant a Améliorer la Riziculture en Afrique de l’ouest [Multinational]^</td>
<td>Projet de Soutien Institutionnel Visant a Améliorer la Riziculture en Afrique de L’ouest [Multinational]^</td>
</tr>
<tr>
<td>7</td>
<td>Rural Financial Services Project**</td>
<td>Du Pas Consolide^</td>
</tr>
</tbody>
</table>

* Single-Paged Incomplete Report
** Reports in Duplicate
\^ Report in French Language
\+ A Single Report for all Countries in which Project was undertaken
\@ Project Undertaken in Mauritania
Appendix 3

Comparison Statistics after Double Data-Extraction
<table>
<thead>
<tr>
<th>Project</th>
<th>Overall Outcome Score</th>
<th>Planning Inadequacy</th>
<th>Deficient Designs</th>
<th>Inappropriate Procurement Mtds/Systems</th>
<th>Bad Project Mgt Actions</th>
<th>Lack of Appropriate Institutional PM Capacities</th>
<th>Personnel Inadequacy/Understaffing</th>
<th>Inadequate Support to Project</th>
<th>Lack of project Ownership</th>
<th>Exogenous factors</th>
<th>Political Expediency</th>
<th>Poor Quality of Project at Entry</th>
<th>Lack of Project Flexibility</th>
<th>Optimism Bias</th>
<th>Supervision-Related Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Sector Rehabilitation Programme</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bonsa Tyre Rehabilitation Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Supervision of Aviation Safety in West & Central Africa (COSCAP Programme)</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cocoa Rehabilitation Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Community Forestry Management Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Economic Reform Support Operation Loan</td>
<td>0*</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>First Line of Credit to AgDB</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Health Services Rehabilitation Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Industrial Sector Adjustment Loan</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inland Valleys Rice Dev't Project</td>
<td>1*</td>
<td>1</td>
</tr>
<tr>
<td>Institutional Support to Two Ministries</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ghana: Integrated Mgt of Invasive Aquatic Weeds</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kpong Irrigation Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Livestock Dev't Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mechanized Rain-fed Cotton Production Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nasia Rice Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nerica Rice Dissemination Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Palm Oil Milling Factories Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poverty Reduction Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poverty Reduction Support Loan</td>
<td>0*</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Project for the Creation of Sustainable Tsetse & Trypanosomiasis Free Areas in East & West Africa</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rural Financial Services Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Second Economic Rehabilitation Support Loan</td>
<td>0*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Second Line of Credit to the AgDB Loan</td>
<td>-5555</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Loan</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Comparison Statistics after Double-Data Entraction

<table>
<thead>
<tr>
<th>Project</th>
<th>Overall Outcome Score</th>
<th>Planning Inadequacy</th>
<th>Deficient Designs</th>
<th>Inappropriate Procurement Mtds/Systems</th>
<th>Bad Project Mgt Actions</th>
<th>Lack of Appropriate Institutional PM Capacities</th>
<th>Personnel Inadequacy/Understaffing</th>
<th>Inadequate Support to Project</th>
<th>Lack of project Ownership</th>
<th>Exogenous factors</th>
<th>Political Expediency</th>
<th>Poor Quality of Project at Entry</th>
<th>Lack of Project Flexibility</th>
<th>Optimism</th>
<th>Supervision-Related Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subri Industrial Plantation Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Third Line of Credit to AgDB</td>
<td>-5555</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Third Poverty Reduction Support Loan</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Women's Community Dev't Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Manantali Dam Project</td>
<td>-5555</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bank</td>
<td>-5555</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strengthening of the Structural Adjustment Programme</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Regional Solar Energy Centre of the West African Community (CEAO)</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Support Project for the Health & Social Dev't Programme in Sikasso Region</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mali: Integrated Mgt of Invasive Aquatic Weeds in West Africa</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Project for the Support of the Seed Sector</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Growth & Poverty Reduction Strategy Support Programme</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Good Governance Support Project</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Middle Bani Plains Dev't Programme</td>
<td>0*</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Second Line of Credit to BNDA</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Project to Reform System & Means of Payment in UEMOA Countries</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Project in Support of Preventive Desert Locust Control in Four CLCPRO Member States</td>
<td>0*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rural Dev't Support Project of the Daye, Hamadja & Kurioume Plains</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Haguinena Irrigation Scheme Intensification Project</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fourth Structural Adjustment Support Programme</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Education Project III</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Comparison Statistics after Double-Data Extraction

<table>
<thead>
<tr>
<th>Project</th>
<th>Overall Outcome Score</th>
<th>Planning Inadequacy</th>
<th>Deficient Designs</th>
<th>Inappropriate Procurement Mtds/Systems</th>
<th>Bad Project Mgt Actions</th>
<th>Lack of Appropriate Institutional PM Capacities</th>
<th>Personnel Inadequacy/Understaffing</th>
<th>Inadequate Support to Project</th>
<th>Lack of project Ownership</th>
<th>Exogenous factors</th>
<th>Political Expediency</th>
<th>Poor Quality of Project at Entry</th>
<th>Lack of Project Flexibility</th>
<th>Optimism Bias</th>
<th>Supervision-Related Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Structural Adjustment Programme</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Women’s Empowerment & Poverty Reduction Support Project</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Basic Education Support Project</td>
<td>0*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Health Facilities Strengthening Project in Koulkoro, Nara & Niafunke</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

KEY

0: Not identified as a success militating factor
1: Identified as a success militating factor
0*: Successful project
1*: Failed Project
5555: Missing Data

Variation in score following second data extraction
Appendix 4

Exported SPSS Factor Scores of Extracted Components following Factor Analysis
Exported SPSS Factor Scores of Extracted Components following Factor Analysis

