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Abstract

We propose a family of goodness-of-fit tests for copulas. The tests use gen-
eralizations of the information matrix (IM) equality of White (1982) and so
relate to the copula test proposed by Huang and Prokhorov (2014). The idea
is that eigenspectrum-based statements of the IM equality reduce the degrees
of freedom of the test’s asymptotic distribution and lead to better size-power
properties, even in high dimensions. The gains are especially pronounced for
vine copulas, where additional benefits come from simplifications of score func-
tions and the Hessian. We derive the asymptotic distribution of the generalized
tests, accounting for the non-parametric estimation of the marginals and ap-
ply a parametric bootstrap procedure, valid when asymptotic critical values
are inaccurate. In Monte Carlo simulations, we study the behavior of the new
tests, compare them with several Cramer-von Mises type tests and confirm the
desired properties of the new tests in high dimensions.
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1 Introduction

Consider a continuous random vector X = (X1, . . . , Xd) with a joint cumulative
distribution function H and marginals F1, ..., Fd. By Sklar’s theorem, H has the
following copula representation

H(x1, ..., xd) = C(F1(x1), . . . , Fd(xd)),

where C is a unique cumulative distribution function, whose marginals are uniform
on [0, 1]d. Copulas represent the dependence structure between elements of X and
this allows one to model and estimate distributions of random vectors by estimating
the marginals and the copula separately. In economics, finance and insurance, this
ability is very important because it facilitates accurate pricing of risk (see, e.g.,
Zimmer, 2012). In such problems d is often quite high – tens or hundreds – and this
has spurred a lot of interest to high dimensional copula modeling and testing in the
recent years (see, e.g., Patton, 2012).

In such high dimensions, classical multivariate parametric copulas such as the
elliptical or Archimedean copulas are often insufficiently flexible in modeling differ-
ent correlations or tail dependencies. On the other hand, they are very flexible and
powerful in bivariate modeling. This advantage was used by Joe (1996) and later
by Bedford and Cooke (2001, 2002) to construct multivariate densities using hierar-
chically bivariate copulas as building blocks. This process – known as a pair-copula
construction (PCC, Aas et al., 2009) – results in a very flexible class of regular
vine (R-vine) copula models, which can have a relative large dimension, yet remain
computationally tractable (see, e.g., Czado, 2010; Kurowicka and Cooke, 2006, for
introductions to vine copulas).

A copula model for X arises when C is unknown but belongs to a parametric
family C0 = {Cθ : θ ∈ O}, where O is an open subset of Rp for some integer p ≥ 1,
and θ denotes the copula parameter vector. There is a wide literature on estimation
of θ under the assumption H0 : C ∈ C0 = {Cθ : θ ∈ O} given independent copies
X1 = (X11, . . . , X1d), . . . ,Xn = (Xn1, . . . , Xnd) of X; see, e.g., Genest et al. (1995),
Joe (2005), Prokhorov and Schmidt (2009). The complementary issue of testing

H0 : C ∈ C0 = {Cθ : θ ∈ O} vs. H1 : C /∈ C0 = {Cθ : θ ∈ O}

is more recent – surveys of available tests can be found in Berg (2009) and Genest
et al. (2009).

Currently, the main problem in testing is to develop operational “blanket” tests,
powerful in high dimensions. This means we need tests which remain computationally
feasible and powerful against a wide class of high-dimensional alternatives, rather
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than against specific low-dimensional families, and which do not require ad hoc
choices, such as a bandwidth, a kernel, or a data categorization (see, e.g., Klugman
and Parsa, 1999; Genest and Rivest, 1993; Junker and May, 2005; Fermanian, 2005;
Scaillet, 2007). Genest et al. (2009) discuss five testing procedures that qualify as
“blanket” tests. We will use some of them in our simulations.

Recently, Huang and Prokhorov (2014) proposed a “blanket” test based on the
information matrix equality for copulas and Schepsmeier (2013, 2015) extended that
test to vine copulas. The point of this test is to compare the expected Hessian for θ
with the expected outer-product-of-the-gradient (OPG) form of the covariance ma-
trix – under H0, their sum should be zero. This is the so called Bartlett identity. So
in multi-parameter cases, the statistic is based on a random vector whose dimension
– being equal to the number of distinct elements in the Hessian – grows as the square
of the number of parameters. Even though the statistic has a standard asymptotic
distribution, simulations suggest that using analytical critical values leads to severe
oversize distortions, especially when dimension is high.

The tests we propose in this paper are motivated by recent developments in
information matrix equality testing (see, e.g., Golden et al., 2013). Specifically, we
use alternative, eigenspectrum-based statements of the information matrix equality.
This means we use functions of the eigenvalues of the two matrices, instead of the
distinct elements of the matrices. This leads to a noticeable reduction in dimension
of the random vector underlying the test statistic, which permits significant size and
power improvements. The improvements are more pronounced for high dimensional
dependence structures. Regular vine copulas are effective in this setting because of
a further dimension reduction they permit. We argue that R-vines offer additional
computational benefits for our tests. Compared to available alternatives, our tests
applied to vine copula constructions remain operational and powerful in fairly high
dimensions and seem to be the only tests allowing for copula specification testing in
high dimensions.

The paper is organized as follows. In Section 2, we introduce seven new goodness-
of-fit tests for copulas and discuss their asymptotic properties. Section 3 describes
the computational benefits that result from applying our tests to vine copulas. In
Section 4 we use the new tests in a Monte Carlo study where we first study the
new copula tests in terms of their size and power performance and then examine
the effect of dimensionality, sample size and dependence strength on size and power
of these tests, as compared with three popular “blanket” tests that perform well in
simulations. Section 5 concludes.
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2 Generalized Information Matrix Test for Copu-

las

In the setting of general specification testing, Golden et al. (2013) introduced an
extension to the original information equality test of White (1982), which they call
Generalized Information Matrix Test (GIMT). Unlike the original test which is based
on the negative expected Hessian and OPG, GIMT is based on functions of the
eigenspectrum of the two matrices. In this section we develop a series of copula
goodness-of-fit tests which draw on GIMT and we study their properties.

2.1 Basic Asymptotic Result

Let Xi = (Xi1, . . . , Xid), i = 1, . . . , n, denote realizations of a random vector X =
(X1, . . . , Xd) ∈ Rd. All tests we consider are based on a pseudo-sample U1 =
(U11, . . . , U1d), . . . ,Un = (Un1, . . . , Und), where Ui = (Ui1, . . . , Uid) = ( Ri1

n+1
, . . . , Rid

n+1
),

and Rij is the rank of Xij amongst X1j, . . . , Xnj. This transformation of each
Xij to its normalized rank can be viewed as the empirical marginal distribution
of Xj, j = 1, . . . , d. The denominator n + 1 is used instead of n to avoid numerical
problems at the boundaries of [0, 1]d. Given an independent sample {X1, . . . ,Xn},
the pseudo-sample {U1, . . . ,Un} – no longer independent due to the rank transfor-
mation – can be viewed as a sample from the underlying copula C.

Assume that the copula density cθ exists. Let H(θ) denote the expected Hessian
matrix of ln cθ and let C(θ) denote the expected outer product of the corresponding
score function (OPG), i.e.,

H(θ) = E∇2
θ ln cθ(U) and C(θ) = E∇θ ln cθ(U) ∇′

θ ln cθ(U),

where “∇θ” denotes derivatives with respect to θ and expectations are with respect
to the true distribution H. Let θ0 denote the true value of θ and assume H(θ0) and
C(θ0) are in the interior of a compact set Sp×p ⊆ Rp×p. For i = 1, . . . , n, let

Hi(θ) = ∇2
θ ln cθ(Ui) and Ci(θ) = ∇θ ln cθ(Ui) ∇

′

θ ln cθ(Ui).

For any θ ∈ O, define the sample analogues of H(θ) and C(θ):

H̄(θ) := n−1

n∑
i=1

Hi(θ) and C̄(θ) := n−1

n∑
i=1

Ci(θ).

Then, given an estimate θ̂n of θ0, we can denote estimates of H(θ0) and C(θ0) by

H̄n := H̄(θ̂n) and C̄n := C̄(θ̂n).
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Definition 1 (Hypothesis Function) Let s : Sp×p × Sp×p → Rr be a continu-
ous differentiable function in both of its matrix arguments. s is called a hypothesis
function if for every A,B ∈ Sp×p it follows:

If A = −B, then s(A,B) = 0r,

where 0r is the zero vector of dimension r.

Definition 2 (GIMT) A test statistic ŝn := s(H̄n, C̄n) is a GIMT for copula Cθ if
it tests the null hypothesis:

H0 : s(H(θ0),C(θ0)) = 0r.

We can now look at the properties of the GIMT for copulas.

Lemma 1 (Asymptotic Normality of
√
nŝn) Let s : Sp×p × Sp×p → Rr be a

GIMT hypothesis function with ∇θs(H(θ),C(θ)) evaluated at θ0 having full row rank
r. Then, under H0 and suitable regularity conditions,

√
nŝn

d→ N(0,Σs(θ0)),

where the asymptotic covariance matrix is given by

Σs(θ0) := (∇sθ0)Vθ0 (∇sθ0)′ , (1)

where ∇sθ0 and Vθ0 are given in Eqs.(6)-(7) of Appendix A.

Proof: see Appendix A for all proofs.
The regularity conditions used in Lemma 1 are standard assumptions of conti-

nuity and differentiability of the likelihood and rank conditions on information (see,
e.g., White, 1982, Assumptions A1-A10). In the copula context, they translate into
equivalent assumptions on the copula density (see, e.g., Genest et al., 1995).

