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Abstract 

 

Prior to this research, no disposition studies of meloxicam (nor any other non steroidal 

anti-inflammatory drugs) had been conducted in koalas (a specialist Eucalyptus spp. 

foliage feeder) despite being readily administered to this species, in the field. Thus, 

aspects of the in-vivo pharmacokinetic profile of meloxicam in the koala and the in-vitro 

metabolism of meloxicam in the koala and selected species were investigated. 

 
In the first stage of the research, a simple, sensitive and improved method using high 

performance liquid chromatography equipped with photo diode array detection was 

developed and validated to determine meloxicam concentrations in koala plasma, 

applicable for in-vivo pharmacokinetic study. Following intravenous injection, 

meloxicam exhibited a rapid plasma clearance of 0.44 ± 0.20 L/h/kg in koalas (n = 5). 

Median plasma terminal elimination t1/2 was 1.19 h (range 0.71 to 1.62 h). In koalas, 

bioavailability after the subcutaneous injection was approximately 56 to 70 % where 

oral bioavailability was negligible. Plasma protein binding of meloxicam was about 98%. 

Three hydroxylated metabolites of meloxicam (M1, M2 and M3) were detected in the 

koala plasma with one (M1) identified as the 5-hydroxy methyl metabolite. According to 

the in-vitro hepatic microsomal metabolism of meloxicam, it was demonstrated that 

biotransformation of meloxicam, likely mediated via cytochrome P450 enzymes, were 

much faster in koalas (and also in other Eucalyptus spp. foliage feeders: ringtail possums 

and brushtail possums) compared to rats or dogs. The rank order of apparent in-vitro 

intrinsic clearance was brushtail possums (n = 3) (mean: 394 μL/min/mg protein) 

> koalas (n = 6) (50 μL/min/mg protein) > ringtail possums (n = 2) (36 μL/min/mg 
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protein) (with no significant difference between koalas and ringtail possums) > pooled 

rats (3.2 μL/min/mg protein) > pooled dogs (not determined as the rate of metabolism 

was too slow). According to the in-vitro study, single hydroxylated metabolite (M1) was 

determined as the major product of meloxicam in brushtail possums and the rat 

whereas multiple hydroxylated metabolites were observed in the koala (M1, M2, and M3) 

and the ringtail possum (M1 and M3). Using a well-stirred model, this research showed 

applicability of predicting in-vivo clearance of meloxicam in koalas and the rat from the 

apparent in-vitro intrinsic clearance data (average fold error for prediction was less than 

2). While cytochrome P4502C9 is the major responsible enzymes for metabolism of 

meloxicam, the research also found that the stability of other cytochrome P4502C9 

substrates, particularly non steroidal anti-inflammatory drugs were also generally not 

stable in hepatic microsomes of koala and other Eucalyptus.spp foliage feeders than the 

rat. Particularly, there was some similarity on the pattern of CYP2C9 substrates stabilities 

between koala and ringtail possum (Eucalyptus spp. foliage specialist feeders).   

 

This research demonstrated that koalas exhibited rapid plasma clearance and extremely 

poor oral bioavailability of meloxicam compared with other eutherian species. Due to 

differences in the rate of hepatic metabolism on meloxicam, other eutherians such as 

rats or dogs are inadequate model for dosage extrapolation of this drug in koalas. 

Furthermore, as catalytic activity of cytochrome P4502C-like enzymes appeared to be 

different in these Eucalyptus spp. foliage feeders, it is highly recommended to consider 

when extrapolating dosage of therapeutic drugs (cytochrome P4502C9 substrates), 

particularly non steroidal anti-inflammatory drugs, from other eutherians. On the other hand, 
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as in-vivo clearance is one of the pharmacokinetic indexes for determining the dosage of 

drug, this study demonstrates the utility of in-vitro to in-vivo scaling as an alternative 

prediction method of drug clearance in koalas.  
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1. 1.     General introduction  

This research project focused on aspects of the in-vivo pharmacokinetic profile of the 

non-steroidal anti-inflammatory drug (NSAID) meloxicam in the koala and the in-vitro 

metabolism of meloxicam in the koala and selected species. The hepatic intrinsic 

clearance rates (in-vitro Clint) of meloxicam were applied to predict the in-vivo clearance 

in the koala and rat. As most NSAIDs, including meloxicam, are predominately 

metabolised by the catalytic activity of cytochrome P4502C9 in humans, this project also 

investigated cytochrome P4502C-like activity in the koala and the other species.  

 
The literature review, Chapter 1, provides a general overview of pharmacokinetics and 

a comparative species review of cytochrome P450 (CYP) mediated hepatic metabolism 

on xenobiotics, such as therapeutic drugs. A brief introduction on methods used for the 

in-vitro to in-vivo extrapolation to predict drug clearance and an overview of bio-

analytical methodology are described. Current information on both the 

pharmacokinetics of drugs and hepatic metabolism in koalas are reviewed, followed by 

an overview of the indications of meloxicam in veterinary medicine. This chapter 

concludes with the specific aims of this research project. 

 
The first stage of this project was concerned with establishing an analytical method for 

determining meloxicam concentrations for both the in-vitro and in-vivo studies. 

Therefore Chapter 2 describes development and validation of a liquid chromatography 

method for quantification of meloxicam in koala plasma.  
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Chapter 3 describes the plasma pharmacokinetics of meloxicam, as well as its 

metabolites, when administered orally (0.1-0.2 mg/kg), subcutaneously (0.1-0.2 mg/kg) 

and intravenously (0.4 mg/kg) to the koala. 

 
Chapter 4 reports on the hepatic in-vitro Clint of meloxicam in the koala and in other 

species, such as the common brushtail possum (Trichosurus vulpecula) and common 

ringtail possum (Pseudocheirus peregrinus), whose dietary habits are similar to the koala 

(Eucalyptus spp. foliage feeder). The hepatic in-vitro Clint of meloxicam was also 

determined in the rat and dog. Furthermore, in-vitro Clint data were applied to predict in-

vivo clearance of meloxicam, an essential pharmacokinetic parameter for estimating 

drug dosage, for the koala and rat.  

 
As CYP2C is considered as one of the major drug metabolising enzymes and involved in 

the metabolism of some therapeutically important classes of medicines, including 

NSAIDs, species differences in CYP2C-like activities between Eucalyptus spp. foliage 

feeders and rat were investigated in Chapter 5.   

 
Finally, Chapter 6 discusses the overall results of the research project and the utility of 

the in-vitro intrinsic metabolism model to not only determine the hepatic clearance of 

drugs for an individual species but also to predict the in-vivo clearance of some drugs, 

prior to conducting invasive in-vivo pharmacokinetic studies. Additionally, limitations of 

the entire research project are discussed and future directions proposed.   
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1.2.     Literature review 

1.2.1.     Pharmacokinetics     

Pharmacokinetics (PK) is the study of those factors that affect drugs’ disposition or 

movement in the body and provides quantitative information on how these drugs are 

processed according to four general processes: absorption, distribution, metabolism 

and excretion: ADME (Wagner, 1981). Accordingly, as ADME is highly dependent on 

physiological responses, PK is also colloquially referred to as ‘what the body does to a 

drug’ (Tozer, 1981). To characterise the ADME of a drug, it is desirable to measure the 

change in drug concentration in the body, usually graphically represented as a drug 

concentration vs. time, curve (Figure 1.2.1). Any tissue or biological fluid can be 

sampled to detect drug concentration change over time, however plasma (serum or 

blood) is commonly used as a sampling medium for drug analysis due to its accessibility 

(Tozer, 1981). Subsequently, with the assistance of proper mathematical modeling, the 

PK profile of a drug can be estimated from a drug concentration vs. time course curve. 

 
Drug ‘dosage’ is defined as the dose rate, as well as the frequency of  administration to 

deliver a sustained and efficacious drug concentration at the site of action (Thompson, 

1992). In order to formulate an efficacious dosage, both PK and pharmacodynamic 

information is required. Pharmacodynamics (PD) is concerned with drug ‘effect’ or 

‘response’ (Lees et al., 2004a), therefore the integration of both PK and PD data (PK-PD 

modeling) defines the dose-concentration-response relationship of a drug and is used to 

predict an efficacious drug dosage (Meibohm and Derendorf, 1997). To formulate an 

optimal drug dosage, it is ideal to measure the concentrations of a drug at the site of 
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action which may take place intracellularly (Isoldi et al., 2005), on cell membranes  

(Yocum et al., 1980) or extracellularly (Mathisen et al., 1981). However, sample 

collection from some tissue sites can be problematic, therefore plasma (serum or blood) 

is commonly used as a satisfactory surrogate for PK analyses as it generally correlates 

with the activity of the drug at the site of action (Baggot, 1978a).  

 

Figure 1.2.1) Typical plasma (serum or blood) drug concentration vs. time after oral 

(left) and intravenous administration (right); When the y axis is in log scale and the drug 

follows first order kinetics, the terminal section of the curve becomes linear as 

demonstrated by the graph on the right. For some of high clearance drugs, substantial 

amount of drugs can be eliminated during the distribution phase (Image generated by 

author). 

 

The area under the drug concentration vs. time curve (known as area under the curve: 

AUC) is an important PK construct which represents the body’s exposure to the drug as 

well as the change in drug concentration in the sampling compartment over time 

(Baggot, 1978b). If the rate of change of the drug concentration is via a time dependent 

manner (i.e. first order kinetics: where the amount of drug elimination is proportional 
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over time) (Rowland and Tozer, 1995), it is general convention for the y axis to be 

represented as a log scale resulting in the elimination phase becoming linear. While 

many drugs are eliminated according to the first order kinetics, some drugs such as 

phenytoin, salicylic acid and ethanol (e.g. in humans) are eliminated via zero order 

kinetics (i.e. the amount of drug eliminated is constant over time) or mixed (zero and 

first) order kinetics. The trapezoidal rule (either by linear or log linear trapezoidal rule), 

is popularly utilised for calculation of the AUC between time points (first sampling point 

after the drug administered and until last sampling point) (AUC0-t) (Gabrielsson and 

Weiner, 2012). The elimination rate constant (kel) (the slope of the elimination phase of 

the concentration vs. time curve) is used to estimate the AUC between the measured 

drug concentration at the last sampling point (Clast) to infinite (AUCt-∞). 

 
AUCt-∞ = Clast / kel 

 

1.2.1.1.     Absorption 

Absorption is the process whereby a drug enters the circulation from the site of 

administration, either via enteral routes [e.g. oral (per os: PO), sublingual or rectal 

administration] or parental routes [e.g. subcutaneous (SC), intramuscular (IM), 

intravenous (IV) administration or by inhalation]. The extent and the rate of drug 

absorption is generally affected by the physicochemical properties of drugs (e.g. 

lipophilicity and ionic state), dosage formulation and the physiological environment 

around the site of administration, e.g. vascularity of absorption site (except for IV 

administration) (Urso et al., 2002).  
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Bioavailability (F) is defined as the fraction of the drug which enters the systemic 

circulation after the administration; consequently IV administered drugs, but not all (e.g. 

chloramphenicol succinate), have an absolute bioavailability (F = 1) (Urso et al., 2002). 

The bioavailability for drugs administered via other extravascular routes (Fspecific route) 

are expressed as a fraction (0 to 1) of the absolute bioavailability (1) (Urso et al., 2002).  

 
Fspecific route = AUCspecific route / AUCIV …………… (1)  

 

With orally administered drugs, the process of absorption can be complicated as several 

factors may affect its bioavailability. In order to enter the systemic circulation, these 

drugs need to pass through the gut wall, particularly the small intestine which is the 

primary absorption site either via transcellular, paracellular or transporter-mediated 

diffusion, and are then transported to the liver via portal vein (Caldwell et al., 1995). 

During this process, depending on the chemical property of drugs, a substantial portion 

of some drugs are eliminated via first-pass metabolism by hepatic enzymes and / or 

enzymes located along the intestinal wall or by colonised bacteria (Pang, 2003); and 

may also undergo active extrusion into the intestinal lumen by a variety of cellular 

transporters, such as the P-glycoprotein efflux pump proteins (Lin et al., 1999). Other 

factors such as the luminal pH, the presence of digesta which may bind to, or entrap, 

some drugs and intestinal length and its transit time also may potentially limit 

absorption through gastro-intestinal tract (GIT) (Caldwell et al., 1995). A drug 

concentration vs. time course curve provides the opportunity to calculate the absorption 

rate constant (ka) [e.g. by the method of residuals (Perrier and Gibaldi, 1973)]; and 
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permits visualization of estimates of the peak plasma concentration (Cmax) and time to 

reach Cmax (Tmax)  which are useful indices to estimate the extent and the rate of 

absorption (e.g. Cmax / AUC) (Endrenyi et al., 1991). 

 

1.2.1.2.     Distribution 

Once a drug reaches the systemic circulation, depending on its physiochemical 

properties, many drugs, but not all, may either diffuse or are transported into various 

body compartments. Volumes of distribution (Vd) are hypothetical volumes which 

indicate how extensively a drug is distributed in the body, and can be expressed as 

proportionality constants between total amount of drug in the body and plasma 

concentrations; where Vd can be expressed as Vc (Vd of the central compartment), Vss 

(Vd when the drug is at steady state) or Vz [(Vd is determined after the drug is equally 

distributed between tissues and the central compartment (pseudo-distribution 

equilibrium)] (Kwon, 1996, Toutain and Bousquet-Melou, 2004a). Volume of 

distribution can be determined by the following relationship (2): 

  
                                   Total amount of drug in the body at time (t)  
                                   __________________________________________________ 

                Drug plasma concentration at time (t) …………… (2) 

 

Those drugs where the Vd is ~0.04 L/kg [e.g. heparin (Estes, 1980)] are largely confined 

to plasma; those with a Vd ~0.6 L/kg are likely to be fully distributed in all body fluids 

(Table 1.2.1) and those with a Vd > 0.6 L/kg [e.g. amiodarone (Latini et al., 1984)] are 

likely to be distributed into one or more tissue compartments (Toutain and Bousquet-

Melou, 2004a). In general, a drug’s lipophilicity, ionic state and chemical properties (e.g. 
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location of functional group), physiological volumes and perfusion rates for individual 

tissues are the common factors that affect the Vd (Clausen and Bickel, 1993, Lin and Lu, 

1997). Depending on these properties, drugs circulate in the body either ‘unbound’ or 

complexed to plasma proteins (e.g. albumin, lipoproteins, glycoproteins, or β-globulins) 

or bind to and accumulate at tissue membranes (Toutain and Bousquet-Melou, 2004a). 

For example, many of NSAIDs are generally highly protein bound drugs and likely to be 

confined into the body fluids such as plasma, interstitial or extracellular fluids (Vd ~0.2 

L/kg) rather than accumulate at tissue membranes (Verbeeck et al., 1983). 

 
Table 1.2.1) Composition of body fluids in human adapted from Armstrong, 2007.   

          Total body water 0.6 L/kg 

          Intracellular 0.4 L/kg 

          Extracellular 0.2 L/kg 

          Interstitial 0.16 L/kg 

          Plasma 0.04 L/kg 

 

 

1.2.1.3.     Elimination 

Elimination, which includes the processes of metabolism and / or excretion, describes 

the removal of a drug from the body, usually terminating the pharmacological activity of 

the drug (Tozer, 1981). Metabolism, also referred to as biotransformation, converts a 

lipophilic drug into less lipophilic, more water soluble compounds (metabolites). As 

lipophilic drugs, such as NSAIDs (Lees et al., 2004b), are likely to be re-absorbed into 

systemic circulation when reaching the lumen of the kidney tubules, the major function 

of metabolism is to increase the efficiency of renal excretion and/or facilitate biliary 

excretion of the drug (Lin and Lu, 1997). As the AUC of a drug is highly dependent on 



33 
 

elimination processes, clearance (Cl) and elimination half life (t1/2) are particularly 

important in order to estimate the dose rate and the frequency required for repeat 

administration (Toutain and Bousquet-Melou, 2004b, Toutain and Bousquet-Melou, 

2004c). Clearance determined from plasma (serum or blood), which refers to the total Cl, 

represents the overall rate of elimination of a drug; in which the sum of all the excretory 

organs contribute to Cl of that drug in the body (Table 1.2.2) (Toutain et al., 2010).   

 
Table 1.2.2) Organs that contribute to drug elimination and mechanisms (in human) 

adapted from Jang et al., 2001, Toutain et al., 2010. 

  
Hepatic Cl  

 
Renal Cl 

 
Other organs’ Cl 

Organs 
 

Liver 
 

Kidney 
 

Gut and others 
Mechanisms Metabolism 

 
Excretion  

 
Efflux transporters 

  
·Phase 1 reaction 

 
·Active secretion 

 
Metabolism 

  
·Phase 2 reaction 

 
·Glomerular filtration 

  
  

Biliary excretion 
 

Metabolism 
   

Clearance is the proportionality constant between rate of drug removal (amount per 

time) and drug concentration (amount per volume), and is expressed as the volume of 

blood or plasma necessary for eliminating the drug per unit of time (3) (Jang et al., 

2001).  

 
Cl = (Rate of drug removal) / (drug concentration) …………… (3) 

                              

As the amount of drug administered IV,  is equal to the amount of drug eliminated (Jang 

et al., 2001), Cl is determined by (4),   

 
Cl = DoseIV / AUCIV …………… (4)  
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Subsequently, Cl is regarded as one of the most important PK parameters for estimating 

the dose of drugs (5).  

 
Effective dose = [Cl × effective (plasma) drug concentration] / F ………. (5) 

 

Elimination t1/2 is defined as the time required for the drug concentration (generally 

plasma concentration) to decrease by 50% after Vz is achieved. Whereas, mean 

residence time (MRT), the average total time molecules of a given dose spent in the body, 

indicates the overall persistence of a drug (Toutain and Bousquet-Melou, 2004c). 

Elimination t1/2 represents the rate constant at the terminal phase of drug elimination 

which is expressed in time units (Toutain and Bousquet-Melou, 2004c) (Figure 1.2.1). 

Subsequently, it is used for estimating the dosing interval of the drug as it allows 

calculation of drug accumulation and time to reach steady state equilibrium in the 

system (Toutain and Bousquet-Melou, 2004c).  When the drug is eliminated via first 

order kinetics, elimination t1/2 can be calculated by (6) 

 
Elimination t1/2 = 0.693 (natural logarithm of 2) / kel    

or 

(0.693 × Vz) / Cl …………… (6) 

 

1.2.1.4.     Pharmacokinetic analysis  

Compartmental and non-compartmental analyses are two common mathematical 

approaches used for transforming plasma (serum or blood) drug concentration vs. time 

course curve into PK parameters. Compartmental analysis heavily relies on the 
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assumption that a body consists of compartment(s) (single or multiple, such as one 

central, and one or more peripheral compartments) and employs hypothetical models to 

estimate PK parameters (Bonate, 2011). In contrast, non-compartmental analysis uses 

statistical moment theory, a numeric method, which assumes no compartments but 

rather, that the drug is eliminated from a single sampling pool (Yamaoka et al., 1978). 

Accordingly, the major difference of these two approaches is that compartmental 

analysis offers a quantitative description of a drug in non-accessible site(s) to predict or 

simulate drug concentrations (Bonate, 2011). However, because of the complexity, 

compartmental analysis needs a sophisticated PK software package, such as Phoenix 

WinNonlin (Cary, North Carolina, USA), where the validity of the selected 

compartmental model required is based on assumptions on drug movement between 

compartments (Bonate, 2011). Non-compartmental analysis is a relatively  simple 

approach to estimate basic PK parameters (and indices), such as Cl, Vd, (AUC, t1/2, MRT, 

Cmax and Tmax), which describe the general disposition of the drug; however its reliability 

is dependent on the structure of experimental design (e.g. adequate sampling time-

points) and has limited capacity to describe the movement of the drug between body 

compartments (Jaki and Wolfsegger, 2012). 

 

1.3.     Hepatic metabolism   

The liver is the primary site for metabolism of both endogenous and exogenous 

compounds (Williams, 1959). Accordingly, for drugs, such NSAIDs, which undergo  

metabolism in order to be excreted from the body, elimination is generally dependent on 

hepatic Cl (Lees et al., 2004b).  
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In many situations, the metabolism of drugs is mediated via the catalytic activity of 

enzymes, known as drug metabolising enzymes (DME), which are concentrated in the 

liver. These enzymes are also found at other extra hepatic sites such as GIT (Lin et al., 

1999), lung (Zhang et al., 2006) and kidney (Lohr et al., 1998). According to the 

functionality by which they alter the chemical structure of drugs, DME can be further 

classified into two major groups; namely those involved in either phase-1 or phase-2 

reactions (Williams, 1959, Liska, 1998) (Table 1.3.1).  

 
Drug metabolising enzymes responsible for phase-1 reactions introduce or expose 

functional groups (e.g. –COOH, -OH, -NH2 or –SH) on molecules via metabolic reactions 

including oxidation, reduction or hydrolysis (White and Coon, 1980, Nelson and Gordon, 

1983). Phase-2 reactions involve a conjugation, in which hydrophilic conjugates such as 

glucuronide, sulfate, glutathione, acetyl or methyl groups or an amino acid is added to 

the functional groups established by the phase-1 reaction, to facilitate excretion 

(Williams, 1959, Liska, 1998). Phase-1 and/or phase-2 reactions can occur either 

sequentially or separately, depending on the physicochemical properties of the drug. 

Generally, it is assumed that the pharmacological property of a parent drug is reduced or 

diminished once it turned into metabolite(s). But in  some cases, the metabolite(s) has a 

greater pharmacological response, such as ciprofloxacin (a metabolite of enrofloxacin) 

(Rao et al., 2001), or has toxic properties such in case of N-acetyl-p-benzoquinoneimine, 

a metabolite of paracetamol (also known as acetaminophen) (Mitchell et al., 1973, 

Dahlin et al., 1984).  
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Table 1.3.1) Drug metabolising enzymes involved in phase-1 and phase-2 reactions 

adapted from Nebot, 2009.  

Phase-1 reactions Phase-2 reactions 

 Glucuronidation Oxidation 
Cytochromes P450 monooxygenase system UDP-glucuronosyltransterases 
Flavin-containing monooxygenase system Sulfation 
Alcohol (and aldehyde) dehydrogenase  Sulfotransferases 

Monoamine oxidase Glutathione conjugation 

Peroxidase Glutathione-S-transferases 
Reduction Acetylation 
NADPH-cytochromes P450 reductase N-acetyltransferases 
Reduced (ferrous) cytochromes P450 Methylation 
Hydrolysis Methyl Transferase 
Esterases and amidases 
Epoxide hydrolase 

 

1.3.1.     Cytochrome P450  

Cytochrome P450 (CYP) is a super family of haeme-thiolate enzymes, and is the most 

important class of DME for phase-1 reactions. Cytochromes P450 are also known as 

mixed-function oxidases. They are also essential for the biosynthesis of endogenous 

steroids (Miller, 1988), and are important for several homeostatic activities such as 

controlling cholesterol formation and metabolism (Pikuleva, 2006). The name ‘P450’ 

originates from the reduced form of the pigment (haeme portion) of the protein; e.g. 

reduced with dithionite, and subsequent binding to carbon monoxide which results in a 

unique spectrum of ultraviolet absorption at 450 nm (Omura and Sato, 1964a, Omura 

and Sato, 1964b). In the liver, CYPs are distributed within the smooth endoplasmic 

reticulum (SER) of hepatocytes. 
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The major metabolic pathway catalysed by CYP is oxidation, which includes aromatic 

and aliphatic oxidations, epoxidation, N (or S)-dealkylations, N (or S)-oxidations and 

deaminations etc (Leucuta and Vlase, 2006).  

 
As the region of SER is highly non-polar, lipophilic drugs (RH) flow down a 

concentration gradient to CYP, allowing CYP to catalyse monooxygenation of the drug 

[as illustrated by reaction (7)] to form a product of oxidation (ROH) and H2O; whereas 

NAD (nicotinamide adenine dinucleotide) or NADPH (nicotinamide adenine dinucleotide 

phosphate) are the electron donors transported from P450 oxidoreductase (POR) and 

the cytochrome b5 (Coleman, 2010). Thus, the CYP system comprises of three enzymes: 

CYP, POR and cytochrome b5 (Coleman, 2010).  

 
RH + O2 + NAD (P) H + H+  ROH + H2O + NAD (P) + ………. (7)    

 

According to the similarity of amino acid sequences, CYPs are divided into families ( > 40% 

similarity), subfamilies ( > 55% similarity) and eventually into specific isoforms (Zuber 

et al., 2002). In the example of CYP3A4, CYP stands for cytochrome P450; CYP3 indicates 

the genetic family; CYP3A indicates the genetic subfamily; CYP3A4 indicates the gene 

that represents the specific isoform. Until now, 57 CYP isoforms (18 families and 42 

subfamilies) have been characterised in humans (Table 1.3.2) (Guengerich, 2008). 

Within CYP families, CYP1, CYP2 and CYP3 are mostly concentrated in the liver and are 

purportedly responsible for metabolism of approximately 75% of all therapeutic drugs 

known to be eliminated by hepatic metabolism (Guengerich, 2008). Each subfamily and 

its isoforms metabolise specific substrates,  however single or multiple CYP(s) may be 
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involved in the drug metabolism at single or multiple sites of the parent drug (Liska, 

1998).  

 

Table 1.3.2) Classification of human CYP isoforms based on major substrate class 

adapted from Guengerich, 2008.  