<table>
<thead>
<tr>
<th>Project</th>
<th>FAC1_1</th>
<th>FAC2_1</th>
<th>FAC3_1</th>
<th>FAC4_1</th>
<th>FAC5_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Sector Rehabilitation Programme</td>
<td>0.42234</td>
<td>1.54283</td>
<td>0.1415</td>
<td>1.04538</td>
<td>-0.61659</td>
</tr>
<tr>
<td>Bonsa Tyre Rehabilitation Project</td>
<td>0.60478</td>
<td>-1.13173</td>
<td>0.75148</td>
<td>0.99137</td>
<td>1.30608</td>
</tr>
<tr>
<td>Capacity Building Programme for the Supervision of Aviation Safety in West & Central Africa (COSCAP Programme)</td>
<td>0.60478</td>
<td>-1.13173</td>
<td>0.75148</td>
<td>0.99137</td>
<td>1.30608</td>
</tr>
<tr>
<td>Cocoa Rehabilitation Project</td>
<td>0.66844</td>
<td>1.14954</td>
<td>0.61622</td>
<td>-1.46651</td>
<td>0.21225</td>
</tr>
<tr>
<td>Community Forestry Management Project</td>
<td>0.60875</td>
<td>-1.05367</td>
<td>0.53572</td>
<td>1.14113</td>
<td>-0.55731</td>
</tr>
<tr>
<td>Economic Reform Support Operation Loan</td>
<td>-0.08877</td>
<td>-1.42368</td>
<td>1.08259</td>
<td>-0.68409</td>
<td>-1.16147</td>
</tr>
<tr>
<td>First Line of Credit to AgDB</td>
<td>1.01688</td>
<td>-0.24069</td>
<td>-1.87706</td>
<td>-1.69739</td>
<td>-0.33388</td>
</tr>
<tr>
<td>Health Services Rehabilitation Project</td>
<td>0.65058</td>
<td>0.19229</td>
<td>0.79957</td>
<td>-2.16184</td>
<td>-0.39637</td>
</tr>
<tr>
<td>Industrial Sector Adjustment Loan</td>
<td>-1.82055</td>
<td>-1.12866</td>
<td>1.04508</td>
<td>-0.64189</td>
<td>0.74318</td>
</tr>
<tr>
<td>Inland Valleys Rice Dev’t Project</td>
<td>0.66081</td>
<td>2.68898</td>
<td>0.85396</td>
<td>-0.42141</td>
<td>0.55115</td>
</tr>
<tr>
<td>Institutional Support to Two Ministries</td>
<td>0.88039</td>
<td>0.34095</td>
<td>1.27068</td>
<td>0.6358</td>
<td>-0.80439</td>
</tr>
<tr>
<td>Ghana: Integrated Mgt of Invasive Aquatic Weeds</td>
<td>0.71815</td>
<td>-0.40625</td>
<td>-0.37267</td>
<td>-0.29658</td>
<td>-0.91244</td>
</tr>
<tr>
<td>Kpong Irrigation Project</td>
<td>-0.30052</td>
<td>2.36875</td>
<td>0.18348</td>
<td>-0.16277</td>
<td>1.99315</td>
</tr>
<tr>
<td>Livestock Dev’t Project</td>
<td>0.75293</td>
<td>-0.37566</td>
<td>0.80822</td>
<td>-0.15662</td>
<td>0.26455</td>
</tr>
<tr>
<td>Mechanized Rain-fed Cotton Production Project</td>
<td>0.64761</td>
<td>-0.68658</td>
<td>0.73327</td>
<td>-1.90384</td>
<td>1.32609</td>
</tr>
<tr>
<td>Nasia Rice Project</td>
<td>0.60775</td>
<td>-0.25285</td>
<td>0.81778</td>
<td>0.73337</td>
<td>-0.41638</td>
</tr>
<tr>
<td>Nerica Rice Dissemination Project</td>
<td>0.69384</td>
<td>-0.45795</td>
<td>0.0487</td>
<td>-0.9499</td>
<td>-0.88472</td>
</tr>
<tr>
<td>Palm Oil Milling Factories Project</td>
<td>0.64883</td>
<td>-1.30012</td>
<td>0.95862</td>
<td>-0.0591</td>
<td>1.30382</td>
</tr>
<tr>
<td>Poverty Reduction Project</td>
<td>-1.03685</td>
<td>1.89328</td>
<td>-0.73438</td>
<td>1.23344</td>
<td>-0.11938</td>
</tr>
<tr>
<td>Poverty Reduction Support Loan</td>
<td>0.05355</td>
<td>-1.16707</td>
<td>0.00414</td>
<td>1.30509</td>
<td>-0.91876</td>
</tr>
<tr>
<td>Project for the Creation of Sustainable Tsetse & Trypanosomiasis Free Areas in East & West Africa</td>
<td>0.85849</td>
<td>-0.27037</td>
<td>-1.96246</td>
<td>-1.69029</td>
<td>0.96075</td>
</tr>
<tr>
<td>Rural Financial Services Project</td>
<td>0.90369</td>
<td>1.19346</td>
<td>1.13136</td>
<td>0.88136</td>
<td>-0.69118</td>
</tr>
<tr>
<td>Second Economic Rehabilitation Support Loan</td>
<td>-1.15114</td>
<td>-0.9895</td>
<td>0.6529</td>
<td>-0.65289</td>
<td>0.99182</td>
</tr>
<tr>
<td>Second Line of Credit to the AgDB</td>
<td>0.42234</td>
<td>1.54283</td>
<td>0.1415</td>
<td>1.04538</td>
<td>-0.61659</td>
</tr>
<tr>
<td>Second Poverty Reduction Support Loan</td>
<td>0.66024</td>
<td>0.13369</td>
<td>-1.96336</td>
<td>0.95404</td>
<td>0.5129</td>
</tr>
<tr>
<td>Small Scale Irrigation Dev’t Project</td>
<td>0.62808</td>
<td>-0.27921</td>
<td>0.61217</td>
<td>1.23693</td>
<td>1.41928</td>
</tr>
</tbody>
</table>

Exported SPSS Factor Scores of Extracted Components following Factor Analysis

<table>
<thead>
<tr>
<th>Project</th>
<th>FAC1_1</th>
<th>FAC2_1</th>
<th>FAC3_1</th>
<th>FAC4_1</th>
<th>FAC5_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subri Industrial Plantation Project</td>
<td>0.94595</td>
<td>-0.91669</td>
<td>-1.70417</td>
<td>-0.6384</td>
<td>-0.70942</td>
</tr>
<tr>
<td>Tertiary Education Rehabilitation Project</td>
<td>0.26395</td>
<td>1.51315</td>
<td>0.0561</td>
<td>1.05249</td>
<td>0.67804</td>
</tr>
<tr>
<td>Third Line of Credit to AgDB</td>
<td>-1.26875</td>
<td>-0.50029</td>
<td>-1.41878</td>
<td>1.24392</td>
<td>0.00749</td>
</tr>
<tr>
<td>Third Poverty Reduction Support Loan</td>
<td>0.97405</td>
<td>-0.68583</td>
<td>-1.85886</td>
<td>1.19782</td>
<td>-0.35389</td>
</tr>
<tr>
<td>Women's Community Dev't Project</td>
<td>0.7161</td>
<td>0.99339</td>
<td>0.80771</td>
<td>0.07676</td>
<td>0.15487</td>
</tr>
<tr>
<td>Manantali Dam Project</td>
<td>0.54243</td>
<td>1.00767</td>
<td>1.1051</td>
<td>-1.29446</td>
<td>-2.15651</td>
</tr>
<tr>
<td>Second Line of Credit to Mali Dev't Bank</td>
<td>-1.86162</td>
<td>-0.08139</td>
<td>0.90424</td>
<td>0.15058</td>
<td>-0.97703</td>
</tr>
<tr>
<td>Strengthening of the Structural Adjustment Programme</td>
<td>0.60775</td>
<td>-0.25285</td>
<td>0.81778</td>
<td>0.73337</td>
<td>-0.41638</td>
</tr>
<tr>
<td>Regional Solar Energy Centre of the West African Community (CEAO)</td>
<td>-1.6923</td>
<td>-0.05141</td>
<td>0.95575</td>
<td>0.94706</td>
<td>1.92281</td>
</tr>
<tr>
<td>Support Project for the Health & Social Dev't Programme in Sikasso Region</td>
<td>0.63659</td>
<td>-0.44205</td>
<td>-0.2534</td>
<td>-0.78232</td>
<td>1.09309</td>
</tr>
<tr>
<td>Mali: Integrated Mgt of Invasive Aquatic Weeds in West Africa</td>
<td>-1.54795</td>
<td>-1.07323</td>
<td>0.20671</td>
<td>-0.49604</td>
<td>-0.66426</td>
</tr>
<tr>
<td>Project for the Support of the Seed Sector</td>
<td>0.5366</td>
<td>-1.11613</td>
<td>0.48326</td>
<td>0.35538</td>
<td>-0.91058</td>
</tr>
<tr>
<td>Growth & Poverty Reduction Strategy Support Programme</td>
<td>1.05632</td>
<td>-0.79668</td>
<td>-1.61015</td>
<td>0.2552</td>
<td>-0.1384</td>
</tr>
<tr>
<td>Good Governance Support Project</td>
<td>0.46601</td>
<td>1.28825</td>
<td>0.32368</td>
<td>-0.40892</td>
<td>1.50913</td>
</tr>
<tr>
<td>Middle Bani Plains Dev't Programme</td>
<td>-0.00253</td>
<td>0.16788</td>
<td>0.60218</td>
<td>0.01039</td>
<td>-2.77106</td>
</tr>
<tr>
<td>Second Line of Credit to BNDA</td>
<td>-1.55061</td>
<td>1.18122</td>
<td>-1.72615</td>
<td>0.11686</td>
<td>-0.51826</td>
</tr>
<tr>
<td>Project to Reform System & Means of Payment in UEMOA Countries</td>
<td>0.43813</td>
<td>-0.22528</td>
<td>-0.76171</td>
<td>0.42503</td>
<td>0.52658</td>
</tr>
<tr>
<td>Project in Support of Preventive Desert Locust Control in Four CLCPRO Member States</td>
<td>-0.67149</td>
<td>-0.42361</td>
<td>-1.86342</td>
<td>0.44717</td>
<td>-0.09714</td>
</tr>
<tr>
<td>Rural Dev't Support Project of the Daye, Hamadja & Kurioume Plains</td>
<td>0.77349</td>
<td>-0.12573</td>
<td>-0.80045</td>
<td>-1.03154</td>
<td>1.52213</td>
</tr>
<tr>
<td>Baguineda Irrigation Scheme Intensification Project</td>
<td>-1.55061</td>
<td>1.18122</td>
<td>-1.72615</td>
<td>0.11686</td>
<td>-0.51826</td>
</tr>
<tr>
<td>Fourth Structural Adjustment Support Programme</td>
<td>-1.49555</td>
<td>0.76829</td>
<td>-0.53233</td>
<td>-2.05514</td>
<td>-0.28752</td>
</tr>
<tr>
<td>Education Project III</td>
<td>-1.47702</td>
<td>-0.39723</td>
<td>0.03382</td>
<td>-1.55503</td>
<td>-0.28872</td>
</tr>
</tbody>
</table>
Exported SPSS Factor Scores of Extracted Components following Factor Analysis