The main difference between Lemma 1 and the specification tests of White (1982)
and Golden et al. (2013) is in the form of Vθ0 . The complication arises from the
rank transformation which requires a non-trivial adjustment to the variance of ŝn,
accounting for the estimation error (see Huang and Prokhorov, 2014).

5



Theorem 1 (Asymptotic Theory) Let Σ̂n,s denote a consistent estimate of the
asymptotic covariance matrix Σs(θ0). Then, under H0 and suitable regularity condi-
tions, the GIMT statistic for copulas

Wn := n ŝ′nΣ̂−1
n,sŝn (2)

is asymptotically χ2
r distributed.

These results suggest that we can use any function of H(θ0) and C(θ0) with
a known probability limit for testing copula validity. One of the main insights of
Golden et al. (2013) is that different hypothesis functions permit misspecification
testing in different directions. For example, a test comparing the determinants of H
and C will detect small variations in eigenvalues of the two matrices, while a test
comparing traces will focus on differences in the major principal components of the
two matrices.

In multivariate settings, the dimension of θ often grows faster than the dimension
of U. For example, a d-variate t-copula has O(d2) parameters. The eigenspectrum-
based hypothesis functions allow to reduce the dimension of the test statistic (and
thus the degrees of freedom of the test) from p(p + 1)/2, where p is the number of
copula parameters, to the number of values of the hypothesis function, r.

A consistent estimator Σ̂n,s would require estimation of ∇sθ0 and Vθ0 . Some
aspects of consistent estimation of Vθ0 are discussed by Huang and Prokhorov (2014)
so in the propositions that follow we focus on the additional complexity introduced
by the various hypothesis functions through ∇sθ0 .

Table 1 lists the hypothesis functions we consider. The original White and IR
(Information Ratio) Tests are special cases. We introduce the Trace White Test to
focus on the sum of the eigenvalues of H + C and the Determinant White Test to
focus on the product of the eigenvalues of H + C. The focused testing allows for
directional power which we discuss later.

Two more tests are log-versions of the last two. The (Log) Determinant IR Test
focuses on the determinant of the information matrix ratio, and the Log Trace Test
looks at whether the sum of the eigenvalues is the same for the negative Hessian and
the OPG form. We use logarithms here as variance stabilizing transformations. In
contrast to the White (or IR) version, the Log Trace Test does not use the eigenvalues
of the sum (or the ratio) of H and C, rather it looks at the eigenvalues of each matrix
separately.

The Log GAIC (Generalized Akaike Information Criterion) Test picks on the
idea of the IR Test that the negative Hessian multiplied by the inverse of the OPG
(or vice versa) equals the identity matrix. The new feature is that we focus on the
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Table 1: Summary of eigenspectrum tests

Name short s(H,C)

White Test Tn vech(H) + vech(C) = 0

Determinant White Test T (D)
n det(H + C) = 0

Trace White Test T (T )
n tr(H + C) = 0

IR Test Zn tr(−H−1C)− p = 0

Determinant IR Test Z(D)
n det(−H−1C)− 1 = 0

Log Trace IMT Trn log(tr(−H−1))− log(tr(C)) = 0
Log GAIC IMT Gn log[1

p
(1p)

′(Λ(−H−1)� Λ(C))] = 0

Log Eigenspectrum IMT Pn log(Λ(−H−1))− log(Λ(C−1)) = 0p
Eigenvalue Test Qn Λ(−H−1C) = 1p

average product of the Hessian-based eigenvalues and OPG-based eigenvalues. The
last two tests are explicitly based on the full eigenspectrum. The Eigenspectrum
Test compares the eigenvalues of H and C separately, the Eigenvalue Test uses the
eigenvalues of the information matrix ratio.

All these hypothesis functions are identical under the null, yet the behavior of
these tests varies widely. We first look at the asymptotic approximations of the
behavior.

2.2 White Test for Copulas

In the case of the original White (1982) test, the asymptotic covariance matrix in
Lemma 1 simplifies. Huang and Prokhorov (2014, Proposition 1) provide the asymp-
totic variance matrix for this case. It can be obtained by rearranging the building
blocks used in construction of the test statistic (elements of d(θ) in Appendix A),
and by setting ∇sθ0 =

(
Ip(p+1)/2 Ip(p+1)/2

)
, where Ik is a k × k identity matrix.

One of the most important criticisms of this test is its slow convergence to the
asymptotic distribution. One cause of this problem is its high degrees of freedom.
For example, in the setting of a vine copula estimation, Schepsmeier (2013) shows
that for a five-dimensional vine (df = p(p + 1)/2 = 55), the number of observations
needed to show acceptable size and power behavior using asymptotic critical values
is at least 10,000; for an eight-dimensional vine (df = 406) that number is greater
than 20,000. The alternatives we propose are determinant- and trace-based.

Proposition 1 (Determinant White Test) Let Σ̂s,n be as defined in Theorem 1,
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with an estimator of ∇sθ0 given by

∇̂sθ0 = det(H̄n + C̄n)vech[(H̄n + C̄n)−1]′
[
Ip(p+1)/2, Ip(p+1)/2

]
.

Then, under H0, the asymptotic distribution of the test statistic

T (D)
n := n

[det(H̄n + C̄n)]2

Σ̂s,n

is χ2
1.

Proposition 2 (Trace White Test) Let Σ̂s,n be as defined in Theorem 1 with
∇sθ0 defined as follows

∇̂sθ0 = (vech(Ip)
′, vech(Ip)

′) .

Then, under H0, the asymptotic distribution of the test statistic

T (T )
n := n

tr(H̄n + C̄n)2

Σ̂s,n

is χ2
1.

The two tests are chi-square with one degree of freedom, rather than p(p+ 1)/2,
and have important differences allowing for what can be called directional testing.
Because larger eigenvalues have larger effect on determinant than on trace, the Trace
White Test will be less sensitive to changes in eigenvalues, especially small ones, and
thus less powerful than the Determinant White Test.

2.3 Information Ratio Test for Copulas

As extensions of the original White test, Zhou et al. (2012) and Presnell and Boos
(2004) consider using a ratio of the Hessian and OPG. Under correct specification,
the matrix H(θ)−1C(θ) is equal to a p-dimensional identity matrix. We propose two
versions of this test for copulas.

Proposition 3 (IR Test) Let Σ̂s,n be as defined in Theorem 1 with an estimator
of ∇sθ0 given by

∇̂sθ0 =
[
vech

(
H̄−1
n C̄nH̄−1

n

)′
, vech

(
−H̄−1

n

)′]
.
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Then, under H0, the asymptotic distribution of the test statistic

Zn := n

[
tr(−H̄−1

n C̄n)− p
]2

Σ̂s,n

is χ2
1.

Proposition 4 (Log-Determinant IR Test) Let Σ̂s,n be as defined in Theorem
1, with an estimator of ∇sθ0 given by

∇̂sθ0 = det(H̄−1
n C̄n)

(
vech

(
−C̄nH̄−1

n C̄n

)′
, vech

(
C̄−1
n

)′)
.

Then, under H0, the asymptotic distribution of the test statistic

Z(D)
n := n

(
log(det(−H̄−1

n C̄n))
)2

Σ̂s,n

is χ2
1.

2.4 Log Trace Test for Copulas

Similar to the Log-Determinant IR Test we can construct a test using the log of
traces of −H and C, which should be identical under the null.

Proposition 5 (Log Trace Test) Let Σ̂s,n be as defined in Theorem 1, with an
estimator of ∇sθ0 given by

∇̂sθ0 =

(
− 1

tr(−H̄−1
n )

vech(H̄−2
n )′,− 1

tr(−C̄−1
n )

vech(Ip)
′
)
.

Then, under H0, the asymptotic distribution of the test statistic

Trn := n

[
log(tr(−H̄−1

n ))− log(tr(C̄n))
]2

Σ̂s,n

is χ2
1.

As mentioned earlier, trace-based tests pick up changes in larger eigenvalues easier
than in smaller – a property desirable for some alternatives.
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2.5 Log GAIC Test for Copulas

It is well known (see, e.g., Takeuchi, 1976) that under model misspecification the
Generalized Akaike Information Criterion defined as follows

GAIC := −2 log
n∏
i=1

f(Ui; θ̂n) + 2tr(−H̄−1(θ̂n)C̄(θ̂n))

is an unbiased estimator of the expected value of−2 log
∏n

i=1 f(Ui; θ̂n). Under correct

model specification 2tr(−H̄−1(θ̂n)C̄(θ̂n))→ 2p, since −H̄−1(θ̂n)C̄(θ̂n)→ Ip a.s., and
so GAIC becomes AIC. This motivates the use of the IR Test but also of the following
form of the GIMT.

Let Λ(A) = (λ1, . . . , λp)
′ denote the vector of sorted eigenvalues of A ∈ Rp×p. Fur-

ther, let Λ−1(A) := 1/Λ(A) denote component-wise {1/λj}pj=1 and Λ(A−1) = Λ−1(A).
Then, under the null, tr(−H−1C) = (1p)

′ (Λ(−H−1)� Λ(C)), where � denotes the
Hadamard product, i.e. component-wise multiplication; however, generally, eigen-
values of the product matrix are not equal to the product of eigenvalues of the
components.

Proposition 6 (GAIC Test) Let Σ̂s,n be as defined in Theorem 1, with an esti-
mator of ∇sθ0 given by

∇̂sθ0 =
1

tr(H̄−1
n C̄n)

[
vech

(
H̄−1
n C̄nH̄−1

n

)′
, vech

(
−H̄−1

n

)′]
.

Then, under H0, the asymptotic distribution of the test statistic

Gn := n

{
log
[

1
p
(1p)

′ (Λ(−H̄−1
n )� Λ(C̄n)

)]}2

Σ̂s,n

is χ2
1.