Sterols Xenobiotics Fatty acids Eicosanoids Vitamins Unknown 

1B1 1A1 2J2 4F2 2R1 2A7 
7A1 1A2 4A11 4F3 24A1 2S1 
7B1 2A6 4B1 4F8 26A1 2U1 
8B1 2A13 4F12 5A1 26B1 2W1 

11A1 2B6 
 

8A1 26C1 3A43 
11B1 2C8 

  
27B1 4A22 

11B2 2C9 
   

4F11 
17A2 2C18 

   
4F22 

19A1 2C19 
   

4V2 
21A2 2D6 

   
4 × 1 

27A1 2E1 
   

4Z1 

39A1 2F1 
   

20A1 
46A1 3A4 

   
27C1 

51A1 3A5 
    

 
3A7 

     

Cytochrome P4502C is considered an important CYP subfamily for drug metabolism. In 

humans, CYP2Cs are subdivided into four isoforms (CYP2C8, CYP2C9, CYP2C18 and 

CYP2C19) sharing >82% amino-sequence similarities (Miners and Birkett, 1998). It is 

known to be highly polymorphic and is reportedly responsible for the Cl of 

approximately 15% of those drugs that undergo phase-1 reactions (Table 1.3.3) (Rettie 

and Jones, 2005). In humans, CYP2C9 is considered the major metabolic pathway for 

NSAIDs and those drugs that are weak organic acids with a pKa ranging from 3.8 to 8.1 

(Miners and Birkett, 1998). As a result of substrate specificity, tolbutamide, (S)-warfarin, 

diclofenac and flurbiprofen are most commonly used for investigating the in-vitro 
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activity of human CYP2C9, whereas celecoxib, warfarin or phenytoin are recommended 

for in-vivo studies (FDA, 2012).  

 

Table 1.3.3) Examples of common therapeutic drugs metabolised by human 

CYP2C9 adapted from Rettie and Jones, 2005.  

NSAIDs Oral hypoglycaemics Oral anticoagulants 

Flurbiprofen Tolbutamide (S)-Warfarin 

Diclofenac Glyburide (S)-Acenocoumrol 

Naproxen Glipizide 

 Piroxicam Glimepiride 

 Suprofen 

  Ibuprofen 

  Celecoxib 

  Meloxicam 

  

 

Diuretics & Uricosurics 

 

Angiotensin-2 blockers 

 

 

Anticonvulsant 

Torsemide Losartan Phenytoin 

Ticrynafen Irbesartan 

 Sulfinpyrazone-sulfide Candesartan 

  

 

Anti-asthmatic Anti-cancer agent Endogenous compound 

Zafirlukast Cyclophosphamide Arachidonic acid  

  

5-hydroxytryptamine 

  

Linoleic acid 

 

 

1.4.     Species differences with reference to PK process    

There are substantial interspecies differences in regards to the processes that affect 

drug disposition, particularly absorption and metabolism (Lin, 1995), which may be 

attributable to several factors; for example, on a macroscopic level there are anatomical 

and physiological differences in the GIT (e.g. monogastric species vs. ruminants) or 
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dietary differences (e.g. herbivores vs. carnivores vs. omnivores) (Kararli, 1995, Toutain 

et al., 2010). On a molecular level there are differences in the catalytic activity of DME 

between species or even within a species (e.g. individual-specific multiple gene 

polymorphism) (Hucker, 1970, Smith, 1991, Nishimuta et al., 2013).  

 
The ‘half-life’ of gastric emptying time, which influences food or drug absorption rate, 

varies between the species, for example: mice and rats (10 min), rabbits (30 min), and 

dogs (90 min) (Clark and Smith, 1984). Compared to humans, dogs have a faster small 

intestine transit time (e.g. dogs 111 ± 17 min vs. humans 180-300 min) and have a 

higher and more variable intestinal pH which affects the extent of drug absorption 

(Clark and Smith, 1984). While intestinal permeability of drugs is influenced by luminal 

pH, it is suggested that in general, lipophilic drugs have better oral absorption in dogs 

than in other species (Sharma and McNeill, 2009). For example, oral absorption of 

nadolol or atenolol (both β-adrenergic receptor antagonists) in dogs is relatively 

complete (88 to 104%) compared to mice, rats, hamsters, rabbits, monkeys or humans 

(< 30%) (Clark and Smith, 1984).  

 
Species differences regarding dietary preferences and constituents also affect the degree 

of drug absorption. Ruminants such as sheep exhibit low oral bioavailability of 

enrofloxacin compared to non-herbivorous species as a result of  drug binding to dietary 

macromolecules (Lopez-Cadenas et al., 2013). Equine diets,  high in cellulose result in 

binding of several NSAIDs, including phenylbutazone, flunixin, and meclofenamic acid, 

forming non-absorbable complexes (Toutain and Cester, 2004). 
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Several species exhibit deficient phase-2 reactions, for example: some isoforms of 

glucuronide conjugates in cats are lacking than other species (Court and Greenblatt, 

1997), and both dogs and pigs lack acetylation and sulphation pathways, respectively 

(Sharma and McNeill, 2009). 

 

1.4.1.     Species differences on CYP mediated metabolism  

Although, the basic CYP amino acid sequence is generally conserved across species 

(Table 1.4.1) differences of CYP activity in relation to substrate specificity and rate of 

metabolic activity have been demonstrated between species (Smith, 1991, , Lin, 1995, 

Guengerich, 1997, Martignoni et al., 2006). 

 
Table 1.4.1) Major drug metabolising CYP in humans, mice, rats, dogs and monkeys 

adapted from Martignoni et al., 2006.  

CYP CYP Human Mouse Rat Dog Monkey 

Family Subfamily Isoforms Isoforms Isoforms Isoforms Isoforms 

CYP1 CYP1A CYP1A1 & 2 CYP1A1 & 2 CYP1A1 & 2 CYP1A1 & 2 CYP1A1 & 2 

 
CYP1B CYP1B1 CYP1B1 CYP1B1 CYP1B1 CYP1B1 

CYP2 
 

CYP2A 
 

CYP2A6 & 13 
 

CYP2A4, 5, 12 & 
22 

CYP2A1, 2 & 3    
 

CYP2A13 & 
25 

CYP2A23 & 
24 

 

CYP2B 
 

CYP2B6 &7 
 

CYP2B9 & 10 
 

CYP2B1, 2 & 3 
 

CYP2B11 
 

CYP2B17 
 

 

CYP2C 
 
 

CYP2C8,  9, 
18 & 19 
 

CYP2C29, 37,  
38, 39, 40, 50, 
54 & 55 

CYP2C6,7,11,12 
13, 22 & 23 
 

CYP2C21 & 
41 
 

CYP2C20 & 
43 
 

 

CYP2D 
 
 

CYP2D6, 7 & 
8 
 

CYP2D9, 10, 11, 
12, 13, 22, 26, 
34 & 40 

CYP2D1, 2, 3, 4, 
5 & 18 
 

CYP2D15 
 
 

CYP2D17, 19, 
29 & 30 
 

 
CYP2E CYP2E1 CYP2E1 CYP2E1 CYP2E1 CYP2E1 

CYP3 
 

CYP3A 
 

CYP3A4, 5, 7 
& 43 

CYP3A11, 13, 
16, 25, 41 & 44 

CYP3A1, 2, 9, 
18 & 62 

CYP3A12 & 
26 

CYP3A8 
 

 

For example, Guengerich investigated catalytic activities of CYP1A2 between humans 

(using recombinant CYP1A2) and rats (purified from rat liver), in which 75 % of the CYP 
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amino acid sequences were identical, with several CYP1A2 substrates identified 

(Guengerich, 1997). The rate of N-hydroxylation of 2-amino-3, 8-dimethylimidazo [4, 5-f] 

quinoxaline activity in humans was three fold higher but the rate of N-hydroxylation of 

1-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine was similar, whereas 7-

methoxyresorufin O-demethylation activity in rats was five-fold higher than in humans. 

Moreover, Chauret et al., (1997) compared catalytic activity of CYP from hepatic 

microsomes (using human CYP1A1/2, CYP2A6, CYP2C8/9, CYP2C19, CYP2D6, CYP2E1 

and CYP3A4 substrates) between humans, dogs, cats and horses, and inter-species 

differences were demonstrated. Among several drug metabolising CYP subfamilies 

(CYP2A, CYP2B, CYP2C, CYP2D, CYP2E and CYP3A), particularly high differences in the 

catalytic activity of CYP2A, CYP2B and CYP2C subfamilies were demonstrated between 

species (mice, rats, rabbits, monkeys and humans) (Guengerich, 1997). 

 
As the rate and extent of PK processes for many therapeutic drugs can be variable 

between species, this has implications when extrapolating drug dosages from one 

species to another. Therefore it is likely that PK studies (in-vivo and where possible in-

vitro) are required in order to determine dosage modifications for more exotic species, 

especially when the dosage is expected to deliver bioequivalent plasma concentrations.  

 

1.5.     Study of in-vitro hepatic metabolism  

Although, hepatic metabolism is important for the elimination (or Cl) of many drugs, 

performing in-vivo hepatic studies can be practically and ethically problematic in ‘non-

laboratory’ animals especially when the drug is toxic. As an alternative, in-vitro hepatic 



44 
 

models are commonly used. Compared to in-vivo hepatic studies, performing in-vitro 

hepatic studies provide a snapshot of the hepatic intrinsic capacity of drug metabolism 

as well as the possibility of identifying metabolic pathway(s) (e.g. phase-1 and / or 

phase-2 reactions) via individual metabolite identification (Zuber et al., 2002).  

 
Several different hepatic sources are available, including whole cellular systems (such as 

primary hepatocytes, immortalised cell lines, liver slices and liver homogenates) or sub-

cellular systems (such as the supernatant fraction of liver homogenates after 

centrifugation at 9000 g (S9 fraction), microsomes, cytosol and cDNA-expressed 

individual CYP isoform), which can be used for in-vitro hepatic models (Brandon et al., 

2003, Plant, 2004, Pelkonen et al., 2005).  

 
The microsomal fraction is a sub-cellular fraction of hepatic tissue where differential 

centrifugation (centrifugal force of >100,000 g for 60 to 120 min) is commonly used to 

separate the microsomal fraction from the liver homogenate (Venkatakrishnan et al., 

2001). The microsomal fraction consists of fragments of endoplasmic reticular segments 

which contain most of the phase-1 drug metabolising enzymes such as CYPs and flavin-

containing monooxygenases as well as UDP-glucuronyltransferases for phase-2 

reactions (Brandon et al., 2003). One of the advantages of utilising the microsomal 

fraction is that the catalytic activity of CYP can be stable for up to 5 years if stored at - 80 

˚C (Yamazaki et al., 1997). However, as activity of some cofactors, specifically NADP and 

NADPH, diminish during the preparation of microsomal fraction, the addition of these 

cofactors are required to activate the catalytic activity of CYPs (Pelkonen and Turpeinen, 

2007). Consequently, with the assistance of tissue homogenisation, centrifugation and 
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proper analytical techniques, hepatic microsomes, when fortified with proper cofactors 

are a useful in-vitro hepatic model to evaluate stability and metabolic profile of drugs 

associated with phase-1 reactions, including metabolism mediated via CYP 

(Venkatakrishnan et al., 2001). 

 
Metabolic stability is defined as the fraction of a drug that escapes metabolic attack (Li, 

2001). To estimate the stability of a drug, the percentage of the parent drug that 

disappears when challenged with active microsomes (also expressed as turnover rate) 

can be determined by the following equation (8):    

 
Percentage (%) of drug disappearance = [1 - (C0 / Cx)] × 100 ………. (8) 

where C0 is the initial drug concentration and Cx is the remaining drug concentration 

after the experimentation.  

 

In-vitro intrinsic clearance describes the rate of metabolism based on the catalytic 

activity of enzymes (e.g. CYP), which in case of microsomes, is expressed as µL/min/mg 

microsomal protein (Houston, 1994). Broadly, the in-vitro Clint is measured from either 

the initial rate of metabolite (product) formation or the initial depletion rate of the drug 

(substrate) (Figure 1.5.1) (Iwatsubo et al., 1997, Obach, 1999).  
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Figure 1.5.1) Determination of in-vitro Clint by product formation (left) or substrate 

depletion (right). (Image generated by the author).  

 

Product formation follows traditional enzyme kinetics, in which its activity is commonly, 

but not always (Atkins, 2005), explained by Michaelis-Menten kinetics (9) (Michaelis et 

al., 2011) or alternatively, transformed into linear plots, such as Lineweaver-Burk plot, 

Hoftstee plot or Edie plot (Dowd and Riggs, 1965). 

 
Rate of metabolism = Vmax × CE / (Km + CE) ……………. (9) 

where Vmax is maximum velocity or maximal enzyme saturation, Km (Michaelis constant), 

is the substrate concentration required for half of Vmax, and CE is concentration of drug at 

the site of enzymatic reaction.  

 

Generally, as the rate of metabolism is assumed to follow first order kinetics, if CE is less 

than Km value, then the in-vitro Clint can be estimated simply by Vmax / Km (Houston, 

1994). One of the advantages is it provides in-vitro Clint as well as the characteristics of 

enzymatic reaction (Houston, 1994). For example, as the metabolism of a drug catalysed 
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by enzymes, thus the rate (or velocity) of a product formation progressively increases 

until all enzymes are saturated by a drug, the Vmax provides an indirect snapshot of 

amount of enzyme present; as well, Km represents the affinity of the drug-enzyme 

saturation (Houston and Carlile, 1997). However, one of the problems with this 

approach is the requirement for an authentic standard of the metabolite, which may not 

be available in many situations. 

 
To minimise the problem of a lack of a metabolite standard, the substrate depletion 

method uses the initial linear rate of drug disappearance, which assumes first-order 

kinetics, to estimate in-vitro Clint (Obach et al., 1997, Obach, 1999). Thus, it is important 

to ensure that the substrate concentration is less than the Km value, and 1 µM is often 

used as the arbitrary concentration (Obach, 1999). Although, it does not provide 

information about the metabolites per se, the substrate depletion is simple and 

metabolite standards are not required.  

 

1.6.     Prediction of in-vivo Cl  

Two different approaches, namely allometric scaling (Riviere et al., 1997, Tang and 

Mayersohn, 2006) or utilising species specific in-vitro Clint (Gillette, 1971, Obach, 1999) 

are commonly employed for predicting a drug’s in-vivo Cl, in which an average fold error 

of two or less, is regarded as a good estimation of in-vivo Cl (Ito and Houston, 2005). 
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1.6.1.     Allometric scaling 

Allometric scaling employs an empirical formula established from a power-law 

relationship between Cl and bodyweights (10) of selected species to predict Cl in the 

target species based on the assumption that the physiological process (Y) and body 

weight (W) have a proportional relationship across species (Mahmood, 2007).  

 
Y (Cl) = a Wb…………… (10) 

where a is the allometric coefficient and b is the allometric exponent of body weight (W).   

 

Allometric scaling is the most widely used application to predict physiological processes, 

as it is simple to calculate and successful allometric relationships occur between body 

weight (or size) and other physiological processes such as basal metabolic rates 

(Sharma and McNeill, 2009), heart rates, liver weight and hepatic blood flow 

(Boxenbaum, 1980). Several studies have applied simple allometric scaling to predict 

drug Cl (Riviere et al., 1997, Tang and Mayersohn, 2006) or have used a modified 

version which includes the Dedrick plot (Dedrick et al., 1970), a two term power 

function incorporating body weight and brain function (Boxenbaum and Fertig, 1984), 

with corrections according to maximum life span or brain weight (Mahmood and Balian, 

1996). Tang et al., (2006) evaluated simple allometric scaling to predict in-vivo Cl of 138 

drugs and demonstrated that allometric scaling was more predictable for those drugs 

eliminated by the kidneys or via the bile rather than for those that undergo metabolism. 

On the other hand, Riviere et al., (1997) demonstrated that lower hepatic Cl drugs with 

high protein binding were not likely to have an allometric relationship with body size or 

t1/2. Moreover, Hunter et al., (2008) compared the accuracy of predicting drug Cl 
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(enrofloxacin, salicylic acid, meloxicam, flunixin and gentamicin) in avians using simple 

allometric scaling established from both mammalian data and avian data. Consequently, 

the study concluded that mammalian data was not applicable for predicting Cl in avians, 

which is probably due to inherent species differences in hepatic metabolism, but 

prediction of Cl improved when avian data was used. Therefore when extrapolating 

dosages between species the selection of appropriate species, which have similar 

anatomical, physiological, or biochemical properties to the target species, is an 

important determinant for successful allometric scaling.  

 

1.6.2.     In-vitro to in-vivo extrapolation (IVIVE)  

In order to ameliorate concerns regarding inherent inter-species differences of hepatic 

Clint having potential bias when using allometric scaling, a method that uses species 

specific hepatic in-vitro Clint to predict in-vivo (or hepatic) Cl, known as IVIVE, has been 

proposed as an alternative approach, particularly for drugs that extensively rely on the 

hepatic metabolism (Rane et al., 1977, Houston, 1994, Obach et al., 1997, Iwatsubo et al., 

1997). In order to use in-vitro Clint, particularly utilising hepatic microsomes, to predict 

in-vivo Cl, several assumptions are required: 1) the liver is primary Cl organ; 2) the 

metabolism by phase-1 reactions greatly exceeds ( >> ) other metabolism pathways; 3) 

metabolic Cl is greater than other Cl routes (e.g. renal and/or biliary Cl) and 4) 

microsomal metabolism activity >> other metabolism pathway activity (Obach et al., 

1997). 
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In-vitro to in-vivo extrapolation is predicated on the fact that the major factors that 

govern in-vivo Cl are hepatic Clint, hepatic blood flow (QH) and the unbound fraction (fu) 

of drugs, and assumes that the drug delivered to the liver is perfusion-rate limited and 

only fu of drugs are extractable by the liver for metabolic events (Gillette, 1971, Rowland 

et al., 1973). Thus, with proper mathematical formulae (liver model) that link these 

factors, it was hypothesised that in-vivo hepatic Cl could be estimated from in-vitro Clint 

under apparent first-order kinetic conditions (Rane et al., 1977). Consequently, in-vitro 

Clint, which is based on either hepatic microsomes or hepatic sources, is required to be 

scaled up to represent whole liver Clint (in-vitro Clintʹ) [mg microsomal protein / liver 

weight (g) per body weight (kg)].   

 
According to several published works, liver models, such as venous equilibrium (well-

stirred), undistributed sinusoidal (parallel), distributed sinusoidal and dispersion 

models, were proposed to explain the anatomical arrangement of hepatic circulation (or 

QH) in relation to the delivery of fu of drug to the site of metabolic activity in the liver 

(Gillette, 1971, Rowland et al., 1973, Pang and Rowland, 1977, Wilkinson, 1987). The 

‘well-stirred’ model’ (11), the simplest liver model, assumes that concentrations of the fu 

of drug in the liver and plasma are identical and distributed into the liver instantly and 

homogenously (Rowland et al., 1973, Pang and Rowland, 1977).  

 
Hepatic Cl = QH [(fu × Clintʹ) / (QH + fu × Clintʹ)] ….. (11) 

 
Rane et al., (1977), using the well-stirred model, first demonstrated the correlation 

between the in-vivo hepatic ratio (hepatic Cl / QH), of several drugs with the in-vitro Clint 
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(calculated from Vmax / Km) sourced from the S9 fraction. Since then, numerous studies 

have evaluated the in-vivo prediction of (hepatic) Cl of drugs utilising in-vitro Clint data. 

Ito et al., (2004) compared different liver models (well-stirred, parallel tube, and 

dispersion) to predict hepatic Cl from in-vitro Clint data (from hepatocytes and 

microsomes), demonstrating that the predicted results were comparable, between these 

models. Further studies indicated that for low Cl drugs (< 5mL/min/standard rat weight 

of 250 g) in particular, results from different liver models were similar (Houston and 

Carlile, 1997). For simplicity, the well-stirred model is frequently used for the prediction 

of the in-vivo (hepatic) Cl of drugs from in-vitro data (Ito and Houston, 2004). However, 

for some high Cl drugs, marked differences were demonstrated (Ito et al., 1998). 

 
Baarnhielm et al., (1986) investigated the prediction of hepatic extraction ratio from in-

vitro Clint data of felodipine, a lipophilic drug that has high hepatic extraction ratio and is 

highly protein bound, using hepatic microsomes of rat, dog, and man in the well-stirred 

model. In this study, a more accurate in-vivo prediction was demonstrated with in-vitro 

Clint (Vmax / Km) when corrected by the non-specific binding to microsomes; that is the 

unbound drug concentration in the incubation medium (fu(mic)) (12).  

 
In-vitro Clint = Vmax / (Km / fu(mic))......... (12) 

 

Furthermore, Obach (1997) investigated the effect of the non-specific binding of 

warfarin, imipramine, and propranolol during microsomal incubation in relation to 

IVIVE. Although disregarding all the binding (e.g. fu and fu(mic)) provided a better 

correlation with in-vivo Cl of imipramine, and propranolol,  this  study suggested that 
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generally  correcting for  the free fraction during the process of in-vitro microsomal 

incubation  was required for  the calculations (Obach, 1997).   

 
Several studies have evaluated the use of microsomal in-vitro Clint data, using the 

substrate depletion method, to predict the in-vivo (hepatic) Cl of drugs (Obach, 1996, 

Jones and Houston, 2004). Jones and Houston (2004) investigated in-vivo prediction of 

eight benzodiazepines in rat hepatic microsomes to evaluate the effect of microsomal 

incubation time and microsomal concentration for depletion method. This study 

suggested that short microsomal incubation times (< 30 min) and the use of low 

microsomal concentration (< 0.5 mg/mL) provided more accurate in-vivo predictions.  

 

1.7.     Determination of drug concentration in the biological  

             matrix  

One of the important components of PK studies is the requirement for a robust 

analytical method to extract the drug from the biological matrix (such as plasma, serum, 

blood or tissues) and to quantify the drug concentration, and if possible to identify 

and/or quantify the presence of metabolites. This involves selection of an appropriate 

analytical technique and development of the assay method or ‘conditions’, including 

optimizing sample preparation in order to achieve optimal selectivity (or specificity) of 

drug detection and to yield maximal extraction for quantification. Assay validation is 

required to accurately and reliably quantify unknown drug concentrations in the 

biological matrix and should be performed prior to analysing the samples with unknown 

drug concentrations (González and Herrador, 2007).  
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1.7.1.   High performance liquid chromatography  

Immuno-assay and chromatography are the most commonly used analytical techniques 

for quantification of drug concentrations in a biological matrix.  Immuno-assay, which 

uses an antibody specific for the target drug, is a simple, relatively inexpensive and time 

efficient technique. But, when a PK application is required, immuno-assay may lack  

sufficient sensitivity to differentiate the parent drug from its metabolite(s) or from 

similar homologue(s) within the biological matrix (Hirtz, 1986).  

 
High performance liquid chromatography (HPLC), a form of separation technique, 

employs the relatively contrasting bonding affinities of two phases, one known as the 

mobile phase (liquid) and the other is the stationary phase (or column), to separate a 

mixture of compounds. In contrast to gas chromatography, HPLC offers higher 

selectivity and sensitivity to analyse thermally liable and non-volatile compounds (Liang 

et al., 2004). Consequently, HPLC is widely used for drug quantification and is commonly 

used for PK studies (Bressolle et al., 1996). Separation of mixtures of compounds by 

HPLC involves the process of mass transfer involving one or more of the following 

interactions to occur: adsorption, partition, ion exchange, or size exclusion etc (Kupiec, 

2004). According to the major mode of interaction used for the separation, liquid 

chromatography (LC) is further classified into normal, reversed, ion exchange, or gel 

permeation (size exclusion) chromatography (Figure 1.7.1) (Dong, 2006).  
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Figure 1.7.1) Schematic diagram of HPLC; as a mixture of compounds passes through 

the column, separation occurs due to the intermolecular force created according to the 

specific mode of interaction. (Image generated by author).   

 

Due to its versatility to separate a wide range of drugs, reversed phase HPLC (RP-HPLC), 

is most frequently used for PK studies (Shervington et al., 2005, Patel et al., 2013). 

Reversed phase HPLC employs a column packed with silica, bonded with either a non 

polar alkyl chain [e.g. octyldecyl (C18), octyl (C8) and butyl (C4)] or further attached 

with a polar group (e.g. phenyl, amide and –NHs) which provides a lipophilic surface; 

and utilises relatively hydrophilic solvents, such as a mixture of aqueous solution (water 

or buffer) and methanol (MeOH), acetonitrile (MeCN), or tetrahydrofuran as the mobile 

phase. Subsequently, separation is achieved by creating a hydrophobic bonding force 

and permitting drug retention and slow release from the column depending on the 

hydrophobic strength of a mobile phase (Bocian and Buszewski, 2012). Thus, retention 

time is an important marker for identifying a drug. While residual silanols inside the 

surface of column may create unwanted peak tailing of a drug e.g. interaction with 
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hydroxyl groups of a drug (Bocian and Buszewski, 2012), often acids (e.g. 

trifluoroacetic-, glacial acetic-, formic, or phosphoric acid) can protonate the silanols 

group (Kim et al., 2002) and are included in the mobile phase (~0.1-0.2 %) as a modifier 

to enhance the chromatogram peak resolution.  

 
Once a drug is separated in the column from its matrix, it then travels through the 

detector. Several detectors are currently used for HPLC detection such as ultraviolet-

visible (UV-vis), photo diode array (PDA), fluorescence, electrical conductivity, refractive 

detector, or mass spectrometer (MS). While many compounds and drugs, that consist of 

aromatic groups or > C = S; > C = O; and – N = N – groups, have considerable UV 

absorption ranges and as it is cost effective, HPLC coupled with a UV detector is 

generally used for PK studies. The PDA detector is an advanced form of UV-vis detector. 

While UV-vis, either a fixed or variable wavelength type, is only adjustable to a single 

wavelength of interest, a PDA detector registers multiple wavelengths at once. Within 

the PDA detector, a multiple spectrum of light is passed through the sample in which the 

light is further separated into multiple wavelengths and directed to each diode which 

detects the different wavelengths simultaneously (Choi, 2011). Consequently, one of the 

advantages of PDA is that it can detect the complete spectrum of the drug thus allowing 

accurate identification by comparing an unknown compound with a known standard. 

