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ABSTRACT 

In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure 

is proposed for a fractionated satellite attitude control mission. Despite the appealing 

advantages of the MPC algorithm towards constrained MIMO control applications, 

implementing the MPC algorithm onboard a small satellite is certainly challenging 

due to the limited onboard resources. The proposed design is based on the 1-bit 

processing concept, which takes advantage of the affine relation between the 1-bit 

state feedback and multi-bit parameters to implement a multiplier free MPC controller. 

As multipliers are the major power consumer in online optimization, the OBMPC 

structure is proven to be more efficient in comparison to the conventional MPC 

implementation in term of power and circuit complexity. The system is in digital 

control nature, affected by quantization noise introduced by Δ∑ modulators. The 

stability issues and practical design criteria are also discussed in this work. 

Some other aspects are considered in this work to complete the control system. Firstly, 

the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 

1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ 

modulator based Microelectromechanical systems (MEMS) gyroscope is considered 

in this work, it is possible to implement this concept into other sensing components. 

Secondly, as the proposed attitude mission is based on the wireless inter-satellite link 

(ISL), a state estimator is required. However, conventional state estimators will once 

again introduce multi-bit signals, and compromise the simple, direct implementation 

of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this 

work to satisfy the requirements of the proposed fractionated attitude control mission.  

The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated 

satellite structure, in which the payload and actuators are separated from the controller 

and controlled via the ISL. Matlab simulations and FPGA implementation based 

performance analysis shows that the OBMPC is feasible for fractionated satellite 

missions and is advantageous over the conventional MPC controllers. 
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1. INTRODUCTION 

====================================================================== 

1.1 Background and Motivation 

1.2 Outline of the Thesis 

====================================================================== 

 Background and Motivation 1.1

Today‘s space missions are tending to be more demanding and therefore require larger 

and more complex spacecraft. Traditional monolithic spacecraft with limited 

environmental adaptation capability become less efficient and are subject to larger 

risks. Future spacecraft are envisioned as autonomous, miniature, intelligent and 

massively distributed space mechatronic systems. Within the last ten years, a number 

of small satellites have been launched. However, such small/nano-satellites have only 

been successful in relatively simple space missions such as educational purposes.  

Networked space missions such as formation flying and fractionated spacecraft have 

become popular research topics during the past few decades. In comparison to the 

traditional spacecraft, networked satellite structures decentralize a multi-functional 

monolithic satellite into a number of networked small satellites, which are cheaper to 

build, launch and maintain. They also provide better coverage and multiple sensing 

angles so that comprehensive space missions can be achieved with relatively low cost.   

Amongst various types of distributed satellite systems, the formation flying system is 

easy to approach by simply building network protocols and algorithms in the onboard 

computers of the individual smaller satellites. However, formation flying is still 

cumbersome and expensive since the integrity of each satellite must be preserved. The 

development of distributed space systems, namely fractionated spacecraft systems, 

has also become another approach to achieve the complex space missions. In such 
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spacecraft systems, the controllers for each satellite subsystem are not central in 

location but are ―fractionated‖ and ―distributed‖ in space, and are controlled by the 

accompanying master satellite. Each fractionated component does not necessarily 

maintain the integrity as an autonomous satellite but only play as one of the 

subsystems in the concept of the monolithic spacecraft, i.e. each subsystem becomes 

an individual small satellite module. The individually fractionated components are 

then wirelessly interconnected to emulate a complete larger monolithic satellite.  

 

Figure 1.1 Conceptual view of a fractionated satellite 

Fig.1.1 presents a conceptual view of such a fractionated satellite system. In this 

thesis the author proposes a fractionated satellite attitude determination and control 

system (ADCS) using a novel 1-bit processing based MPC (OBMPC) algorithm. The 

fractionated satellite subsystems are decentralized wirelessly via the inter-satellite link 

(ISL), forming a Wireless Control System (WCS) in orbit. The ADCS subsystem 

could be decentralized on two satellite modules:  

1) The sensors and actuators will be located on the ‗slave‘ module, in which the 

scientific instrument must be controlled to point to the area of interest.  

2) The controller will be located on the ‗master‘ module, in which most computing 

tasks will be processed on-board.  

Although most bus subsystems are located remotely, the slave satellite requires a 

partial bus subsystem to perform the mission requirement. For example, it needs an 
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electrical power subsystem to power on payload sensors, unless wireless power 

transmission becomes feasible.  

The challenges for the proposed fractionated satellite attitude control mission are 

mainly twofold. Firstly, small satellite missions generally have limited onboard 

resources in terms of power and circuit complexity. Hence the on board controller 

needs to be carefully designed if comprehensive control objectives are required. 

Secondly, the ISL introduces both communication noise and time delays, which may 

compromise the robustness of the control system.  

Meanwhile, the model predictive control (MPC) algorithm is appealing to space 

missions due to the ability to include hard constraints directly in the control algorithm. 