<table>
<thead>
<tr>
<th>Project</th>
<th>FAC1_1</th>
<th>FAC2_1</th>
<th>FAC3_1</th>
<th>FAC4_1</th>
<th>FAC5_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Programme to the Third Structural Adjustment Programme</td>
<td>-1.86162</td>
<td>-0.08139</td>
<td>0.90424</td>
<td>0.15058</td>
<td>-0.97703</td>
</tr>
<tr>
<td>Third Structural Adjustment Programme</td>
<td>-1.86177</td>
<td>-0.25371</td>
<td>0.10221</td>
<td>-0.73983</td>
<td>0.20253</td>
</tr>
<tr>
<td>Women's Empowerment & Poverty Reduction Support Project</td>
<td>-1.67823</td>
<td>-0.87205</td>
<td>-0.03337</td>
<td>1.3473</td>
<td>0.98589</td>
</tr>
<tr>
<td>Basic Education Support Project</td>
<td>0.56753</td>
<td>-0.17871</td>
<td>-0.40715</td>
<td>1.04319</td>
<td>-1.09796</td>
</tr>
<tr>
<td>Health Facilities Strengthening Project in Koulikoro, Nara & Niafunke</td>
<td>0.67969</td>
<td>-0.37767</td>
<td>0.36282</td>
<td>0.08215</td>
<td>-0.18177</td>
</tr>
</tbody>
</table>
Appendix 5

Publications Arising from Study
ABSTRACT

Reports of donor funding agencies such as the African Development Bank (AfDB) on their operations in Ghana indicate that the delivery, in terms of performance and results, of agriculture-based International Development (ID) projects is poor and shows little or no signs of improvement. This continuous poor delivery despite the availability of research results on the success factors of projects, years of individual and collective experience of managing projects and rapid growth in membership of project management bodies suggests a need to look into the success factors of agriculture-based ID projects from organizational control—an essential component of the managerial process that utilises before, during and after mechanisms to ensure that deviations from standard are corrected so as to achieve set goals and effective performance outcomes. Thus, dwelling on work experience on some ID projects in Ghana and literature, this paper identifies two (2) key success factors for agriculture-based ID projects for Africa. This work is an add-on to the limited literature on the success factors of projects evident from developing countries. It also enriches the balance of control literature which indicates that the application of multiple control modes outperforms that of a single control mode.

Keywords: Success factors, Agriculture-based International Development (ID) projects, Project team, Control modes

INTRODUCTION

Most developing countries are food insecure. Achieving it remains a critical issue. Governments, development banks, donor agencies, etc. have recognised this problem. Accordingly, various agriculture development projects have been implemented and are being implemented to boost developing countries’ capacity to attain food security. But from literature and experience, the performance of these projects have been unsatisfactory and shows little/or signs of significant improvement even with the availability of results of researches done to uncover the factors that lead to successful projects ([1]; [2]; [3]; [4]; [5]). However, in spite of the availability of these results, despite decades of individual and collective experience of managing projects [6] and an increase in the membership of project management professional bodies, the performance and results of agriculture-based ID projects continue to disappoint stakeholders and beneficiaries ([7]; [8]). It is thus not uncommon to hear that most of these projects have not succeeded and continue not to succeed (see, for example, [9]). What, then, are the factors critical to the success of agriculture-based ID projects?
Through a review of some selective literature and dwelling on practical personal experience on the Inland Valleys Rice Development Project, a defunct African Development Bank (AfDB) funded agriculture infrastructure development project and other development projects in Ghana, an appropriate project team and the application of multiple control modes (output, input, behaviour and clan) are two (2) key factors critical to the success of agriculture-based ID projects in Africa.

APPROPRIATE PROJECT TEAM

The problem of unsuccessful agriculture-based ID project delivery stems, to a large extent, from the use of inappropriate project team, i.e. the unsuitable and insufficient number of people with the requisite knowledge, expertise and commitment to steer affairs of the projects. The issue of staffing affecting project success from literature [7] and experience includes, but is not limited to, *project staff not enough, not as experienced/skilled as required, not available full-time, as well as project staff reporting late to work*. A right project team will share congruent objectives with the project; it will also be committed to the course of the project and ensure that no matter the odds, the objective(s) are achieved as much as possible.

As indicated by O'Connor and Reinsborough [7], projects try to run with part-time people or fewer people than required until the project runs into trouble. Then, somehow, the required people become available for the project to get it “back on track”, a clear indication that an appropriate project team is key to ensuring the success of projects.