While the PDA detects the UV-spectrum of a compound, mass spectrometry (MS) allows 

further measurement of its molecular mass, as the  process of MS charges the compound 

either positively or negatively, via electrospray, ion spray, or thermospray, and 

measures the mass-to-charge ratio (m/z) of the compound (Ermer and Vogel, 2000). As 
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LC-MS (or liquid chromatography-tandem mass spectrometer: LC-MS/MS) can identify 

general characteristics of some chemical structures, it is commonly applied to elucidate 

structure of a drug and/or its metabolites (Chen et al., 2007a).  

 

1.7.2.     Sample preparation  

Due to the complexity of biological matrix, sample preparation is usually a necessary 

step prior to the HPLC analysis in order to separate the drug from other interfering 

elements within the matrix. Generally, one of three sample preparation techniques may 

be used: liquid-liquid extraction (LLE), protein precipitating extraction (PPE) and solid 

phase extraction (SPE).  

 
Liquid-liquid extraction uses non-polar organic solvents, such as ethyl acetate, 

chloroform or hexane, that are immiscible to biological fluids, to partition the drug of 

interest into one of two layers. Lipophilic drugs are generally concentrated in the 

organic layer or vice-versa for hydrophilic drugs (Li et al., 2006). This widely used 

traditional technique, despite its simplicity and reasonable selectivity, often requires 

sequential extractions (also referred as back extraction) using different solvents which 

are laborious and usually yielding low recovery and reproducibility (Li et al., 2006). 

Liquid-liquid extraction can be inefficient to extract low amounts of hydrophilic drugs or 

when the volume of the sample is small (Li et al., 2006). 

 
Protein precipitating extraction (PPE) is the simplest technique which uses organic 

solvents, salts (e.g. ammonium sulphate), acids or metal ions to disrupt protein-drug 

binding and remove the soluble proteins by converting them into insoluble compounds 
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using different mode of interactions (Polson et al., 2003). For PK studies, organic 

solvents [such as methanol (MeOH) and acetonitrile (MeCN)] can efficiently facilitate 

electrostatic protein interaction by reducing the dielectric constant of the plasma 

(Polson et al., 2003) For example: about 98% of proteins are precipitated when one 

volume of plasma is mixed with two volumes of MeCN (Souverain et al., 2004). This 

process is accomplished by high speed centrifugation to precipitate insoluble proteins 

so that the supernatant, further concentrated after drying, can be analysed via HPLC. 

However, the major drawback of this technique is the inability to remove other 

endogenous insoluble components in the biological matrix, thus increasing the risk of 

increasing pressure in the HPLC system or damaging the column (Polson et al., 2003). 

Consequently, in the case of mass spectrometry, detection sensitivity may decrease due 

to ion suppression as the result of presence of phospholipids (Bylda et al., 2014). 

  
Solid phase extraction uses the concept of liquid chromatography to separate the drug 

from the biological matrix. Intermolecular forces are created between the sorbent, 

different solvents, and the sample; which initially ‘retains’ and then ‘elutes’  the analyte 

from the biological matrix (Li et al., 2006). Accordingly, different modes of separations 

are used in SPE sorbents which include reversed phase (e.g. C18, C8 and C4 etc), normal 

phase (e.g. CN, Si, or NH2 etc), anion-exchange, cation-exchange or mixed mode (Li et al., 

2006).      

 
‘Hydrophilic-lipophilic balanced’ (HLB) is a sorbent which consists of a copolymer of m-

divinylbenzene and N-vinylpyrrolidone. As in general, it has several advantages over the 

traditional reversed phase sorbent, which include 1) the ability to extract a wide 
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spectrum of both polar and non-polar analytes whereas C18 sorbent may require 

further modification of sample preparation, 2) ease of use (e.g. sorbent drying steps are 

not required as co-polymeric resins which was first introduced by Waters Oasis HLB are 

wettable in aqueous solution), 3) good reproducibility (< 5.5 % Relative Standard 

Deviation: RDS) and 4) reported excellent extraction recovery rates for many drugs (> 

85 %) (Li et al., 2006). Subsequently, Baranowska and Kowalski (2011) demonstrated 

that recovery of Oasis HLB was higher than others (NEXUS and Bond Elut ENV from 

Varian (Palo Alto, CA) for detecting 15 drugs (including NSAIDs, corticosteroids, beta-

blockers and anticonvulsant classes of drugs). 

 

1.7.3.     Validation of analytical method 

The term validation is to demonstrate that “the analytical procedure is suitable for its 

intended purpose” [ICH guideline, 2005 (Page 6)].  Thus, it is required to prove that the 

analytical method is accurate, reliable and suitable to analyse the samples containing 

unknown drug/analyte concentrations (Bressolle et al., 1996). Generally, validating the 

analytical method for quantification requires evaluation of following parameters which 

are sensitivity [e.g. lower limit of quantification (LLOQ)], specificity (or selectivity), 

precision, accuracy, recovery, and linearity of calibration range (ICH, 2005).  

 
Sensitivity of the analytical method can be expressed as the lowest limit of quantification 

(LLOQ) and upper limit of quantification which are the lower and upper limit of 

calibration ranges (Causon, 1997). Thus, any value that falls outside of the assay range 

cannot be quantified reliably.      
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Specificity and selectivity are often used interchangeably. Specificity (or selectivity) 

describes how the analyte of interest is separated and distinguished from other 

endogenous compounds, including its metabolite(s), from the established analytical 

condition via analysing ‘blank’  plasma (that is, plasma which does not contain the drug 

of interest). More specifically, assay specificity demonstrates the absence of endogenous 

interference when detecting the analyte of interest; however if minimal interference is 

present ‘selectivity’ is the term used (Rambla-Alegre et al., 2012). The LLOQ is often 

used to define the degree of  specificity (or selectivity) (Causon, 1997). Accordingly, it is 

suggested that less than 20% of bias (as defined below) for the LLOQ is recommended 

(ICH, 2005).   

 
Precision and accuracy indicate errors which may occur during repeated sample 

preparation (random error) and between true and measured values (systemic error), 

respectively (Causon, 1997). More specifically, precision refers to closeness of 

agreement between the repeated samples values (expressed as % of coefficient of 

variation, CV) (13) whereas accuracy (expressed as % of bias) (14) refers to the 

closeness of agreement between the true and measured values (ICH, 2005). Accordingly, 

less than 15% of both CV and bias, except for LLOQ or upper limit quantification (20%), 

are recommended with at least nine determinants [three concentrations (low, middle, 

and high) each determined with no less than three replicates] to satisfy the criteria (ICH, 

2005). 

    
CV (%) = (standard deviation, SD / mean) × 100 ………. (13) 

Bias (%) = [(Measured value – true value) / true value] × 100 ….. (14) 
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 Recovery (expressed as %) defines the efficiency of extraction or sample pre-treatment 

procedure as a fraction of the analyte lost during this procedure. Often absolute 

recovery is used for representing recovery, in which is the amount of analyte remaining 

in a pre-spiked blank sample after extraction (‘extracted’) is compared to the same 

initial concentration in a pure standard that has not undergone extraction (‘non-

extracted’) (15) 

 
% absolute recovery = extracted / non-extracted × 100 ………. (15) 

 

1.8.     The koala  

The koala, the last remaining species of the family Phascolarctidae, is an iconic 

Australian marsupial. Although pockets of wild koala populations are distributed along 

eastern Australia, these populations are fragmented or isolated in woodlands and 

forests in some areas of the states of Queensland (QLD), New South Wales (NSW), 

Victoria (VIC) and South Australia (SA) (Vogelnest et al., 2008). The koala not only has 

cultural significance to the indigenous Australian population but also has great natural 

significance to all Australians. As a domestic and international tourist attraction, the 

economic value of koalas to the Australian economy is significant and was estimated at 

1.1 billion Australian dollars in 1997 (Hundloe, 1997).  

 
The requirement to protect and conserve the koala is escalating; as the number of wild 

koalas in QLD, the Australian Capital Territory (ACT) and NSW has significantly declined 

over recent decades (Department of the Environment, Water, Heritage & the Arts, 2009). 

Currently, in these states, the status of the koala has been formally recognized as either 
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‘vulnerable’ or ‘endangered’ [the latter classification specifically used for two 

populations in NSW (Department of the Environment, Water, Heritage & the Arts, 

2009)]. The key threats to wild koala populations include habitat loss, climate change, 

infectious disease (such as the bacterial disease chlamydiosis, fungal disease 

cryptococcosis and koala retrovirus) and traumatic injuries due to vehicle strikes, 

predation by feral and domestic dogs and burns from bushfires (Griffith, 2010). A recent 

historic cohort study (Griffith, 2010), reported that the most common reasons for 

admission of wild koalas to Koala Preservation Society’s koala hospital, Port Macquarie, 

NSW, during 1975 to 2004, were traumatic incidents (~40% of admissions) followed by 

localised and/or systemic chlamydiosis (~27.3%).  

 
Wildlife rehabilitation plays an important role in caring for, and treating sick and injured 

wild koalas to ultimately release them back to their original habitat. Subsequently, 

medicines, particularly antibiotics, anti-inflammatories and analgesics, are often 

administered to convalescing koalas. However, although proper dosages are necessary 

to attain therapeutic plasma drug concentrations, only a few scientific reports on the 

pharmacokinetics of medicines / therapeutic drugs in koalas are available, and these are 

limited to antibacterial and antifungal drugs, such as enrofloxacin (Griffith et al., 2010, 

Black et al., 2013a), chloramphenicol (Govendir et al., 2012, Black et al., 2013b), and 

fluconazole (Black et al., 2014). Prior to these studies the suggested dosages of 

therapeutic drugs used in koalas were either extrapolated from other species, such as 

dogs and humans (Blanshard & Bodley, 2008), or based on anecdotal reports.  
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The koala, an arboreal folivore, relies almost exclusively on certain Eucalyptus spp. 

foliage as the nutrient source for its survival and accordingly, is classed as a Eucalyptus 

spp. specialist feeder (E. specialist feeder) (Stupans et al., 2001). Similar E. specialist 

feeders are the greater glider (Petauroides volans) and the common ringtail possum 

(Pseudocheirus peregrinus) whereas the common brushtail possum (Trichosurus 

vulpecula) is classified as E. generalist feeder (McLean and Foley, 1997).  

 
Eucalyptus spp. foliage contains low nutrient concentrations but high concentrations of 

cellulose fibers and phyto-chemicals known as ‘plant secondary metabolites’ (PSM), 

such as phenols, phloroglucinols, tannins and particularly monoterpenes (the 

predominant constituent of Eucalyptus oil), which have a potential to disrupt digestion 

or cause toxicity in many other species (Stupans et al., 2001). Koalas are known to have 

some specialised GIT and detoxification systems to deal with the low levels of nutrients 

and the high PMS concentrations in Eucalyptus spp. foliage (Cork et al., 1983, Osawa et 

al., 1993, McLean and Foley, 1997).  

 
Similar to other herbivores, koalas use fermentation to support digestion of cellulose 

fibers; however, unlike foregut fermenters (e.g. ruminants or kangaroos), koalas have a 

fermentation chamber located in the caecum (a hindgut fermenter) like possums, 

rabbits and horses (Hume, 1984). Koalas are known to have the largest caecum (200 cm) 

relative to the body length amongst all hindgut fermenters. Osawa et al., (1993) 

observed tannin-complex degrading enterobacteria (T-CDE) strategically colonised in 

the wall of caecum to breakdown tannin-protein complexes to increase digestibility and 

avoid potential toxic effects. While the role of fermentation is essential for energy 



63 
 

production in most herbivores, it is reported that koalas absorb most of their nutrients 

(up to 80 %) via the small intestine, however ingesta transit time in the small intestine is 

relatively short (0.1 h for particulate phase and 1 h for solute phase selectively) (Cork et 

al., 1983).  It has been speculated that substantial nutrients for koalas are derived from 

non-structural carbohydrate and lipid present in the Eucalyptus spp. foliage (Cork et al., 

1983).  

 
Ingestion of ‘Eucalyptus oil’, a mixture of dietary monoterpenes such as 1, 8-cineole 

(>70 % of Eucalyptus oil) and p-cymene, is reported to be fatal in other species if 

consumed in large amounts (Stupans et al., 2001). While, the daily intake of Eucalyptus 

spp. foliage by koalas is estimated at about 10 kg, 10% of the dry matter is composed of 

Eucalyptus oil (Pass et al., 2001, Pass et al., 2002) and that amount of oil would be lethal 

to many other species (Stupans et al., 2001). 

 

1.8.1.     Hepatic metabolism in koalas 

As koalas are exposed to relatively high concentrations of dietary monoterpenes 

resulting from their Eucalyptus spp. foliage diet; their physiological elimination 

processes have received considerable attention. Several in-vivo studies have noted that 

koalas (Eberhard et al., 1975, Southwell, 1975) along with other E. feeders such as 

ringtail possums (McLean et al., 1993) and brushtail possums (Southwell et al., 1980) 

predominately excrete oxidised forms of monoterpenes. Foley et al., (1987) and McLean 

et al., (1993) observed that greater gliders and brushtail possums completely absorb 

monoterpenes (Eucalyptus oils) in the small intestine, avoiding hindgut fermentation, 
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suggesting that the primary site for oxidation of terpenes in marsupials is mostly within 

the liver and less likely by gut microbial activity which was initially suspected as the site 

of metabolism for herbivores (Freeland and Janzen, 1974).  

 
Southwell et al., (1980) observed novel oxidised metabolites in the excreta of koalas 

compared to that of brushtail possums, and tried to correlate the greater capability of 

oxidative metabolism to increased consumption of dietary terpenes. McLean et al., 

(1993) observed diverse oxidised metabolites of terpenes but a lack of glucuronidation 

in ringtail possums compared to brushtail possums. Further, Boyle et al., (1999) 

observed minor and non significant glucuronidation, but multiple hydroxylated terpenes 

(p-cymene) excreted by the E. specialist feeders (ringtail possums and greater gliders) in 

contrast to that of E. generalist feeder (brushtail possum) or rats. In subsequent work, 

Boyle reported that koalas also exclusively excrete diverse oxidised terpenes (p-cymene 

and 1, 8-cineole) and minimal terpenes conjugated with glucuronic acid (Boyle et al., 

2000, Boyle et al., 2001).  

 
Pass investigated rates of in-vitro Clint of terpenes P-cymene and 1, 8-cineole on hepatic 

microsomes of koalas, brushtail possums and rats (Pass et al., 2001, Pass et al., 2002). In 

these studies, higher rates of in-vitro Clint of P-cymene and 1, 8-cineole were exhibited in 

both E. feeders compared to that of rats at least two fold and seven fold higher, 

respectively. As well, it was demonstrated that in-vitro Clint of both terpenes by hepatic 

microsomes increased when high concentrations of monoterpenes were fed to brushtail 

possums (Pass et al., 2001, Pass et al., 2002).  
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A previous study has shown that in E. feeders, monoterpenes undergo faster hepatic 

metabolism compared to rats and humans, and the tendency to utilise phase 1 reactions 

is greater in E. specialist feeders such as koalas and ringtail possums than in the E. 

generalist feeder (brushtail possums), but there is less conjugation (glucuronidation) in 

the monoterpenes metabolism pathway by E. specialist feeders (McLean and Foley, 

1997). On the other hand, it was observed that approximately 60 % of urinary 

glucuronic acid was conjugated with phenolics of Eucalyptus spp., and therefore 

postulated that glucuronidation has a greater role in the metabolism of phenolics 

(McLean et al., 2003). 

 
Several in-vitro studies have investigated phase-1 reactions particularly mediated via 

hepatic CYP in koalas. Stupans et al., (1999) first investigated catalytic activities of CYPs, 

using hepatic microsomes, in koalas and compared to that of tammar wallabies 

(Macropus eugenii), a grazing herbivore marsupial, and rats. The study reported that 

between these species, the rates of aminopyrine demethylation (a general indicator for 

CYP1A, CYP2A, CYP2B, CYP2D and CYP3A activities) and aniline hydroxylation 

(indicator of CYP2E1 activity) were comparable; whereas relatively low 

androstenedione 6β- and 16α hydroxylation activities were demonstrated in koalas 

(Stupans et al., 1999). Although androstenedione 6β- and 16α hydroxylation activities 

are indicators for CYP2C11, a specific isoform of rats, Liapis et al., (2000) observed 

significantly high tolbutamide hydroxylation (an indicator for CYP2C activity) in hepatic 

microsomes of koalas compared to that of brushtail possums, rats and humans. 

Furthermore, it was demonstrated that terpene (1, 8-cineole) induced hydroxylation of 
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tolbutamide, approximately at a magnitude of two fold, in brushtail possums fed high 

concentrations of terpenes (higher Vmax in terpene treated group) compared to possums 

fed a non-terpene enriched diet (Liapis et al., 2000). Subsequently, specific isoforms of 

CYP2C were identified in koalas (CYP2C47 and CYP2C48) (Jones et al., 2008). The 

activity of erythromycin N-demethylation (an indicator for human CYP3A4) was 

investigated in hepatic microsomes of koalas, tammar wallabies and wombats (El-

Merhibi, 2005). The study demonstrated that overall erythromycin N-demethylation 

activity in koalas was two times greater in the female than male, and was notably higher 

than in the other species. Furthermore, no gender difference was observed in either the 

tammar wallaby or wombat (El-Merhibi, 2005). Ngo et al., (2000) reported that 

hydroxylation of lauric acid (an indicator for human CYP4A11 or CYP2E1) in hepatic 

microsomes of koalas was approximately three to four fold higher than that of rats or 

wallabies. Subsequently, Ngo et al., (2006) identified and described the CYP isoform 

(CYP4A15) responsible for hydroxylation of lauric acid in koalas. Thus, these studies 

have identified that species differences concerning catalytic activities of CYP exist 

between koalas and other species, particularly higher CYP2C and CYP4A activities.   

 

1.8.2.     Pharmacokinetic studies in koalas  

Griffith et al., (2010), conducted the first study on the PK of any therapeutic drug in 

koalas, and reported relatively poor oral absorption of enrofloxacin (20 mg/kg) 

compared to when administered by SC injection 10 mg/kg SC, to koalas infected with 

chlamydiosis. Accordingly, a short small intestine transit time, first-pass metabolism, 

xenobiotics pumped back into the intestine lumen by efflux proteins (such as p-
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glycoprotein) and drug entrapment or binding to the gut ingesta (and/or with oral 

supplementation co-administered with the drug) were postulated as possible factors to 

account for the lower oral bioavailability of enrofloxacin in the koala (Griffith et al., 

2010). Subsequently, Black et al., (2013) investigated disposition of enrofloxacin after IV 

dosing (10 mg/kg) to clinically normal koalas (Vz: 2.77 L; Cl: 2.58 L/h). The estimated SC 

bioavailability in koalas (41 %) was significantly lower than that of other eutherian 

species such as rabbits (77 %) (Broome et al., 1991). The additional observation of 

extremely low peak plasma concentrations of ciprofloxacin, an active metabolite of 

enrofloxacin in koalas suggested that either the metabolic pathway of enrofloxacin is 

different to that of many other species, or rapid elimination of ciprofloxacin, known to 

be metabolised via CYP1A2 in humans , occurs in koalas (Black et al., 2013).             

 
Govendir et al., (2012) investigated the PK of chloramphenicol base (active form) in 

koalas infected with chlamydiosis [(60 mg/kg, SC once a day (s.i.d: semel in die)]. One 

important speculation arising from this study was that the elimination phase  of 

chloramphenicol, known to conjugate with glucuronic acid for its metabolism in other 

species (Chen et al., 2007b), was longer in the koala than other species which may have 

been attributed to one or more following factors: the formulation itself, route of 

administration, or the disease state of the animals (Govendir et al., 2012). Subsequent to 

this, Black et al., (2013) further compared different SC injectable formulations of 

chloramphenicol [base vs. sodium succinate (proactive form), 60 mg/kg, SC] and the 

disposition of chloramphenicol sodium succinate (25 mg/kg, IV) in clinically normal 

koalas (Black et al., 2013b). This study demonstrated that t1/2 between two formulations 
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(base form t1/2: 13.1 h vs. sodium succinate form t1/2: 1.4 h) were significantly different, 

whereas the PK profile of succinate form was comparable to horses (1 ± 0.1 h) (Pilloud, 

1973) and shorter than sheep (1.70 ± 0.02 h) (Dagorn et al., 1990) and goats (1.97 ± 

1.23 h) (Etuk et al., 2005).   

 
Recently, the PK of fluconazole, currently used for the treatment of the fungal disease 

cryptococcosis in koalas (Wynne et al., 2012) has been investigated in clinically normal 

koalas (10 mg/kg, PO and IV) (Black et al., 2014). Although, fluconazole is extensively 

eliminated unchanged in urine (> 70 %) in other species (Humphrey et al., 1985), thus 

facilitating allometric scaling across the species to determine the dose rate (Jezequel, 

1994), this study revealed a marked difference in Cl in koalas, which was approximately 

six times higher than the estimated allometric scaled value. Based on this observation, a 

few hypotheses were suggested to account for the rapid Cl in that there may be 

differences in rates of tubular reabsorption and or active tubular secretion; or 

differences in metabolic conversion rates in koalas compared to other species (Black et 

al., 2014). However, this study did not determine the fate of fluconazole (via urine or 

fecal analysis), therefore further studies are warranted to clarify whether fluconazole is 

excreted unchanged and / or as one or more metabolites. Other important observations 

from this study were that the fluconazole-plasma protein binding in koalas was ~ four 

times higher than in other species and that fluconazole had low oral bioavailability 

(~50 % vs. almost 100%  in most other species) (Black et al., 2014).  

 
Accordingly, these studies demonstrate noticeable differences in some PK properties of 

investigated drugs, including absorption, especially via the oral route and/or 
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metabolism in koalas, and further question the reliability of extrapolating dosage, from 

another species for administration to koalas.   

 

1.9.     Meloxicam  

Meloxicam, [4-hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1, 2-benzothiazine-3-

carboxamide-1, 1-dioxide], is an oxicam NSAID which is an enolic acidic drug with anti-

inflammatory, analgesic and antipyretic activities (Engelhardt et al., 1995). Like many 

other NSAIDs, meloxicam is known to inhibit activity of inducible cyclooxygenase (COX)-

2, thereby preventing formation of prostaglandins (PG), some of which are inflammatory 

mediators (e.g. PGE2 and prostacyclin), to reduce inflammation and pain (Figure 1.9.1) 

(Lees et al., 2004b, Hawkey, 2001).  

 

 
Figure 1.9.1) Arachidonic acid - COX inflammatory pathway; NSAIDs such as meloxicam 

inhibit cyclooxygenase. (Image generated by the author).  
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Unlike other oxicam NSAIDs or other traditional COX inhibitors, meloxicam, with a 

chemical structure similar to piroxicam (another oxicam NSAID) (Figure 1.9.2) (but 

with addition of 5-methyl-2-thiazolyl moiety in the pyridine ring) facilitates preferential 

selectivity on inhibition of COX-2 over COX-1 (Table 1.9.1) (Engelhardt, 1996). 

However, preferential selectivity of meloxicam toward COX-2 inhibition is variable 

between in-vitro and in-vivo models (Schattenkirchner, 1997), or it can be species 

dependent. 

 

 

 

 
 
 
 
 

Figure 1.9.2) Chemical structures of meloxicam and piroxicam (an oxicam NSAID). 

(Image generated by the author). 

 

Table 1.9.1) COX inhibition ratio (COX-2/COX-1) of meloxicam and other NSAIDs tested 

on the intact cell system of guinea-pig peritoneal macrophages during 6 h of incubation 

in which a low ratio indicates greater COX-2 selectivity (adapted from Engelhardt, 1996).  

 

NSAIDs Ratio (COX-2/COX-1) 

Meloxicam 0.33 

Piroxicam 33 

Tenoxicam 16 

Tenidap 122 

Indomethacin 30 

Diclofenac 2.2 

Flurbiprofen 317 
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While a function of COX-1 (a house keeping enzyme) is to maintain homeostasis and 

synthesise prostaglandins that stimulate gastric mucous production and thereby protect 

the gastric mucosa, several studies have reported that meloxicam’s predilection to 

preferentially inhibit COX-2 results in fewer side effects, e.g. reduced gastric ulceration 

than non-selective NSAIDs (Engelhardt et al., 1996, Dequeker et al., 1998). For example, 

Dequeker et al., (1998) performed a large scaled human clinical trial on osteoarthritis 

patients to compare GIT tolerance of meloxicam (4320 patients) to that of piroxicam 

(4336 patients), and a significant lower incidence of gastric ulceration (10.3% vs. 15.4%; 

p < 0.001) was reported in the group on meloxicam. As a result, meloxicam has been a 

popular NSAID for humans and for veterinary use. For humans and certain domestic 

species, an efficacious dosage is well established. For humans, meloxicam is approved 

for the treatment of arthritic conditions and the therapeutic dosage is 0.1-0.2 mg/kg, 

oral, s.i.d. (Gates et al., 2005).  Meloxicam is also registered for the relief of inflammation 

and pain for cats (0.05 mg/kg, PO, s.i.d.), dogs (0.1 mg/kg, PO, s.i.d.) and horses 

(recommended at 0.6 mg/kg, PO, s.i.d.) (EMA, 2015).          

 

1.9.1.     Meloxicam PK   

The PK of meloxicam has been investigated in many mammalian species (Table 1.9.2). 

Similar to other oxicam NSAIDs, meloxicam is highly lipophilic (log p=1.9octanol/water), 

thus it rapidly diffuses across the intestinal membrane via transcellular absorption 

resulting in favorable oral bioavailability (> 85 %) in many species. Meloxicam has a low 

Vd as a result of high plasma protein binding (96-99 %). Meloxicam is considered a low 

hepatic Cl drug, thus the prolonged elimination t1/2 is favorable for once daily 
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administration in humans and variety of other species, however Cl and consequently t1/2 

is variable among mammalian species as documented in Table 1.9.2.  

 

Table 1.9.2) Pharmacokinetic profiles of meloxicam in selected mammalian species.  