The MPC algorithm is an optimization based control strategy. It makes explicit use of 

the known dynamic model, and performs optimization over a control horizon to 

predict the future process behavior over a prediction horizon. However, such online 

optimization increases the on-board computation intensity, which is not suitable for 

small satellite missions.  

The main objective of this thesis is to develop an efficient MPC algorithm to achieve 

a power efficient on board controller that is suitable for fractionated satellite missions. 

Towards this goal, a 1-bit processing based MPC (OBMPC) for satellite attitude 

determination and control is developed, which is the first aerospace application for the 

1-bit processing control system to the best knowledge of the author. The strategy is 

characterized by using the 1-bit state feedback data directly to perform the online 

optimization that required by the MPC algorithm. The state feedbacks are modulated 

into 1-bit format by bi-level Delta-Sigma (∆∑) modulators on-board the ―slave‖ 

satellite, sent and processed by the onboard computer on the ―master‖ satellite directly 

without de-modulation. Due to the 1-bit nature of the feedback data, all the 

―multiplication‖ operations can be executed between the 1-bit data and the multi-bit 

coefficient, resulting in a simple sign change of the multi-bit coefficient. Hence, no 

―multiply‖ or ―division‖ arithmetic blocks are required in the online optimization 
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process, which makes the OBMPC controller feasible for the proposed mission. 

Moreover, the resultant 1-bit data is stand-ready for transmission, and less sensitive to 

the data loss due to the nature of the modulation technique.  

In the next few chapters, a novel 1-bit processing based MPC (OBMPC) is designed 

for a small satellite attitude control mission. The benefits and drawbacks of OBMPC 

systems are discussed from a design perspective, and a practical implementation 

method is developed to satisfy the proposed fractionated satellite attitude control 

mission. The stability issues are also discussed. Also, a 1-bit sensing component and a 

1-bit state estimator are also developed to complete the OBMPC control loop. 

Simulations are performed using both Matlab and the Field Programmable Gate Array 

(FPGA) implementation to verify the feasibility of the proposed theory and prove that 

the OBMPC is advantageous in terms of speed, power and circuit complexity over the 

conventional MPC controllers. 

 Dissertation Overview 1.2

This work involves developing a novel 1-bit processing based MPC architecture for 

the proposed fractionated satellite mission. The reminder of the thesis is organized as 

follows.  

Chapter 2 gives a literature review of the related fields. Firstly, the development of the 

distributed satellite system and the fractionated satellite structure are examined. 

Secondly, the history of the Δ∑ Modulation and 1-bit processing control system is 

introduced. The author then focuses on the MPC algorithm and implementation 

methods for fast MPC developed to date.  

In Chapter 3, the fundamental theories behind the Delta-Sigma (Δ∑) Modulation and 

the 1-bit processing control system are presented and detailed. A space mission has 

been briefly modeled and used in simulation to verify the feasibility of 1-bit 

processing control algorithm for the space mission. This chapter is based on the 
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conference paper (Wu and Bai, 2010) 

In Chapter 4, a novel 1-bit processing based MPC (OBMPC) algorithm has been 

examined. The author starts with the MPC problem formulation, and then propose the 

implementation of the OBMPC structure. The stability issue is further developed in 

this section. This chapter is based on the journal paper (Bai and Wu, 2013). 

In Chapter 5, 1-bit sensing components are considered. The Δ∑ Modulation based 

micro-electromechanical system (MEMS) gyroscope is discussed as an example of 

implementing the sensing component under the framework of the 1-bit processing 

structure. An OBMPC based 1-bit MEMS sensor is developed in this chapter to adopt 

the proposed 1-bit processing system for the onboard ADCS. 

Chapter 6 deals with issues in the OBMPC control developed for the WCS. 

Environmental effects such as error and data loss shall be discussed in this chapter. A 

1-bit state estimator is proposed to improve the state measurement of the control 

system.  

In Chapter 7, a nano-satellite with a fractionated satellite structure is modeled to 

validate the proposed OBMPC control algorithm. The simulation results of both the 

OBMPC and the traditional MPC are compared in Matlab. The efficiency of the 

OBMPC is also compared in terms of power and area with the conventional MPC 

using FPGA implementations. The chapter is partially based on (Bai and Wu, 2011).  

Chapter 8 concludes and discusses the future work of this thesis.  
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2. LITERATURE REVIEW 

====================================================================== 

2.1 Satellite Formation Flying and Fractionated Satellite Structure 

2.2 Delta-Sigma (Δ∑) Modulation and 1-Bit Processing 

2.3 Model Predictive Control (MPC)  

2.4 Fast MPC Implementation Methods 

2.5 Stability Issues for the MPC 

2.6 Summary 

====================================================================== 

 Satellite Formation Flying and Fractionated Satellite 2.1

Structure 

As a typical implementation, the concept of formation flying is well understood and 

practical to approach with state-of-the-art networking techniques. As described in 

(Gill, et al., 2001), satellite formation flying is composed of multiple satellites, who 

collaborate together in a group to achieve the objective of single large monolithic 

satellite. In comparison to other networked satellite systems, formation flying 

missions are easier to accomplish by simply implementing the network protocols and 

control algorithms in on-board computers to coordinate a group of satellites via the 

ISL. The formation flying approach enables the possibility of using multiple small 

satellites, e.g. nano-satellite and pico-satellites, to achieve complex space missions 

(Barnhart, et al., 2007). Depending on the application, the formation flying can be 

specified into distinct kinds (Sabol, et al. 2001; Burns, et al., 2000) . These types 

include: 

 Trailing formations which are constituted by multiple satellites orbiting on the 

same path. 