Staffing has long been identified as key to ensuring project success, as far back as 1976 by Martin [10] when he included selecting a project team to his list of critical project success factors. This was reiterated by Baker et al. [11] as well as Pinto and Slevin [12] when they included the project team in their list of critical project success factors. Furthermore, in terms of frequency or severity, a review of projects in the 1990s revealed staffing as the number two concern (out of over 10 concerns) of over 90 projects [7].

From experience, even with competent and dedicated professionals who are committed to ensuring that project activities are executed satisfactorily on projects, agriculture-based ID projects’ performance and results are not far from being unsuccessful. What will therefore be the case when projects are staffed with non-committed and non-dedicated professionals? Undoubtedly, the performance and results will be worse-off.

APPLICATION OF MULTIPLE CONTROL MODES

Careful selection and training of the project team alone can’t ensure the successful delivery of agriculture-based ID projects as problems, which when not detected and solved early affect project performance, are likely to occur during project implementation. This thus makes control and more importantly, organizational control, a key factor to the success of
agriculture-based ID projects. As indicated by Jaeger and Baliga [13], organizational control is an important component of the managerial function which is responsible for ensuring that the organization’s strategic goals are met and that deviations from standards are corrected for effective performance outcomes. The need for organizational control mechanisms is thus generally unquestioned [14]. Experience from IVRDP proves beyond doubt that successful execution of agriculture-based ID projects is almost impossible without the adoption of a control mix viz. behaviour control (based on direct personal surveillance), output control (mechanisms that ensure that output is delivered), input control (mechanisms for the selection of inputs) and clan control (regulation of goals, values and norms of project team).

Each control mode has its own strengths and weaknesses as well as conditions/situations under which they can perform best. Applying a single mode at all times is therefore not effective and efficient enough to ensure successful project performance/delivery owing to how volatile the environment can be. For example, output control is said to conserve organizational resources better than behaviour control but it is less flexible and less adaptable to particular needs [15]. Also, according to Ouchi [16], behaviour control or output control are best for organizations in relatively stable industries whereas clan control is best for organizations in the public sector, service industries and fast-growing technologies. Accordingly, the application of multiple control modes in project delivery is more effective and efficient for agriculture-based ID projects than using individual control modes. This balance of control concept (the use of multiple control modes outperform using a single control mode), was put forward by Cardinal et al. (see [17]). It has been supported by studies such as that of Long et al. [18], who conducted a study to determine which theory of organizational control implementation provides the most effective method for managing tasks and came to the conclusion that managers can improve organizational performance by focusing attention on multiple control modes. Thus, selecting competent staff for a project, having regular meetings with project stakeholders and/or clients, undertaking monitoring and supervision missions, undertaking periodic project reviews (multiple control modes), etc. will ensure the success of agriculture-based ID projects far more than just relying solely on reports (a single control mode).

CONCLUSION

As O’Connor and Reinsborough [7] put it, better project management disciplines and skills are required by project team members in order for projects to succeed in this present age as projects are bigger and more formally ran than they used to be done in the past. Accordingly, an appropriate project team and the application of multiple control modes are key factors necessary to avert or minimize the occurrence of problems in the implementation of agriculture-based ID projects which will help enhance their success. As this paper sheds light on these factors, it is a good resource for practising project managers and implementing/management units of agriculture-based ID projects as well as all forms of development projects in Africa, the developing world and the world at large.

REFERENCES
The Time Has Never Been Right to Investigate the Underlying Reasons Why International Development Projects Fail

Lawrence G. Boakye1 and Li Liu2

Although International Development Projects (IDPs) have become and will remain an important instrument of activating and achieving development in developing countries, they are plagued with failure. They are failing at an astonishing rate, despite their management. This study investigates why IDPs fail. From real world failed operations, it identifies that IDPs are highly susceptible to failure as they are beset with numerous challenges right from the outset. It also identifies 16 causes of failure of such projects. Findings will benefit project professionals, especially IDP professionals, development-oriented organizations and the IDP body of knowledge. It also provides a basis to generate new research on IDPs and failure.

Keywords: International Development Projects; Project Failure; Project Success/Failure Factors

Project Management

1. Introduction

Despite the importance of International Development Projects (IDPs) to the development of developing countries, they are failing at a surprising rate. Most of them face force majeure events during implementation and simply fail. Agheneza (Agheneza, 2009) indicated that “Several development projects have failed to have a significant positive impact on the quality of life" in the Ngie, NW Province of Cameroon (page 74). Similarly, Sahibzada & Mahmood (Sahibzada and Mahmood, 1992) reported that if one has to write the project history of Pakistan, one would come across numerous examples of projects that have failed due to the inefficient functioning of the machinery for planning development projects. Some IDPs are considered failed operations and terminated by their donors after years of implementation before completion, e.g. the Kpong Irrigation Project (KIP) in Ghana and Programme de Mise en Valeur des Plaines du Moyen-Bani (PMB) and the Projet d’Amenagement du Perimetre Irrigue de Maninkoura (PAPIM), both of which are in Mali (AIDB Evaluation Report, 2011).

IDPs are unique undertakings and will be fraught with challenges during implementation. They are thus not immune to failure. Project management literature have identified a wide spectrum of factors such as complexity of projects, uncertainty and risk in handling projects, directionless process, inability of the client to describe the project, poor project design and poor leadership, uncoordinated built environment professionals and inappropriate staff skills, unrealistic time-scales and cost estimation, poor selection of building procurement methods, failure to plan and lack of pre-project planning (Paslawski, 2008) as some causes of project failure. Some criteria such as cost, time and quality against which projects can be measured, are also available (Atkinson, 1999). Factors identified as essential to the success of projects, usually referred to as “Critical Success

1 MPhil Candidate, Project Management Program, School of Civil Engineering, Faculty of Engineering & IT, The University of Sydney, Sydney, Australia. Email: lboa5200@uni.sydney.edu.au

2 Senior Lecturer & Co-ordinator, Bachelor of Project Engineering & Management Degree, School of Civil Engineering, Faculty of Engineering & IT, The University of Sydney, Sydney, Australia. Email: li.liu@sydney.edu.au
Factors (CSFs) are also replete in literature. Such awareness should commensurate with a better performance of IDPs but the story is different. Projects continue to be described as failing, despite the management (Atkinson, 1999). Should this be the case with awareness of project success/failure factors and success criteria? Or could it be that these factors are not applicable to IDPs?

Because IDPs have become and remain one of the most important instruments of activating and achieving development in developing countries, there is the need to identify why they continue to fail to serve as lessons. This study identifies some root causes of IDPs through real world failed development operations in Ghana. Through content analysis of the completion reports of these projects, it concludes that most factors identified as causes of project failure in extant literature are applicable to IDPs and that based on the characteristics and usual of mode of identification and setup of IDPs, they are becoming increasingly complex and therefore their mode of delivery with respect to typical project management methodologies should be modified in order for them to succeed. By failure, the writer is talking about the inability of an IDP to deliver the intended output, and by extension outcome (benefits), to the project beneficiaries either within or outside the allocated cost and schedule.

This paper builds on our knowledge of IDPs. It is illuminating and provides a good basis to generate new research on IDPs and failure.