In contrast to the IR Test the eigenvalues of the Hessian and the OPG are
calculated separately. Thus, similar to the Log Determinant IR Test, the Log GAIC
Test is more sensitive to changes in the entire eigenspectrum than the IR Test (see
Golden et al., 2013, for a more detailed discussion).
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2.6 Eigenvalue Test for Copulas

The form of the Log Eigenspectrum IMT was initially proposed by Golden et al.
(2013). It is a p-degrees-of-freedom test so the reduction in the degrees-of-freedom
from p(p+ 1)/2 is more noticeable for larger p, which would typically mean a higher
dimensional copula.

In order to derive its asymptotic distribution we need additional notation. For a
real symmetric matrix A, let yj(A) denote the normalized eigenvector corresponding
to eigenvalue λj(A), j = 1, . . . , p. Let D denote the duplication matrix, i.e. such a
matrix that Dvech(A) = vec(A) (see, e.g. Magnus and Neudecker, 1999).

Proposition 7 (Log Eigenspectrum Test) Let Σ̂s,n be as defined in Theorem 1,
with an estimator of ∇sθ0 given by

∇̂sθ0 =

 −
1

λ1(H̄n)
[y1(H̄n)′ ⊗ y1(H̄n)′]D 1

λ1(C̄n)
[y1(C̄n)′ ⊗ y1(C̄n)′]D

...
...

− 1
λp(H̄n)

[yp(H̄n)′ ⊗ yp(H̄n)′]D 1
λp(C̄n)

[yp(C̄n)′ ⊗ yp(C̄n)′]D

 .
Then, under H0, the asymptotic distribution of the test statistic

Pn := n
[

log(Λ(−H̄−1
n ))− log(Λ(C̄−1

n ))
]′

Σ̂−1
s,n

[
log(Λ(−H̄−1

n ))− log(Λ(C̄−1
n ))

]
is χ2

p.

A similar approach is based on the eigenspectrum of the information matrix ratio
Λ(−H−1(θ0)C(θ0)). We will call this test the Eigenvalue Test.

Proposition 8 (Eigenvalue Test) Let Σ̂s,n be as defined in Theorem 1 with an
estimator of ∇sθ0 given by

∇̂sθ0 =


1

λ1(H̄n)
[y1(C̄n)′ ⊗ y1(C̄n)′]D − λ1(C̄n)

λ1(H̄n)2
[y1(H̄n)′ ⊗ y1(H̄n)′]D

...
...

1
λp(H̄n)

[yp(C̄n)′ ⊗ yp(C̄n)′]D − λp(C̄n)

λp(H̄n)2
[yp(H̄n)′ ⊗ yp(H̄n)′]D

 .
Then, under H0, the asymptotic distribution of the test statistic

Qn := n
[
Λ(−H̄−1

n C̄n)− 1p
]′

Σ̂−1
s,n

[
Λ(−H̄−1

n C̄n)− 1p
]

is χ2
p.
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3 GIMTs for Vine Copulas

A regular vine (R-vine) copula is a nested set of bivariate copulas representing uncon-
ditional and conditional dependence between elements of the initial random vector
(see, e.g., Joe, 1996; Bedford and Cooke, 2001, 2002). Any d-variate copula can be
expressed as a product of such (conditional) bivariate copulas and there are many
ways of writing this product. Graphically, R-vine copulas can be illustrated by a
set of connected trees V = {T1, . . . , Td−1}, where each edge represents a bivariate
conditional copula. The nodes illustrate the arguments of the associated copula.
The edges of tree Ti form the nodes of tree Ti+1, i ∈ {1, . . . , d − 2}. The proximity
condition of Bedford and Cooke (2001) then defines which possible edges are allowed
between the nodes to form an R-vine. If we denote the set of bivariate copulas used
in trees V by B(V) and the corresponding set of parameters by θ(B(V)), then we can
specify an R-vine copula by (V ,B(V),θ(B(V))).

Let U1, . . . , Ud denote a pseudo-sample as introduced in Section 2.1. The edges
j(e), k(e)|D(e) in Ei, for 1 ≤ i ≤ d − 1 correspond the set of bivariate copula
densities B =

{
cj(e),k(e)|D(e)|e ∈ Ei, 1 ≤ i ≤ d− 1

}
. The indices j(e) and k(e) form

the conditioned set while D(e) is called conditioning set. Then a regular vine copula
density is given by the product

c1,...,d(u) =
d−1∏
i=1

∏
e∈Ei

cj(e),k(e);D(e)(Cj(e)|D(e)(uj(e)|uD(e)), Ck(e)|D(e)(uk(e)|uD(e))). (3)

The copula arguments Cj(e)|D(e)(uj(e)|uD(e)) and Ck(e)|D(e)(uk(e)|uD(e)) can be derived
integral-free by the formula derived from the first derivative of the corresponding cdf
with respect to the second copula argument (Joe, 1996):

Cj(e)|D(e)(uj(e)|uD(e)) =
∂Cj(e),j′(e);D(e)\j′(e)(C(uj(e)|uD(e)\j′(e)), C(uj′(e)|uD(e)\j′(e)))

∂C(uj′(e)|uD(e)\j′(e))
.

An example of a 5-dimensional R-vine is given in Figure 1.
The canonical vine (C-vine) and the drawable vine (D-vine) are two special R-

vines. The C-vine has in each tree a root node which is connected to all other nodes
in this tree. In the D-vine each node is connected to two other nodes at most.

The copula parameter vector θ(B(V)) can be estimated either in a tree-by-tree
approach called sequential estimation, or in a full maximum likelihood estimation
(MLE) procedure (Aas et al., 2009). The sequential procedure uses the hierarchical
structure of R-vines and is quick – its results are often used as starting values for
the MLE approach. Both are consistent estimators.

12
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Figure 1: Tree structure of a 5-dimensional R-vine copula.

Vine copulas have gained popularity because of the benefits they offer when di-
mension d is high. First, they permit a decomposition of a d-variate copula with
O(d2) or more parameters into d(d− 1)/2 bivariate (one-parameter) copulas, which
reduces computational burden. Second, they offer a natural way to impose condi-
tional independence by dropping selected higher-order edges in V . Finally, the in-
tegral free expressions for the conditional copulas offer an additional computational
benefit.

Such a reduction of parameters using the conditional independence copula can be
achieved in two ways. First, single conditional copulas can be assumed independent,
especially if some pre-testing procedure confirms this (see, e.g., Genest and Favre,
2007). Further, by setting all pair-copula families above a certain tree order to the
independence copula, the number of parameters can be reduced significantly. This
involves no testing and is often done heuristically; Brechmann et al. (2012) call this
approach truncation.

In our settings, vine copulas offer an additional advantage over conventional cop-
ulas. As an example, consider testing goodness-of-fit of a d-variate Eyraud-Farlie-
Gumbel-Morgenstern (EFGM) copula. This copula has 2d− d− 1 parameters so the
number of degrees-of-freedom for the White Test is of order O(22d), while for the
eigenspectrum-based tests that number is as low as one. Regardless of the GIMT,
the calculation of the test statistic involves evaluating, analytically or numerically,
the score function and the Hessian. The score ∇θ ln cθ is a vector-valued function
with 2d−d− 1 elements, each a function of all 2d−d− 1 elements of θ. The Hessian
is a large matrix-valued function, in which each component is a function of the entire
vector θ. Now what changes if we replace that copula with a d-variate vine?

Consider the case of d = 3. Suppose we use the following R-vine representation

c123(u1, u2, u3;θ) = c12(u1, u2; θ1)c23(u2, u3; θ2)c13;2(C1|2(u1|u2; θ1), C3|2(u3|u2; θ2); θ3),
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where each bivariate copula is EFGM and θ = (θ1, θ2, θ3). Then, it is easy to see
that ∇θ ln cθ has the form ∇θ1 ln c12 +∇θ1 ln c13;2

∇θ2 ln c23 +∇θ2 ln c13;2

∇θ3 ln c13;2

 ,

where each element is a score function for the corresponding element of θ – a simpler
function with fewer argument (see, e.g., Stöber and Schepsmeier, 2013). The term
∇θ1 ln c13;2 is the only term that has all three parameters but if a sequential procedure
is used, estimates of θ1 and θ2 come from previous steps and are treated as known
so only θ3 is effectively unknown in c13;2. Regardless of the estimation method, only
derivatives of bivariate copulas are needed, which are much simpler than in higher
dimensions. Closed form expressions for the first two derivatives of several bivariate
copulas are given in Schepsmeier and Stöber (2014, 2012). The Hessian H will
simplify accordingly – some cross derivatives will be zero (Stöber and Schepsmeier,
2013). The same is true for the third-order derivatives used to obtain Σ̂s,n.

These are sizable simplifications when dealing with high dimensional copulas. The
problem is that multivariate dependence requires sufficiently rich parametrization
which affects tests’ properties. It also imposes heavy computational burdens as most
available “blanket” tests use parametric bootstrap, which is harder to implement in
high dimensions. Our simulations suggest that goodness-of-fit tests including GIMTs
deteriorate quickly for copulas with dimension d > 2 unless the copulas are vines.

4 Power study

In this section we analyze the size and power properties of the new copula goodness-
of-fit tests. We start by comparing performance of the various versions of GIMT for
vine copulas. This is the case where we believe our tests are paticularly useful in
high dimensions. Then, for classical (non-vine) copula specifications, we compare the
best performing tests with “blanket” non-GIMT alternatives favored in an extensive
simulation study by Genest et al. (2009).