 The satellite cluster which includes several minor satellites that fly in close 

formation.  

http://en.wikipedia.org/wiki/Satellite
http://en.wikipedia.org/wiki/Satellite
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 Satellite constellation which is a collection of artificial satellites working in 

concert.  

The autonomous control systems are designed for each satellite in the formation, to 

reach unified goals in a space mission. The major benefits of formation-flying satellite 

missions are that an individual failed satellite can be easily replaced and the formation 

can be reconfigured.  

The concept of the satellite formation flying broadens the potential solutions of the 

space missions. However, in the formation flying group, each individual satellite is a 

complete satellite system. Subsequently, one may suggest that some of these 

individual satellites may not have to be complete systems, but rather may act as 

partial systems whose operations are controlled by a master satellite. A novel 

architecture has been developed by the Defense Advanced Research Projects Agency 

(DARPA) of the United States Department of Defense and is termed as ―fractionated‖ 

spacecraft. As described in (Brown and Eremenko, 2006), the word fractionation is 

used to describe the decomposition of a system into distinct modules which can be 

―assembled‖ on orbit to deliver the capability of the equivalent monolithic system. In 

this structure, the subsystems of a conventional spacecraft are implemented by the 

elements or nodes and connected to form a ―virtual satellite‖ in space.  

Comparing to the satellite formation flying, the fractionated satellite provides more 

flexibility of degradation and extension as the fractionated subsystems are generally 

cheaper than the formation flying controlled satellites. Fractionated satellites can 

bring many potential advantages, such as reducing launching costs (sending small 

elements instead of big spacecraft), fast response and replacement for failure elements 

with low recovery costs. Also, no complicated rendezvous, docking, or robotic 

servicing is needed. Theoretically speaking, increased fractionation levels can 

improve the flexibility of the satellite. However, it also brings mass and cost penalty. 

In 2005, a series of simulations and evaluations was done to assess the feasibility for 

the concept of fractionated satellites by DARPA and other research groups e.g. 

http://en.wikipedia.org/wiki/Artificial_satellite
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
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(Brown, et al., 2002; Mathieu and Weigel, 2005; Mathieu and Weigel, 2006) . In the 

model presented by Mathieu and Weigel (2005), when a subsystem is fractionated, it 

is taken out of the spacecraft as it is and becomes the ―payload‖ of a new module. For 

instance, when the communication subsystems are fractionated, it becomes a 

communication module with its own power, propulsion, attitude control, and thermal 

subsystems. In 2007, the DARPA initiated the System F6 (Future, Fast, Flexible, 

Fractionated, Free-Flying Spacecraft United by Information Exchange) project 

(DARPA 2007), which aims to prove the feasibility and benefits of the fractionated 

satellite architecture through a space demonstration. A System F6 fractionated 

spacecraft demonstrator program has been released to develop an open and ubiquitous 

space architecture and an associated set of open standards (Brown and Eremenko, 

2006). Comparing with the traditional satellites, based on the model provided in 

(Mathieu and Weigel, 2005) and (Brown and Eremenko, 2006), the mass and cost 

penalty decrease if the communication, control and data handling subsystems are 

fractionated, and show notable increase if the fractionation involves power subsystem 

and collaborative separated positioning. Hence, the main focus of the fractionated 

satellite mission at the current stage is to replace the data bus with wireless 

communication protocols unless wireless power transmission becomes feasible.  

 Delta-Sigma (Δ∑) Modulation and 1-Bit Processing 2.2

Delta-Sigma (∆∑) modulation was developed in the 1960s based on the delta 

modulation as an efficient modulation technique. Just as delta modulation is well 

known as Pulse-Width-Modulation (PWM), ∆∑ Modulation is also known as 

Pulse-Density-Modulation (PDM) because it quantizes the signal directly, rather than 

the signal‘s derivative like the delta modulation does. Thus, the maximum quantizer 

range is determined by the maximum signal amplitude. Essentially, Δ∑ modulation is 

a kind of over-sampled A/D converter. Among various ∆∑ modulation methods, the 

ones with bi-level quantizers draw more attractions due to their circuit simplicity and 

the binary nature of the quantizer outputs, which have been proven as an efficient 
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alternative to the multi-recording format (Johns and Lewis, 1993). Such bi-level 

quantizers were then used to develop the multiplier free analog to digital (A/D) 

converters, e.g. (Schreier, 1993), to achieve simplest digital hardware circuitry. Based 

on the bi-level quantizer, the concept of 1-bit processing has been widely investigated 

in the context of finite-impulse-response (FIR) filters (Kershaw, et al., 1996), 

infinite-impulse-response (IIR) filters e.g.(Johns and Lewis, 1991), and digital 

communication e.g.(Stewart and Pfann, 1998; Sklar, 2001). One of the many 

successful applications of the 1-bit processing is in audio data compression for the 

Compact Disc (CD) (see (Reefman and Janssen, 2004) for an overview), where the 

1-bit coding scheme is used to develop high frequency (64 or 128 times 44.1kHz) 

encoding technology for the audio industry. 