2. Literature Review

A lot of studies have been done to uncover which factors leads to project success and/or failure. Most of such early studies focussed mainly on the reasons for project failure but since the early 1990s, the focus has shifted from determining factors of failure to identifying success factors of projects. Studies related to project success is usually in two forms: those that deal with the dimensions of project success, that is to say, project success criteria and those that explore CSFs. Such studies, which started as early as the late 1960s, are considered as a means to achieving successful development outcomes.

The first study on the concept of project success and failure was done by Rubin and Seeling in 1967 (Belassi and Tukel, 1996). They investigated the impact of a project manager’s experience on a project’s success or failure and arrived at the conclusion that a project manager’s previous experience has minimal impact on a project’s performance. Avots’ study (Avots, 1969), which identified the wrong choice of project manager, unplanned project termination and unsupportive top management as the main causes of project failure, followed. Hughes (Hughes, 1986) also identified that projects fail because of improper basic managerial principles such as an improper focus of the management system and lack of communication of goals. Pinto and Slevin (Pinto and Slevin, 1987) also identified ten critical success factors which include project mission, top management support, project schedule/plan, client consultation, personnel, technical tasks, client acceptance, monitoring and feedback, communication and trouble shooting. O’Connor and Reinsborough (M O’Connor and H Reinsborough, 1992), whilst exploring over 90 past projects, identified top 12 causes of failure. The first factor on their list, planning/tracking/reporting, occurred in 71 per cent of the total projects explored with the last factor, estimating, occurring in 19 per cent of the total projects. Studies, such as those done by Pinto and Mantel (Pinto and Mantel, 1990), Gow and Morss (Gow and Morss, 1988), Pinto and Prescott (Pinto and Prescott, 1988) as well as Harding (Harding, 2012) also list various success/failure factors of projects.
Quite recently, Thi and Swierczek (Thi and Swierczek, 2010) studied critical success factors and confirmed that in addition to the external environment, project manager, team members, organization and project characteristics, manager competencies, member competencies and external stability also have a positive relationship to project success. Effective project leadership, selecting the right project(s) and partner(s) have also been identified as CSFs (Freedman and Katz, 2007).

Perhaps the first study on the criteria of project success is that by Oisen (Oisen, 1971) who, in 1971, suggested cost, time and quality as a criterion for measuring project success. This criterion is often referred to as “The Iron Triangle”. Other researchers such as de Wit (de Wit, 1988), Pinto and Slevin (Pinto and Slevin, 1988) and Wateridge (Wateridge, 1998) support this criterion, although not exclusively. However, Meyer (Meyer, 1994) refers to this success criterion as a results-based measurement where the focus is on the task of project management (doing it right) but not the project deliverable. Similarly, Atkinson (Atkinson, 1999) argues that measuring projects against cost, time and quality only measures the delivery of the project thus neglecting the project deliverables/output. According to him, time and cost are at best only guesses which are calculated at a time when least is known about the project, and quality is a phenomenon which is an emergent property of peoples’ different attitudes and beliefs which often change over the development life-cycle of a project. Atkinson further argues that doing something right may result in implementing a project on time, within cost and to some quality parameters requested which are not used by customers, not liked by sponsors and which does not seem to provide either improved effectiveness or efficiency for the organization. Moreover, there are many cases where projects are executed as planned, on time and on budget and achieve the planned performance goals but they turn out to be complete failures because they failed to produce actual benefits to the customer or adequate revenue and profit for the performing organization (Dvir et al., 2003). de Wit (de Wit, 1988) also points out that costs, when used as a control in project success, measure only progress which is not the same as success. As Zwikael et al. (Zwikael et al., 2014) points out, there are different types of projects with different outcomes, thus measuring project success on the basis of cost, time and quality does not allow for identifying which success factors drive different project outcomes.

Some studies have also sought to classify CSFs. The first of such classifications was carried out by Schultz, Slevin and Pinto when they classified success factors as either strategic or tactical (Belassi and Tukel, 1996). The strategic group includes factors such as project mission and top management support whereas the tactical group includes such factors as client consultation and personnel training. CSFs have also been classified into human-related factors, project-related factors, project procedures, project management actions and external environment (Chan et al., 2004) as well as into project manager-related factors, project-related factors, organization-related factors and factors related to the external environment (Belassi and Tukel, 1996).

In addition to the literature described above, studies of several other researchers such as Cooke-Davis (Cooke-Davies, 2002), Muller and Jugdev (Müller and Jugdev, 2012), Baker et al (Baker et al., 2008), Youker (Youker, 1999), Olsson (Olsson, 2006) and Ika (Ika, 2012), to mention but a few, discuss project success/failure factors.
3. Methodology

Secondary data was mainly used for this study. As the thrust of this paper is on failure, the data for this study was drawn from failed AfDB-funded projects in the agriculture and rural development sector of Ghana from 1990 to date. The agriculture and rural development sector was selected owing to its importance and role in the economy of developing countries. Projects whose main activities are being salvaged or have had attempts made to salvage them through another IDP was the main criterion used in selecting the sample size from the sample population. Three (3) projects viz. Kpong Irrigation Project (KIP), Small-Scale Irrigation Development Project (SSIDP) and Inland Valleys Rice Development Project (IVRDP) were thus sampled out for the study because in addition to having their activities being salvaged, they:

1. Suffered from a lengthy period of delay between project approval and start of implementation.
2. Had their scope significantly reduced.
3. Were terminated before completion.

Available completion reports on the identified projects were extensively analysed to extract factors that caused these projects to fail. A simple manual content review of reports, without the use of any computer software, was undertaken owing to the small number of project reports. Figure 1 (below) shows the extent of delay in starting the projects after approval and the schedule overrun of the projects. Kpong Irrigation Project (KIP) suffered from a start-up delay of 48 months, 25 months in the case of Small-Scale Irrigation Development Project (SSIDP) and 13 months for Inland Valleys Rice Development Project (IVRDP). In terms of the overall time overrun in project implementation, KIP was over-scheduled by 96 months making it operate for twice its originally approved project implementation period. SSIDP had a time overrun of 74 months and 60 months for IVRDP.

![Figure 1: A Comparison of Delay in Project Start-up and Time Overrun of the Projects used for Study](image)

4. Findings

An IDP, owing to their nature, characteristics and path from identification through to the start of implementation of project activities, is bound to be a challenging venture since they operate in difficult environments where there is often a lack of basic infrastructure and resource deficiency. These conditions render most of the factors that cause their failure sometimes intractable.
There is no marked difference in the list of factors identified to have caused the failure of the three projects used for the study. This finding is corroborated by Youker (Youker, 1999) who, exploring lessons learnt in managing IDPs concluded that the causes of failure among IDPs are almost exactly the same. These identified factors are:

- Poor project planning
- Low level of commitment by host government
- Weak supervision
- Low stakeholder involvement in planning
- Poor project management
- Lack of flexibility
- Poor project Quality-at-Entry (QAE)
- Poor communication
- Project complexity
- Delays in project start-up
- Economic downturns
- Non-performing contractors
- Non-incorporation of lessons learnt from similar previous projects
- Inadequate project staff
- Optimism bias
- Not admitting a project is a failure.