4.1 Comparison Between GIMTs for Vine Copulas

4.1.1 Simulation Setup

We follow the simulation procedure of Schepsmeier (2013) and consider testing the
null that the vine copula model is M0 = RV (V0,B0(V0),θ0(B0(V0))) against the alter-
native M1 = RV (V1,B1(V1),θ1(B1(V1))),M1 6= M0. In each Monte Carlo simulation
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r, we generate n observations on urM0
= (u1r

M0
, . . . ,udrM0

) from model M0, estimate
the vine copula parameters θ0(B0(V0)) and θ1(B1(V1)) and calculate the test statistic
under the null, trn(M0), and under the alternative, trn(M1), for all the tests considered
in Section 2. The number of simulations is B = 5000.

Then we obtain approximate p-values p̂r for each test statistic as p̂j := p̂(tj) :=

1/B
∑B

r=1 1{tr≥tj}, j = 1, . . . , B and the actual size F̂M0(α) and (size-adjusted) power

F̂M1(α) using the formula

F̂ (α) =
1

B

B∑
r=1

1{p̂r≤α}, α ∈ (0, 1) (4)

We use an R-vine copula with d = 5 and d = 8 as M0. As M1 we use (a) a multi-
variate Gaussian copula, which can also be represented as a vine, (b) a C-vine copula
and (c) a D-vine copula. The details on the copulas under the null and alternatives,
as well as on the method used for choosing the specific bivariate components, are
provided in Appendix B. All calculations in this section were performed with R (R
Development Core Team, 2013) and the R-package VineCopula of Schepsmeier et al.
(2013).1

4.1.2 Simulation Results

We start by assessing the asymptotic approximation of the tests. Figures 2-3 show
empirical distributions of the test statistics for two sample sizes, n = 500 and 1000.
Several observations seem important here. First, overall we observe convergence to
the asymptotic distribution even for the fairly high dimensional copulas we consider
but asymptotics serve as a very poor approximator in all, except for a few, cases.
Second, the sequential approach performs better than the MLE approach – an obser-
vation for which we do not have an explanation. Third, the sampling distributions
of the Trace White and Determinant IR Tests – one-degree-of-freedom tests – are
much closer to their asymptotic limits, regardless of the dimension, than tests with
other functional forms and tests with greater degrees of freedom. Fourth, the De-
terminant White, Log Trace, and Eigenvalue Tests deteriorate quickly as dimension
increases. The Trace White and Determinant IR Tests dominate other tests in terms
of asymptotic approximation.

Now we look at size-power behavior. Since some of the proposed tests face sub-
stantial numerical problems with the asymptotic variance estimation and many ex-
hibit large deviations from the χ2

r distribution in small samples, especially when

1The R code used in this section, as well as the Matlab codes used in the next section are
available from the authors upon request.

15



20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

x

de
ns

ity

χ55
2

White Test (seq)
White Test (MLE)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

χ1
2

Trace White Test (seq)
Trace White Test (MLE)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

χ1
2

Determinant White Test (seq)
Determinant White Test (MLE)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

x

de
ns

ity

χ1
2

IR Test (seq)
IR Test (MLE)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

χ1
2

Determinant IR Test (seq)
Determinant IR Test (MLE)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

χ1
2

Log Trace Test (seq)
Log Trace Test (MLE)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

χ1
2

Log GAIC Test (seq)
Log GAIC Test (MLE)

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x

de
ns

ity

χ10
2

Log Eigenspectrum IMT (seq)
Log Eigenspectrum IMT (MLE)

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

x

de
ns

ity

χ10
2

Eigenvalue Test (seq)
Eigenvalue Test (MLE)

Figure 2: Empirical densities of GIMT for R-vine copulas: d = 5, n = 500
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Figure 3: Empirical densities for GIMT for R-vine copulas: d = 8, n = 1000
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dimension is high, we only investigate the bootstrap version of the tests. Figures
4-5 illustrate the estimated power of all 9 proposed tests. We consider three dimen-
sions, d = 5, 8 and 16; and two versions, sequential (dotted lines) and MLE (solid
lines). The two sample sizes we consider are n = 500 and 1000 for d = 5 and 8; and
n = 1000 and 5000 for d = 16. Percentage of rejections of H0 is on the y-axis, while
the truth (R-vine) and the alternatives are on the x-axis. Obviously, the power is
equal to the actual size for the true model. A horizontal black dashed line indicates
the 5% nominal size.

All proposed tests maintain their given size independently of the number of sam-
ple points, dimension or estimation method. For d = 5 we can observe increasing
power as sample size increases for all tests except the Determinant White Test. If
d = 8 the behavoir of the tests, especially the MLE versions, is more erratic. The De-
terminant White Test seems to be the only test that continues to perform poorly in
terms of power when sample size increases. Other tests show improvement in power
for either the mle or sequential version or both. Interestingly, the Trace White, Eigen-
value and IR Tests at times show very strong power in one of the two versions (mle
or sequential) and no power in the other. Overall, all tests except the Determinant
White show power against each alternative, showing that they are consistent.

For d = 16 we report only sequential estimates as they were most time efficient.
The Log Eigenspectrum, Eigenvalue, IR and Determinant IR tests show consistently
good behavior in terms of power against the two alternatives. The power of the
Determinant IR and Log Eigenspectrum Tests remains high independent of the di-
mension or the sample size.

4.2 Comparison with Non-GIMT Tests

4.2.1 Simulation Setup

In this section we compare selected GIMTs for copulas with the original White
test Tn and three “blanket” copula goodness-of-fit tests analyzed by Genest et al.
(2009). The GIMTs we select are the Log GAIC Test Gn and the Eigenvalue Test
Qn – they showed favorable size and power properties in the simulations of previous
sections. The selected non-GIMTs are based on the empirical copula process and
the Rosenblatt and Kendall transformation – they showed a favorable size and power
behavior in an extensive Monte Carlo study by Genest et al. (2009). We provide
details on the three tests in Appendix D and we summarize them in Table 2. For
vine copulas such comparisons are provided by Schepsmeier (2015) so in this section
we focus on classical multivariate (non-vine) copulas.

Again, since the limiting approximation is poor and depends on an unknown
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Figure 4: Size and power comparison for bootstrap versions of proposed tests in 5
and 8 dimensions with different sample sizes.
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Table 2: Summary of non-GIMTs.

Empirical copula process Sn n
∫

[0,1]d
(Cn(u)− Cθ̂n

(u))2 dCn(u)

=
∑n

j=1{Cn(Uj)− Cθ̂n
(Uj)}2

Rosenblatt’s transform SRn {Vj = RCθ̂n
(Uj)}nj=1∑n

j=1{Cn(Vj)− C⊥(Vj)}2

Kendall’s transform SKn Cθ(U) ∼ Kθ

n
∫

[0,1]
(Kn(v)−Kθ̂n

(v))2 dKθ̂n(v)

parameter θ, we resort to parametric bootstrap to obtain valid p-values. Further-
more, θ0 and F1, . . . , Fd are unknown as before. Therefore we use the pseudo-
sample {Ui1, . . . , Uid}ni=1 to approximate F1(Xi1), . . . , Fd(Xid), where Uij =

Rij

n+1
,

i = 1, . . . , n, j = 1, . . . , d, and Rij is the rank of Xij amongst X1j, . . . , Xnj. We
can use any consistent estimator of θ0, e.g., the estimator based on Kendall’s τ , or
the canonical maximum likelihood estimator (CMLE), which maximizes the pseudo-
likelihood `(θ) =

∑n
i=1 ln cθ(Ui), where Ui = (Ui1, . . . , Uid). In this section, we use

the estimator based on Kendall’s τ in all bivariate and multivariate cases except for
tests involving the Outer Power Clayton copula, for which the estimator based on
Kendall’s τ is not feasible. For details see Appendix C.

4.2.2 Simulation Results

We report selected size and power results in tables similar to those reported by
Genest et al. (2009) and Huang and Prokhorov (2014). The point of the tables is to
examine the effect of the sample size, degree of dependence and dimension on size
and power of the seven tests. The nominal level is fixed at 5% as before.

We first report bivariate results for selected values of Kendall’s τ and four one-
parameter copula families, where we obtain an estimate of the parameter by inverting
the sample version of Kendall’s τ . The results are based on 1,000 random samples of
size n = 150 and 500. Tables 3 and 4 report the size and power results for n = 150
and Kendall’s τ equal 0.5 and 0.75, respectively. Table 5 reports the results for
n = 500 and Kendall’s τ = 0.5. In each row we report the percentage of rejections
of H0 associated with Sn, SRn , SKn , Tn and Qn. As an example, Table 3 shows that
when testing the null of the Gaussian copula using Qn and n = 150, we reject the
null about 42% of the time when the true copula was Gumbel with Kendall’s τ = 0.5.
For all tests, except Tn, we bootstrap critical values. We use analytical values for Tn
to show that the conventional version of IMT is badly oversized (more comparisons
including bootstrap Tn can be found in Huang and Prokhorov (2014)).
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Table 3: Percentage of rejections of H0 by various tests for sample size n = 150
arising from different copula models with d = 2 and Kendall’s τ = 0.50

Copula under H0 True copula
Test based on

Sn SRn SKn Tn Qn
Gaussian Gaussian 4.9 5.0 4.9 7.5 4.0

Frank 20.2 13.4 17.4 6.8 36.0
Clayton 80.0 90.8 90.3 30.8 70.5
Gumbel 38.3 42.0 16.1 15.4 42.0

Frank Gaussian 19.9 8.9 22.6 14.6 2.0
Frank 4.8 4.8 4.8 9.4 4.0
Clayton 89.1 86.9 98.6 5.7 10.1
Gumbel 63.0 44.1 28.3 5.3 12.0

Clayton Gaussian 93.7 89.0 75.1 80.6 34.2
Frank 95.7 94.4 89.5 90.2 70.0
Clayton 5.3 5.1 4.5 12.0 4.9
Gumbel 99.9 99.7 98.5 90.5 54.2

Gumbel Gaussian 18.3 33.7 37.7 5.2 8.0
Frank 39.8 52.1 42.4 29.3 37.6
Clayton 99.6 99.7 99.9 75.5 78.8
Gumbel 4.6 4.5 4.6 10.0 4.4

The results indicate that all the tests maintain the nominal size and generally
have power against the alternatives. We note that in the bivariate case we use only
one indicator in constructing Tn and so Qn provides no dimension reduction. The
analytical p-values used for Tn lead to noticeable oversize distortions, whileQn retains
size close to nominal and is often conservative compared with Sn, SRn , and SKn . The
tables also show that a higher dependence or a larger sample size give higher power,
which is true for all the tests we consider. The increase in power resulting from the
sample size increase is an indication of Qn being consistent.