Inspired by the multiplier free A/D converters, a multiplier free control system has 

been proposed by Wu and Goodall (2005a), namely the 1-bit processing control 

system. Such control system uses Δ∑ modulators to encode either analogue or 

multi-bit digital signals into the 1-bit format. The work can be regarded as digital 

control systems with the assumption that analogue signals are converted into an 

equivalent digital format by the A/D converter. The resultant control signals are 

high-frequency digital signals, often used directly to drive electronic power amplifiers, 

and the effect of which is filtered by the physical system being controlled. Stability 

issues of such digital control systems can be analyzed during the design process using 

classic stability analysis tools (e.g. pole locations and Routh-Hurwitz 

Stability Criterion).  

Unlike conventional digital control approaches, the control laws are designed to 

cooperate with the 1-bit signals directly. The advantages of 1-bit processing control 

systems are threefold. Firstly, as the signals are in the 1-bit format, multipliers can be 

removed by choosing a modified controller structure (Wu and Goodall, 2005b). Hence 

the area of silicon required to implement a 1-bit controller and wireless transceivers is 

potentially much less than that of a multi-bit system, which is an important 

consideration for embedded control systems. Secondly, sensing and control signals are 

http://www.youtube.com/watch?v=Mme_n96QwM8
http://www.youtube.com/watch?v=Mme_n96QwM8
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modulated into 1-bit signals, ready for transmission directly. The effects of 

transmission delay and data loss during the wireless transmission are less significant 

to the control system because of the properties of the modulation technique. Thirdly, 

no decoding process is required at the receiver end, i.e. the 1-bit signals being fed into 

controller or actuator directly. In the proposed fractionated satellite mission, since the 

controller is decentralized from the actuator, the Δ∑ modulation can also be employed 

in the WCS to compress data and to transmit the signal over the transmission channels 

between the controller and the controlled plant.  

The main drawback, however, is that Δ∑ modulation introduces a nonlinear 1-bit 

quantizer into the control loop. The nonlinearity results in quantization noises, which 

cover a wide bandwidth including the baseband. To obtain a high signal-to-noise ratio 

(SNR), 1-bit processing must be carried out under a sampling frequency which is 

significantly higher than that would be normal for a digital controller. Therefore, 1-bit 

processing raises issues such as control law formulations and sampling criteria, both 

of which need to be well understood. For the 1-bit processing control system, it is not 

uncommon to over sample the control system perhaps thousands of times of the 

controller bandwidth to obtain a high SNR. Meanwhile, the phase lags introduced by 

sampling and computation delays are to remain small. This intrinsic requirement for 

high sampling with real-time control (which does not pre-apply for other forms of 

signal processing) means that modest sampling frequency increases are needed in a 

relative sense. Hence as the signal is necessarily fast-sampled, the system 

characteristics can approach those of high-quality analogue processors in terms of 

phase responses and distortion effects, while retaining the advantages of 

digital-processing techniques (Goodall and Donoghue, 1993). Consequently, a 

trade-off between the benefits introduced by the multiplier free structure and the 

drawbacks caused by the high sampling rate needs to be taken account during the 

design process. Moreover, despite that mature filter techniques can be applied to the 

1-bit processing control systems, the non-ideal Δ∑ modulation will bring (filtered) 

quantization noise into the control loop, which could affect the robustness of the 
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control system.  

The removal of the multipliers make the 1-bit processing based control system 

advantageous over convention control systems in terms of circuit area and power 

efficiency. However, most of PID control based applications are not computationally 

expensive as the PID algorithm is relatively simple. The 1-bit processing based 

algorithm is more attractive for advanced control algorithms (e.g. The MPC algorithm) 

as the computational load is normally quite large for the embedded control system 

applications. In this work, the author integrates the 1- bit processing method into the 

MPC algorithm, which forms an OBMPC structure, to decrease the computational 

effort and circuit area for the proposed satellite attitude control mission.  