These factors could be said to be among the root causes of IDP failure as their presence generates other problems that hinder IDP success. For example, poor planning will lead to poorly designed projects whereas optimism bias could also lead to unrealistic time-scales. But they are not the only factors that cause failure of IDPs, nor do they have the same effects on all IDPs. Having them present in the three failed projects is an indication of their importance to failure as well as their frequency of occurrence in failed development operations. They are no new factors as they are in the know. Extant project management literature has them as causes of project failure, with some having been identified by other researchers as far back as 1979. Some of them, if not all, could therefore be intractable in some instances based on prevalent conditions. They might also not be amenable to change to the same degree at all times and in all cases. Table 1 shows a list of researchers who have identified these same factors in the past. The aim here is not to list all researchers who have previously identified these factors to be causes of failure but to show that at least, there is evidence of their existence.
Table 1: Evidence of Existence of Identified Causes of Project Failure

<table>
<thead>
<tr>
<th>Identified Cause of Project Failure</th>
<th>Evidence in Extant Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor project planning</td>
<td>Rondinelli, 1979</td>
</tr>
<tr>
<td></td>
<td>O’Connor & Reinsborough, 1992</td>
</tr>
<tr>
<td></td>
<td>Youker, 1999</td>
</tr>
<tr>
<td>Weak supervision</td>
<td>Rondinelli, 1979</td>
</tr>
<tr>
<td>Low level of commitment by government</td>
<td>Youker, 1999</td>
</tr>
<tr>
<td>Low stakeholder involvement in planning</td>
<td>O’Connor & Reinsborough, 1992</td>
</tr>
<tr>
<td>Poor project management</td>
<td>O’Connor & Reinsborough, 1992</td>
</tr>
<tr>
<td>Lack of flexibility</td>
<td>Olsson, 2006</td>
</tr>
<tr>
<td>Poor project Quality at Entry (QAE)</td>
<td>Olsson, 2006</td>
</tr>
<tr>
<td>Optimism bias</td>
<td>Rondinelli, 1979</td>
</tr>
<tr>
<td>Project Staffing</td>
<td>O’Connor & Reinsborough, 1992</td>
</tr>
<tr>
<td></td>
<td>Pinto & Mantel, 1990</td>
</tr>
<tr>
<td>Non-incorporation of lessons learnt from similar previous projects</td>
<td>Pinto and Kharbanda, 1996</td>
</tr>
<tr>
<td>Non-performing contractors</td>
<td>Harding, 2012</td>
</tr>
<tr>
<td>Economic Downturns</td>
<td>Pinto & Mantel, 1990</td>
</tr>
<tr>
<td>Delays in project start-up</td>
<td>Gow & Morss, 1988</td>
</tr>
<tr>
<td>Poor communication</td>
<td>O’Connor & Reinsborough, 1992</td>
</tr>
<tr>
<td>Not admitting a project is a failure</td>
<td>Pinto and Kharbanda, 1996</td>
</tr>
<tr>
<td>Project complexity</td>
<td>Paslawski, 2008</td>
</tr>
</tbody>
</table>

Of critical importance to the success/failure of IDPs is project flexibility and QAE. Many AfDB project reports recommend these two factors be inbuilt in project implementation so as to ensure successful development outcomes. Flexibility is the ability to adapt pre-determined procedures, activities, timings, decisions, etc. to existing conditions. It is primarily an approach to improve project effectiveness (Shahu et al., 2012). QAE has been reported to be a prime determinant of successful development outcomes and the foundation on which a successful project implementation is built (AfDB Summary Report on QAE, 2010). It addresses gaps in planning and also provides a “second opinion” of projects. It refers to those aspects of an intervention, identified as critical to the success of the intervention, which must be present before allocation of funds and the start of implementation of the intervention.

5. Conclusion and Recommendation

This paper identifies some recurring factors causing failure of IDPs from three (3) real world classical examples of failed IDPs. As Pinto and Kharbanda (Pinto and Kharbanda, 1996) puts it, there are lessons to be learnt from failure, if only we are willing to find and examine them. Hence, knowledge of these factors is critical as it will help development organizations and project planning teams appreciate the nature and environment of IDPs and thus develop better development interventions. Such knowledge will also help project management teams become more aware and competent in dealing with such factors and their associated adverse effects on the success of IDPs.

Time moves on; as such IDPs are increasingly involving social services which deals with people as well as construction activities. They have become more experimental (Rondinelli, 1979) and complex with interconnecting activities where a decision to execute an activity is mostly dependent on the outcome of preceding ones. These render them highly susceptible to numerous challenges right from the outset during implementation and failure. Most of the available factors of project failure in extant literature are applicable to IDPs. Some of these factors, however, could sometimes be intractable (Rondinelli, 1979) based on the nature of IDPs. Thus traditional project management approach, which assumes a static nature of projects and project activities to be easily recognizable,
is proving inappropriate for their management. These are plausible underlying reasons why IDPs continue to be reported as failed operations. One plausible solution to this problem, as indicated by Youker (Youker, 1999) is to learn the basic lessons of good project management and apply them in specific contexts to IDPs. Agile project management, which features flexibility, and which unlike traditional project management, places a much greater importance on the customer, i.e. the beneficiary in the case of IDPs, as well as subjecting IDPs to QAE checks are also plausible solutions.

Although this study dwells on IDPs from a single country, findings are relevant to all IDPs especially in the developing world since developing countries share common characteristics such as resource deficiency, lack of adequate infrastructure and reliance on agriculture and raw materials as a main income source.

6. References

ABSTRACT

Although International Development Projects (IDPs) remain important instruments for activating and achieving sectoral and national development in the developing world, they often fall short of making their desired impact because they are implemented under challenging conditions with rigid procedures. This paper illustrates that flexibility is critical to the success of IDPs as it improves their effectiveness. It contributes to literature on IDPs and flexibility and is thus beneficial to IDP professionals, development organizations and the International Development Body of Knowledge.

INTRODUCTION

The financing and implementation of development activities through physical, economic and social investment projects has been an integral part of public planning and management in the developing world for a long time, and thus national ministries, international lending institutions and private corporations have used, and continue to use project management as a means of planning and executing billions of dollars of investments to stimulate economic growth in developing countries since World War II (Rondinelli, 1979). Procedures have evolved to ensure that such development projects are planned in detail; covenants, conditions precedent and procurement regulations continue to be inserted into legal contracts to compel acceptable behaviour (Strachan, 1978). The logical framework, which is hard to use within today’s project management framework and integrate with other project management tools as a result of a few pitfalls (Couillard et. al, 2009), continues to be used to plan and implement such development interventions, all in attempts to ensure that they achieve their set objectives.

That notwithstanding, the record of development projects in the developing world has not been good - most of them simply fail far short of delivering their intended outputs and/or benefits in spite of their planning and management as well as several years of both individual and collective experience in managing projects. The Abyei Development Project in Sudan, having fallen far short of its objectives – both original and amended, was recommended for termination, and terminated it was (Barclay et. al, 1983); the Kpong Irrigation Project (KIP) in Ghana was terminated in 2004 after a schedule overrun of more than 90 months; and more recently, the Inland Valleys Rice Development Project (IVRDP) in Ghana was terminated in 2011 with many uncompleted civil works. In fact, one only has to do a cursory search to come across numerous examples of such projects that have failed. For some that succeed, their benefits are usually temporary and narrowly distributed (Rondinelli, 1979).