Species  Cl Vd t1/2 Foral            Ref 

  L/hr/kg L/kg H (%) 
 

Humans 0.010 
 

20.0 89%   (Turck et al., 1996) 

Dogs 0.010   0.32 24.0 106%   (Busch et al., 1998b) 

Cats  0.006*   0.27* 37.0 
 

  (Giraudel et al., 2005) 

Rats (male) 0.015   0.27 13.4 
 

  (Busch et al., 1998b) 

Mice 0.015   0.467 6.4 94%   (Busch et al., 1998b) 

Piglet 0.061   0.19 2.7 
 

  (Fosse et al., 2008) 

Horses  0.034   0.12 8.5 85%   (Toutain et al., 2004) 

Ponies 0.042   0.16 2.7 
 

  (Lees et al., 1991) 

Calves 0.006   0.155 27.5 100%   (Coetzee et al., 2009) 

Sheep 0.016   0.25 10.8 
 

  (Shukla et al., 2007) 

Goats 0.030   0.26 6.7 
 

  (Shukla et al., 2007) 

Goats 0.018   0.24  10.9 79%   (Ingvast-Larsson et al., 2011) 

Camels 0.019   0.09  40.2     (Wasfi et al., 2012) 

 
*apparent total Cl (Cl / F) and apparent Vss (Vss / F) scaled by bioavailability after SC 

injection.  

 

1.9.2.     Hepatic metabolism of meloxicam 

Similar to other NSAIDs, meloxicam is reported to be extensively metabolised in the 

liver and CYP2C is suggested as the major drug metabolising enzyme involved in the 

hydroxylation of meloxicam in humans (Turck et al., 1996). Meloxicam is extensively 

biotransformed into 5-hydroxy methyl metabolite via CYP2C9 (Km: 9.6 µM) and with a 

lesser contribution by CYP3A4 (Km: 475 µM) (Chesne et al., 1998). Subsequently, Chesne 

et al., (1998) demonstrated via human hepatocytes cell cultures that the 5-hydroxy 

methyl metabolite was the initial product for further 5-carboxyl derivative. 
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Meloxicam metabolites have been isolated from the faeces of several other mammalian 

species (Schmid et al., 1995b, Busch et al., 1998, Tevell Aberg et al., 2009, Grude et al., 

2010). Although the CYP isoform has not been determined in other species, similar 

metabolic patterns have been demonstrated among species. For example in rats, the 

major metabolites recovered from the excreta were the 5-hydroxy methyl metabolite 

(~55 %) and the 5-carboxyl derivative (65 %), indicating oxidation as the primary 

metabolic pathway (Schmid et al., 1995b). Similarly, variable amounts of 5-hydroxy 

methyl metabolite, likely due to CYP2C-like activity, was presented in the excreta of mice 

(Busch et al., 1998), cats (Grude et al., 2010), mini-pigs (Busch et al., 1998) and horses 

(Tevell Aberg et al., 2009).  

 

2.   Aims of the study  

Meloxicam is the most commonly administered NSAID to koalas for the purposes of 

providing analgesia (de Kauwe et al., 2014) and for controlling inflammatory conditions 

such as arthritis associated with shoulder and hip dysplasia in captive koalas (Pye, 2009, 

Pye et al., 2008). Although koalas, and other E. specialist feeders, are thought to have a 

highly specialised hepatic CYP mediated oxidation strategy to eliminate dietary toxins, 

the disposition of meloxicam (or other NSAIDs) has never been investigated in this 

group of animals prior to this research. Meloxicam is recognised as a low hepatic 

extractable drug in other species (Busch et al., 1998). Thus, the possibility of species 

differences in the hepatic CYP-mediated metabolism may result in difference of drug 

bioavailability in koalas. Furthermore, tolbutamide hydroxylation in koalas is reported 

to be extremely rapid compared to other mammalian species, e.g. rats or humans, 
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(tolbutamide being a representative CYP2C9 substrate in human) (Liapis et al., 2000). 

Therefore this research project was designed to evaluate the in vivo PK and compare to 

the in-vitro Clint of meloxicam. As Cl of lower or intermediate hepatic Cl drugs is difficult 

to estimate from other species, this research was designed to also investigate potential 

usefulness of in vitro Clint to predict in vivo Cl scaling. As CYP2C is important subfamily 

that involves metabolism of many therapeutic drugs, including NSAIDs in people, this 

research was extended to compare in-vitro metabolism of series of CYP2C9 substrates 

between the koalas and some selected species (brushtail possums, ringtail possums, and 

rats) to identify other NSAIDS that may have favorable PK characteristics for treating 

injured koalas.       

 

Thus, specific aims of the work in this thesis are summarised below: 

 

1) To develop the HPLC-PDA method to quantify plasma concentration of the 

meloxicam in koalas  

 

2) To investigate meloxicam PK in koalas after intravenous, subcutaneous and oral 

administration 

 

3) To compare in-vitro hepatic microsomal metabolism of meloxicam and predict in-

vivo clearance in the koalas, brushtail possums, ringtail possums, rats and dogs.  
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4) To compare CYP2C like activity using series of human CYP2C9 substrates 

between koalas, brushtail possums, ringtail possums and rats as a screen to 

identify other NSAIDs that may have a favorable PK profile in these species.  
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Chapter 2                                   

 

                                                                                                                                                                                             
                                                                                                                                                                                           

                                                                               

Quantitation of meloxicam in the plasma of 

koalas (Phascolarctos cinereus) by improved 

high performance liquid chromatography 

 

 

The following chapter is modified from the original article: 

 
Kimble, B., Li, K. M., Govendir, M. (2013). Quantitation of meloxicam in the plasma of 

koalas (Phascolarctos cinereus) by improved high performance liquid chromatography. 

Journal of Veterinary Science, 141, 7-14. 
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2.1.     Abstract  

A simple, sensitive and improved method using HPLC-PDA was developed and validated 

to determine meloxicam concentrations in koala plasma, applicable for in-vivo 

pharmacokinetic study. Prior to the analysis, the koala plasma sample was cleaned with 

hydrophilic-lipophilic copolymer SPE cartridge (Oasis HLB). Separations of meloxicam 

and the piroxicam (IS), from the interferences of the koala plasma endogenous matrix, 

were achieved using an isocratic mobile phase [MeCN and 50 mM potassium phosphate 

buffer (pH 2.15) (45:55, v/v)] on a Nova-Pak C18 4 µm (300 mm x 3.9 mm) column. The 

retention times for both meloxicam and the internal standard were approximately 8.03 

and 5.56 min, respectively, with a flow rate of 0.8 mL/min. The total chromatographic 

run time was completed in 15 min and the peak area ratios of meloxicam to the internal 

standard were used for regression analysis of the calibration curve. The latter was linear 

from 10 to 1000 ng/mL (r2 > 0.9998) which detection wavelength of 355 nm was used. 

The average absolute recoveries, indicating extraction efficiencies, were 91 % and 96 % 

for meloxicam and the internal standard, respectively. Despite the complexity of koala 

plasma matrix, advantages of this method were that it had high selectivity and 

sensitivity which achieved LLOQ of 0.01 µg/mL and only small plasma volume (250 µL) 

was required for analysis. In addition to this, the developed method was shown to detect 

potential metabolites of meloxicam in koala plasma.  
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2.2.     Introduction 

A variety of analytical methods have been developed and established to measure the 

concentration of meloxicam; these include UV spectrophotometry (Joseph-Charles and 

Bertucat, 1999, Garcia et al., 2000), fluorimetry (Hassan, 2002), polarography (Altiokka 

et al., 2001), voltammetry (Wang et al., 2006), colorimetry (Zawilla et al., 2003), 

capillary zone electrophoretic method (Nemutlu and Kir, 2003) or thin layer 

chromatography with densitometry (Bebawy, 1998) etc. However, many of these are not 

suitable for measuring the concentration of meloxicam in biological samples for PK 

studies due to both poor sensitivity and selectivity. On the other hand, few studies 

demonstrated superior analytical sensitivity for measuring the concentrations of 

meloxicam in human plasma using LC-MS/MS (Wiesner et al., 2003, Ji et al., 2005, Yuan 

et al., 2007). Nevertheless, due to the high cost of the instrumentation which is beyond 

the reach of many laboratories, use of LC-MS/MS is not commonly achievable. Instead, 

HPLC equipped with either UV or PDA, which is more cost efficient than LC-MS/MS, are 

commonly applied in PK studies of meloxicam in humans (Velpandian et al., 2000, 

Dasandi et al., 2002, Bae et al., 2007, Ouarezki and Guermouche, 2010). However, 

several HPLC-UV (or PDA) methods shown to provide suitable sensitivity for PK studies 

(e.g. LLOQ: 0.01 µg/mL) (Bae et al., 2007, Ouarezki and Guermouche, 2010), these 

methods, unfortunately, require large sample volumes (0.5 to 1 mL) that may not be 

easily collected repeatedly from valuable, rare or non-domesticated animals such as 

adult koalas with an average body weight less than 10 kg. Furthermore, all of these 

HPLC methods have been developed with human plasma samples. During the initial 

optimisation of HPLC method, this study revealed two major challenges: 1) the 
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complexity of the endogenous koala plasma matrix and 2) limited sample volume. While 

one of the important aspects of PK studies is to, accurately, measure the concentration of 

a drug, this chapter was initially aimed to develop a suitable HPLC-PDA method using 

SPE to quantify plasma concentration of meloxicam in the koala plasma.   

 

2.3.     Materials and method  
 
2.3.1.     Chemicals and materials  

Meloxicam, piroxicam (IS), potassium dihydrogen phosphate and ortho-phosphoric acid 

(H3PO4) were purchased from Sigma-Aldrich (St. Louis, MO, USA). HPLC grade MeOH 

and MeCN were supplied from Analytical Science (Sydney, NSW, Australia). Purified 

water was obtained from Milli-Q water system (Millipore, Milford, MA, USA) and Oasis 

HLB 1cc (30 mg) extraction cartridges were purchased from Waters (Milford, MA, USA).  

 

2.3.2.     Chromatographic condition 

The HPLC system consisted of a Shimadzu CBM-20A module equipped with a LC-20AT 

delivery unit with DGU-20As degassing solvent delivery unit, SIL-20AC auto injector, 

CTO-20AC column oven, and SPD-M20A diode array detector (Kyoto, Japan). As well, 

Shimadzu class VP data system (software version 7.4) (Kyoto, Japan) was used for 

chromatographic control, data collection, and data processing.  

 
Chromatographic separation was initially tested with several C18 columns in various 

sizes of column internal diameters [Apollo C18, 5 µm, 250 mm x 4.6 mm (Alltech, Hunting 

wood, NSW, Australia); Nova-Pak C18, 4 µm, 300 mm x 3.9 mm (Waters, Rydalmere, NSW, 
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Australia); Gemini C18, 5 µm, 150 mm x 2 mm (Phenomenex, Lane Cove, NSW, Australia)]. 

As well, organic modifiers (MeOH and MeCN) with different compositions with purified 

water (or buffer) were tested. Final chromatographic separation was performed by a 

Nova-Pak C18, 4 µm, 300 mm x 3.9 mm attached to a 1 mm Opti-guard C-18 column 

(Optimize Technologies, Alpha Resources, Thornleigh, Australia) with the column 

temperature maintained at 30 °C. The isocratic mobile phase was composed of 50 mM 

potassium phosphate buffer of pH 2.15 and acetonitrile (55: 45, v/v). The mobile phase 

was delivered at a flow rate of 0.8 mL/min. The eluent was monitored at 355 nm. The 

total run time for each sample was 15 min. 

 

2.3.3.     Sample preparation 

A stock solution of meloxicam (0.1 mg/mL) was prepared in 50 % MeOH and was 

further diluted with 50 % MeOH to give a series of working solutions of 0.05, 0.1, 0.2, 0.5, 

1, 2, and 5.µg/mL. A stock solution of IS (0.1 mg/mL) was also prepared in 50 % MeOH 

and diluted to 0.5 µg/mL in 50 % MeOH as the working solution. Both stock solutions 

were stored at -20 °C and working solutions were freshly prepared from the prepared 

stock solution whenever required. Blank koala plasma obtained from different animals 

was pooled together and stored at -20 °C prior to use for preparation of calibration 

standards and quality control (QC) samples. For the method validation, low, middle, and 

high concentrations of QC samples (0.01, 0.2, and 1 µg/mL) were prepared by spiking 

the working solutions (0.05, 1, and 5 µg/mL) of meloxicam into blank pooled koala 

plasma and stored at -20 °C. For the preparation of unknown plasma samples (IV dosed 

koala sample) (Chapter 3), heparinised whole blood samples (approximately 1-1.5 mL) 
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were centrifuged at 1,400 g for 10 min. The plasma was carefully removed and stored at 

-20 °C. Plasma calibration standards (ranging from 0.01 to 1 µg/mL) were freshly 

prepared for each analysis by spiking 50 μL of appropriate working solutions of 

meloxicam into 250 μL of blank pooled plasma which was pre-thawed at room 

temperature.  

 

2.3.4.     Solid phase extraction  

Plasma samples (250 µL) were diluted with 750 µL of water and then spiked with 50 µL 

of working IS solution to give 0.1 µg/mL of final plasma concentration. The SPE 

cartridges were connected to a Vac. Elut. Vacuum manifold (Supelco, Bellefonte, PA, USA) 

and conditioned with 1 mL of MeOH followed by 1 mL of water. The samples were 

allowed to run through sorbents at a flow rate of less than 1 mL/min. Cartridges were 

then rinsed with 1 mL of 5 % MeOH and dried under vacuum for 2 to 3 min. Analytes 

were eluted with 1.5 mL of MeOH. The eluent was then dried under vacuum in a Speed 

Vac concentrator (Thermo Scientific, USA) at 40 °C for 2 h and the dried residue was 

reconstituted in 100 µL of mobile phase. The reconstituted sample was vortexed (15 

sec), sonicated for 5 mins and then centrifuged at 14,000 x g for 10 mins to remove any 

particulates. The supernatant was then transferred into HPLC insert vials and 10 µL of 

reconstituted sample was injected into the HPLC system.   

 

2.3.5.     Method validation 

Selectivity: The selectivity of the assay was established by analyzing blank koala plasma 

(n = 10) to identify endogenous interference around the retention times of both 
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meloxicam and the IS. Meloxicam peak in the plasma was identified from the retention 

time and UV spectra of the reference standard.  

 
Linearity and sensitivity: Meloxicam concentrations in plasma samples were 

quantified via calibration curves whereby seven concentrations, 0.01, 0.02, 0.04, 0.1, 0.2, 

0.4 and 1 µg/mL, were used to establish a non-weighted least square linear regression of 

the curve (y = ax + b). This was done by plotting the concentrations of meloxicam (x) 

versus the peak area ratios (y) of meloxicam to IS, where (a) and (b) indicate the slope 

and y-intercept of the curve, respectively. According to ICH guidelines (International 

Conference on Harmonisation, 2005), the lowest limit of quantification (LLOQ) was 

determined based on the calibration curves using below formula:  

LLOQ = 10 x σ/S 

where σ is a standard deviation of the y-intercepts from the regression lines and S is the 

mean slope of calibration curves.  

 

In this study, an acceptance criterion for LLOQ was defined as precision less than 15 % 

of CV and accuracy within ± 20% of nominal concentration with repeated analyses 

(International Conference on Harmonisation, 2005).  

 
Precision and accuracy: Intra- and inter-day precision were analysed from triplicates 

of QC samples (0.1, 0.2 and 1 µg/mL), both within a day and on five consecutive days, 

respectively. The relative difference of the estimated concentrations were expressed as  

 
CV = (standard deviation / mean value) x 100. 
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Intra- and inter-day accuracy, expressed as bias was determined by a percentage 

difference between estimated value and the nominal value of meloxicam. 

 
Bias = (estimated value – nominal value) / nominal value x 100 

 

Recovery: Absolute recovery of meloxicam was determined by comparing the peak area 

of pre-spiked plasma samples (n = 5) at concentrations of 0.01, 0.2, and 1 µg/mL with 

corresponding concentrations of meloxicam in mobile phase.  

 
Stability: Stability, including three freeze/thaw cycles (over a 5-day period) and long 

term stability (up to 3 months), was assayed with pre-spiked samples at two 

concentrations (0.01 and 1 µg/mL) at – 20 °C. Each assay was conducted in triplicate 

and statistical data analysis was achieved by ANOVA and unpaired student t-tests using 

Graph Pad Prism software version 5.01 for Windows (Graph Pad Software, San Diego 

California USA), where the minimum significance level for all statistical tests was set at P 

< 0.05.  

 

2.4.     Results  

2.4.1.     Chromatographic separation 

With reference to the UV spectra (Figure 2.1), the optimal wavelength was set at 355 

nm for quantitative analysis of meloxicam. Typical chromatograms of extracted double 

blank plasma and QC plasma samples (0.01, 0.2 and 1 µg/mL) are shown in Figure 2.2. 

Accordingly, the retention times of meloxicam and IS were approximately 8.03 and 5.56 
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mins, respectively. Figure 2.3 is the representative 3D-chromatogram of meloxicam and 

IS in the koala plasma sample obtained after 15 min of IV injection (0.4 mg/kg), where 

typical chromatograms (UV wavelength at 355 nm) of IV injected (0.4 mg/kg) koala 

plasma at t=0, t=5 and t=15) are shown in Figure 2.4. 

 

 

Figure 2.1) Representative 3D-chromatograms of meloxicam (0.1 µg/mL) and IS pre-

spiked in blank koala (pooled) plasma.  
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Figure 2.2) Chromatograms of (A) high QC (1 µg/mL), (B) middle (0.2 µg/mL), and (C) 

low (0.01 µg/mL) QC samples contained IS; (D) double blank koala plasma (pooled); UV 

wavelength: 355 nm  

 

 

Figure 2.3) Representative 3D-chromatograms of meloxicam and IS in koala plasma 

after 15 min of IV administration (0.4 mg/kg)  
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2.4.2.   Validation  

Linearity and sensitivity: The mean regression calibration curves (n = 5) were 

described as y = 13.9562 (± 0.2863, SD) x + 0.0003 (± 0.0162, SD) with the r2 value for 

each curve greater than 0.9998 (Figure 2.5). The calculated Fisher ratio calibration 

curve in triplicate was 1.67 (2.96 at the 95% confidence level), and the curve was 

demonstrated to be linear. 

 

Minutes

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

m
Au

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
Au

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

  A 

          

M1 

M3 

M2 

   C 

  B 

IS 

  Meloxicam 
Figure 2.4) 

Chromatograms of IV 

injected (0.4 mg/kg) koala 

plasma (A) t = 15 min; (B) t = 

5 min; and blank plasma pre 

spike with 0.1 µg/mL of 

meloxicam (C). UV 

wavelength: 355 nm. M1, M2, 

and M3: possible metabolites 

of meloxicam  

 

 

 

 

 



87 
 

 

Figure 2.5)   The mean regression calibration curve (y = 13.9562 (± 0.2863, S.D.) x + 

0.0003 (± 0.0162, S.D.), n = 5), ranged from 0.01 to 1 µg/mL, where r2 value for each 

curve greater than 0.9998.  

 

Precision and accuracy: Precision and accuracy of the LLOQ (0.01 μg/mL) were less 

than 15 % (CV) and within 20 % (bias) of nominal concentration, respectively (Table 

2.1). 
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Table 2.1) (Intra- and interday) precision (% CV) and accuracy (% bias) of QCs.  

   

Nominal Estimated 
    concentration concentration 
  

Precision Accuracy 

(µg/mL) (µg/mL) 
  

(% C.V.) (% bias) 

      Intra day 
     Day 1 (n = 3) Mean S.D. 

   1.000 1.001 0.014 
 

1.351 0.078 

0.200 0.200 0.001 
 

0.596 0.035 

0.010 0.010 0.001 
 

12.673 0.021 

      Day 2 (n = 3) Mean S.D. 
   1.000 1.004 0.007 
 

0.662 0.423 

0.200 0.195 0.003 
 

1.608 0.486 

0.010 0.010 0.000 
 

1.853 0.013 

      Day 3 (n = 3) Mean S.D. 
   1.000 1.001 0.019 
 

1.865 0.098 

0.200 0.204 0.007 
 

3.616 2.011 

0.010 0.011 0.001 
 

9.640 19.420 

      Day 4 (n = 3) Mean S.D. 
   1.000 0.996 0.016 
 

1.599 0.418 

0.200 0.203 0.008 
 

4.087 1.288 

0.010 0.010 0.001 
 

9.934 3.420 

      Day 5 (n = 3) Mean S.D. 
   1.000 1.008 0.029 
 

2.828 0.752 

0.200 0.211 0.008 
 

3.590 5.452 

0.010 0.012 0.001 
 

9.468 17.580 

      Interday 
     (n = 5 days) Mean S.D. 

   1.000 1.002 0.004 
 

0.435 0.186 

0.200 2.203 0.006 
 

2.858 1.200 

0.010 0.011 0.001 
 

8.163 5.600 
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Recovery: The absolute recovery of MEL QC samples of 10, 200 and 1000 ng/mL (n = 5), 

using SPE, were 89.50 (± 6.79, S.D.), 93 (± 1.75, S.D.) and 90.50 (± 1.44, S.D.) %, 

respectively, and the absolute recovery of the IS was 96 % (n = 15).  

 

 
 

2.5.     Discussion  

For quantitative determination of meloxicam, HPLC-UV methods have been commonly 

applied in human plasma. Velpandian et al. (2000) reported a fast HPLC-UV method to 

determine plasma concentrations of meloxicam in human plasma where its retention 

time was 2.7 min. However, although the method was straight-forward and rapid, the 

sensitivity of the method to quantify meloxicam (LLOQ 0.1 µg/mL) was not sufficient to 

apply in koala PK study. Other studies have utilised HPLC-UV and HPLC-PDA methods to 
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quantify human plasma and serum concentration of meloxicam as low as 0.01 µg/mL 

either by LLE (Bae et al., 2007) and SPE (Ouarezki and Guermouche, 2010). But these 

methods used large volumes of plasma (0.5 to 1 mL) where obtaining multiple samples 

of this magnitude over an 8 hour period is not feasible from koalas as their average body 

weight is less than 10 kg. The HPLC-PDA method described here is optimised not only to 

provide sufficient sensitivity, but also to utilise less than half of the plasma volume 

required of previously reported methods.   

 
The removal of interfering endogenous matrix in the koala plasma samples is an 

important step for HPLC analysis especially when the sample volume is limited. Liquid-

liquid extraction (Ji et al., 2005, Bae et al., 2007) or PPE (Dasandi et al., 2002, Wiesner et 

al., 2003, Yuan et al., 2007) have been used as sample cleaning up procedures for 

meloxicam in biological fluids. Liquid-liquid extraction is labour intensive, time-

consuming and requires large amounts of organic solvent(s) that are environmentally 

toxic and hazardous and often result in poor drug recovery. Although the procedure of 

PPE is simple, it is non-selective which often leads to low recovery rates for some drugs 

(Li et al., 2004). Alternatively, as general performance of SPE, including the recovery of 

many drugs, is known to be superior than either LLE or PPE (Li et al., 2004), this study 

utilised SPE. Meloxicam was initially reported to possess only one pKa (4.08) 

corresponding to the ionisation of enolic (OH) moiety of the molecule (Tsai et al., 1993). 

However, it was subsequently demonstrated that meloxicam exhibits a second pKa (1.08) 

corresponding to the protonation of thiazole ring nitrogen (Luger et al., 1996). 

Consequently, meloxicam exists as ionic species (anion-, cation or zwitterionic) in broad 
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pH ranges. Likewise, SPE of meloxicam from the plasma matrix based on conventional 

non-polar (C18) sorbents will be inadequate for the adsorption of the molecules. In this 

regard, Oasis HLB was employed to provide a wide spectrum of retention capacity for 

both polar and non-polar species with high pH stability. Our average absolute recovery 

value of QC samples (0.01, 0.2 and 1 µg/mL) was 91% (± 1.80, S.D.) which was superior 

to both LLE (77.2 to 86.7 %) (Bae et al., 2007) and protein precipitation techniques 

(>85 %) (Dasandi et al., 2002). Our results are comparable to the method of Ouarezki 

and Guermouche, (2010), whereby SPE (Oasis HLB, 60 mg cartridges) were used for 

extraction of meloxicam from acidified human serum followed by HPLC-PDA analysis, 

which resulted in an average absolute recovery of 95.33% (± 2.14, SD) from 0.25, 0.5 

and 1 µg/mL (Ouarezki and Guermouche, 2010). Interestingly, in our study, acidification 

of koala plasma prior to SPE consistently interfered with the elution of meloxicam or IS 

peaks (no attempts were made to investigate the interfering components). Therefore, 

the plasma acidification step was removed during the clean-up process, which resulted 

in improved selectivity and greater reliability of peak resolution as illustrated in Figure 

2.6.  

 
In this study three unknown peaks, presumably metabolites of meloxicam were 

observed at retention times of 3.82, 4.72 and 5.89 min. The areas of these peaks were 

dependant on the peak area of meloxicam and observed in IV dosed samples. The 

wavelengths (λ) max obtained from the UV spectrum of these unknown peaks were 

approximately at 350 ± 20 nm, indicating possible metabolites formed from the parent 

drug during the kinetic phase (Naidoo et al., 2008). However further structural 
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elucidation of these unknowns (NMR or LC-MS-MS) is required to confirm the presence 

of these metabolites. The endogenous matrix in koala plasma was found to be 

complicated, causing greater interference when analyzing MEL as illustrated in Figure 

2.4. This compositional difference may be due to the koala’s unique physiology as they 

represent one of a few selective folivore marsupials which rely on certain species of 

Eucalyptus leaf as their sole dietary source. (Stupans et al., 2001).  

 
This investigation highlights that HPLC conditions may require modifications when used 

to detect drug concentrations from different species, and methods require adaptation to 

improve sensitivity when small sample volumes are available and a simple, sensitive and 

specific HPLC-PDA method using SPE for the assay of plasma meloxicam was developed. 