 Model Predictive Control (MPC)  2.3

The MPC has been developed extensively during the past three decades and 

successfully adopted by many industrial applications (see (Garcia, et al., 1989) and 

(Richalet, 1993) as earlier industrial application researches and (Qin and Badgwell, 

1997) as a survey of industrial MPC application through 1995). Meanwhile, the MPC 

for nonlinear models has also been developed into practices e.g. (Morari and H Lee, 

1999; Qin and Badgwell, 2000; Young, et al., 2002). However, the main downside of 

the MPC is that on-line optimization is required, which results in a large 

computational burden for the control system. Due to the online optimization nature, 

most MPC applications are in the process control industries, where the sampling 

frequency is relatively slow. The other notable benefit accounted for the popularity of 

the MPC is that hard constraints can be directly formulated in the optimization 

problem, which facilitates the controller design and tuning. Moreover, MPC can 

handle Multiple-Input-Multiple-Output (MIMO) control systems directly, which 

means it is suitable for large scale industrial implementations. Nevertheless, the 

technique has also been adopted in many other fields such as automotive, medical and 

aerospace applications along with faster onboard computers and better quadratic 

programming (QP) solvers, e.g. (Rao, et al., 1998). The prosperous progress of the 
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algorithm was aroused after a systematic analysis of the stability issues achieved by 

Mayne (2000). The same methodology is also adopted to perform the state estimation, 

namely the Receding Horizon Estimation e.g. (Muske, et al., 1993; Scokaert, et al., 

1997), (Alessandri, et al., 2003). Though less popular than the Extended Kalman 

Filter (EKF), the RHE inherits most of the benefits from the MPC algorithm, and 

mainly adopted by the applications where hard constraints are applied to the 

estimator.  

Despite the booming development in various applications, the MPC is limited by the 

massive online computational demand to embedded control systems. This is 

especially true for fast sampled real-time control missions due to the scarcity of 

onboard resources. The efforts toward fast MPC schemes shall be reviewed in the 

next sub-section. 

 Fast MPC Implementation Methods 2.4

A typical MPC algorithm designed for MIMO control systems with long prediction 

horizon generally requires repetitive large matrix multiplications. In this sub-section, 

the author examines the efforts to decrease the online computational burden, including: 

(1) model reduction methods, (2) means of iterative solution methods (3) pre-compute 

the solution and bring the online calculation off line (i.e.: using look up tables). Some 

other hybrid control schemes are also discussed in this section. 

2.4.1 Model reduction methods 

The model reduction methods can be described as means to replace the system 

dynamic model with a lower order model that has similar model characteristics (i.e. 

stability and passivity) as the original model. They can effectively decrease the 

implementation difficulty for the MPC in terms of system storage requirements and 

online evaluation time, especially for optimization based control algorithm on large 

scaled or highly sampled control systems. Most general purpose model reduction 
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techniques can be classified into either singular value decomposition (SVD) or 

Krylov-based methods. Research work relating to such concepts can be found in 

(Antoulas, et al., 2001; Gugercin and Antoulas, 2004; Antoulas, 2005) as a series of 

recent surveys.  

Due to the preserved system characteristics, most model reduction methods can be 

easily utilized by MPC algorithms directly or with minor modifications. The 

projection based methods are usually used to decrease the system order. Such a 

method finds a basis matrix which can be used to redefine the parameters, so that the 

control variable matrices can be reconstructed into a lower order form. The reduced 

model is required to be computationally stable and efficient, and the approximation 

error needs to be small enough to maintain the robustness of the control system. In 

MPC algorithms, the control input is computed based on the reduced state vector 

estimated by an observer, which is based on the output of the reduced model. 

Therefore, the observer should account for the approximation error in the reduced 

model (Hovland, et al.; 2008). The challenge, however, is that the errors that exist in 

the output of the reduced model could lead to constraint violations even the optimal 

solution can be obtained from the reduced model. 

Generally speaking, the model reduction methods trade-off the accuracy of the control 

object model with the system order. For a large scaled MPC controller with limited 

onboard resources, model reduction methods can greatly decrease the online 

computational effort as the amount of calculation decreases exponentially when the 

model order decreases. Two general model reduction methods are discussed here, 

along with their applications to the MPC.  

1) Proper orthogonal decomposition (POD) 

The proper orthogonal decomposition (POD) has been proven to be a promising 

method for implementation in control systems. For POD, the basis vector can be 

conveniently solved by various numerical methods, and therefore recognized as a 
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straightforward application of the approximation on the SVD e.g. (Ravindran, 2000; 

Afanasiev and Hinze, 2001; Atwell, et al., 2001; Cohen, et al., 2006; Bui-Thanh, et al., 

2007).  

Along with accuracy improvement of the POD，it has been applied to the MPC to 

reduce system order by many researchers. For example, Hovland, et al.(2008) 

proposed a Goal-oriented model-constrained reduction algorithm to adopt the POD 

into the MPC. The goal oriented model constrained reduction algorithm is taken from 

(Bui-Thanh, et al., 2007), in which more information can be acquired to address the 

accuracy issues of the reduced model. Such a method enforces the reduced order 

governing equations to be constraints and the cost is targeted to minimize the output 

error, while the POD minimizes the error of state prediction over the entire domain 

(Hovland, et al., 2008). The stability of the POD based MPC has been discussed in 

(Hovland, et al., 2006) and (Kvasnica, et al., 2011).  