Owing to the nature of International Development Projects (IDPs), the difficult and unpredictable environment within which they are implemented and their path of identification through to implementation, they are almost always challenged. Moreover, the basics of interaction between financing institutions and the host government of IDPs make it difficult to apply good project management practices (Tuckey, 1999). These render the problems associated with managing IDPs such as unrealistic time-frames and budgets, scope changes, technically deficient designs, lack of appropriate and essential human and institutional capacities, to mention but a few, intractable.

Project planning, no matter how detailed it is, is done based on limited available information which increases as the project progresses. IDPs turn out to be more complex than conventional projects with close interconnecting activities where a decision to undertake successive activities largely depends on the outcome of preceding ones. Projects are unique undertakings and as Andersen (1996) indicates, the natural implication of uniqueness is the impossibility to know all the activities required for a project to succeed at the initial planning stage. This very uniqueness is the characteristic that underpins the application of good project management principles in IDPs. Although there are instances where projects turn out to be complete failures due to their inability to produce actual benefits to the customer after being executed as planned, on time and on budget and achieve planned performance goals (Devin et. al, 2003) the original plan, in too many IDPs, remains unchanged. This has become a common pitfall of IDPs.

This paper concludes that a flexible approach which allows for creative responses to opportunities, rather than rigid procedures, is critical to the governance of IDPs. By governance, the writer is referring to their method of management. Thus, governance and management may be used interchangeably in the paper. This paper is beneficial to IDP professionals, development organizations and the International Development Project Body of Knowledge.

1. Analysis of international development projects (IDPs)

By International Development Projects (IDPs), this paper is talking about government projects financed by institutions such as the World Bank; the
Inter-American, African, Asian and Caribbean Development Banks; the Islamic Development Bank; and European Development Banks (Youker, 1999). They are public sector development projects or programs which are specifically designed for economic and social needs of developing countries and are usually financed by a donor (Ahsan & Gunawan, 2010). Such projects are either implemented by recipient governments under a bilateral agreement with the donor country, or through an “implementing partner” of the donor which is frequently a Non-Governmental Organization (NGO) or professional contractor (Crawford & Bryce, 2003). IDPs are important instruments for initiating and attaining both national and sectoral development. Billions of dollars are available each year via donor countries, development banks and international institutions for developmental purposes in the developing world. Their importance to the developing world cannot be over emphasized. For instance, in the mid-2000s, activities of the Ghana Poverty Reduction Project, an African Development Bank (AfDB) funded project led to an increase in the household income of pineapple growers on the project from GH¢47.60/month to GH¢65.00/month (AfDB, 2006a). And more recently, activities of the Livestock Development Project (LDP), implemented in Ghana between 2003 and 2011, led to an increase in the average annual gross revenue per smallholder farmer from a baseline of GH¢25,939.94 to GH¢49,700.00 and from GH¢11,44.41 to GH¢31,420.00 for cattle and sheep farmers respectively (AfDB). IDPs differ from conventional projects as a result of their unique characteristics. Due to the cross functional nature of project activities, projects often typically comprise a degree of complexity that is not found within other functional departments (Kharbanda & Pinto, 1996). However, IDPs are found to be more complex than other type of projects because they are implemented in highly difficult and unpredictable environments where, as Youker (2003) indicates, there is often a lack of basic infrastructure and all resources are in short supply. Then again, they are mostly not-for profit with an involvement of several stakeholders. Language barriers, cross-cultural gaps and geographical distances among the stakeholders may hamper their smooth implementation (Freedman & Katz, 2007). Their process of identification and development is often solely carried out by the donor or financing institution, resulting in local stakeholders feeling left out (Youker, 1999).

They are somewhat experimental and thus even seemingly routine replications are likely to meet unanticipated difficulties when transferred from one cultural setting to another (Rondinelli, 1979). Although there are some hard elements within IDPs, they are frequently concerned with soft issues like social or human development (Crawford & Bryce, 2003). More and more IDPs have turned out to be soft type projects involving social services dealing with people, versus construction in sectors such as education and even revising government pension programmes (Youker, 1999). The soft objectives of these projects are usually less visible and measurable compared to industrial or commercial projects (Ahsan & Gunawan, 2010). IDPs have thus turned out to be difficult projects to manage (Youker, 1999). They have also been found to be difficult to plan which is evident in technically deficient designs, scope changes as well as cost and time overruns, often reported as some of the major pitfalls of IDPs. This difficulty in managing them is aggravated by the fact that:

- There is a lack of appropriate and essential human and institutional capacities in developing countries for their management.
- It is impossible to anticipate all activities required for an IDP to succeed during planning.
- During their governance, a decision to undertake an activity largely depends on the outcome of a preceding activity or activities.
- The life cycle, stages linking the start to the end, of IDPs consists of a number of progressive phases that lead, from the identification of needs and objectives through the planning and implementation of activities in order to address these needs and objectives, to the assessment of the outcomes (Rigg & Smith, 2003). Baum (1978) introduced the specific six progressive-phase life cycle of IDPs (Figure 1). The majority of development agencies such as European Commission (EC), Canadian International Development Agency (CIDA) and Australian Agency for International Development (AusAID) have a project cycle of five or six phases, very similar to Baum’s but with differences in content and in the names of the phases (Golini & Landoni, 2013).

The Logical Framework Approach (LFA) is typically used to manage IDPs. It is a tool for planning programmes and projects in the broadest context of development goals which consists of a four-by-four matrix summarising the most important aspects of a project/programme under consideration (Bauer, 2001). Its four columns are usually Narrative Summary, Objectively Verifiable Indicators, Means of Verification and Assumptions and the four rows/lines consist of Goal, Purpose, Outputs and Inputs (Coulillard et. al, 2009).

The LFA is now considered inflexible, complex and difficult to integrate with other project management tools due to the lack of a clear process leading to its development, its confusing nature is evident in the difference between goals and purpose and a lack of stakeholders’ involvement which often compromises its validity (Coulillard et al. 2009). As a result, updated tools such as the Logical Framework Approach - Millennium [see (Coulillard et. al, 2009)] have been proposed. Development agencies such as United States Agency for International Development (USAID) and CIDA also no longer use it (Golini & Landoni, 2013).

As illustrated above and as Youker (2003) indicates, IDPs are different from other types of projects for many reasons and thus the approach to their implementation must also be different. There is therefore the need, not for rigid implementation procedures for their governance, but rather a flexible approach which will allow for creative responses to opportunities that might not have been anticipated during the identification and development process.

2. Research method

The methodology similar to that of Olsson (2004) was employed for this research. This paper is primarily based on secondary data. Findings and conclusion are based on an extensive review of Project Completion Reports (PCR) and Project Evaluation Reports (PERs) of AfDB funded projects across various sectors in Ghana, archived and available on the Bank’s website for public access. Archived project reports are credible sources for research as the data sourced from them are more objective than primary survey data because they are free from contamination by respondent perceptions and/or memories of the phenomenon of interest (Calantone & Vickery, 2009).