To our knowledge, this is the first validated method for the quantification of meloxicam 

in koala plasma or any other marsupials. The developed method has been successfully 

applied to a PK study (Chapter 3) which demonstrates the unique drug disposition 

capacity of the koala.        
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Chapter 3 
 

Pharmacokinetics of meloxicam in the koala 

(Phascolarctos cinereus) after intravenous, 

subcutaneous and oral administration 

 

 

The following chapter is modified from the original article:  

 

Kimble, B., Black, L.A., Li, K.M., Valtchev, P., Gilchrist, S., Gillett, A., Higgins, D.P., 

Krockenberger, M.B., Govendir, M., (2013), Pharmacokinetics of meloxicam in koalas 

(Phascolarctos cinereus) after intravenous, subcutaneous and oral administration. 

Journal of Veterinary Pharmacology and Therapeutics, 36(5), 486-493 
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3.1.     Abstract  

The PK profile of meloxicam in clinically healthy koalas (n = 15) was investigated. Single 

doses of meloxicam were administered intravenously (0.4 mg/kg; n = 5), 

subcutaneously (0.2 mg/kg; n = 1) and orally (0.2 mg/kg; n = 3), and multiple doses 

were administered to two groups of koalas via the oral and SC routes (n = 3 for both 

routes) with a loading dose of 0.2 mg/kg for day 1 followed by 0.1 mg/kg, s.i.d., for a 

further 3 days. Plasma meloxicam concentrations were quantified by HPLC-PDA. 

Following IV administration, meloxicam exhibited a rapid plasma Cl of 0.44 ± 0.20 

L/h/kg, a Vz of 0.72 ± 0.22 L/kg and a Vss of 0.22 ± 0.12 L/kg (average ± SD). Median 

plasma terminal elimination t1/2 was 1.19 h (range 0.71 to 1.62 h). Following oral 

administration either from single or repeated doses, only Cmax (0.013 ± 0.001 and 0.014 

± 0.001 µg/mL, respectively) was measurable (LLOQ >0.01 µg/mL) between 4 to 8 h. 

Oral bioavailability was negligible in koalas. Plasma protein binding of meloxicam was 

about 98%. Three metabolites of meloxicam (M1, M2 and M3) were detected in the 

koala plasma with one (M1) identified as the 5-hydroxy methyl metabolite. This study 

demonstrated that koalas exhibited rapid plasma Cl and extremely poor oral 

bioavailability of meloxicam compared with other eutherian species. Accordingly, the 

currently recommended dosage regimen of meloxicam for this species appears 

inadequate. 
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3.2.     Introduction   

Meloxicam is one of the widely prescribed NSAID where it is approved for 

administration to humans for the treatment of arthritic conditions (Gates et al., 2005) 

and for domestic animals, such as dogs, cats and horses, for the relief of inflammation 

and pain (EMA, 2015). Pharmacokinetics of meloxicam have been investigated in 

rodents [e.g. mice and rats (Busch et al., 1998)], companion animals [e.g. cats (Giraudel 

et al., 2005), dogs (Busch et al., 1998); donkeys and horses (Sinclair et al., 2006)], 

livestock [e.g. poultry (Baert & De Backer, 2003), piglets (Fosse et al., 2008), sheep 

(Shukla et al., 2007)], rabbits (Carpenter et al., 2009) and humans (Turck et al., 1996) 

demonstrating differences in Cl and elimination t1/2. Meloxicam is also administered to 

other species, such as exotic animals and wildlife, for which the recommended dosing 

regimen is not based on species specific pharmacokinetic profiles but on anecdotal 

observations or extrapolation from other species (Kirchgessner, 2006).  

 
The wild koala is an iconic Australian marsupial that frequently requires veterinary 

attention after being traumatised by feral or domestic carnivores or vehicle strikes, 

especially during the breeding season when they are most ambulatory (Griffith, 2010). 

Meloxicam is frequently used as an analgesic and anti-inflammatory drug for injured 

koalas and is also used to control arthritis associated with shoulder and hip dysplasia in 

captive koalas (Pye et al., 2008; Pye, 2009). The current recommended dosing regimen 

of meloxicam in koalas (Blanshard & Bodley, 2008) is extrapolated from that 

recommended for dogs (0.2 mg/kg loading dose orally or s.c. in day 1, followed by 0.1 

mg/kg orally daily). Previous work has demonstrated that the antibacterial drug 
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enrofloxacin, when administered at conventional recommended dose rate for dogs, 

failed to reach adequate plasma concentrations in koalas (Griffith et al., 2010). The aim 

of this study was to investigate the pharmacokinetics of meloxicam after a single dose 

administered by the IV, SC and oral routes, to determine SC and oral bioavailability after 

sequential daily dosing, and to characterise the predominant plasma metabolites of 

meloxicam in this species.  

 

3.3.     Materials and method     

3.3.1.      Animals 

Eighteen clinically normal koalas (7 males and 11 females), ranging in age from 1.5 to 11 

years (3.8 ± 3.1 yr, mean ± SD) as determined by tooth wear (Martin, 1981) or previous 

admission data, and ranging in weight from 3.4 to 14 kg (6.7 ± 3.2 kg, mean ± SD); were 

recruited opportunistically from the Australia Zoo Wildlife Hospital (Beerwah, QLD, 

Australia) and Sydney Wildlife World (Sydney, NSW, Australia). During the study, koalas 

were housed in pens, either singly or in groups, and supplied with food (various 

Eucalyptus spp.) and water ad libitum. This study was approved by The University of 

Sydney Animal Ethics Committee and the NSW Office of Environment and Heritage. 

                                                                                                                                            

3.3.2.     Drug administration and blood collection 

An intravenous catheter for drug administration and serial blood collection was placed 

under general anesthesia via mask induction using isoflurane in 100 % oxygen. A 20-

gauge, 1-inch catheter was placed into the cephalic vein and bandaged in place for the 

duration of blood collection. Each koala had a 1 to 2 hr of recovery after GA and prior to 
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meloxicam administration. Blood was collected prior to drug administration (t = 0 hr) to 

determine baseline hematology and biochemistry values. Single dose study - A single 

dose of meloxicam (Metacam®, Boehringer Ingelheim, North Ryde, NSW, Australia) was 

administered to koalas either IV at 0.4 mg/kg (n = 6); SC at 0.2 mg/kg (n = 3) or via oral 

suspension (PO) at 0.2 mg/kg (n = 3). After meloxicam administration, blood (1 to 1.5 

mL) was collected at the following time points: IV administration: t = 2, 5, 10, 15, 30 min, 

then 1, 1.5, 2, 3, 4, 6, 8, 12 and 24 hr; SC administration: t = 15, 30 min, then 1, 2, 3, 4, 6 

and 8 hr; PO administration: t = 1, 2, 4, 6, 8, 12 and 24 hr. Repeat dose study - Two 

groups of koalas (n = 3 for each group), after baseline blood collection (t = 0 hr), were 

administered meloxicam either SC or PO, at loading dose of 0.2 mg/kg which was 

followed by a dose of 0.1 mg/kg once daily for a further 3 days for both routes. After the 

last dose, blood was collected at the following time points: t = 1, 2, 4, 8, 12 and 24 hr for 

both SC and PO administration. All blood samples were centrifuged within 1 hr of 

collection and the plasma was removed and placed into plain tubes. Samples were 

stored at - 20 °C and protected from light until analysis.    

 

3.3.3.     Drug analysis  

Meloxicam concentrations in the plasma samples were quantified by HPLC-PDA as 

described in Chapter 2, Section 2.3.2.   

 

3.3.4.     Identification of metabolites 

The meloxicam metabolites in plasma were investigated using LC-MS consisting of a 

Shimadzu LC-MS 2010EV module (Shimadzu, Kyoto, Japan). The mobile phase consisted 
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of water and acetonitrile (65:35, v/v) with 0.1 % of formic acid, and the column used 

was a Phenomenex Gemini C18 5 µm (150 mm x 2 mm). The flow rate was 0.3 mL/min. 

Electrospray ionisation (ESI) ion source was operated in positive ion mode and the 

interface voltage was 2 KV. The interface temperature was maintained at 200 °C. The 

flow rate of nitrogen as a nebulising gas was 1.2 mL/min. Mass spectra were acquired 

over the mass range of 50 to 700 m/z in scan mode, with scan speed of 1000 amu/sec. 

Structure elucidation of unknown metabolites by in source collision-induced 

dissociation (CID), using meloxicam standard as a reference compound, were performed 

at optimized Q-array DC voltage of 62 V.  

 

3.3.5.     Plasma Protein binding 

The plasma protein binding of meloxicam in koala plasma at three concentrations (0.5, 2 

and 6 μg/mL) was determined, in triplicate, by the modified ultra-filtration method 

(Ulrich Busch et al., 1998). Briefly, 200 μL of meloxicam (2.5, 10 and 30 μg/mL) in 50 % 

methanol were transferred to 2 mL Eppendorf tubes and evaporated to dryness using a 

speed vacuum (SPD 121P, Thermo Scientific, Australia) at 35 ˙°C for 20 min. Drug free 

koala plasma (1 mL), adjusted to 7.4 pH was then added to each Eppendorf tube, 

vortexed and incubated in a water bath at 37 °C for 30 min. From each Eppendorf tube, 

250 μL of plasma was removed for determination of the total drug concentration (Drug 

total) and the remaining plasma was transferred to the reservoir of the ultrafiltrate device 

(Amicon Corp., Beverly, MA, USA) which had a membrane of a molecular weight cut-off 

of 30.000 daltons. The ultrafiltrate device was centrifuged with a fixed 45 degree angle 

rotor and spun at 2000 g for 1 hr at 25 °C. After centrifugation, the filtrate portion was 
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used for determining the free drug concentration (Drug free). Both the (Drug total) and 

(Drug free) fractions were cleaned and analysed by SPE and HPLC-DAD, respectively, as 

described previously. Subsequently, the plasma protein binding of meloxicam in koala 

plasma was determined by the following equation.     

 
Plasma protein binding (%) = 100 – [(Drug free / Drug total) × 100] 

 

Non-specific binding of meloxicam in the ultrafiltrate device membrane, using 

phosphate buffer (pH 7.4) as a control, was less than 5 %.  

 

3.3.6.     Pharmacokinetic analysis  

Pharmacokinetic parameters for IV, SC and PO administrations were determined as a 

non-compartmental analysis using PKSolver (Zhang et al., 2010). Peak plasma 

concentrations and Tmax for SC and PO were determined by visual inspection of the 

plasma concentration vs. time curve. The kel was estimated by semi-log linear regression 

of the terminal slope, and elimination t1/2 was estimated by ln2 / kel. AUC and area under 

the first moment curves (AUMC) from 0 to last observed concentration (AUC0-t and 

AUMC0-t, respectively) were determined by the linear trapezoidal method. The AUC and 

AUMC from the observed concentration to infinity were determined by  

 
AUCt-∞ = C last / kel 

AUMCt-∞ = (C last x t last/kel) + Clast / kel2 
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The following pharmacokinetic parameters, total plasma Cl, Vss, Vz, MRT and Fspecific route 

were determined by the following equations: 

 
 Cl = DoseIV/AUCIV 

Vss = Cl × MRT  

Vz = Cl/kel 

MRT = AUMC/AUC  

F % = (AUCspecific route/AUCIV) × (DoseIV/Dosespecific route) ×100 

 

The fraction of elimination associated with the terminal phase was estimated according 

to the following equation (Rowland and Tozer, 1995, McLean et al., 2007): 

 
( /kel)/AUC0-∞ 

(β = zero time intercept of the exponential terminal elimination line)  

 

All pharmacokinetic parameters are expressed as mean ± standard deviation, except for 

the t1/2 (harmonic mean ± pseudo-standard deviation).  

 

3.4.     Results  

A summary of the pharmacokinetic parameters of meloxicam, as determined by a non 

compartmental analysis, is presented in Table 3.1. In this study, one IV and two single 

SC dosed koalas were excluded from the analysis due to technical difficulties with blood 

collection. For the orally dosed koalas, it was not possible to undertake non 

compartmental analysis as plasma concentrations of most blood samples, apart from 
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Cmax, were below the LLOQ (0.01 μg/mL) and accordingly, only the Cmax and Tmax are 

reported. The Tmax for single dosed (0.2 mg/kg, SC) koala was 30 min, whereas for 

koalas with repeated dose (0.1 mg/kg, SC), the Tmax was 1 h; due to the study time-lines, 

it was not possible to collect the blood samples at t = 30 min for the latter koalas. The 

plasma meloxicam concentration vs. time, presented as a semi-logarithmic curve, after a 

single IV administration (0.4 mg/kg) is presented in Figure 3.1. The plasma meloxicam 

concentration vs. time curves after repeated oral or SC administration (0.2 mg/kg day 1, 

followed by 0.1 mg/kg for 3 days) are presented in Figure 3.2.  

 

 

Figure 3.1) Semi-logarithmic curve of mean ± SD meloxicam plasma concentrations vs. 

time after a single IV administration (0.4 mg/kg) to clinically healthy koalas (n = 5) 
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Figure 3.2) Mean ± SD meloxicam plasma concentrations vs. time, after repeated PO or 

SC administrations (both routes initially administered 0.2 mg/kg on the first day 

followed by 0.1 mg/kg qd for three days, n = 3 both groups). 

 

 The overall plasma protein bindings of meloxicam, at concentrations of 0.5, 2 and 6 

μg/mL, in koalas were 98.17 ± 0.11 % (average ± SD) (Table 3.2).  

 
Table 3.2) Plasma protein bindings of meloxicam (0.5, 2 and 6 µg/mL) in koalas 

µg/mL Average (n = 3) SD (n = 3) 

6 98.2860 0.133 

2 98.0720 0.138 

0.5 98.1520 0.103 

overall 98.1700 0.108 
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Table 3.1) Pharmacokinetic parameters (mean + SD) of meloxicam (determined by non compartmental model) in koalas after PO, SC 

and IV administrations.  

                                                                                                                                                                                                                                          

 Subcutaneous Subcutaneous Oral Oral Intravenous 

 

Repeated dose 

0.1 mg/kg 

Single dose 

0.2 mg/kg 

Repeated dose 

0.1 mg/kg 

Single dose 

0.2 mg/kg 0.4 mg/kg 

  (n = 3)  (n = 1).  (n = 3)  (n = 3)  (n = 5) 

Cmax (μg/mL) 0.1 ± 0.04 0.19 0.014 ± 0.006 0.013 ± 0.001 - 

Tmax (min) 60 30 320 ± 14 400 ± 14 - 

kel (min-1) 0.01 ± 0.005 0.01 - - 0.01 ± 0.002 

t1/2 (min)* 65.26 ± 28.36 61 - - 70.04 ± 17.45 

AUC0-∞ (µg min/L) 10.74 ± 2.26 17.17 - - 61.6 ± 19.69 

AUMC0-∞ (µg min2/mL) 1280.16 ± 360.22 1429.78 - - 1856.9 ± 627.41 

MRT (min) 114.04 ± 34.99 83.25  - - 29.95  

Cl (L/h/kg) - - - - 0.44 ± 0.2 

Vz (L/kg) - - - - 0.72 ± 0.19 

Vss (L/kg) - - - - 0.22 ± 0.12 

Bioavailability (F) 69.74 % 55.74 % Nil Nil - 

 
* Harmonic mean  

The percentages of extrapolated AUC0-inf, except for one koala repeated dosed 0.1 mg/kg SC (25 %), were all less than 20 % (3.77 ± 3.66)
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Three metabolites were detected in the plasma of IV and SC samples at 3.5, 5.4 and 7.6 

min (Rt) based on LC-MS. A representative ESI+ extracted ion chromatogram of plasma 

metabolites is shown in Figure 3.3. The molecular characteristic of metabolites was [M 

+ H] + m/z 368 which corresponded to the addition of an oxygen atom to the parent drug 

meloxicam.  

 

A 

B 

Figure 3.3) ESI+ extracted ion chromatogram of (A): meloxicam standard; and (B) 

plasma metabolites of meloxicam in koalas after a single IV administration (0.4 mg/kg) 

(pooled sample from t = 15 and 30 mins). 

 

Fragmentation of the parent drugs in CID revealed that the characteristics of fragmented 

ions of meloxicam and M1 were m/z 115 and 141, and m/z 131 and 157, respectively 

(Figure. 3.4). The mass spectra of M1 indicated the oxidation was on the methylthiazole 
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moiety, and likely to be a 5-hydroxyl methyl derivative. There were no signs of adverse 

side effects in any koalas during or following administration of meloxicam by any route.  

 

 

 

 

 

                                                            A                

 

 

 

 

B 

Figure 3.4) LC-MS in-source CID spectra of (A): meloxicam; (B): 5-hydroxymethyl 

metabolite (M1).   
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3.5.     Discussion  

This is the first PK study on meloxicam, or any NSAID, in Australian E. feeders 

(marsupials). One of the most interesting findings was that the estimated plasma Cl 

(0.44 ± 0.2 L/h/kg) of meloxicam following IV administration was more rapid than that 

reported for any eutherian species including rats (0.01-0.15 L/h/kg), dogs (0.01 

L/h/kg), humans (0.01 L/h/kg) (Busch et al., 1998), donkeys (0.19 L/h/kg), and horses 

(0.03 L/h/kg) (Sinclair et al., 2006) and greater than that reported for birds except for 

ostriches (0.72 L/h/kg) (Baert and De Backer, 2003). In retrospect, this rapid plasma Cl 

may potentially be explained by what is known about koala hepatic metabolism. The 

koala is a herbivorous marsupial, also known as specialist E. feeder, with a normal diet 

consisting almost exclusively on some Eucalyptus spp. foliages which contain potential 

toxic PSM, such as phenolics and terpenes, at a concentration that would be fatal to 

many unadapted species (Stupans et al., 2001). Several studies have suggested that one 

of the strategies by which koalas detoxify their diet is via the elevated catalytic activity 

of some CYP enzymes (McLean and Foley, 1997, Boyle et al., 2000, Boyle et al., 2001, 

Stupans et al., 2001). The rate of hepatic metabolism in koalas, as estimated from 

bromosulphthalein clearance rates, is more efficient than other grass-eating herbivores 

(Pass and Brown, 1990) and catalytic activity of CYP2C-like enzymes, which was 

evaluated from tolbutamide hydroxylase activity, is ten and twenty times higher than 

that in rodents and humans, respectively (Liapis et al., 2000, Jones et al., 2008). As both 

tolbutamide and meloxicam are reportedly substrates for the CYP2C9 in humans 

(Chesne et al., 1998), it could be possible that the rapid plasma Cl of meloxicam in koalas 

is due to extensive hepatic metabolism. 
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The Vss was low in koalas (0.23 ± 0.12 L/kg) and substantially different from that in 

dogs (0.32 L/kg) (Busch et al., 1998), horses (0.19–0.27 L/kg) (Lees et al., 1991, Sinclair 

et al., 2006) or humans (0.17 L/kg) (Turck et al., 1996). Generally, low Vd of meloxicam 

is demonstrated in many species, likely attributable to the high binding affinity to 

plasma proteins (e.g. > 96% in dogs and humans) (Turck et al., 1996, Busch et al., 1998), 

which is typical of NSAIDs (Lees et al., 2004b). Similarly, observed plasma protein 

binding in koalas was high (98.17 ± 0.11%) which is in accordance of low Vss 

demonstrated in other species. The Vz (0.72 ± 0.33 L/kg) was approximately three times 

greater than the Vss, which indicates that appreciable amount of the drug was 

eliminated during the distribution phase (or before pseudo-equilibrium) (Toutain and 

Bousquet-Melou, 2004c). To support this, fraction of the eliminated drug associated with 

the terminal elimination phase (f2) was calculated in IV dosed koalas (n = 5). 

Accordingly, 20.17 ± 7.24% of the drug was estimated to associate with terminal 

elimination phase, whereas approximately 80% of the drug was eliminated during 

distribution phase. A possible explanation for this extensive distributional elimination in 

koalas could be due to rapid Cl with relatively high concentration of the drug presented 

in organs of elimination (McLean et al., 2007).  

 
In this study, the estimated terminal elimination t1/2 in koalas was 1.17 ± 0.29 h. The 

terminal elimination t1/2, reported here was shorter than for dogs (24 h) (Busch et al., 

1998b), horses (8.5 h) (Lees et al., 2004b), ponies (2.7 h) (Lees et al., 1991) and humans 

(~13 h) (Turck et al., 1996), and comparable with donkeys (~1 h) (Mahmood & Ashraf, 

2011). In some birds such as ducks, turkeys and ostriches, the terminal elimination t1/2 
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is shorter (0.5–0.99 h) (Baert and De Backer, 2003) than that in koalas, and compared 

with koalas, it is likely attributable to the small Vz (0.07–0.08 L/kg) except for ostriches; 

however, the greater Cl may explain the shorter terminal t1/2 in koalas (similar to 

ostriches). Accordingly, the observed terminal elimination t1/2 suggests that 

accumulation of meloxicam is unlikely 12 h after administration to koalas. 

 
The oral absorption of meloxicam, whether administered by single or repeated daily 

dose, was extremely low (Cmax 0.013 ± 0.001 and 0.014 ± 0.001 μg/mL, respectively) 

especially when compared to Cmax of the same dose rate (single oral administration 0.2 

mg/kg) in rabbits (0.168 μg/mL) (Carpenter et al., 2009), dogs (0.46 μg/mL) (Busch et 

al., 1998) and humans (~0.93 μg/mL) (Turck et al., 1996); however, the Tmax (6 ± 2.3 h) 

was comparable between species (~4 to 10 h). Meloxicam has been shown to provide an 

excellent oral bioavailability in dogs (~100%) (Busch et al., 1998b), horses (85.3–

95.9%) (EMA, 2015) and humans  (~89%) (Turck et al., 1996), and hence is the 

preferred route of administration for these species. However, the oral bioavailability in 

koalas was extremely low which may be due to one or more gastrointestinal and 

metabolic factors (Kararli, 1995). The koala is a hind-gut fermenter, like other 

herbivores such as horses and rabbits; however, what separates koalas from other 

herbivores is their specialist diet. The koala's stomach is usually full of masticated 

Eucalyptus spp. foliage, including macroparticles with a high content of lignified fibers 

(~50% of the foliage) (Blanshard & Bodley, 2008, Griffith, 2010) which could potentially 

bind to xenobiotics. This, in conjunction with a short small intestine transit time (0.1 h 

for particulate phase and 1 h for solute phase selectively) (Cork and Warner, 1983), is 

http://onlinelibrary.wiley.com/doi/10.1111/jvp.12038/full#jvp12038-bib-0002
http://onlinelibrary.wiley.com/doi/10.1111/jvp.12038/full#jvp12038-bib-0016
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likely to minimize xenobiotic absorption. Other potential contributing factors may be 

attributable to limited absorption through caecum and large colon or extensive 

presystemic metabolism. 

 

After the repeated SC doses (0.1 mg/kg, qd), Cmax was 0.10 ± 0.04 μg/mL at ~1 h of post 

administration. Compared with repeated p.o. administration, the Cmax was 

approximately 10 times higher with improved bioavailability which indicated this to be 

a superior route for koalas. With repeated doses up to 4 days, no significant drug 

concentration (>0.01 μg/mL) was detected 4 h after s.c. administration, and as a 

possible result of rapid Cl (t1/2 1.09 ± 0.47 h), plasma concentrations >0.1 μg/mL were 

only achieved at 1 h and declined to 0.03 ± 0.001 μg/mL 2 h post administration. This 

study did not investigate the effective meloxicam plasma concentration for clinical 

response nor has this been established in koalas. Therefore, we were not able to suggest 

either suitable dose rates or dosing frequencies, for either analgesic or anti-

inflammatory indications. It has been reported that the association between dose rate 

and efficacy is variable between species (Lees et al., 2004b). For example, effective 

plasma concentrations to ameliorate inflammation suggested for dogs, horses, and 

humans are 0.82, 0.13–0.2, and 0.57–0.93 μg/mL, respectively (Turck et al., 1996, 

Montoya et al., 2004, Toutain and Cester, 2004). Compared with plasma concentrations 

determined for those species, the currently recommended SC dose rate (0.1 mg/kg qd) 

is not adequate to reach such concentrations in koalas. 
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Three metabolites were detected in the plasma after IV and SC administrations, of 

which, one of these was identified as a 5-hydroxy methyl derivative (M1). No 

metabolites were detected in the plasma of orally dosed koalas, which was probably due 

to incomplete absorption of the drug. In most species, the 5-hydroxy methyl derivative is 

the major metabolite and in humans, it is predominately catalysed by CYP2C9 and 

further metabolized to 5-carboxy methyl derivative via a non CYP-dependent pathway 

(Chesne et al., 1998). The presence of a 5-hydroxy methyl derivative in the plasma likely 

indicates the involvement of CYP isoforms in the biotransformation of meloxicam. We 

were unable to structurally assign the other two metabolites detected in the koala 

plasma, although they appeared as additional hydroxyl derivatives.  

Extrapolating the dose regimen between species, especially to wild species, is commonly 

carried out due to the lack of PK studies and the difficulties in accessing sufficient 

numbers of a species not accustomed to domestication. There were a number of 

challenges at the time of the study as koalas are wild animals and listed as a ‘vulnerable’ 

species in Australia. These challenges included recruiting sufficient numbers of animals 

and undertaking an adequate sampling schedule for repeat dose groups (time points 

were reduced to minimize the stress of handling), therefore performing a pivotal study 

ideally utilizing a cross-over study, was difficult. As well potential for carryover effect 

was one of the limitations in this study, and was not controlled for in this study. Despite 

these limitations, this preliminary study demonstrated that koalas exhibit rapid Cl and 

poor oral bioavailability of meloxicam compared with dogs; accordingly, extrapolating 

current dog dose regimens of meloxicam to koalas appears inadequate for all routes of 
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administration. To achieve concentrations associated with adequate pharmacological 

response in this species, the SC route requires more frequent administration than once a 

day with a higher dose rate; however, this requires further clinical studies. We 

hypothesize rapid Cl is attributable to a superior rate of hepatic intrinsic metabolism; 

alternatively, further studies could consider the co-administration of a selective CYP 

enzyme modulator to improve sustained meloxicam concentrations; however, caution 

must be undertaken with this approach to avoid jeopardizing the metabolism of the 

naturally occurring toxic dietary constituents. This study also highlights the importance 

of performing in-vivo studies to understand the PK of drugs specific to the species of 

interest, to design efficacious dose regimens. 
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Chapter 4 
 

In-vitro hepatic microsomal metabolism of 

meloxicam in koalas (Phascolarctos cinereus), 

brushtail possums (Trichosurus vulpecula), 

ringtail possums (Pseudocheirus peregrinus), 

rats (Rattus norvegicus) and dogs (Canis lupus 

familiaris) 

 

 

The following chapter is modified from the original article: 

 
Kimble, B., Li, K.M., Valtchev, P., Higgins, D. P., Krockenberger, M. B., Govendir, M. 