To better suit the MPC, the POD can also combine with other methods to improve the 

quality of the model reduction. For instance, Xie, et al.(2011) and Theodoropoulos 

(2011) combined a finite element Galerkin Projection with the POD and then used 

trajectory piece-wise linearization to linearize the nonlinear model. Similarly, Den 

Camp, et al. (2008) proposed a subspace identification technique coupled with POD to 

obtain a better model reduction for systems with inherent nonlinear dependence on 

process parameters. Agudelo, et al. (2009) use the univariate polynomials to 

approximate part of the basis vectors to decrease the number of constraints applied to 

the model.  

2) Balanced truncation 

Balanced Truncation (BT) has been developed in the early 1980s, e.g.(Moore, 1981), 

(Pernebo and Silverman, 1982). The method provides strong guarantees on 

approximation error constraint, but is normally limited to linear systems as the general 

balancing scheme for nonlinear systems is not available. The nonlinear systems, 
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however, can be linearized and the BT method can then be applied at the cost of 

losing nonlinear behavior. Such situations can also be addressed by including the cost 

function of the system when solving the projection matrices, e.g. (Hahn and Edgar, 

2002). More details about BT can be referred in a recent survey (Gugercin and 

Antoulas, 2004). 

Similar to the POD, balanced truncation can also be combined with some tools for 

better performance with the MPC. For example, the Galerkin projections is also 

applied to the balanced truncation by Hahn and Edgar (2002). The balanced truncation 

can also be applied to the multi-parametric programming based MPC to decrease the 

number of parameters stored in the memory, e.g. (Narciso and Pistikopoulos, 2008), 

(Hovland and Gravdahl, 2008).  

As a summary, the model reduction methods can greatly reduce the online 

computational burden of the large scale MPC algorithms. They can be combined with 

means of iteration methods to achieve faster MPC schemes. The method requires a 

trade-off between the robustness/accuracy of the control system and reality limitations 

due to model mismatch issues. Therefore, although it can still be a practical 

implementation method, the model reduction methods are hardly a ―solution‖ to the 

MPC applications. However, as mentioned in the later part of this thesis, the model 

reduction method can be combined with our OBMPC method, to further decrease the 

on-board computational effort.   

2.4.2 Fast MPC with online solver 

The improvement of iterative method of the online solver is naturally the most 

straightforward research direction for the MPC algorithm. General iteration methods 

include the active set methods (Best, 1996) and the interior point methods (Mehrotra, 

1992). Most fast MPC schemes apply various mathematical tools toward such 

iterative methods. For example, The Mehrotra‘s predictor–corrector algorithm 

(Mehrotra, 1992) has been used in (Rao, et al., 1998) to decease the computational 
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effort, where the Riccati approach was used to solve the linear sub-problem. In (Wang, 

2009), the Hildreth‘s QP procedure (Hildreth, 1957) is proposed to solve the dual 

problem. This method is also used in this work to form an explicit relationship 

between the state variables and the control inputs. (Axehill and Hansson, 2008) 

proposed a gradient projection method to improve the active set method and solve the 

MPC problem. It allowed the working set changes to be faster than a generic active 

set method. A series of studies done by Richter and his colleagues use the optimal 

gradient method (Nesterov, 1983) to solve MPC problems, which generalized the 

method to the MPC algorithm with different constraint sets (Richter, et al., 2009). 

Patrinos and Bemporad (2012) and Bemporad and Patrinos (2012) developed a fast 

dual gradient-projection algorithm for linear MPC problems with general polyhedral 

constraints on inputs and states. The algorithms provided are easy to program as it 

requires only a few steps and the computational cost increase linearly with the 

prediction horizon.  

Also, the combination of the online iteration methods may effectively decrease the 

online computation effort. Wang and Boyd (2010) combined a series of existing 

iteration methods to increase the online optimization speed. In addition to the fast 

primal barrier interior point method, a warm-starting method can be used to reduce 

the number of Newton steps e.g.(Yildirim and Wright, 2002). It suggests that an 

appropriate interior point method can terminate early (typically between 3 and 5 

online iterations) while a relatively accurate optimal solution is proven to exist.  

However, both active set methods and interior-point methods have cumbersome 

matrix multiplications when dealing with large scale control systems and long control 

horizons. Subsequently, some researchers also considered approximation methods. It 

is suggested in (Zheng, 1999) that for a control horizon with Nc elements, since 

u(k+Nc-1|k) are never implemented, calculating them approximately in order to 

reduce the on-line computational demand should not significantly affect the 

closed-loop performance. Since the constraints only applied to the first element of the 

control horizon, the calculation for the rest of the control horizon can be determined 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6426458
http://dict.cn/cumbersome
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offline. Moreover, (Patrinos, et al., 2011) proposed a piecewise smooth Newton 

method with the modified Newton approximation scheme to speed up the 

convergence of the online optimization problem.  

Similar to the model reduction methods, most of the fast online searching methods 

can work with the OBMPC proposed in this thesis directly to further decrease the 

online computational effort. For simplicity purposes, such combination will not be 

discussed in this work but left as future discussions.   