Table 6 presents selected results for d = 4. Here we focus on Sn, Tn and Qn but
report two versions of Tn, one based on bootstrapped critical values (T bn ) and the
other based on the analytical asymptotic critical values (T an ) – this high dimensional
comparison was not considered by Huang and Prokhorov (2014). We do not include
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Table 4: Percentage of rejections of H0 by various tests for sample size n = 150
arising from different copula models with d = 2 and Kendall’s τ = 0.75

Copula under H0 True copula
Test based on

Sn SRn SKn Tn Qn
Gaussian Gaussian 4.9 4.9 4.4 10.4 5.3

Frank 42.2 32.8 41.4 40.0 86.6
Clayton 91.8 99.9 97.3 60.5 99.2
Gumbel 38.5 55.5 17.9 23.7 71.2

Frank Gaussian 40.9 18.4 40.2 8.0 3.6
Frank 4.7 5.0 4.5 11.0 5.3
Clayton 96.6 99.7 99.6 20.4 7.2
Gumbel 81.9 59.9 53.2 8.7 2.2

Clayton Gaussian 99.8 99.5 94.9 90.2 66.4
Frank 99.1 99.9 97.0 91.6 99.8
Clayton 5.4 5.1 4.9 11.0 4.2
Gumbel 99.9 99.9 99.9 96.2 97.2

Gumbel Gaussian 12.3 60.7 29.4 9.6 4.6
Frank 51.7 83.8 61.6 76.4 89.2
Clayton 99.9 99.9 99.9 90.4 100.0
Gumbel 4.5 5.2 4.4 10.9 5.0

SRn and SKn because their behavior appears similar to that of Sn. Under the null, we
have three one-parameter Archimedean copulas, the Gaussian copula with six distinct
parameters in the correlation matrix and the Outer Power Clayton copula with two
parameters. The alternatives are six four-dimensional copula families. We did not
include the Student-t copula under the null (but include it under the alternative)
due to the heavy computational burden associated with generating from this copula.
All the other true copulas are also considered under the null.

Several observations are unique to the multivariate simulations because they in-
volve more than one parameter and more than two marginals. To simulate from the
Outer Power Clayton copula, which has two parameters, we set (β, θ) = (4/3, 1),
which corresponds to Kendall’s τ equal 0.5. For the Gaussian copula, after estimat-
ing the pairwise Kendall τ ’s, we invert them to obtain the corresponding elements
of the correlation matrix. For the Archimedean copulas, we follow Berg (2009) and

23



Table 5: Percentage of rejections of H0 by various tests for sample size n = 500
arising from different copula models with d = 2 and Kendall’s τ = 0.50

Copula under H0 True copula
Test based on

Sn SRn SKn Tn Qn
Gaussian Gaussian 4.6 5.4 4.9 7.5 4.0

Frank 36.9 60.7 33.4 60.7 66.5
Clayton 99.8 100.0 99.6 90.4 99.5
Gumbel 65.3 18.9 62.9 62.3 71.1

Frank Gaussian 42.5 35.1 32.7 20.6 15.2
Frank 4.2 6.4 4.7 7.1 4.8
Clayton 100.0 99.9 100.0 10.6 15.1
Gumbel 95.2 47.5 85.8 13.3 14.9

Clayton Gaussian 100.0 99.5 99.7 100.0 99.0
Frank 100.0 99.4 99.9 99.2 99.9
Clayton 5.0 5.2 4.7 12.0 4.9
Gumbel 100.0 100.0 100.0 99.5 100.0

Gumbel Gaussian 74.1 38.4 61.6 20.7 21.2
Frank 95.5 47.8 85.1 89.3 99.2
Clayton 100.0 100.0 100.0 100.0 100.0
Gumbel 5.2 5.5 5.0 7.2 4.4

obtain the dependence parameter by inverting the average of six pairwise Kendall
τ ’s. For the Outer Power Clayton copula, we can only estimate the parameters by
CMLE. Details on simulating from and estimation of the Outer Power Clayton cop-
ula can be found in Hofert et al. (2012). For a given value of τ and each combination
of copulas under the null and under the alternative, the results we report are based
on 1,000 random samples of size n = 150. Each of these samples is then used to test
goodness-of-fit. Table 6 reports size and power for (average) Kendall’s τ equal 0.5.

The key observation from Table 6 is that Qn dominates both versions of Tn in
terms of power. We attribute this to the dimension reduction permitted by Qn. The
table also shows that our test maintains the nominal size of 5% in the multivariate
cases. Overall, the behavior of Qn is as good if not better than that of Sn. A
remarkable case of the better performance of Qn is the tests involving the Student-t
alternative, where Sn does worse, regardless of the copula under the null.
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Table 6: Percentage of rejections of H0 for n = 150 and d = 4 with Kendall’s
τ = 0.50.

Copula under H0 True copula
Test based on

Sd T an T bn Qn
Gaussian Gaussian 5.0 4.9 5.0 4.9

Frank 15.4 4.7 6.5 56.1
Clayton 88.5 14.4 10.2 72.5
Gumbel 52.1 12.1 13.6 75.5
Student 11.3 14.6 7.0 90.4
Outer Power Clayton 60.2 13.9 11.4 72.4

Frank Gaussian 43.4 16.3 19.6 47.8
Frank 4.2 7.3 5.3 4.9
Clayton 97.0 14.5 7.1 27.3
Gumbel 67.3 7.0 4.5 25.6
Student 56.7 77.3 50.5 80.9
Outer Power Clayton 77.6 8.2 13.1 42.7

Clayton Gaussian 92.2 99.4 42.6 98.8
Frank 94.1 99.9 38.1 99.9
Clayton 5.1 10.3 4.2 4.7
Gumbel 99.3 99.9 55.4 99.8
Student 96.7 98.5 50.8 96.9
Outer Power Clayton 70.3 50.6 12.5 75.8

Gumbel Gaussian 76.3 49.8 20.2 83.4
Frank 60.1 33.8 16.9 76.1
Clayton 99.4 99.6 82.6 99.9
Gumbel 5.0 6.5 5.2 5.1
Student 77.5 79.0 30.3 93.2
Outer Power Clayton 89.7 50.9 22.3 78.5

Outer Power Clayton Gaussian 62.8 14.6 6.7 18.4
Frank 60.1 20.2 9.1 45.1
Clayton 9.4 8.9 9.0 11.1
Gumbel 25.4 13.5 8.1 20.9
Student 19.5 8.4 7.9 75.7
Outer Power Clayton 5.3 7.7 5.0 4.8
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Table 7: Percentage of rejections of H0 for n = 150 and d = 5 with Kendall’s
τ = 0.50.

Copula under H0 True copula
Test based on

Sd Qn T bn Gn
Gaussian Gaussian 5.1 4.8 5.0 5.0

Frank 15.2 63.4 7.1 50.6
Clayton 93.8 76.9 17.7 71.2
Gumbel 52.3 74.6 12.4 62.5
Student 9.1 92.6 7.6 90.1
Outer Power Clayton 61.7 74.7 13.5 57.5

Frank Gaussian 60.4 61.4 21.3 51.7
Frank 5.0 4.9 5.1 4.9
Clayton 98.3 34.6 8.3 30.5
Gumbel 69.7 20.1 4.1 19.2
Student 64.2 51.8 60.4 56.4
Outer Power Clayton 75.4 77.3 13.9 80.1

Clayton Gaussian 91.4 98.1 50.4 92.0
Frank 89.9 99.2 38.9 99.4
Clayton 4.9 4.9 5.0 4.9
Gumbel 97.5 99.9 59.5 99.8
Student 97.1 98.1 55.4 98.9
Outer Power Clayton 72.6 74.1 17.6 64.3

Gumbel Gaussian 81.0 86.5 24.9 85.4
Frank 67.5 77.4 20.7 82.0
Clayton 99.3 99.9 83.4 99.9
Gumbel 5.1 5.0 5.1 5.1
Student 74.2 90.4 40.2 76.5
Outer Power Clayton 91.1 80.5 30.5 62.1

Outer Power Clayton Gaussian 60.2 17.3 8.2 12.8
Frank 60.6 51.6 17.4 41.3
Clayton 7.5 11.3 10.2 15.9
Gumbel 26.7 21.7 13.1 17.8
Student 5.2 76.4 10.4 63.7
Outer Power Clayton 5.3 5.0 4.9 5.0
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Table 8: Percentage of rejections of H0 for n = 150 and d = 8 with Kendall’s
τ = 0.50.