(2014). In-vitro hepatic microsomal metabolism of meloxicam in koalas (Phascolarctos 

cinereus), brushtail possums (Trichosurus vulpecula), ringtail possums (Pseudocheirus 

peregrinus), rats (Rattus norvegicus) and dogs (Canis lupus familiaris). Comparative 

Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 161, 7-4 
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4.1.   Abstract  

Quantitative and qualitative aspects of in-vitro metabolism of the NSAID meloxicam, 

mediated via hepatic microsomes of Australian marsupials (E. specialist feeders: koalas 

and ringtail possums; E. generalist feeder: brushtail possums), rats, and dogs, are 

described. Using a substrate depletion method, hepatic in-vitro Clint was determined. 

Significantly, rates of oxidative transformation of meloxicam, likely mediated via CYP 

enzymes, were higher in marsupials compared to rats or dogs. The rank order of 

apparent in-vitro Clint was brushtail possums (n = 3) (mean: 394 μL/min/mg protein) 

> koalas (n = 6) (50 μL/min/mg protein) > ringtail possums (n = 2) (36 μL/min/mg 

protein) (with no significant difference between koalas and ringtail possums) > pooled 

rats (3.2 μL/min/mg protein) > pooled dogs (in which the rate of depletion, as calculated 

by the ratio of the substrate remaining was < 20% and too slow to determine). During 

the depletion of meloxicam, at a first-order rate constant, 5-hydroxymethyl metabolite 

(M1) was identified in the brushtail possums and the rat as the major metabolite of 

meloxicam. However, multiple hydroxyl metabolites were observed in the koala (M1, M2, 

and M3) and the ringtail possum (M1 and M3) indicating that these E. specialist feeders 

have diverse oxidation capacity to metabolize meloxicam. Using a well-stirred model, 

the apparent in-vitro Clint of meloxicam for koalas and the rat was further scaled to 

compare with published in vivo Cl. The closest in-vivo Cl prediction from in-vitro data of 

koalas was demonstrated with scaled hepatic Cl(total) (average fold error = 1.9) excluding 

unbound fractions in the blood and microsome values; whereas for rats, the in-vitro 

scaled hepatic Cl fu(blood, mic), corrected with unbound fractions in the blood and 

microsome values, provided the best prediction (fold error = 1.86). This study indicates 
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that eutherians such as rats or dogs serve as inadequate models for dosage 

extrapolation of this drug to marsupials due to differences in hepatic turnover rate. 

Furthermore, as in-vivo Cl is one of the pharmacokinetic indexes for determining 

therapeutic drug dosages, this study demonstrates the utility of in-vitro to in-vivo scaling 

as an alternative prediction method of drug Cl in koalas. 
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4.2.     Introduction 

Knowledge of PK properties of a drug, particularly Cl, is essential to estimate the dosage to 

sustain desired plasma concentration of the drug; however it is lacking for many wild and 

exotic species for which the dosage is usually extrapolated from that used for rats, dogs or 

humans (Blanshard and Bodley, 2008). In the previous chapter, it was demonstrated that 

koalas had low plasma concentration of meloxicam following oral and subcutaneous 

route administration due to an extremely rapid plasma Cl (0.44 L/h/kg) compared to other 

eutherian species such as rats (0.015 L/h/kg) (Busch et al., 1998), dogs and humans (both 

approximately 0.01 L/h/kg) (Busch et al., 1998). The rapid Cl in koalas was presumed to 

result from a superior intrinsic hepatic clearance rate (Clint), especially via oxidative 

metabolism. To confirm it, the aim of the study described in Chapter 4 was to investigate in-

vitro Clint of meloxicam in koalas, utilizing hepatic microsomes, in order to confirm the in-

vivo Cl (compared with in vitro to in vivo scaling value) and to compare koalas’ Clint with that 

of other marsupials, such as common brushtail possums and common ringtail possums. As 

rats and dogs are conventional models for in-vitro and in-vivo drug metabolism studies for 

human pre-clinical studies (Zuber et al., 2002), meloxicam in-vitro Clint for these species were 

also investigated.  
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4.3.     Materials and methods 

4.3.1.     Chemicals and materials 

Meloxicam and piroxicam (the latter used as the internal standard, [IS] for liquid 

chromatography), NADP, glucose 6-phosphate dehydrogenase and glucose 6-phosphate 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Liquid chromatography (LC) 

grade solvents were obtained from Analytical Science (Sydney, NSW, Australia).  

 

4.3.2.     Preparation of hepatic microsomes  

Hepatic microsomes from pooled Sprague Dawley male rats and from pooled male 

beagle dogs were purchased from Sigma-Aldrich (St. Louis, MO, USA; product number M 

9066) and BD Biosciences (Woburn, MA, USA; lot number 00269), respectively, and 

stored at -80 °C prior to use. Recently deceased (< 24 hrs) koalas (n = 6) were 

transported chilled to our institution where livers were quickly removed and 

microsomes extracted. Liver harvesting for brushtail possums (n = 3) and ringtail 

possums (n =2) occurred immediately after death and were transported to our 

institution in ice within 2 hrs, where microsome harvesting occurred and stored at -80 C. 

All livers were collected opportunistically from animals euthanised with pentobabitone 

by veterinarians for reasons independent of this study (such as trauma from vehicle 

strikes or feral animal attacks) and with no clinical signs, or gross organ appearance, of 

hepatic disease. Microsomes from livers were extracted and prepared according to a 

method described previously (Hill, 2001), with some modifications. Briefly, hepatic 

tissues were homogenized at 4 °C in 3 volume of a buffer containing 0.1 M Tris•Cl of pH 

7.4 with, 10 mM EDTA and 150 mM KCl. The homogenate was then separated by 
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differential centrifugation (12,500 × g for 15 min; 19,000 × g for 20 min; 105,000 × g for 

70 min) at 4 °C. The final pellet, the microsomal fraction, was subsequently washed and 

re-suspended in a buffer of 0.05 M Tris•Cl of pH 7.4 with 10 mM EDTA and 20 % glycerol. 

Aliquots (~250 µl) of microsomal fractions were stored at -80 °C. Protein concentrations 

of the microsomal fractions were determined using the Bradford assay kit (Bio-Rad, 

Hercules, CA, USA) and standardised with bovine serum albumin. 

 

4.3.3.     Microsomal experimentation   

Meloxicam (1.25 µM) was preincubated in 2 mL of 0.1 M phosphate buffer (pH 7.4) 

containing a NADPH regenerating system (1 mM NADP, 0.8 U glucose 6 phosphate 

dehydrogenase and 3 mM glucose 6 phosphate) and 3 mM MgCl2, in an open air shaking 

water bath at 37 °C for 5 min. The enzymatic reaction was then initiated by adding a 

predetermined concentration of microsomal protein (0.5 mg/mL for koalas and both 

species of possums; 1 mg/mL for rats and dogs). During the incubation, 200 µL aliquots 

were removed at time (t) = 0, 2.5, 5, 7.5 and 10 min for brushtail possums (n = 3); 0, 5, 

10, 15, 20 (koalas only) and 30 min for koalas (n = 6) and ringtail possums (n = 2); 0, 5, 

15, 30, 45 and 60 min for the rat and dog. Each extracted aliquot was mixed with 125 µL 

of ice-cold methanol (which also contained 5 µM of IS) to deactivate the reaction. The 

resultant mixture was vortexed and centrifuged at 14,000 × g for 10 min, and the 

supernatant was either stored at -80 °C or directly injected to the HPLC system for 

analysis. In addition, to determine stability of meloxicam, incubation of the drug without 

NADPH, in which the corresponding volume was substituted by buffer, was undertaken 

for time points up to and including 60 min for each species. All samples were prepared 
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and analysed in duplicate. To identify the structure of any metabolites, meloxicam 

concentrations of 1.25 µM underwent additional incubation containing a NADPH 

regenerating system with pooled hepatic microsomes of 1 mg/mL of each species for 0, 

30, and 60 min, and were analyzed by liquid chromatography-mass spectrometry (LC-

MS).  

 

4.3.4.     Microsomal binding and blood-plasma (B/P) ratio in the koala and rat 

Meloxicam (1.25 µM) was incubated with 0.5 mg/mL of pooled koala microsomes (n = 3) 

or 1 mg/mL pooled rat microsomes in 1 mL of 0.1 M phosphate buffer (pH 7.4) 

containing 3 mM MgCl2, in an open air shaking water bath at 37 °C for 30 min. The same 

mixtures without microsomal protein served as controls. After incubation, both samples 

and controls were transferred to the reservoir of the ultrafiltrate device (10 kDa) 

(Millipore, Billerica, MA) and centrifuged (1500 x g) for 15 min at 37 °C. Upon 

completion, the filtrate portion was analyzed via HPLC. The filtrate portion of the control 

was used for determination of recovery of meloxicam which was ~65 %. All 

experimentation was in triplicate. The unbound fraction of microsomes, fu (mic), was 

expressed as concentration ratio between samples vs control (C sample / C control).    

 
For koalas, the meloxicam B/P ratio was determined according to method previously 

described (Yu et al., 2005). Briefly, final concentrations of 0.1 and 0.2 µg/mL of 

meloxicam (comparable to the Cmax obtained from Chapter 3) were added to 1 mL of 

fresh pooled whole blood of koalas (n = 2) and incubated at 37 °C for 0, 10, 30, and 60 

min. After incubation, the plasma was separated from whole blood and concentrations 
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of meloxicam in the separated plasma were measured (Cp). Prior to the assay, the 

hematocrit (Hct) value of the koala blood was determined with an automated 

hematology analyzer, Sysmex XT-2000i (Kobe, Japan) by an accredited veterinary 

pathology lab. For a control that represented the whole blood concentration (ref Cp) the 

same concentration of meloxicam (0.1 and 0.2 µg/mL) was added to 1 mL of blank koala 

plasma and incubated at 37 °C for 0, 10, 30, and 60 min. The B/P ratio was determined 

by ref Cp/Cp. In addition, the theoretical B/P ratio was calculated in koalas using 

following equation:  

 
B/P = 1 + Hct × (fu (plasma) – 1) 

 

where fu (plasma) is the unbound fraction in the plasma which is 0.0183 in koalas (Chapter 

3) As < 10 % of meloxicam is recognized to penetrate rat red blood cells (Busch et al., 

1998), the B/P ratio was calculated from above equation. Hct value and fu (plasma) used for 

rats were 0.46 L/L (Zou et al., 2012) and ~0.004 (Busch et al., 1998), respectively.  

 

4.3.5.     Calculations 

The Clint was estimated by the substrate depletion method using in-vitro t1/2 approach 

(Obach, 1999). Briefly, using the peak ratio of meloxicam/IS at t = 0 as 100 % of 

substrate, the peak ratio of the other time points were converted to a percentage of the 

substrate remaining, plotted as natural log of remaining drug vs. incubation time and the 

slope of the regression line, represented as rate of constant (-k), was used for estimation 

of the in vitro t1/2 by the following equation: in vitro t1/2 = -0.693 / k. Subsequently, in-
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vitro Clint was calculated by following formula: (0.693 / in vitro t1/2) × (µL incubation 

volume/mg protein). In-vitro Clint was further estimated to in vitro Clintʹ based on kg per 

body weight (b.w.) using following equation: 

 
In vitro Clintʹ = in vitro Clint × mg protein/g liver × g liver/kg b.w. 

 

The standard value of 45 mg protein/g liver was used for all species (Laufer et al., 2009). 

For the rat and brushtail possums, reference values used for g liver/kg b.w. were 40 

(Davies and Morris, 1993) and 30.5 (McManus and Ilett, 1977), respectively. 

Allometrically scaled values [Liver weight = 0.0370 (b.w.) 0.849] (Boxenbaum, 1979) were 

used for g liver/kg b.w. for koalas (28.37) and ringtail possums (39.39), respectively. 

Based on the well stirred model (Gillette, 1971), the hepatic Cl was predicted with total 

drug concentration and unbound drug concentration in the blood, using following 

equation: 

 
1) Cl (total) = (Q × in-vitro Clintʹ) / (Q + in-vitro Clintʹ) 

2) Cl fu (blood) = (Q × fu (blood) × in-vitro Clintʹ) / (Q + fu (blood) × in-vitro Clintʹ) 

3) Cl fu (blood, mic) = [Q × fu (blood) × (in-vitro Clintʹ / fu (mic))] / [Q + fu (blood) × (in-vitro Clintʹ / fu 

(mic))] 

 

where Q is hepatic blood flow and fu (blood) is unbound fraction in the blood. Equation 2 

and 3 were applied to koalas and the rat only in which fu (blood) was calculated from fu 

(plasma) / (B/P). Reference values for hepatic blood flow (mL/min/kg) in rat and brushtail 

possum are 55.2 (Davies and Morris, 1993) and 42.5, respectively (McDonald and Than, 
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1976). Interspecies, hepatic flow is correlated with b.w. according to following 

relationship [Q = 0.0554 (b.w.) 0.894] (Boxenbaum, 1979). Hepatic flow (mL/min/kg) was 

calculated accordingly for koalas (45.89) and ringtail possums (56.88), respectively. For 

the koala and rat, where plasma Cl is available, accuracies of predicted values were 

estimated by following equation, in which actual blood Cl was calculated from plasma Cl 

/ (B/P). 

 
Average fold error = 10 {∑ log │ (hepatic Cl (predicted) / blood Cl) │} / n 

 

Accordingly, average fold error value of ≤ 2 was considered as satisfactory prediction for 

an actual value.  

  

4.3.6.     HPLC and LC-MS  

Meloxicam and its metabolites were analyzed by HPLC-UV or LC-MS as described 

previous Chapters (Chapter 2, Section 2.3.2; Chapter 3, Section 3.3.4).     

 

4.3.7.     Data analysis   

A one-way ANOVA was used for the comparison of in-vitro Clint and in-vivo Cl (predicted) 

among different species. Multiple comparisons were then performed using the Tukey-

Kramer post hoc test. Results were considered statistically significant at p < 0.05.  
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4.4.     Results       

The plot of meloxicam depletion (expressed as natural log percentage of substrate 

remaining) vs. incubation time for each species, except for dogs, is presented in Figure 

4.1. 

 

Figure 4.1) Meloxicam depletion concentration (expressed as log substrate remaining) 

vs. incubation time between species; microsome concentration of 0.5 mg/mL for 

possums and koalas, and 1 mg/mL for rat (pooled) incubated with 1.25 µM of 

meloxicam; individual samples and pooled rats were average of duplicates; SEM: 

standard error; r2 values of the depletion slopes were within the range of 0.971 - 0.999 

 

Meloxicam was stable and no associated metabolites were observed in any incubation 

mixture that lacked either the NADPH-regenerating system or microsomes. In 

conjunction with final concentrations of both meloxicam (1.25 µM) and microsomes, the 

period of incubation determined for each species was based on the linearity of the slope 
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(r2 values were within the range of 0.971 - 0.999). In all species except the dog, the 

substrate depleted at the final incubation times were approximately equal to, or greater 

than 20 % of the initial value (at t = 0 min). The rank order of in vitro Clint of meloxicam 

between species was brushtail possums > koalas > ringtail possums > rat, as shown in 

Table 4.1.  

 
Table 4.1) In-vitro t1/2 values and in-vitro intrinsic clearances (mean ± SD) of meloxicam 

in investigated species. 

Species m.c. In-vitro t1/2 In-vitro Clint In-vitro Clintʹ 

 
mg/mL min µL/min/protein mg mL/min/kg 

          
Koalas  0.5 38 ± 15 50 ± 41 63 ± 53 
(n = 6) 

    
     Brushtail 

possums  0.5 3.9 ± 1.5 394 ± 168 540 ± 231 
(n = 3) 

    
     Ringtail 

possums  0.5 39 ± 5 36 ± 5 62 ± 9 
(n = 2) 

    
     Rat (pooled) a 1 217 ± 19 3.2 ± 0.3 5.8 ± 0.5 

     Dog (pooled) 1 n.d. n.d. n.d. 
          

 

m.c., microsomal protein concentration; a for rat, mean ± SD values represent duplicated 

determination from the pooled microsomes; n.d., not determined.  

 

The in-vitro Clint was extremely high in marsupials: ~10 fold (koalas and ringtail 

possums) and ~100 fold (brushtail possums) higher, compared to the rat. Within 

marsupials, brushtail possums exhibited highest activity, ~8 to 11 fold higher than 
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koalas and ringtail possums (p < 0.01 for both), and no significant difference was 

observed between koalas and ringtail possums.  

 
The metabolites generated during the substrate depletion experiment for each species 

are demonstrated in HPLC-UV chromatograms (Figure 4.2). Based on the condition 

used for HPLC analysis metabolite M1 was produced in all species studied excepting the 

dog, which was excluded. M1 was generated in brushtail possums and the rat during 10 

min and 60 min of incubation, respectively. Additional metabolites were also observed 

in ringtail possums (M3) and koalas (M2 and M3) at 30 min of incubation. 
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Figure 4.2) Typical HPLC-UV chromatograms, monitored at wavelength of 355 nm, 

representing metabolites (M1, M2, and M3) generated during substrate depletion 

experiment for investigated species; A) rats (pooled) 0-60 min; B) brushtail possums 0-

10 min; C) ringtail possums 0-30 min; D) koalas 0-30 min.  

 

Molecular characteristics of metabolites (M1, M2, and M3), described by ESI+ extracted 

ion chromatogram, are depicted in Figure 4.3. Protonated molecular mass [M + H] + of 

M1, M2 and M3 were all m/z 368 indicating they are hydroxylated metabolites. 
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Figure 4.3) ESI+ extracted (m/z of 352 and 368) ion chromatograms of metabolites (M1, 

M2, and M3) of meloxicam (1.25 µM) generated in microsomes (1 mg/mL) of marsupials 

incubated for 30 min; A) koalas; B) brushtail possums; C) ringtail possums 

 

The major fragments of meloxicam standard and M1 were [M + H] + m/z of (115) and 

(131), respectively (Figure 4.4); indicating the addition of an oxygen atom on the 

methyl-thiazole moiety of the meloxicam to form 5-hydroxymethyl metabolite (M1). The 

exact location of oxidation of metabolites M2 and M3 were unable to be assigned in this 

study; however ion fragments of [M + H] + 115 observed from both metabolites suggests 

that the oxidation occurred at other than the thiazole moiety.   
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Figure 4.4) In-source CID spectra of meloxicam and its associated metabolites (M1, M2, 

and M3); fragmentation, [M + H] + m/z of 131, suggestion of 5-hydroxymethyl metabolite 

for M1 in ESI+ 

 

Scaled hepatic Cl from in-vitro data is provided in Table 4.2. Koalas and ringtail possums 

had comparable scaled hepatic Cl (total) values, which were ~1.5 fold less than brushtail 

possums but ~5 fold higher than the rat. The fu (mic) determined in koalas and rats (mean 
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± SD) were 0.39 ± 0.05 and 0.17 ± 0.01, respectively. The Hct value determined from 

koala blood was 0.41 (L/L). The mean ± S.D. B/P ratio observed from the 

experimentation in koalas was 0.62 ± 0.11. Subsequently, determined B/P ratio values 

from plasma protein binding in koalas and rats were 0.60 and 0.54, respectively.  

 
Table 4.2) Predicted hepatic Cl (mL/min/kg) values (mean ± SD) for each species 

(except dog) predicted from in-vitro data based on the well stirred model with, and 

without the unbound fraction in the blood.  

Species Actual  
 

Predicted     

  Blood Cl b Cl (total) Cl fu (blood) Cl fu (blood, mic) 

Koalas  
     (n = 6) 12.22 24.2 ± 6.3 1.84 ± 1.4 4.29 ± 3.04 

 (fold error) 
 

1.9 8 3.3 
 Brushtail 

possums  n.a 39.1 ± 1.2 n.d n.d 
 (n = 3) 

     Ringtail 
possums  n.a. 29.6 ± 2 n.d. n.d 

 (n = 2) 
     Rat (pooled) a 0.46 5.2 ± 0.4 0.043± 0.004 0.24 ± 0.02 

 (fold error) 
 

11.3 10.7 1.86 
  

a for rat, mean ± SD values represent duplicated determination from the pooled 

microsomes; b blood Cl was calculated by plasma Cl / (B/P); plasma Cl (mL/min/kg) for 

the koala and rat is 7.33 (determined from Chapter 3) and 0.15 (Busch et al., 1998), 

respectively, where estimated (B/P), described in the material and method, for the koala 

and rat is 0.60 and 0.54, respectively; n.d., not determined; n.a., not available.  
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4.5.    Discussion 

This study demonstrated that the NADPH-dependent in-vitro hepatic microsomal 

metabolism of meloxicam differed, quantitatively and / or qualitatively, between species. 

Quantitatively, significantly higher apparent in-vitro Clint was observed in the foliage 

eating marsupials (koalas and possums) indicating that these species have a higher 

intrinsic hepatic rate to clear meloxicam. Qualitatively, while the formation of M1, as a 

single hydroxyl metabolite, was observed in the rat and brushtail possums during the 

initial depletion of meloxicam, additional hydroxyl metabolites were observed in koalas 

(M2 and M3) and in ringtail possums (M3) including M1. Furthermore, the results of this 

in-vitro study confirmed a previous observation (Chapter 3) of significantly higher 

plasma Cl of meloxicam in koalas compared to a number of eutherian species such as 

rats and dogs. 

 
In this study, the overall in-vitro Clint was estimated using the substrate depletion 

method (Obach, 1999b) rather than the product formation method (Rane et al., 1977a) 

as there were multiple metabolic pathways involved for Cl of meloxicam in koalas and 

ringtail possums. Preliminary studies to determine the conditions for meloxicam 

depletion were performed to establish that a substrate concentration of 1.25 uM was < 

Km (Michaelis - Menten constant) and that the rate of depletion was linear (representing 

a first order rate constant) (Appendex 1). The conditions were futher optimised with 

respect to protein concentrations and incubations for each species except for the dog 

(data not shown). Under these conditions, the depletion of meloxicam by dog 
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microsomes was insufficient (< 20 %); therefore in-vitro Clint was not estimated in this 

species.  

 
The observation of the oxidative transformation of meloxicam, whereby 5-

hydroxymethylation was a common metabolic pathway among the species studied, is 

consistent with previous reports for other species (Schmid et al., 1995a, Schmid et al., 

1995b, Busch et al., 1998). In those studies, the oxidation of meloxicam is reported to be 

qualitatively similar between species, including rats and humans, and is the principle 

metabolic pathway by which the predominant metabolites produced are M1 and a 5-

carboxylated metabolite. In another in-vitro study using human microsomes, hepatic 

CYPs, particularly CYP2C9, was demonstrated to catalyze meloxicam to the intermediate 

metabolite, M1, prior to undergoing further non-CYP dependent carboxylation (Chesne 

et al., 1998). We speculate that CYP2C mediated activity may contribute to the high 

apparent in-vitro Clint of meloxicam observed in marsupials, particularly for brushtail 

possums, and at least partly for koalas and ringtail possums, as demonstrated by 

relatively higher production of M1 in marsupials (Figure 4.2). These findings are 

consistent with another study that demonstrated enhanced CYP2C mediated 

metabolism, using tolbutamide as a substrate for CYP2C, in marsupials (koalas and 

brushtail possums) compared to eutherian species, including rats and humans (Pass et 

al., 2001). The in-vitro Clint of meloxicam in rats (3.2  0.3 µL/min/mg microsomal 

protein) was slightly higher than the in-vitro Clint (2.7) resulting from human hepatic 

microsomes (Obach et al., 2008), which is consistent with the pattern seen for plasma Cl 

(L/h/kg) in rats and humans (0.015 and 0.01, respectively) (Busch et al., 1998). As many 
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drug dosages used clinically in marsupials are the same as those used for dogs, the 

apparent slow rate of canine microsome activity was of interest. It is possible that 

shipping and/or conditions during the transportation of the microsomes may have been 

responsible for inactivity of these microsomes. However the canine microsomes were 

received on dry ice and kept in -80 °C prior to all experimentation and they were 

functional (producing 5-hydroxymethyl metabolite) when incubated with significantly 

higher doses of meloxicam. The authors hypothesize that inactivity of the canine hepatic 

microsome may be due to relative low affinity (Km) and low Vmax for meloxicam. Other 

studies also support low CYP2C mediated activity in dog microsomes (Chauret et al., 

1997, Graham et al., 2003).      