The findings and conclusion are also based on extant literature on flexibility and influenced by

![Figure 1: Project Cycle of International Development Projects (Baum, 1978)](image-url)
LITERATURE REVIEW

PROJECT MANAGEMENT | JANUARY – APRIL 2015 | THE JOURNAL OF

3. An overview of flexibility

Flexibility can be said to be the ability to adapt investment decisions, including timing and scale, to existing market conditions as opposed to pre-set assumptions and goals (http://www.businessdictionary.com) or the capacity to adapt in simpler terms (Golden & Powell, 2000). It may also be described as a way of making irreversible decisions more reversible or postponing irreversible decisions until more information is available (Nakata, 1994).

Flexibility approach could be of two forms in a project – process flexibility and product flexibility. Process flexibility, which is associated with adaptability in decision making in projects, is a means of responding to uncertainty. An example is the “last responsive moment” approach as illustrated by Ballard & Howell (2001) where decisions are not taken until the very last responsive moment. Product flexibility, on the other hand, is associated with adaptability in the use of project deliverables. According to Golden & Powell (2000), the literature proposes numerous standpoints from which to measure flexibility with four metrics viz. efficiency, responsiveness, versatility and robustness emerging.

All IDPs are somewhat experimental and even such seemingly routine repetitions often meet unanticipated difficulties when transferred from one cultural setting to another (Roudnielli, 1979). As such, as indicated by Youker (1999), although good project management if started early in the project development process could solve most of the problems associated with IDPs, it is difficult to do so owing to the basics of the interaction between the financing institution and the host government – the process of identification and development is often solely done by the financing institution and there are led to and continue to lead to one common recurring IDP pitfall which is long lead time to get the project rolled out. For example, it took the KIP, the Small Scale Irrigation Development Project (SSIDP) and the IFRD, all of which were implemented in Ghana, 55, 40 and 37 months respectively to get started after approval [AfDB, 2000; (AfDB)]. This long lead time leads IDPs with no option other than an update of the project concept and design before implementation which is almost never done. Another effect of the basics of interaction is that the implementation problems synonymous to IDP governance which arise because different people, other than those involved in the design of the projects, end up implementing the projects. These, as well as other problems are compounded by the dynamic and unpredictable nature of the environment as well as the lack of appropriate and essential human & institutional capacities in project management in the developing world.

Project planning provides structure, reduces uncertainty and increases the likelihood of success (Dvir et al., 2003) but the chances of realizing a plan without a flexibility to accommodate a successive activity often dependent on the outcome of the preceding one. These have rendered most IDPs less effective. At least, AIDB’s projects have been found to be less effective as they are good at delivering outputs but weak in translating the outputs into outcomes and impact (AfDB, 2011); which explains the call for modifying the existing Project Management Body of Knowledge (PMBOK) in the management of IDPs [see, for example, (De Ba & Tun Lin, 2002)]. Flexibility is primarily an approach to improve the effectiveness of projects and is thus the factor that could fit well in the effectiveness of IDPs (Shahal et al., 2012). Shahal et al. (2012) conducted an empirical study on flexibility as a critical success factor for projects and found that the cost of its application is much lower than the cost of managing unanticipated changes in the course of project delivery. That same study revealed that projects which had a scope of flexibility in process, decision making, design, etc. showed higher levels of success rates as compared to those with rigid systems. They therefore concluded that its application could be seen as a value addition to projects through an improvement of the overall project effectiveness and beneficiary satisfaction. This explains the desire of project owners and users to have “room for manoeuvring” as to be able to adjust projects as they gain knowledge about their needs and changes in the project context (Muller, 1995).

As per AIDB’s IDPs in Ghana offers some clear insights on the need for a flexible approach to managing IDPs. The review identifies the lack of project flexibility as a major cause of failure for the Bank’s projects. One report indicates inflexible and cumbersome procedures as major sources of implementation delays (AfDB, 2011) with an informal idiom (AfDB, 2006b) indicating projects end up should ensure more inbuilt flexibility during implemention for satisfactory outcome. The LDP by exercising flexible decision making approach during project implementation, minimised losses through a change from a conventional cash credit scheme to a credit-in-kind scheme using small ruminants when it discovered that the recovery rate for the disbursed loans under the cash credit scheme was low (AfDBa). Similarly, the Second Line of Credit to Agricultural Development Bank (AgDB), disbursed in the form of a project to boost overall agricultural production in Ghana, succeeded in attaining its objectives with a flexible approach. The PCBR (AfDB, 1997) states that flexibility “which allowed the Afri- can Development Fund (ADF) to enable the AgDB to revise the list of goods and services in line with the actual demand for credit was an important factor for the achievement of the objectives of the project.” (p. 17).

A case of the need for a flexible approach in IDPs can be seen from the KIP which was considered a failed operation and terminated by the ADB after several years of implementation only to get its fortunes turned around by a private company (AfDB, 2005) through product flexibility. Thus says the report:

“In Ghana, the transformation of a failed operation (KIP) into a success story through the use of infrastructure for a high-value crop by a private company illustrates the need for the Bank to have a more open and flexible approach on the finality of the infrastructure.” (Page 18)

A flexible managerial approach is not a new concept as Olson (2004) reports. Several examples of flexibility as a readiness approach to the effects of uncertainty in planning have being identified by researchers such as Sager (1990). In spite of the usefulness of flexibility in improving project effectiveness, it seems to be a paradox that mainstream project management focuses on stability for the project whilst major projects within other management disciplines strongly emphasise flexibility (Olsson, 2004). It is traditionally described as undesirable in project management context (Shahal et al., 2012). The case against flexibility stems from project efficiency. The argument is that once a project has been decided upon and the planning and execution has begun, changes will not only generate discrepancies between the different project actors but it will often reduce the project’s efficiency (Olsson, 2004). This case clearly neglects the projects’ effectiveness aspect. However, the traditional focus on stability in project management becomes challenged under uncertainty (Korine, 1995) which calls for the need of flexibility. There is therefore a dilemma in its application as a result of these arguments. But of what use is an efficiently delivered project which is rendered effective because it cannot make the desired impact or produce the desired revenue?

5. Conclusion

Projects will remain the dominant means of organizing investment in the foreseeable future because they offer the opportunity to advance development and to shape the developing world (Konradt, 1997). Projects will therefore continue to be a major way of activating and attaining development in the developing world irrespective of the numerous challenges associated with their governance and their continuously reported failures. That notwithstanding, owing to their path of identification and development as well as the usage of the deficient logical framework for their planning and management, IDPs will continue to be difficult and challenge those in the workforce undertaking projects in a developing world characterized by a lack of adequate and diminishing resources. A likely effect of this is a continuous failure of these projects and therefore an ad hoc approach to management.

IDPs are again complex activities with higher levels of uncertainty and are thus beset with several problems during their management. It is virtually impossible to anticipate all the required activities necessary to enable them to succeed. There is also no guarantee that all planned activities will be executed to the latter during implementation. And as indicated by Siffins (1979), a development project is not like a train trip to a ticketed destination; rather...
LITERATURE REVIEW

THE JOURNAL OF PROJECT MANAGEMENT

tit is more like sailing on a ship, hopefully beyond the point where the internal rate of return becomes favourable, in the direction of a better and more generously endowed climate. There is thus the need for modifications to be made to suit prevailing conditions as they progress and more information becomes available. This paper has illustrated that the one factor suitable for such a modification is flexibility. It is thus illuminating and provides a basis to generate further research. The paper is beneficial to IDP professionals, development organizations and the International Development Project Body of Knowledge.