2.4.3 Other control schemes 

Moreover, as a direct implementation of the MPC algorithm into the high-fidelity 

model is not feasible in time-critical systems, various model reduction methods, e.g. 

(Afanasiev and Hinze, 2001), have been developed to decrease the system order while 

maintaining the same properties of the model, such as the stability and passivity. 

Furthermore, if one considers the limited processing resources as constraints to the 

MPC system, efforts have been developed such as: 

- choosing sub-optimal solutions for the MPC controller when computing resources 

are scarce (Henriksson, et al., 2002; Henriksson and Åkesson, 2004) (Such 

trade-off between successive iterations in the MPC algorithm and the 

computational delay mirrors the anytime algorithm proposed by Bhattacharya and 

Balas (2004); 

- switching amongst a set of pre-designed controllers (Greco, et al., 2007);  

- block MPC, a hybrid control scheme that uses two different sampling intervals 

when the processing resources limitation changes e.g.(Sun, et al., 2007); 

- Algebraic MPC, a MPC algorithm with non-uniform prediction point distribution. 

The prediction points can be placed at a few critical times along the horizon based 

on the open loop dynamics of the system, e.g. (Gibbens and Medagoda, 2011; 

Lamburn, et al., 2014; Medagoda and Gibbens, 2014; Medagoda and Gibbens, 

2010). 
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- and sequence-based anytime algorithms by Quevedo and Gupta (2013).  

It is worth noting that the Block MPC and the Algebraic MPC methods have good 

adoptability to the OBMPC method. As the one 1-bit processing based control system 

requires OSR, defining the prediction window with a specific time period may require 

a large number of prediction points, which requires intensive online computational 

efforts. The Block MPC or the Algebraic MPC can help to decrease the prediction 

point by neglecting the non-important points or time instant. Once again, for 

simplicity reasons, the author leaves this part as the further work of the OBMPC 

study.   

2.4.4 Removal of the online solver 

2.4.4.1 Explicit MPC (EMPC) 

Meanwhile, some researchers shifted their focus from fast online QP solvers to online 

computation lookup tables, where all the computations are conducted offline. The 

most notable work on this subject include studies of the EMPC method proposed in 

(Bemporad, et al., 2002) and (Tøndel and Johansen, 2002). Such a method solves all 

the possible solutions raised in the QP problem beforehand by solving a 

multi-parametric QP (mpQP) problem. All the possible solutions are calculated 

off-line and stored in the memory. More specifically, by finding the affine 

relationship between the pre-defined vector z (z is a function of the control input and 

the state vector) and the state vector, the optimal solution can be obtained through an 

affine mapping. Then the online QP solver can be replaced by a lookup table searcher. 

The online effort thus becomes a simple iteration of region searching (i.e. binary 

searching tree) and the online computation time is logarithmic in terms of the number 

of polyhedral in the state space partition (Tøndel, et al., 2003). 

Essentially, the EMPC method is a trade-off between the onboard computational 

resource and the storage size. This is feasible for most fast sampled control systems 

with limited on board resources considering the low cost of memory chips. Such 
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methods are further developed by other efforts such as (Tøndel, et al., 2003; Tøndel,  

et al., 2003; Spjøtvold, et al., 2004) and many applications e.g. (Hegrenæs, et al., 

2005). A recent survey of EMPC methods is given in (Alessio and Bemporad, 2009). 

The EMPC algorithm is also proposed for spacecraft attitude control in (Hegrenæs , et 

al., 2005) as one of the few practical studies for the spacecraft attitude control system 

using MPC.  

The main drawback of the EMPC, however, is that the possible solutions of the QP 

problem will grow exponentially when the horizon, state and input dimensions and 

the number of constraint sets grow, which may suggest big memory storage and large 

searching effort (i.e. finding the correct critical region). Such issues also lead to the 

combination of the model reduction methods based EMPC as discussed above. The 

other problem is that the once the controller is customized, it is difficult to reconfigure 

as the offline computation (solving all the possible solutions) is hard to achieve by an 

onboard computer with limited time and on-board resources.  

2.4.4.2 Approximate Methods Based EMPC 

Beside model reduction methods and fast online searching methods, to overcome the 

limitations of EMPC, the approximate methods are also suitable tools to trade off the 

accuracy of the control result and online computation time. Under certain 

circumstances, the accurate region may not be available if a large scale control system 

is considered. The main purpose of the approximate method is to combine smaller 

pieces into bigger ones, therefore achieving a faster online searching process and less 

off-line computational effort. (Bemporad and Filippi, 2003; Johansen and 

Grancharova, 2003) and (Tøndel, et al., 2003) are some of the earliest works towards 

the development of the approximate EMPC. These researchers suggested an 

orthogonal searching tree with will only partially solve the QPs, which ―will terminate 

with a continuous piecewise linear (PWL) function that is an approximation to the 

continuous PWL exact solution‖ (Johansen and Grancharova, 2003). The block MPC 

method as mentioned in (Tøndel and Johansen, 2002) can also be combined to further 
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decrease the searching effort. To further narrow down the online searching, 

(Pannocchia, et al., 2007) proposed a partial enumeration approach, where only 

relevant critical regions are calculated and stored in the memory. Ferreau, et al. (2008) 

proposed an online active set strategy for the EMPC. Additionally, Ferreau, et al. 