 
The finding that the in-vitro Clint of meloxicam in koalas was less than that of brushtail 

possums, contrasts with previous findings that koalas demonstrate higher tolbutamide 

hydroxylation than brushtail possums, respectively (Pass et al., 2001). In this study, it 

was not feasible to compare CYP2C-like activity (if it is involved in the production of M1), 

between brushtail possums and koalas, as meloxicam undergoes multiple hydroxylation 

in koalas. Studies have indicated that variation in CYP isoforms influence the substrate 

affinity and subsequently alter the Clint of drugs, particularly for CYP dependent drugs 

(Guengerich, 1997). Thus, although  tolbutamide hydroxylation is higher in koalas (Pass 

et al., 2001), it is possible that CYP2C mediated meloxicam oxidation (production of M1) 

could be lower in brushtail possums due to differences in their CYP isoforms (Jones et al., 

2008, Pass et al., 1999).  
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Subsequently, differences in CYP isoforms and their activity may also account for the 

multiple hydroxylation pathways observed in koalas (M2 and M3) and ringtail possums 

(M3), suggesting that these species have diverse oxidation capacities for Clint of 

meloxicam. Studies have indicated that specialist E. feeders such as the koala and, to a 

slightly lesser extent, ringtail possums, have a greater capacity to oxidize (and detoxify) 

dietary terpene, compared to generalist E. feeders, such as brushtail possums, or rats 

(Boyle et al., 2001); although this is not necessarily as a result of higher Clint (Pass et al., 

2001, Pass et al., 2002). It has been suggested that the specialist E. feeders rely on a 

strategy of poly-oxidation in order to avoid the conjugation phase, to conserve energy 

consumption (McLean et al., 2003, Foley and Moore, 2005).  

 
Since it has been previously described that meloxicam is extensively metabolised in the 

liver in all species studied (Schmid et al., 1995a, Schmid et al., 1995b, Busch et al., 1998), 

we predicted hepatic Cl from scaling the in-vitro Clint with or without binding effects to 

plasma proteins and microsomes, and then compared with the in-vivo Cl reported 

previously for koalas and rats. In this study, the closest projection of in-vivo Cl for rats 

was demonstrated with scaled hepatic Cl fu (blood, mic), which includes binding effects from 

both plasma protein and microsomes (fold error = 1.86). On the other hand, hepatic Cl 

(total) (mL/min/kg) in koalas of 24.2 ± 6.3 was best correlated to in-vivo Cl (12.22 

mL/min/kg) (average fold error = 1.9). One possible explanation for this difference is 

that Cl of a low extraction drug (such as meloxicam) is generally more dependent on 

plasma protein binding, but due to the relatively high in-vitro Clint in koalas compared to 

the rat, is likely to result in underestimation of actual in vivo Cl when incorporating 
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values of plasma protein binding (and/or microsomes). However in the koala Cl fu (blood, 

mic) also reasonably predicted in-vivo clearance and whether Cl fu (blood, mic) or Cl (total) should 

be used to predict in-vivo clearance in humans is controversial (Obach, 1999). It is also 

acknowledged that some scaling factors for koalas were not available and were 

estimated by allometric scaling and could be a source of potential error.  

 
Previously, we have demonstrated higher plasma Cl in koalas accompanied by the 

formation of multiple hydroxylated metabolites (M1, M2 and M3) after intravenous and 

subcutaneous administration of meloxicam, and accordingly, involvement of hepatic 

metabolism was hypothesised. The current findings confirm that diverse oxidation of 

meloxicam occurring within in the liver, likely via CYPs in koalas, further supports in-

vitro to in-vivo scaling. In possums, estimated hepatic Cl (total) was appeared to be higher 

than that of koalas and while meloxicam is anecdotally reported as being widely used in 

possums, the results of this study indicate that extrapolating the dosage of meloxicam 

from investigated eutherians is likely inadequate, due to significant differences in Clint., 

to achieve similar plasma concentrations. However, both further PK and PD studies are 

required to confirm this statement. For drugs undergo hepatic (and/or intestinal) 

metabolism, Cl is an important determinant of drug bioavailability and thus influences 

the dosage required to meet therapeutic concentrations. This study demonstrates the 

potential pitfalls of predicting therapeutic dosages without species specific 

pharmacokinetic studies. For many wild-life species such as koalas, conducting 

pharmacokinetic studies are an intensive and invasive procedure in a species that is 

generally not accustomed to regular handling. However relative in-vitro clearance can be 
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beneficial is assessing similarities and differences in rates and metabolism. Thus, 

establishing that there is good correlation between in-vitro and in-vitro Cl to predict 

drug PK profiles, demonstrates that in-vitro metabolism studies can serve as valuable 

pre in-vivo studies.    
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Chapter 5 
 

Stability of human CYP2C9 substrates in the 

hepatic microsomes of the koala, brushtail 

possum, ringtail possum and rat: a preliminary 

study  
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5.1.     Introduction 

The catalytic activity mediated via CYP2C enzymes, particularly CYP2C9, is considered 

an important metabolic pathway for drug elimination in humans (Rettie and Jones, 

2005). It is reported that approximately 15 % of therapeutic drugs that undergo phase-1 

metabolism are catalysed by CYP2C9 in humans (Evans and Relling, 1999). Drugs 

metabolised in humans by CYP2C9 include many  weakly acidic drugs that have a pKa 

range between 3.8 to 8.1 (Miners and Birkett, 1998), such as NSAIDs (Rodrigues, 2005), 

and some narrow therapeutic index drugs such as tolbutamide and warfarin (Rettie and 

Jones, 2005). Species differences in the catalytic activities of hepatic CYP enzymes, 

particularly CYP2C-like activities, have been demonstrated by several studies (Smith, 

1991, Lin, 1995), and consequently there are differences between the rate of drug 

metabolism between species (Guengerich, 1997). While it is common that dosages are 

extrapolated from conventional veterinary species to others, such as exotic and wild 

animals, it is important to take the variability of disposition, especially the rate of drug 

elimination into account, when selecting a NSAID and optimising its dosage for a 

particular species. The previous chapters report the rapid plasma Cl of meloxicam in 

koalas, brushtail and ringtail possums. And a higher rate of metabolic conversion (in 

vitro Clint) by koala hepatic microsomes, compared to those of rats or dogs (at least > 15 

fold). This observation further confirms that a single bolus of the drug is likely to be 

metabolised too rapidly to be administered on a once daily basis in this species. As the in 

vitro Clint of meloxicam is primarily metabolised via CYP2C9 in humans (Chesne et al., 

1998), it was of interest to investigate whether a similar biotransformation pathway of 

NSAIDs was occurring in marsupials by exploring the rate of metabolism of known 
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human CYP2C9 substrates. Therefore the aims of this study were to investigate the 

stability of CYP2C9 substrates (particularly weakly acidic NSAIDs) in the hepatic 

microsomes of marsupials [specialist E. feeders (koala and ringtail possum) vs. a 

generalist E. feeder (brushtail possum)]. This in vitro study was designed as a 

preliminary screen to identify the most ideal NSAID candidate for further 

pharmacokinetic in vivo studies in marsupials. In addition, rat hepatic microsomes were 

used as a control and a comparison between the marsupials and a representative 

eutherian species. 

 

5.2.     Materials and Methods  
 
5.2.1.     Chemicals 

The NSAIDs diclofenac, flurbiprofen, indomethacin, meloxicam and other CYP2C9 

substrates: tolbutamide and fluvastatin were purchased from Sigma-Aldrich (Castle Hill, 

NSW, Australia). Ethyl acetate was purchased from Thermo Fisher Scientific (Scoresby, 

VIC, Australia). The origin of all other chemicals and rat pooled hepatic microsomes, 

used in this study, are described in Chapter 4, Section 4.3.1.  

 

5.2.2.     Preparation of hepatic microsomes  

The details of microsomes extraction and preparation from the liver tissues of the koala 

and both possum species are described in Chapter 4, Section 4.3.2.  
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5.2.3.     Microsomal experimentation  

Microsomes, 0.5 mg/mL for the koala and both possum species (n = 1 of each species); 1 

mg/mL for the rat (pooled microsomes), were preincubated in 0.5 mL of 0.1 M 

phosphate buffer (pH 7.4) containing a NADPH regenerating system (1 mM NADP, 0.8 U 

glucose 6 phosphate dehydrogenase and 3 mM glucose 6 phosphate) and 3 mM MgCl2, in 

an open air shaking water bath at 37 °C for 5 min. After preincubation, the enzymatic 

reaction was initiated by adding 1 µM of substrate (dissolved in MeCN); and for rat, an 

additional substrate concentration of 4 µM was also used. The percentages of organic 

solvent in the resultant mixture were less than 0.1 %. At (t) = 0 min and after the 

incubation time designated for each species (rat = 15 min; koala and possums = 10 min 

for all drugs), a 200 µL of aliquot was removed and mixed with 100 µL of iced cold MeCN 

which contained IS (2 µM) specific to the substrate (as documented in Table 5.1) to 

deactivate the enzymatic reaction. The resultant mixture was vortexed and centrifuged 

at 14,000 × g for 10 min. After that, the supernatant was extracted with 1 mL 

ethylacetate and dried under vacuum in a Speed Vac concentrator (Thermo Scientific, 

USA) at 35 °C for 1 h. The dried residue was reconstituted in 90 µL of mobile phase and 

10 µL was injected into HPLC system. The extraction recovery for each of the drugs (0.25, 

0.5, 0.75 and 1 µM) were investigated in triplicate, and absolute recoveries were > 80%, 

except for fluvastatin (67 %), and the precision (C.V.) for all drugs was < 10 %. The drug 

concentration extraction was linear along the range of investigated concentrations (r2 > 

0.998). In addition, 10 µM of flurbiprofen was incubated with hepatic microsomes (1 

mg/mL) of the koala and brushtail possum for 10 min.  
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Table 5.1) Internal standards used for microsomal experimentation 

Substrate (1 µM) Internal standard (2 µM) 

Meloxicam Piroxicam 

Flurbiprofen Meloxicam (marsupials); Diclofenac (rat) 

Diclofenac Meloxicam (marsupials); Indomethacin (rat) 

Fluvastatin Meloxicam (marsupials); Flurbiprofen (rat) 

Indomethacin Meloxicam (marsupials); Diclofenac (rat) 

Tolbutamide Meloxicam (marsupials); Flurbiprofen (rat) 

 

5.2.4.     Calculation 

To estimate the stability of a drug, the percentage of the peak area of drug that 

disappeared during the incubation (expressed as turnover rate), between (t) = 0 min (C0) 

and (t) = incubation time (min) designated for each species (Cx), was used (Hill, 2001):  

 
Turnover rate (%) = [100 - (Cx / C0)] × 100 

 
Additionally, turnover rates of drugs were converted into in vitro Clint (described in 

Chapter 4, Section 4.3.5) using the single time point (Cx), in which the percentage of 

substrate remaining, was calculated from the peak area ratio of Cx/C0 × 100.   

 

5.2.5.     HPLC analysis  

The details of HPLC-PDA system are described in Chapter 2, Section 2.3.2. The column 

used was a Synergy MAX-RP-80A (4µ, 150 × 4.6 mm) (Phenomenex, Torrance, CA, USA) 

with a 1 mm Optic-guard C-18 pre-column (Optimize Technologies, Alpha Resources, 

Thornleigh, Australia), and the column oven temperature at 35 °C. The mobile phase 

used was 52.5 % MeCN containing 0.1 % of formic acid and the flow rate was 1 mL/min. 
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The specific UV wavelengths used for target drugs were: 355 nm (meloxicam), 245 nm 

(flurbiprofen), 276 nm (diclofenac), 318 nm (indomethacin), 228 nm (tolbutamide), and 

304 nm (fluvastatin). Except for fluvastatin due to the lack of UV sensitivity, the contour 

plot (HPLC-UV) was used to compare the possible metabolites of diclofenac, flurbiprofen, 

indomethacin, meloxicam and tolbutamide; of which, samples of before and after the 

microsomal incubation at the concentrations of 1 µM for marsupials and 1 µM and 4 µM 

for the rat were used. Additionally, metabolites of flurbiprofen (10 µM) incubated with 

microsomes of the koala and brushtail possums were also screened at 270 nm.  

 

5.3.   Results  

The in-vitro Clint of human CYP2C9 substrates investigated in this study, including 

NSAIDs, determined by the hepatic microsomes of rat (pooled) vs. E. feeders (estimated 

by the depletion method using a single incubation time point) is presented in Figure 5.1. 

For marsupials, in-vitro Clint of several substrates [diclofenac, flurbiprofen and 

meloxicam (in the case of brushtail possum)] were not determined accurately (e.g. in-

vitro Clint  350 µL/min/mg protein was not measured) as these substrates were 

completely depleted before 10 min of microsomal incubation.  

 
The pattern of turnover rates on investigated CYP2C9 substrates in these marsupials 

and rat are presented in Figure 5.2. A similar pattern of turnover rates on these CYP2C9 

substrates was demonstrated between specialist E. feeders (the koala and ringtail 

possum) and a higher turnover rate of tolbutamide was a typical characteristic in these 
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species compared to the generalist E. feeder (the brushtail possum); whereby the 

brushtail possum had a highest turnover rate of meloxicam.  

 

 

Figure 5.1) In-vitro Clint of CYP2C9 substrates determined from the hepatic microsomes 

of the rat (pooled) and E. feeders (n = 1, each species); numbers indicate in-vitro Clint 

(µl/min/mg protein) estimated from single time point; n.d. (not determined): as the 

depletion of substrates was extremely fast, and the in-vitro Clint (at least > 350 

µl/min/mg protein) was not determined.  
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A 

 

B 

Figure 5.2) Patterns of turnover rates on investigated CYP2C9 substrates determined 

from hepatic microsomes of specialist E. feeders (n = 1, each species) (A) and generalist 

E. feeder (n = 1) (B) compared with the rat; the number indicate % of turnover rate (e.g. 

100 % indicates substrate has totally depleted with designated microsomal condition).  
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Possible metabolites of CYP2C9 substrates (diclofenac, flurbiprofen, indomethacin and 

tolbutamide), at substrate concentrations of 1 µM for E. feeders and 4 µM for the rat 

before and after microsomal incubation, are presented in Figures 5.3 to 5.6. The 

resultant metabolites of these substrates, except for flurbiprofen and meloxicam, were 

similar between the species. A single peak (λmax = 258 nm) (FbM1), eluted at 3.02 min, 

was determined as the major product when rat microsomes were incubated with both 1 

and 4 µM of flurbiprofen. At the substrate concentration of 1µM, FbM1 was observed in 

both the koala and ringtail possum and an additional peak (λ = 258 nm) (FbM2) was 

observed at retention time of 2.25 min in the koala (Figure 5.3). In contrast, FbM1 was 

not detected in the brushtail possum with 1µM, instead a peak (λmax = 261 nm) (FbM3) 

eluted at 2.36 min was the major product (Figure 5.3). However, at a higher substrate 

concentration (10 µM), the major product in both the brushtail possum and koala was 

FbM1 (Figure 5.7).   
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Figure 5.3) HPLC contour plot (UV scanned range: 200 to 300 nm) of flurbiprofen and 

its metabolite(s) before and after the microsomal incubation; 0.5 mg/mL and 1 mg/mL 

of microsomal concentrations were used for E. feeders and the rat, respectively; A: 

typical t = 0 (brushtail possum); B: t = 10 min (brushtail possum); C: t = 10 (ringtail 

possum); D: t = 10 min (koala); E: t = 15 min (rat). Substrate concentrations were 1 µM 

for E. feeders and 4 µM for the rat. 
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Figure 5.4) HPLC contour plot of diclofenac and its metabolite(s) before and after the 

microsomal incubation; 0.5 mg/mL and 1 mg/mL of microsomal concentrations were 

used for E. feeders and the rat, respectively; A: typical t = 0 (brushtail possum); B: t = 5 

min (brushtail possum); C: t = 5 min (ringtail possum); D: t = 5 min (koala); E: t = 15 min 

(rat). Substrate concentrations were 1 µM for E. feeders and 4 µM for the rat. 
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Figure 5.5) HPLC contour plot (UV scanned range: 200 – 400 nm) of indomethacin and 

its metabolite(s) before and after the microsomal incubation; 0.5 mg/mL and 1 mg/mL 

of microsomal concentrations were used for E. feeders and the rat, respectively; A: 

typical t = 0 (brushtail possum); B: t = 10 min (brushtail possum); C: t = 10 min (ringtail 

possum); D: t = 10 min (koala); E: t = 15 min (rat). Substrate concentrations were 1 µM 

for E. feeders and 4 µM for the rat. 



147 

 

 

 

 

 

 

Figure 5.6) HPLC contour plot (UV scanned range: 200 – 300 nm) of tolbutamide and its 

metabolite(s) before and after the microsomal incubation; 0.5 mg/mL and 1 mg/mL of 

microsomal concentrations were used for E. feeders and the rat, respectively; A: typical t 

= 0 (koala); B: t = 10 min (brushtail possum); C: t = 10 min (ringtail possum); D: t = 10 

min (koala); E: t = 15 min (rat). Substrate concentrations were 1 µM for E. feeders and 4 

µM for the rat. 
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Figure 5.7) HPLC-UV (λ = 245 nm) chromatograms on possible metabolite of 

flurbiprofen, after incubating flurbiprofen (10 µM) with 1 mg/mL of microsomes of 

brushtail possum (A) and koala (B) for 10 min. Retention time of the major metabolite 

(FbM1) was approximately 3.02 min for both the koala and brushtail possum.  

 

5.4.   Discussion  

In humans, the CYP2C subfamily, particularly CYP2C9 isoenzymes, tend to have a high 

selectivity for weakly acidic compounds such as NSAIDs (Lewis et al., 2004). While those 

hepatic CYP isoenzymes specifically involved in the degradation of these CYP2C9 

substrates in marsupials are currently unknown; this study utilised hepatic microsomes, 
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which consist of a variety of CYP isoenzymes, to characterise the stability of different 

human CYP2C9 substrates.  

 
The apparent in-vitro Clint of CYP2C9 substrates (diclofenac and tolbutamide), 

determined from the depletion approach, in the rat (Figure 5.1) were comparable to 

that documented previously (diclofenac: 110 µl/min/mg protein; tolbutamide: 6.8 

µl/min/mg protein) (Ito and Houston, 2004). In this study the in-vitro Clint of diclofenac, 

flurbiprofen and meloxicam (brushtail possum only) were not determined in E. feeders 

as the NSAIDs were rapidly depleted even with relatively lower microsomal 

concentrations (0.5 mg/mL vs. 1 mg/mL: rat) and shorter incubation times (10 min vs. 

15 min: rat) (Figure 5.1). Ideally, determination of the optimal conditions for 

microsomal experimentation (such as microsome concentration and incubation time) 

are required (as demonstrated in the previous chapter) to measure the rate of initial 

depletion and to facilitate accurate calculation of in-vitro Clint. Such optimisation was not 

undertaken here; instead this preliminary study compared metabolic turnover, which by 

measuring percentage of substrate depletion, of different human CYP2C9 substrates 

between E. feeders under identical microsomal experimental conditions (e.g. substrate 

concentration: 1µM; microsomal protein 0.5 mg/mL; incubation time: 10 min). 

Therefore further study is necessary to confirm actual in-vitro Clint of NSAIDs in these 

species. Moreover, the metabolic mechanism of substrate depletion, e.g. whether due to 

the selectivity of CYP isoenzymes (Km: Michaelis-Menten constant) or CYP content (Vmax), 

was not determined by this study.  
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Despite that the in-vitro Clint of investigated CYP2C9 substrates was not accurately 

determined, nor available, the results indicate that these weakly acidic NSAIDs are 

generally not stable in the hepatic microsomes of E. feeders compared to the rat. As 

many NSAIDs are frequently used to minimise inflammation or provide analgesia in 

koalas and other marsupials (de Kauwe et al., 2014), this in-vitro result has clinical 

implications. Accordingly, it demonstrates that many weakly acidic NSAIDs, except for 

indomethacin, are unlikely to have pharmacokinetic applicability due to rapid hepatic 

Clint, thus resulting in a faster Cl and shorter t1/2, in these species. This result is 

supported by a previous study where tolbutamide hydroxylase activity (a common 

CYP2C9 marker) in the koala and brushtail possum was considerably more active than 

in the rat (or human) (Liapis et al., 2000) and also exemplified by the rapid 5-hydroxy-

methylation of meloxicam in E. feeders, as described in the previous chapter of thesis, 

and this pathway is recognised to be metabolised by CYP2C9 in humans (Chesne et al., 

1998).           

 
In contrast to the other weakly acidic NSAIDs, there was relatively less difference in the 

in-vitro Clint of indomethacin between the rat and the specialist E. feeders 

[approximately two fold (ringtail possum) and three fold (koala) differences compared 

to the rat], whereas a similar in-vitro Clint in the brushtail possum vs. rat (10.4 vs. 11.8 

µl/min/mg protein, respectively), was demonstrated. Indomethacin is an indole acetic 

derivative (pKa of 4.5) where CYP2C9-catalysed O-demethylation is the major phase-1 

metabolic pathway in the human, resulting in about 40-55 % of the drug bring 

eliminated via O-desmethylindomethacin into the urine (Nakajima et al., 1998), and the 
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plasma half life of indomethacin, after the oral administration, is reportedly 2 and 4 hr in 

human and rat, respectively (Hucker et al., 1966). For opossums (Didelphis virginiana), a 

generalist marsupial, the severity of radiation oesophagitis was significantly limited by 

indomethacin pretreatment through the inhibition of prostaglandin synthesis 

(Northway et al., 1980). Accordingly, a further PK (or disposition) study on 

indomethacin is warranted to evaluate its potential benefit on investigated marsupials. 

Moreover, as oral bioavailability of several drugs (e.g. enrofloxacin, marbofloxacin, and 

fluconazole), including meloxicam, appears poor in koalas (Griffith et al., 2010, Black et 

al., 2014), it is compelling to investigate rectally administered indomethacin as an 

alternative for oral administration for koalas and the marsupial species studied here, as 

it avoids rectal absorption bypasses hepatic first pass metabolism.   

 
Although the percentage of substrate depletion of most CYP2C9 substrates was 

relatively similar between all E. feeders, a significantly higher turnover rate of 

tolbutamide was observed in the koala and ringtail possum compared to the brushtail 

possum (Figure 5.6). In contrast, meloxicam was rapidly depleted in brushtail possum. 

Consequently this study demonstrated that the patterns of depletion on the CYP2C9 

substrates are different between these E. feeders (specialist vs. generalist). Tolbutamide 

is considered a low affinity substrate for CYP2C9 (Km 97-200 µM), and is thus slowly 

metabolised in humans, and other species, including rats (Chauret et al., 1997a, Liapis et 

al., 2000). A previous study reported that the in-vitro Clint of tolbutamide in the koala 

was approximately ten fold higher than the brushtail possum or rat, where it is reported 

that 1.8-cineole (a constituent of  Eucalyptus spp. foliage), induces tolbutamide 
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hydroxylation in brushtail possums (Liapis et al., 2000). Subsequently, the Vmax value for 

koalas was 5895-6403 nmol/mg per min compared to brushtail possums with a Vmax of 

1406-1484 nmol/mg per min indicating that the amount of CYP involved in tolbutamide 

hydroxylation in koalas is higher than brushtail possums (Liapis et al., 2000). Therefore, 

as the diet of both koalas and ringtail possums is almost exclusively Eucalyptus spp. 

foliage, it is possible that foliage constituents, such as 1.8- cineole, influence the rapid 

depletion of tolbutamide in these specialist E. feeders. Of course another explanation for 

the high rates of tolbutamide hydroxylation in these species could be due to differences 

in CYP isoenzymes specific for tolbutamide metabolism (Jones et al., 2008). Despite 

tolbutamide hydroxylation being considered a common probe substrate to define 

CYP2C9 activity in humans and other species, it is unlikely to fulfill this role in the 

brushtail possum.  

 
Overall, the metabolites of the CYP2C9 substrates were similar between the species, 

except for flurbiprofen (Figure 5.3) and meloxicam. Flurbiprofen (pKa = 4.14) is a 

lipophilic NSAID that belongs to the 2-arypropionic acid class (Risdall et al., 1978). It is 

reported that the major oxidative metabolite of flurbiprofen is 4-hydroxy flurbiprofen 

(FbM1), mostly metabolised by CYP2C9 in humans and CYP2C11 in rats, and can 

undergo further oxidisation into 3ʹ, 4ʹ-dioxygenated- or 3ʹ-hydroxy, 4ʹ-methoxy- 

flurbiprofen (Shimizu et al., 2003). Another study indicated that the majority of 

flurbiprofen is metabolised into FbM1 in rats (Risdall et al., 1978). Although structural 

identification of metabolites was not performed, the UV spectra of FbM1 (λmax = 258 nm, 

in MeCN) was similar to that reported previously for FbM1 which was detected in 
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methanol (MeOH) (Shimizu et al., 2003). It is therefore likely that the metabolite in the 

rat is 4-hydroxy flurbiprofen (Figure 5.3). Compared to the rat, with the substrate 

concentration of 1µM, the same metabolite was detected in marsupials, an additional 

metabolite was detected in the koala, and a different metabolite was produced in the 

brushtail possum. However, with the higher substrate concentration (10 µM), the major 

metabolite produced was similar to that of the rat in both koala and brushtail possum 

(Figure 5.8). Thus, it is possible that those metabolites detected in the koala and 

brushtail possum are further oxidised products of FbM1.  

 
This study demonstrated that degradation of NSAIDs and other CYP2C9 substrates by 

hepatic microsomes of E. feeders were generally at a greater rate than those of the rat. 

Subsequently, this study illustrates that species will affect the pharmacokinetic profile of 

xenobiotics such as NSAIDs, and the rate of metabolism must be considered with respect 

to dosage formulation. While in-vitro Clint of investigated substrates, e.g. diclofenac and 

tolbutamide, in the rat are comparable to other eutherians, such as humans or dogs 

(Nishimuta et al., 2013), this study suggests caution when extrapolating the dosage of 

CYP2C9 substrates, particularly weakly acidic NSAIDs, from eutherian species to other 

mammalian species such as marsupials. Instead, as similar metabolic patterns on 

depletion of CYP2C9 substrates were demonstrated between specialist E. feeders, this 

study speculates that exchanging drug dosages (CYP2C9 substrates) between these 

species is likely to have a more accurate outcome than those used from eutherians. Upon 

successful characterisation of general pattern of CYP2C-like activity, this study suggests 

using multiple substrates when comparing metabolic activity of CYP isoenzymes 



154 

 

between different species provides a more meaningful result compared to using a single 

CYP substrate.            