Copula under H0 True copula
Test based on

Sn Qn T bn Gn
Gaussian Gaussian 5.0 4.8 5.0 5.0

Frank 25.6 86.3 22.5 81.5
Clayton 98.7 91.2 29.6 93.8
Gumbel 75.5 87.2 36.1 90.5
Student 12.2 99.9 18.9 99.9
Outer Power Clayton 75.4 95.6 39.2 82.7

Frank Gaussian 97.8 87.9 32.3 82.2
Frank 4.9 4.9 5.0 4.9
Clayton 99.5 60.2 19.4 42.2
Gumbel 85.6 32.4 9.8 29.3
Student 99.5 79.8 64.4 82.3
Outer Power Clayton 91.4 93.7 42.3 96.7

Clayton Gaussian 99.7 99.9 75.4 99.9
Frank 97.9 100 62.2 99.9
Clayton 4.9 4.9 5.0 5.0
Gumbel 99.9 99.9 82.3 99.9
Student 99.9 99.9 65.2 99.9
Outer Power Clayton 81.1 95.8 34.6 81.6

Gumbel Gaussian 99.5 98.9 42.1 97.5
Frank 63.4 81.9 40.3 85.1
Clayton 100 99.9 99.0 99.9
Gumbel 5.2 5.0 5.1 5.1
Student 99.5 99.5 54.2 90.1
Outer Power Clayton 99.9 99.9 42.2 82.1

Outer Power Clayton Gaussian 67.6 38.2 33.4 20.7
Frank 71.4 54.1 16.2 42.9
Clayton 14.2 12.5 11.7 16.6
Gumbel 45.3 28.4 32.3 35.8
Student 18.6 97.6 52.4 67.9
Outer Power Clayton 5.0 5.1 5.3 5.0
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An interesting observation is how the power of Qn changes between Table 3 and
Table 6. Consider, for example, the test of the null of the Frank copula. Regardless
of the alternative, Qn performs poorly in the bivariate case. However, with the
increased dimension the behavior of Qn improves substantially. This is especially
pronounced in comparison with Tn, whose power remains particularly low against
the Archimedean alternatives. At the same time, for the Student-t and Gaussian
alternatives, the performance of Qn stands out even compared with Sn.

Table 7 and Table 8 present selected results for d = 5 and d = 8, respectively.
Here we focus on Sd, Qn, Tn and Gn. We use Tn (bootstrap) as a benchmark. The
Log GAIC Test Gn is another GIMT that performed well in Section 4.1 – we use it to
further illustrate the dimension reduction permitted by GIMTs. In Tables 7 and 8,
under the null we have three one-parameter Achimedean copulas, the Outer Power
Clayton copula with two parameters, and the Gaussian copula with d(d−1)

2
distinct

parameters in the correlation matrix. The alternatives are Frank, Clayton, Gumbel,
Outer Power Clayton, Gaussian, and t copulas. Samples are in every scenario are
simulated from a copula with Kendall’s τ equal to 0.5. The parameter estimation
here is done by CMLE, rather than by conversion of Kendall’s τ used for d = 4 in
Table 7. The explicit expressions of the score functions of the selected Archimedean
copulas can be found in Hofert et al. (2012).

The results in Tables 7-8 show that, as expected, Qn, Gn and Tn all maintain
the nominal size and show power. More interestingly, the power of the three GIMT
tests increases as the dimension increases. In particular, Qn and Gn behave similarly
under all null hypotheses and both show significant increases in power in almost all
scenarios as the dimension grows. We also see that Qn and Gn dominate Tn in all
scenarios. Note that for the Frank, Clayton, and Gumbel copulas, both Hessian and
OPG matrices degenerate to scalars; therefore there is no dimension reduction in Qn
and Gn compared to Tn. Yet, we observe that Qn and Gn are more powerful than Tn,
which may be due to the fact that the eigenvalues of −H−1C are more sensitive to
changes in H and C than the eigenvalues of H + C. When testing multi-parameter
copulas, e.g., multivariate Gaussian, due to the additional dimension reduction, Qn
and Gn perform much better than Tn.

5 Conclusion

We consider a battery of tests resulting from eigenspectrum-based versions of the
information matrix equality applied to copulas. The benefit of this generalization
is due to a reduction in degrees of freedom of the tests and to the focused hy-
pothesis function used to construct them. For example, in testing the validity of
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high-dimension, multi-parameter copulas we manage to reduce the information ma-
trix based test statistic to an asymptotically χ2 with one degree of freedom, and we
can focus on the effect of larger or smaller eigenvalues by using specific functions of
the eigenspectrum such as det or trace. However, only a few of the proposed tests
can be well approximated by their asymptotic distributions in realistic sample sizes
so we have also looked at the boostrap version of the tests.

The main argument of the paper is that the bootstrap versions of GIMTs domi-
nate other available tests of copula validity when copulas are high-dimensional and
multi-parameter. We use this argument to motivate the use of GIMTs on vine cop-
ulas, where additional simplifications result from the functional form of the Hessian
and the score.
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A Proofs

Proof of Lemma 1: The proof is based on combining the results of Golden et al.
(2013) and Huang and Prokhorov (2014). It also relates to the work of Presnell and
Boos (2004) on information ratio test.

We start with d = 2 for simplicity and later give the formulas for any d. Let

di(θ) :=

(
vech(Hi(θ))
vech(Ci(θ))

)
∈ Rp(p+1)

denote the lower triangle vectorizations of−Hi(θ) and Ci(θ) and let∇Dθ := E∇θdi(θ) ∈
Rp(p+1)×p denote the expected Jacobian matrix of the random vector di(θ). We can
estimate Edi(θ0) by d̄(θ̂n), where d̄(θ) := 1

n

∑n
i=1 di(θ).

Let F̂ji = F̂j(xji), j = 1, 2, i = 1, . . . , n, be the empirical cdf’s. Note that di(θ)

implicitely depends on the nonparametric estimates of the marginals, F̂1(x1) and
F̂2(x2). Then,

di(θ) =
{
vech[∇2

θ ln c(F̂1i, F̂2i;θ)]′, vech[∇θ ln c(F̂1i, F̂2i; θ)∇′θ ln c(F̂1i, F̂2i;θ)]′
}′
.

Provided that the derivatives and expectation exist, let

∇Dθ = E∇θdi(θ)

and

∇D̄θ = n−1

n∑
i=1

∇θdi(θ).

First, expand
√
nd̄θ̂ with respect to θ:

√
nd̄(θ̂) =

√
nd̄(θ0) +∇Dθo

√
n(θ̂ − θ0) + op(1).

Chen and Fan (2006) show that
√
n(θ̂ − θo)→ N(0, B−1GB−1),

where

B = −H(θ0),

G = lim
n→∞

V ar(
√
nA∗n),

A∗n =
1

n

n∑
i=1

(∇θ ln c(F1i, F2i;θ0) +W1(F1i) +W2(F2i)).
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Here termsW1(F1i) andW2(F2i) are the adjustments needed to account for the empir-
ical distributions used in place of the true distributions. These terms are calculated
as follows:

W1(F1i) =

∫ 1

0

∫ 1

0

[I{F1i ≤ u} − u]∇2
θ,u ln c(u, v;θ0) c(u, v;θ0)dudv,

W2(F2i) =

∫ 1

0

∫ 1

0

[I{F2i ≤ v} − v]∇2
θ,v ln c(u, v;θ0) c(u, v;θ0)dudv.

So, rewriting the consistency result from Chen and Fan (2006) we have

√
n(θ̂ − θ0) = B−1

√
nA∗n + op(1).

Second, expand
√
nd̄(θ0) with respect to F1 and F1:

√
nd̄(θ0) ' 1√

n

n∑
i=1

di(θ0)+
1

n

n∑
i=1

∇F1di(θ0)
√
n(F̂1i−F1i)+

1

n

n∑
i=1

∇F2di(θ0)
√
n(F̂2i−F2i).

(5)
Under suitable regularity conditions (see, e.g., Genest et al., 1995; Chen and Fan,

2006),

1

n

n∑
i=1

∇F1i
di(θ0)

√
n(F̂1i − F1i)

'
∫ 1

0

∫ 1

0

∇u{vech[∇2
θ ln c(u, v;θ0)]′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′

√
n(F̂1(F−1

1 (u))− u)c(u, v;θ0)dudv

=
1√
n

n∑
i=1

∫ 1

0

∫ 1

0

[I{F1i ≤ u} − u]

∇u{vech[∇2
θ ln c(u, v;θ0)]′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′c(u, v;θ0)dudv.

Denote

M1(F1) =

∫ 1

0

∫ 1

0

[I{F1i ≤ u} − u]

∇u{vech[∇2
θ ln c(u, v;θ0)]′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′c(u, v;θ0)dudv,

then
1

n

n∑
i=1

∇F1i
di(θ0)

√
n(F̂1i − F1i) =

1√
n

n∑
i=1

M1(F1i).
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Similarly, denote

M2(F2i) =

∫ 1

0

∫ 1

0

[I{F2i ≤ v} − v]

∇v{vech[∇2
θ ln c(u, v;θ0)]′, vech[∇θ ln c(u, v;θ0)∇′θ ln c(u, v;θ0)]′}′c(u, v;θ0)dudv,

then
1

n

n∑
i=1

∇F2i
di(θ0)

√
n(F̂2i − F2i) =

1√
n

n∑
t=i

M2(F2i).

Therefore, equation (5) can be rewritten as

√
nd̄(θ0) =

1√
n

n∑
i=1

di(θ0) +
√
nB∗n + op(1),

where

B∗n =
1

n

n∑
i=1

[M1(F1i) +M2(F2i)].

Finally, combining the expansions gives

√
nd̄(θ̂) =

1√
n

n∑
i=1

di(θ0) +
√
nB∗n +∇Dθ0B

−1
√
nA∗n + op(1).

So d̄(θ̂) converges in distribution to a multivariate normal with variance matrix Vθ0 :

√
nd̄(θ̂)→ N(0, Vθ0),

where

Vθ0 = E {di(θ0) +M1(F1t) +M2(F2t)

+∇Dθ0B
−1 [∇θ ln c(F1t, F2t;θ0) +W1(F1t) +W2(F2t)]

}
× {di(θ0) +M1(F1t) +M2(F2t)

+∇Dθ0B
−1 [∇θ ln c(F1t, F2t;θ0) +W1(F1t) +W2(F2t))]

}′
.

Extension to d ≥ 2 is straightforward. Now

di(θ) =

(
vech(∇2

θ ln c(F1i, F2i, . . . , Fdi;θ))
vech(∇θ ln c(F1i, F2i, . . . , Fdi;θ)∇′θ ln c(F1i, F2i, . . . , Fdi;θ))

)
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and the asymptotic variance matrix becomes

Vθ0 = E

{
di(θ0)−∇Dθ0H−1

[
∇θ ln c(F1i, F2i, . . . , Fdi;θ0) +

d∑
j=1

Wj(Fji)

]
+

d∑
j=1

Mj(Fji)

}

×
{
di(θ0)−∇Dθ0H−1

[
∇θ ln c(F1i, F2i, . . . , Fdi;θ0) +

d∑
j=1

Wj(Fji)

]
+

d∑
j=1

Mj(Fji)

}′
,

(6)

where, for j = 1, 2, . . . , d,

Wj(Fji) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

[I{Fji ≤ un} − uj]∇2
θ,uj

ln c(u1, u2, . . . , ud;θ0)

c(u1, u2, . . . , ud;θ0)du1du2 · · · dud,
and

Mj(Fji) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

[I{Fji ≤ uj} − uj]∇ujvech[∇2
θ ln c(u1, u2, . . . , ud;θ0)

+∇θ ln c(u1, u2, . . . , ud;θ0)∇′θ ln c(u1, u2, . . . , ud;θ0)]

c(u1, u2, . . . , ud;θ0)du1du2 · · · dud.

Now, since ŝn is a function of d̄(θ̂), its asymptotic distribution can be easily
obtained using the delta method. Define

∇sθ0 :=

(
∂s

∂vech(H)′

∣∣∣∣
θ0

,
∂s

∂vech(C)′

∣∣∣∣
θ0

)
(7)

Then, √
nŝn

d→ N(0,Σs(θ0)),

where
Σs(θ0) := (∇sθ0)Vθ0 (∇sθ0)′ .

Proof of Theorem 1: Follows trivially from Lemma 1 and consistency of Σ̂n,s for

Σ.

Lemma A1: For any real-valued square matrices A and B, let the elements of
B ∈ Rr×r be functions of A ∈ Rp×p. Let the matrix dB

dA
∈ Rp2×r2 be called matrix

derivative of B by A if
dB

dA
=

∂

∂vec(A)
vec(B)′,
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where vec denotes the vectorization operator. Let D denote the transition matrix,
i.e. such a matrix that for, any A, vech(A) = Dvec(A) and D+vech(A) = vec(A),
where D+ is the Moore-Penrose inverse of D. Then, the following results hold (see,
e.g., Kollo and von Rosen, 2006):

dA

dA
= Ip2

dC ′A

dA
= Ip ⊗ C, where C is a matrix of proper size with constant elements

d(C ′B)

dA
=
dB

dA
(I ⊗ C)

dBC

dA
=
dB

dA
(C ⊗ I)

dA−1

dA
= −A−1 ⊗ (A′)−1

dtr(B)

dA
=
dB

dA
vec(Ir)

dtr(C ′A)

dA
= vec(C), where C is a matrix of proper size with constant elements

d det(A)

dA
= det(A)vec(A−1)′

dA(B(C))

dC
=
dB

dC

dA

dB

Lemma A2: Let λ denote an eigenvalue of a symmetric matrix A and let y denote
the corresponding normalized eigenvector, i.e. the solution of the equation system
Ay = λy, such that y′y = 1. Let D denote the duplication matrix. Then, the
following result holds (see Magnus, 1985):

∂λ

∂vech(A)
= [y′ ⊗ y′]D

Proof of Proposition 1: First use Lemma A1 on determinant differentiation, as
well as properties of vec and vech operators, to obtain

∇sθ0 = det(H(θ0) + C(θ0))vech((H(θ0) + C(θ0))−1)′
[
Ip(p+1)/2, Ip(p+1)/2

]
Now use θ̂n, which is consistent for θ0, and the sample equivalents H̄ and C̄, which
are consistent for H and C, to obtain the consistent estimator ∇̂sθ0 given in the
proposition.
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The asymptotic distribution of T (D)
n then follows from Theorem 1.

Proof of Proposition 2: First use Lemma A1 on trace differentiation to obtain
the form of ∇sθ0 , then the result follows trivially from Theorem 1.

Proof of Proposition 3: First use Lemma A1 on trace and inverse differentiation
as well as the fact that [C ′ ⊗ A]vec(B) = vec(ABC), to obtain

∇sθ0 =
(
vech

(
H(θ0)−1C(θ0)H(θ0)−1

)′
, vech

(
−H(θ0)−1

)′)
then replace the population values with consistent estimates as before, and apply
Theorem 1 to obtain the result.

Proof of Proposition 4: Similar to previous propositions, using Lemma A1 on
determinant differentiation to obtain

∇sθ0 = det(H(θ0)−1C(θ0))
(
vech

(
−C(θ0)−1H(θ0)−1C(θ0)

)′
, vech

(
C(θ0)−1

)′)
.

Proof of Proposition 5: Similar to previous propositions, using Lemma A1 on
trace differentiation to obtain

∇sθ0 =

(
− 1

tr(H(θ0)−1)
vech

(
H(θ0)−2

)′
, − 1

tr(C(θ0))
vech (Ip)

′
)
.

Proof of Proposition 6: Under the null, this is a log version of the IR test, so

∇sθ0 =
1

tr(H(θ0)−1C(θ0))

(
vech

(
H(θ0)−1C(θ0)H(θ0)−1

)′
, vech

(
−H(θ0)−1

)′)
The rest of the proof is the same as in previous propositions.

Proof of Proposition 7: Similar to above, using Lemma A2 to obtain

∇sθ0 =

 −
1

λ1(H(θ0))
[y1(H(θ0))′ ⊗ y1(H(θ0))′]D 1

λ1(C(θ0)))
[y1(C(θ0))′ ⊗ y1(C(θ0))′]D

...
...

− 1
λp(H(θ0))

[yp(H(θ0))′ ⊗ yp(H(θ0))′]D 1
λp(C(θ0)))

[yp(C(θ0))′ ⊗ yp(C(θ0))′]D

 .
Proof of Proposition 8: Similar to above, using Lemma A2 to obtain

∇sθ0 =


1

λ1(H(θ0))
[y1(C(θ0))′ ⊗ y1(C(θ0))′]D − λ1(C(θ0))

λ1(H(θ0))2
[y1(H(θ0))′ ⊗ y1(H(θ0))′]D

...
...

1
λp(H(θ0))

[yp(C(θ0))′ ⊗ yp(C(θ0))′]D − λp(C(θ0))

λp(H(θ0))2
[yp(H(θ0))′ ⊗ yp(H(θ0))′]D

 .
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B Vines Used in Simulations

In Section 4.1.2 we used the following vine copula for our simulation study. Table 9
for d = 5 and Table 10 for d = 8 give details about the vine copula decomposition
(structure) V , their selected pair-copula families B and Kendall’s τ for the vine
copula under the null hypothesis. For the C-vine and D-vine, V as well as B are
selected by the algorithms provided in the VineCopula package (Schepsmeier et al.,
2013). τ̂ denotes the estimated Kendall’s τ in the pre-run step of the simulation
procedure of Schepsmeier (2013). Note that the vine copula density is written in
a short hand notation omitting the pair-copula arguments. The notation of the
pair-copula families follows Brechmann and Schepsmeier (2013).

For the C- and D-vine the calculation of the vine copula density (3) simplifies.
For the five-dimensional example used in the simulation study, (3) can be expressed
as

c12345 = c1,2 · c2,3 · c2,4 · c2,5 · c1,3;2 · c1,4;2 · c1,5;2 · c3,4;1,2 · c4,5;1,2 · c3,5;1,2,4

c12345 = c1,2 · c1,5 · c4,5 · c3,4 · c2,5;1 · c1,4;5 · c3,5;4 · c2,4;1,5 · c1,3;4,5 · c2,3;1,4,5

Similar representations used for d = 8 and 16 as well as a similar table for d = 16
are available from the authors upon request.

C Outer Power Clayton Copula

The Outer Power Clayton copula is defined as follows:

C(u) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)),

where ψ(t) = ψ̃(t1/β) for some β ∈ [1,∞) and ψ̃(t) is the Clayton copula generator

ψ̃(t) = (1 + t)−1/θ for some θ ∈ (0,∞). The inversion of Kendall’s τ is not feasible
here because τ = τ(θ, β) = 1− 2

β(θ+2)
and so (β, θ) are not identifiable individually.