 
There are several limitations in this study. As this was a preliminary study for screening, 

this study used hepatic microsomes extracted from a single animal per species and 

percentages of substrates depleted with an identical microsomal experimentation 

condition. Subsequently, this study used a single time point (marsupials = 10 min and 

rat = 15 min) to estimate in-vitro Clint. However, despite these limitations, this study has 

demonstrated that the in-vitro microsome assay is a valuable tool as a screen to select or 

omit candidate drugs, known to undergo hepatic phase 1 metabolism, prior to more 

invasive to in-vivo clinical trials. For example, the present result suggests indomethacin 

may be a potential therapeutic drug candidate for further investigating in these 

marsupials, particularly koalas. 
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Chapter 6 
 

General discussion and future directions  
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Prior to this research, no disposition studies of meloxicam (nor any other NSAID) had 

been conducted in koalas (a E. specialist feeder) despite being readily administered to 

this species, in the field (de Kauwe et al., 2014). Compared to the studied eutherians 

such as rats (Busch et al., 1998b), dogs (Montoya et al., 2004), horses (Toutain et al., 

2004) and humans (Turck et al., 1996), the rapid in-vivo plasma Cl of meloxicam 

demonstrated in koalas (Chapters 3) was previously unknown and surprising. 

Subsequently, in order to investigate possible mechanism/s for this rapid Cl of 

meloxicam, an in-vitro hepatic microsomal metabolism model was optimised; indicating 

that meloxicam was rapidly eliminated likely via hepatic CYP mediated oxidation in 

koalas and as well as other E. feeders (Chapter 4). This study further identified that 

other weakly acidic NSAIDs were also rapidly depleted by hepatic microsomes of E. 

feeders (both by specialists and a generalist) compared to those of rats (Chapter 5).  

 
This project used HPLC to evaluate the meloxicam concentration in koala plasma for PK 

studies (Chapter 2). A major challenge was the unique endogenous matrix in the koala 

plasma. Unexpected peaks on the chromatogram interfered with the detection of the 

drug and metabolite peaks and thus required the LC conditions to be customised for this 

species. Furthermore, a highly sensitive method was necessary to quantify low plasma 

drug concentrations from a restricted sample volume collected from koalas. Koalas are 

relatively small animals, with a body weight of less than 10 kg, therefore extensive 

withdrawal of blood over 24 to 48 h to conduct PK studies was not possible. The HPLC-

PDA method developed and described in Chapter 2 was highly sensitive, providing 

accurate quantification as low as 0.01 µg/mL (LLOQ) in the 250 µL of plasma sample. 
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Furthermore, as the established HPLC condition could detect and separate the hydroxyl 

metabolites of meloxicam, a comparative study of the in-vitro hepatic metabolism of 

meloxicam and metabolites between selected species was undertaken (Chapter 4).  

 
The in-vivo PK study described in Chapter 3 demonstrated that the currently registered 

(or suggested) oral and injectable dosages for dogs of 0.1 to 0.2 mg/kg (Montoya et al., 

2004), or for other eutherians (such as cats, humans or horses) of 0.075 to 0.4 mg/kg 

(Turck et al., 1996, Toutain et al., 2004, Giraudel et al., 2005), were insufficient to 

provide bioequivalent plasma drug concentrations when administered to koalas due to 

rapid plasma Cl (0.44 ± 0.2 L/h/kg; average ± SD); approximately 30 fold faster than that 

reported in male rats (0.015 L/h/kg) (Busch et al., 1998). Another important finding 

was the poor oral bioavailability demonstrated in koalas. This could be attributable to 

poor oral absorption and/or the significant hepatic first pass metabolism. This 

observation is an important revelation as oral administration is the preferential route to 

administer meloxicam due to its high bioavailability as seen in other eutherian species 

such as rats (Busch et al., 1998), cats (Grude et al., 2010), dogs (Busch et al., 1998), 

horses (Toutain and Cester, 2004) and humans (Turck et al., 1996). Administration of a 

meloxicam SC injection seemed more clinically relevant for koalas as this route has an 

improved bioavailability (approximately 56-70 % of the IV dose achieved in this 

species). In other eutherian species, meloxicam’s SC bioavailability is almost complete in 

cats (Grude et al., 2010), dogs (Busch et al., 1998) and humans (Turck et al., 1996) and 

between 64-166 % in calves (Coetzee et al., 2009). However as SC administration with 

the canine dosage is unlikely to achieve steady state conditions due to the rapid plasma 
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Cl resulted in a short terminal t1/2 (median 1.19 h; range 0.71 to 1.62 h) in the koala, 

further investigation of a species-specific dosage of SC injection for koalas is necessary. 

Recently, a modified–release (that is delayed release) SC formulation of meloxicam has 

been studied which shown to provide both higher plasma drug concentrations and a 

steady state of two to three days in non-human primates resulting in a preferable PK 

profile than multiple IM administration or oral dosing (Bauer et al., 2014). Therefore it is 

warranted to investigate whether modified-release SC formulation may be beneficial to 

ameliorate prolonged pain or inflammation in this species.  

 
The appearance of hydroxylated metabolites (M1, M2 and M3) of meloxicam in koala 

plasma provided evidence that oxidative pathways (likely hepatic phase-1 reactions) 

were involved in the elimination of meloxicam in this species. This observation was 

further confirmed in the in-vitro study, where multiple hydroxylated metabolites (M1, 

M2 and M3) of meloxicam were identified when incubated with koala hepatic 

microsomes (Chapter 4). Hepatic CYP mediated oxidation is reported as the initial 

elimination pathway of meloxicam, and M1 (5-hydroxylmethyl metabolite) is the 

predominant metabolite identified in many other eutherian species (Busch et al., 1998). 

In humans, a CYP2C9 enzyme is recognised to facilitate 5-hydroxymethylation of 

meloxicam (Chesne et al., 1998). Accordingly, this study demonstrated that similar 

metabolic pathway, which likely facilitated via CYP2C-like enzyme, is involved in the 

elimination of meloxicam, and further additional hydroxylations of meloxicam (M2 and 

M3) were identified in koalas. Similar to koalas, this study further identified that in the 

other E. specialist feeder (ringtail possums) meloxicam undergoes multiple 
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hydroxylation (M2 and 3) but not in other eutherians (rats and dogs) or in the E. 

generalist (brushtail possums). In contrast, the metabolites of the other investigated 

NSAIDs and human CYP2C9 substrates were not greatly different between these species. 

Other studies have demonstrated that E. specialist feeders tend to rely on CYP mediated 

multiple oxidations to detoxify dietary terpenes (McLean et al., 2003, Foley and Moore, 

2005). While essential oils, such as dietary terpenes, are highly concentrated in 

Eucalyptus spp. foliage, it was speculated that specialist feeders have evolved a more 

efficient phase-1 reactions to detoxify this group of PSMs (McLean and Foley, 1997). It is 

understandable that biotransformation pathway activity is driven by dietary 

composition, and this has been observed in other closely related species; such as the big-

eared wood rat (Neotoma macrotis), an oak specialist feeder, that has greater phase-2 

reaction activity to detoxify PSMs, which are mostly polyphenolics, compared with the 

desert wood rat (Neotoma lepida) a generalist feeder (Haley et al., 2007). Whether the 

qualitative difference in the hepatic oxidation (via CYP enzymes) of meloxicam in E. 

specialist feeders is a direct consequence of their dietary adaptation remains unproven. 

However, this study provides some insight that these E. specialist feeders may 

qualitatively possess a different metabolic strategy to eliminate some xenobiotics such 

as drugs.  

 
Meloxicam was shown to be highly unstable in the liver of koalas as the in-vitro Clint was 

at least 16 fold faster than that of the rat or dog. This finding suggests that the fast rate 

of the phase-1 reaction, which is likely due to a greater catalytic activity of CYP2C-like 

enzyme(s) and possibly other CYP enzyme(s) involved, is the major factor associated 
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with the rapid plasma Cl of meloxicam seen in koalas. Other E. feeders were also shown 

to metabolise meloxicam faster than rats (in-vitro Clint: 3.2 ± 0.3 µL/min/protein mg) or 

dogs; particularly between E. specialist feeders, the in-vitro Clint of meloxicam was 

comparable [50 ± 41 (koalas) vs. 39 ± 5 (ringtail possums) µL/min/protein mg]. 

Furthermore, this study demonstrated that the depletion of weakly acidic NSAIDs in E. 

feeders were generally faster than the rat, with the exception of indomethacin in the 

brushtail possum (for E. specialist feeders, indomethacin was relatively stable compared 

to the other NSAIDs). While the in-vitro Clint of meloxicam was much faster in brushtail 

possums (394 ± 168 µL/min/protein mg) than E. specialist feeders, this study 

speculates that CYP mediated metabolism of weakly acidic NSAIDs or CYP2C9 substrates 

has greater similarity between E. specialists compared to E. generalist feeder. 

Consequently, this research suggests that extrapolating drug dose rates of human 

CYP2C9 substrates between E. specialist feeders are likely to provide greater 

pharmacokinetic conformity than when compared to E. generalist feeders or other 

eutherians. 

 
The in-vivo Cl of meloxicam in koala and the rat were reasonably well predicted from the 

relevant in-vitro data (rate of drug depletion) where the difference between actual Cl 

and predicted Cl were within an acceptable range (< two fold). For drugs that are 

predominately eliminated by hepatic metabolism, this IVIVE approach is frequently 

applied when deciding the initial dosage for human clinical drug trials (Houston, 1994, 

Obach et al., 1997, Ito and Houston, 2005) but has rarely been used for veterinary 

species. For many wild, rare, valuable and/or dangerous animal species, conducting an 
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in-vivo PK study, such as recruiting adequate numbers of animals or collecting blood 

samples at multiple time points etc, may be extremely challenging and difficult. While 

the Cl of drugs is an important PK parameter which affects the plasma drug 

concentration, this study demonstrated a successful application of in-vitro hepatic Clint to 

predict, or evaluate in-vivo elimination of meloxicam. This exemplified that in-vitro 

models may be useful to evaluate other therapeutic drugs for koalas (or other exotic and 

wild species) and thereby minimise the number of in-vivo studies. While collecting blood 

sampling at multiple time points for conventional in-vivo PK studies can be  an extremely 

challenging procedure for some species, population PK modeling may be considered as a 

potential alternative to traditional PK study as it can estimate population PK parameters 

from a conservative number of individuals or alternatively it may estimate population 

PK parameters from ‘sparse’ blood sampling (that is predict PK concentration vs. time 

curves from amalgamating one or a few time points from each individual), although 

many more individuals are required (Wright, 1998).  

 
In contrast to the other weakly acidic NSAIDs, indomethacin was relatively stable in 

hepatic microsomes of all the E. feeders which may have longer lasting anti-

inflammatory or analgesic effects. Particularly for the E. generalist (brushtail possum), 

the stability of indomethacin was comparable to that in the rat. In the case of the koala, 

where the oral absorption of drugs are relatively unpredictable as seen from 

enrofloxacin and fluconazole oral absorption studies (Griffith et al., 2010, Black et al., 

2013a) and meloxicam; indomethacin may warrant further in-vivo investigation due to 

its availability as a suppository for rectal (in the case of marsupials, cloacal) 
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administration, although its drug permeability and whether it bypasses the portal vein 

and consequent first pass metabolism is not known in koalas. In humans, drugs 

delivered by suppositories are transported via the middle and inferior rectal veins into 

the inferior vena cava, with the drug easily transported into the systemic circulation 

likely to avoid hepatic first pass metabolism (Prasanna et al., 2012). The bioavailability 

of indomethacin delivered by suppositories in humans is approximately 80 % (Jensen 

and Grenabo, 1985). 

 
Hepatic microsomal stabilities of human CYP2C9 substrates were observed to be similar 

between E. feeders; however, tolbutamide was exceptionally unstable in the E. specialist 

feeders. Although, induction of tolbutamide hydroxylation was reported when 1, 8-

cineole was fed to brushtail possums (Liapis et al., 2000), it is warranted to further 

justify whether this is also a typical metabolic characteristic of CYP2C-like isoform(s) 

between all E. specialist feeders, such as the greater glider (Petauroides volans) as a 

result of their diet. On the other hand, tolbutamide is considered a marker substrate (as 

well as diclofenac) to represent human CYP2C9 activity (Miners and Birkett, 1998) and 

has been used to evaluate CYP2C-like activity in other species (Veronese et al., 1990, 

Liapis et al., 2000). In the case of the brushtail possum, tolbutamide stability (as well as 

that of indomethacin) did not correlate with other human CYP2C9 substrates 

(meloxicam, diclofenac and flurbiprofen). This study highlights that the use of multiple 

probe substrates and examination of metabolic patterns provided a more accurate 

picture of the potential activity of CYP2C-like enzymes in the brushtail possum. Creation 

of metabolic ‘patterns’ sourced from multiple substrates as demonstrated in Chapter 5 
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page 142, provides further information to estimate and compare CYP activity between 

different species. Multiple CYP2C isoforms [CYP2C47 and CYP2C48 (Jones et al., 2008a)] 

have been identified, however their involvement in the metabolism of meloxicam (or 

other NSAIDs) have not been studied as yet. CYP isoforms will be required to confirm 

whether one or more CYP2C isoforms are responsible for the multiple hydroxylations on 

meloxicam seen in koalas.  

 
This study focused on aspects of the PK of meloxicam in koalas. However, it is 

acknowledged that integrating PD information with the PK profile is mandatory for 

efficacious dosage formulation. This research evolved to confirm and explain the PK 

observations of rapid intrinsic Cl seen in koalas and other marsupials. Thus, future 

studies examining the plasma concentration for therapeutic efficacy of this drug in 

koalas, and perhaps other marsupials, will be required to establish an accurate dosages 

specific for these species. The plasma drug concentrations required to ameliorate 

inflammation (and/or pain) varies between eutherians (e.g. dogs, horses and humans 

are 0.82, 0.13 to 0.2, and 0.57 to 0.93 μg/mL, respectively) (Montoya et al., 2004, 

Toutain and Cester, 2004, Turck et al., 1996). The common method to evaluate 

pharmacological activity of NSAIDs is to determine the selectivity of COX inhibition of 

prostaglandin formation in whole blood in-vitro (Blain et al., 2002). But in-vitro vs ex-

vivo results are often highly variable for some NSAIDs including meloxicam (Blain et al., 

2002). Therefore, the clinical relevance of an in-vitro assay using whole blood has not 

been clarified for meloxicam (Blain et al., 2002). In this regards, an in-vivo study, 

utilising an ex-vivo whole blood, should be considered cautiously to determine the in-
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vivo pharmacological activity of meloxicam. This raises an interesting issue: several 

dietary terpenes, such as 1, 8-cineole or others, abundant in Eucalyptus spp. foliage are 

also known to possess inherent anti-inflammatory- and analgesic activities (Silva et al., 

2003), therefore it is interesting to speculate whether the inflammatory or pain 

threshold in koalas, and other E. feeders, is higher due to the anti-inflammatory 

mediators present in their diet? Another study indicated that an oral dose (400 mg/kg) 

of 1, 8-cineole reduced carrageen induced paw oedema in rats by 46% (vs. 64 % 

inhibition when 5 mg/kg of indomethacin was administered orally). The analgesic effect 

was of an amplitude similar to SC administration of morphine (10 mg/kg) when the 

same dose of 1, 8-cineole was administered to mice (Santos and Rao, 2000). As koalas 

consume up to 10 kg of Eucalyptus spp. foliage every day, and likely exposed to 

substantial amounts of 1, 8-cineole (or other dietary terpenes), it is of great future 

interest to investigate the role of the almost exclusive Eucalypt spp. diet has on baseline 

pharmacological analgesic and inflammatory activity.  

 
Limitations of this study were the unknown hydroxyl metabolites (M2 and M3) were not 

structurally identified, the metabolic pathway responsible for their formation was not 

identified, and the penultimate metabolites in urine and faeces were not identified, due 

to lack of access to equipment with greater sophistication and capacity such as LC-

MS/MS or nuclear magnetic resonance (NMR). 

 
Generation of M1, M2 and M3 initiated additional small pilot studies in order to 

appreciate their significance. When meloxicam was co-incubated with an essential oil or 

its constituent (such as 1, 8-cineole and palmitate) in hepatic microsomes of koalas, 
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some inhibition on the formation of hydroxylated metabolites (M1-M3) was apparent, 

however the pattern of inhibition varied according to the co-substrate (Appendix 2). 

For example, 1, 8-cineole tended to inhibit formation of M3; whereas M1 was specifically 

inhibited by palmitate (inhibition concentration (IC) of 50 % on M1 was achieved at 50 

µM). Both 1, 8-cineole and palmitate are known to inhibit CYP3A4 activity (additionally 

CYP3A5 activity for 1, 8-cineole) in humans (Dresser et al., 2002, Duisken et al., 2005). 

These pilot studies are mentioned here as the factors that influence the transformation 

of xenobiotics such as meloxicam, 1, 8-cineole or palmitate concentrations etc are a key 

to understanding how koalas eliminate plant secondary metabolites (PSMs) in their 

natural diet which is not only important from evolutionary and comparative 

pharmacology perspectives but also in relation to koalas’ capacity to cope with 

environmental toxins such as spray-drift from agricultural chemicals and changes in 

foliage composition as a result of land use practices and global climate change 

(ecotoxicology). 

 
In conclusion, findings from this research demonstrate that meloxicam is eliminated 

rapidly in koalas compared to conventional veterinary species and the dosages of other 

eutherians are inadequate for koalas (probably other ringtail possums and brushtail 

possums as well), and it is imperative that this is kept in mind when extrapolating the 

dosages of other NSAIDs (or human CYP2C9 substrates) from eutherians to these E. 

feeders. Instead, it is more likely to be appropriate to relate the dosages between similar 

species (e.g. between E. specialist feeders), if relevant PK data is unavailable. This study 

demonstrates species differences on CYP2C-like activity in koalas (also for other E. 
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feeders), which is the major source for rapid Cl of meloxicam, and accordingly this 

research introduces the benefit of utilising in-vitro data (in-vitro Clint) to evaluate PK 

profile (e.g. Cl) for meloxicam which also applicable for drugs where hepatic phase 1 

reaction is the predominant elimination pathway.  
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Appendix One)  

 

Determination of Km values of meloxicam metabolite(s) for individual 

species: a preliminary study.   

 
In order to extrapolate in-vitro Clint data to in-vivo Cl by substrate depletion method 

(Chapter 4), it was essential to use substrate concentration at less than overall Km value 

to determine appropriate depletion rate (as intrinsic Cl is determined by [S] < Km 

approximate Vmax / Km). Therefore the study was conducted, with both product 

formation and/or multiple substrate depletion methods, to confirm whether 1.25 µM of 

meloxicam was < Km for each species.  

 

1) Determination of approximate Km values of 5-hydroxymethyl metabolite (M1) 

and as well as M3 in koala and ringtail possum.  

The final incubation volume (phosphate buffer including NADPH regenerating system 

described in Chapter 4, Section 4.3.3) was 0.5 mL and was executed with eight  

meloxicam concentrations (2.5 to 400 µM).   The reaction was terminated by adding 250 
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µL of iced-cold methanol after incubating 5 min with liver microsomes of pooled 

brushtail possum (n = 3; 0.125 mg/mL); 10 min with pooled koalas (n = 6; 0.25 mg/mL) 

and ringtail possums (n =2; 0.25 mg/mL) and 30 min with pooled rats (0.5 mg/mL) and 

dogs (0.5 mg/mL) (Figure A.1), respectively.  

 

Figure A.1) Representative HPLC-UV chromatograms (described in Chapter 2, Section 

2.3.2 except that composition of MeCN in the mobile phase was 55 %), monitored at 

wavelength of 355 nm, of 5 hydroxymethly metabolite (M1) generated during the 

incubation (30 min) of meloxicam with liver microsomes of dogs (0.5 mg/mL); substrate 

concentrations of 1.25 µM (bottom) to 400 µM (top); retention time for M1 and 

meloxicam are ~5.6 min and ~15 min, respectively.  

 

From the pilot study, metabolite(s) formed in relation to designated incubation time and 

microsome concentrations for each species were linear and < 20% of substrate was 

depleted. Estimation of apparent Km (µM) and Vmax (expressed as arbitrary units) of 

metabolite(s) were determined by Graph Pad Prism, 6.01 (Graph Pad Software, Inc., CA, 

USA) using one-enzyme Michaelis-Menton model using nonlinear regression analysis.   

 
Apparent Km values (µM) of M1 for each species (Figure A. 2) were: 1) Dog: 102 ± 19.67 

µM (Mean ± S.E; 95% confidence intervals: 53-150 µM); 2) Rats: 95.89 ± 6.57 µM; 79-
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112 µM); 3) Koalas: 49.74 ± 3.75 µM; 40-58 µM); 4) Ringtail possums: 35.16 ± 6.13 µM; 

20-49 µM); 5) Brushtail possums: 5.23 ± 0.42 µM; 4-6 µM). Apparent Km values of M3 in 

koalas and ringtail possums (Figure A. 3) were: 1) Koalas: 34.56 ± 3.27 µM; 26-42 µM); 

2) Ringtail possums: 86.63 ± 9.21 µM; 64-108 µM). Thus, the results indicated that the 

meloxicam concentration of 1.25 µM was adequate to use for the measurement of 

depletion rates in possums, rats and dogs. However, using the product formation 

method, the study was unable to approximate Km for M2 in koalas.  

 

 

Figure A.2) Formation of 5-hydroxymethyl metabolite (M1) in investigated species’ 

microsomes.  
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Figure A.3) Formation of M1 and 3 in koala and ringtail possum microsomes. 

 

2) Determination of depletion rate constant of meloxicam in koalas by substrate 

depletion method.  

Using one koala (liver microsome, 0.5mg/mL), the study further investigated if  1.25 µM 

of meloxicam was adequate to represent the rate constant for this species. This was 

done via measurement of depletions of multiple substrate concentrations (0.15-400 µM). 

Meloxicam depletion concentrations (expressed as log substrate remaining) vs. 

incubation times (up to 30 min) is depicted in (Figure. A. 4.), whereas measured 

depletion rate constant (K dep) for each substrate concentrations is depicted in Table A. 

1. Accordingly, a theoretical maximum depletion constant (K dep ([s] = 0)) was 

determined using linear log plot (K dep vs. substrate concentrations) (Figure A. 5); 

substrate concentrations up to 100 µM were used as substrate depletion higher than this 

(100 µM) was < 20 % (compared to initial t = 0 min). According to the preliminary study, 

result (K dep ([s] = 0)) = 0.0235 indicates that use of 1.25 µM (depletion rate = 0.234) 
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was likely to represent rate constant value. Therefore, the study (Chapter 4) used 1.25 

µM of meloxicam which likely to be < Km or adequate to represent rate constant for 

investigated species. 

 

Figure A. 4) Meloxicam depletion concentrations (expressed as log substrate remaining) 

vs. incubation time; Method: Substrate (meloxicam) concentrations used for depletion 

assay were 1.25, 2.5, 5, 10, 20, 50, 100, 200 and 400 µM, and 0.5 mg/mL of koala 

microsomes (n = 1) and incubation time was up to 30 min. Other methodology is same 

as described in the Chapter 4, Section 2.3.  
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Table A. 1) Measured depletion rate constants (K dep) for each substrate 

concentrations.  

 
Substrate Concentrations (µM) Depletion rate constant (min-1) 

1.25  0.0234 

2.5  0.0285 

5  0.0234 

10  0.0188 

20  0.0140 

50  0.0089 

100  0.0056 

200  0.0036 

400  0.0022 
 

 

 

 

 

Figure A. 5) Linear log plot (K dep vs. substrate concentrations); X axis: K dep (min-1); y 

axis: substrate concentrations (µM); substrate concentrations up to 100 µM were used 

as substrate depletion higher than this (100 µM) was < 20 % (compared to initial t = 0 

min). 
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Appendix Two) Inhibition of the formation of meloxicam metabolites 

in the koala microsomes by 1, 8-cineole and palmitate  

 

In the preliminary study, inhibition of meloxicam metabolites in the koala microsomes 

(n = 1, 1 mg/mL) was investigated. The final incubation volume (phosphate buffer 

including NADPH regenerating system described in Chapter 4, Section 4.3.3) was 0.5 

mL consisted of 5 µM of meloxicam (control) or also co-incubated with 1, 8-cineole (40, 

200 and 1000 µM) for 30 min. After the incubation, the reaction was terminated by 

adding 250 µL of iced-cold methanol and analysed by HPLC-DAD (described in Chapter 

2, Section 2.3.2). Compared to the control, the production of M2 and M3 was inhibited 

by presence of 1, 8-cineole (40 and 200 µM), approximately 36 % and 54%, respectively. 

On the other hand, production of M1 was not altered with these 1, 8-cineole 

concentrations (inhibition of approximate 50 % was achieved at 1000 µM) (Figure A. 6). 
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Figure A. 6) HPLC-UV chromatograms of meloxicam metabolites in the koala microsomes (1 

mg/mL) after incubating 5 µM of meloxicam (Brown) or co-incubated with 1000 µM of 1, 8-

cineole (Black); M1 (Rt: 3.6 min); M2 (Rt: 4.5 min); M3 (Rt: 5.6); meloxicam (Rt: 7.4 min).  

 

The inhibition of meloxicam metabolites in the koala microsomes (n = 1, 1 mg/mL) with 

the presence of palmitate (12.5, 25 and 50 µM) was also investigated. The condition was 

same as above, except 50 µM of meloxicam was used. Compared to the control, about 50 % 

of M1 production was inhibited when co-incubated with 50 µM of palmitate. However, 

production of M2 or M3 was not altered with these palmitate concentrations (IC 50 was 

achieved at 1000 µM) (Figure A. 7). 
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Figure A.7) HPLC-UV chromatograms of meloxicam metabolites in the koala microsomes (1 

mg/mL) after incubating 50 µM of meloxicam (Brown) or co-incubated with 50 µM of 1, 8-

cineole (Black); M1 (Rt: 3.6 min); M2 (Rt: 4.5 min); M3 (Rt: 5.6); meloxicam (Rt: 7.4 min).  
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