Our simulations using the CMLE instead of the inversion of Kendall’s τ for other
copulas (not reported here) suggest that the CMLE leads to a substantial power
improvement of some GIMT, e.g., of Qn. We do not have an explanation for this
phenomenon and so only report the least favorable results. The power reported in
Section 4.2.2 for tests that do not involve the Outer Power Clayton copula is therefore
conservative.
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R-vine C-vine D-vine

T V5
R B5

R(V5
R) τ V5

C B5
C(V5

C) τ̂ V5
D B5

D(V5
D) τ̂

1 c1,2 N 0.71 c1,2 N 0.71 c1,2 N 0.71
c1,3 N 0.33 c2,3 N 0.51 c1,5 F 0.70
c1,4 C 0.71 c2,4 G180 0.70 c4,5 G 0.75
c4,5 G 0.74 c2,5 F 0.73 c3,4 G 0.48

2 c2,4;1 G 0.38 c1,3;2 G90 -0.33 c2,5;1 N 0.37
c3,4;1 G 0.47 c1,4;2 G180 0.29 c1,4;5 G180 0.22
c1,5;4 G 0.33 c1,5;2 G180 0.25 c3,5;4 C 0.15

3 c2,3;1,4 C 0.35 c3,4;1,2 N 0.27 c2,4;1,5 F 0.18
c3,5;1,4 C 0.31 c3,5;1,2 N 0.25 c1,3;4,5 F -0.26

4 c2,5;1,3,4 N 0.13 c4,5;1,2,3 G 0.20 c2,3;1,4,5 G180 0.31

Table 9: Chosen vine copula structures, copula families and Kendall’s τ values for the
R-vine copula model and the C- and D-vine alternatives in the five-dimensional case
(N:=Normal, C:=Clayton, G:=Gumbel, F:=Frank, J:=Joe; 90, 180, 270:= degrees
of rotation).

D Non-GIMTs for Copulas

Here we provide details on the non-GIMTs used in Section 4.2. We start with a few
definitions.

Given a multivariate distribution, the Rosenblatt transformation (Rosenblatt,
1952) yields a set of independent uniforms on [0, 1] from possibly dependent realiza-
tions obtained using that multivariate distribution. The Rosenblatt transform can
be specialized to copulas as follows:

Definition 3 Rosenblatt’s probability integral transformation (PIT) of a copula C
is the mapping R : (0, 1)d → (0, 1)d which to every u = (u1, . . . , ud) ∈ (0, 1)d assigns
a vector R(u) = (e1, . . . , ed) with e1 = u1 and, for i ∈ {2, . . . , d},

ei =
∂i−1C(u1, . . . , ui, 1, . . . , 1)

∂u1 · · · ∂ui−1

/
∂i−1C(u1, . . . , ui−1, 1, . . . , 1)

∂u1 · · · ∂ui−1

. (8)

As noted by Genest et al. (2009), the initial random vector U has distribution
C, denoted U ∼ C, if and only if the distribution of the Rosenblatt transform R(U)
is the d-variate independence copula defined as C⊥(e1, . . . , ed) =

∏d
j=1 ej. Thus

H0 : U ∼ C ∈ C0 is equivalent to H∗0 : Rθ(U) ∼ C⊥.
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R-vine C-vine D-vine

T V8
R B8R(V8

R) τ V8
C B8C(V8

C) τ̂ V8
D B8D(V8

D) τ̂

1 c1,2 J 0.41 c1,8 F 0.59 c1,4 N 0.61
c1,4 N 0.59 c2,8 F 0.51 c4,5 G180 0.71
c1,5 N 0.59 c3,8 N 0.55 c5,8 F 0.60
c1,6 F 0.23 c4,8 G180 0.59 c7,8 G 0.65
c3,6 F 0.19 c5,8 F 0.60 c3,7 G180 0.41
c4,7 C 0.44 c6,8 F 0.27 c2,3 G 0.52
c7,8 G 0.64 c7,8 G 0.65 c2,6 J180 0.57

2 c2,6;1 C 0.58 c1,2;8 J 0.10 c1,5;4 C 0.22
c1,3;6 G 0.44 c2,3;8 J 0.29 c4,8;5 C 0.22
c4,6;1 F 0.11 c2,4;8 G 0.24 c5,7;8 J90 -0.05
c4,5;1 C 0.53 c2,5;8 G 0.29 c3,8;7 G 0.41
c1,7;4 C 0.29 c2,6;8 J180 0.52 c2,7;3 J 0.10
c4,8;7 N 0.53 c2,7;8 N -0.17 c3,6;2 G270 -0.48

3 c5,6;1,4 N 0.19 c1,4;2,8 N 0.28 c1,8;4,5 N 0.20
c6,7;1,4 F 0.03 c3,4;2,8 N 0.22 c4,7;5,8 N -0.13
c1,8;4,7 G 0.22 c4,5;2,8 G180 0.41 c3,5;7,8 G 0.18
c3,4;1,6 N 0.41 c4,6;2,8 G270 -0.20 c2,8;3,7 G 0.25
c2,3,1,6 G 0.68 c4,7;2,8 I 0 c6,7;2,3 C 0.08

4 c6,8;1,4,7 C 0.17 c1,6;2,4,8 J180 0.09 c6,8;2,3,7 C 0.05
c5,7;1,4,6 N 0.09 c3,6;2,4,8 N -0.33 c2,5;3,7,8 G 0.19
c3,5;1,4,6 F 0.21 c5,6;2,4,8 F -0.04 c3,4;5,7,8 C180 0.09
c2,4;1,3,6 G 0.57 c6,7;2,4,8 I 0 c1,7;4,5,8 J180 0.06

5 c2,5;1,3,4,6 J 0.25 c1,5;2,4,6,8 C 0.23 c5,6;2,3,7,8 C90 -0.04
c3,7;1,4,5,6 G 0.17 c3,5;2,4,6,8 F 0.10 c2,4;3,5,7,8 C90 -0.02
c5,8;1,4,6,7 F 0.02 c5,7;2,4,6,8 F 0.05 c1,3;4,5,7,8 G90 -0.09

6 c2,7;1,3,4,5,6 G 0.31 c1,3;2,4,5,6,8 F 0.07 c4,6;2,3,5,7,8 C90 -0.14
c3,8;1,4,5,6,7 C 0.20 c3,7;2,4,5,6,8 I 0 c1,2;3,4,5,7,8 G90 -0.13

7 c2,8;1,3,4,5,6,7 F 0.03 c1,7;2,3,4,5,6,8 I 0 c1,6;2,3,4,5,7,8 G180 0.24

Table 10: Chosen vine copula structures, copula families and Kendall’s τ values for
R-vine copula model and the C- and D-vine alternatives in the eight-dimensional
case (I:=indep., N:=Normal, C:=Clayton, G:=Gumbel, F:=Frank, J:=Joe; 90, 180,
270:= degrees of rotation).
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The PIT algorithm for R-vine copulas is given in the Appendix of Schepsmeier
(2015). It makes use of the hierarchical structure of the R-vine, which simplifies the
calculation of (8).

Definition 4 Kendall’s transformation is the mapping X 7→ V = C(U1, . . . , Ud),
where Ui = Fi(Xi) for i = 1, . . . , d and C denotes the joint distribution of U =
(U1, . . . , Ud).

Let K denote the (univariate) distribution function of Kendall’s transform V and
let Kn denote the empirical analogue of K defined by

Kn(v) =
1

n

n∑
j=1

1(Vj ≤ v), v ∈ [0, 1], (9)

where 1(·) is the indicator function. Then, under standard regularity conditions,
Kn is a consistent estimator of K. Also, under H0, the vector U = (U1, . . . , Ud) is
distributed as Cθ for some θ ∈ O, and hence Kendall’s transformation Cθ(U) has
distribution Kθ.

Note that K is not available for all parametric copula families in closed form,
especially not for vine copulas. Thus Genest et al. (2009) use a bootstrap procedure
to approximate K in such cases.

We now describe the non-GIMTs used in the simulation study.

D.1 Empirical copula process test

This test is based on the empirical copula defined as follows:

Cn(u) =
1

n

n∑
i=1

1(Ui1 ≤ u1, . . . , Uid ≤ ud). (10)

It is a well-known result that, under regularity conditions, Cn is a consistent estimator
of the true underlying copula C, whether or not H0 is true. Note that Cn(u) is
different from Kn(v), which is a univariate empirical distribution function.

A natural goodness-of-fit test would be based on a “distance” between Cn and
an estimated copula Cθn obtained under H0. In this paper, θ̂n = Γn(U1, . . . ,Un)
stands for an estimator of θ obtained using the pseudo-observations.
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Thus the test relies on the empirical copula process (ECP)
√
n(Cn − Cθ̂n

). In
particular, it has the following rank-based Cramér-von Mises form:

Sn =

∫
[0,1]d

(Cn − Cθ̂n
)2 dCn(u) =

n∑
j=1

{Cn(Uj)− Cθ̂n
(Uj)}2, (11)

where large values of Sn would lead to a rejection of H0. Genest et al. (2009)
demonstrate that the test is consistent, that is, that if C /∈ C0 then H0 is rejected
with probability one as n→∞.

In the vine copula case we have to perform a double bootstrap procedure to
obtain p-values since Cθ̂n

is not available in closed form.

D.2 Rosenblatt’s transformation test

As an alternative to Sn, Genest and Rémillard (2008) proposed using {Vj = RCθ̂n
(Uj)}nj=1

instead of Uj, where RCθ̂
represents Rosenblatt’s transformation with respect to

the copula Cθ̂n
∈ C0 and θ̂n is a consistent estimator of the true value θ0, under

H0 : C ∈ C0 = {Cθ : θ ∈ O}.
The idea is then to compare Cn(Vj) with the independence copula C⊥(Vj) and

the corresponding Cramér-von Mises type statistic can be written as follows:

SRn =
n∑
j=1

{Cn(Vj)− C⊥(Vj)}2. (12)

In the vine copula context Schepsmeier (2015) called this GOF test ECP2 test
addressing its close relation to the ECP.

D.3 Kendall’s transformation test

Since under H0, the Kendall’s transformation Cθ(U) has distribution Kθ, the dis-
tance between Kn and a parametric estimator Kθ̂n

of K is another natural testing
criterion. We are testing the null H∗∗0 : K ∈ K0 = {Kθ : θ ∈ O} using the empirical
process K =

√
n(Kn−Kθ̂n

). The specific statistic considered by Genest et al. (2006)
is the following rank-based analogue of the Cramér-von Mises statistic

SKn =

∫ 1

0

Kn(v)2dKθ̂n
(v)
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