(2008) also added a time constraint to the controller. A ―near optimal‖ solution will be 

chosen when the time constraint is violated, which somehow mirrors the anytime 

control method developed for controllers with limited onboard resources. Similarly, 

Zeilinger, et al. (2011) combined the warm-starting active set linear programming 

procedure with the EMPC, which utilizes the piecewise affine approximation of the 

optimal solution offline to warm start an active set method. The ―optimal‖ solution 

also includes the consideration of online computation time frame, memory size and 

performance. In (Jones and Morari 2009) and (Jones and Morari 2010), direct 

approximations for inner and/or outer polytopic convex sets are applied to pre-specify 

the number of pieces in an EMPC problem. Also, an input to state stability approach 

is developed in Genuit, et al. (2012) so the approximation errors can be bounded to 

preserve the closed-loop stability of the approximation method.  

2.4.4.3 Quantized MPC  

Aside from the methods discussed above, if the system is determined by a finite set of 

possible control actions or measurements, then a fast MPC scheme can be achieved by 

directly mapping a set of the constraints with a control decision. Specifically, similar 

to the EMPC algorithm, due to the explicit relationship between the decision variable 

and the state variable, the quantized control variables can be mapped with certain state 

space partition, which greatly simplifies the online searching process. Such problems 

can be referred as quantized control systems, e.g. the on-off control systems. A 

successful approach has been developed by Quevedo, et al. (2004) towards the MPC 

with finite constraint sets, which leads to a series of successful applications e.g. 

(Cortés, et al., 2008; Kouro, et al., 2009; Cortes, et al., 2010). Such implementations 

took the advantage of the property of digital control systems, where the control inputs 

can be modulated into finite constraint sets, and use a vector quantizer to map the 
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optimal solutions. The stability issues for the quantized control system have been 

studied by many researchers, e.g. (Delchamps, 1990; Schreier, 1997; Fagnani, 2003).  

The efforts made to implement the quantized EMPC can be found in (Bemporad and 

Filippi, 2003; Grancharova and Johansen, 2008; Grancharova and Johansen, 2011). 

The approximation method for the quantized EMPC has also been developed by 

(Grancharova and Johansen, 2009) to further decrease the online computational effort. 

The problem, however, is that the quantized signals may not always be regarded as 

continuous signals, which may cause robustness issues in the MPC algorithm. 

Therefore, it is necessary to consider the quantization noise induced into the control 

system e.g. (Picasso, 2003). 

In this work, the 1-bit processing based MPC system can also be classified into the 

framework of the quantized MPC as a special case. It shares some of the features and 

drawbacks with the quantized MPC, while appears to be advantageous in term of 

implementation as the memory searching algorithm is not required and it is not 

necessary to store a number of possible solutions in the memory. As compensation, 

the online computation is still required, although it has been reduced to a minimum 

due to the removal of the multiplier. 

 Stability Issues for the MPC 2.5

The most widely discussed stabilization technique for the MPC is the implementation 

of terminal state equality constraint. It was first established by (Chen and Shaw, 1982) 

for unconstrained linear systems, and then extended into general constrained control 

systems by (Keerthi and Gilbert, 1988). Most research works toward the stability of 

the MPC around the time of 1990s are constructed based on these papers and rely on 

the equality constraints to stabilize the optimization problem. Briefly speaking, such 

methods establish a terminal cost and terminal constraint both equal to zero, which 

means the optimization process will asymptotically approach the terminal constraints 

and be eventually stabilized. Such an equality constraint method is quite strict and 
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computationally expensive. However it provides a foundation of the stability research 

by explicitly focusing on the terminal cost function and terminal constraint, which 

leads to the development of a vast variety of stabilization techniques e.g. (Bitmead , et 

al.,1990; Mayne and Michalska, 1990; Muske and Rawlings, 1993; Rawlings and 

Muske, 1993). The result was improved by Michalska and Mayne (1993) by relaxing 

the equality constraints with a terminal constraint set and a suboptimal solution can be 

found without compromising the stability of the MPC. This allows the MPC to be 

feasible for many applications and also inspired many researches to further develop 

many types of robust MPC with a modified terminal penalty (Chisci, et al., 1996; 

Robertson, et al., 1996; Chen and Allgöwer, 1998). The survey conducted by Mayne 

(2000) provided an abundant review about the stability methodologies of the MPC, 

which is regarded as the foundation of MPC stability research. For the stability of 

quantized MPC, one can refer to the analysis made in (Mayne, 2003) and (Quevedo, 

et al., 2004).  

The stability issues discussed in this work are based on the quantized MPC. The 

conditions for the OBMPC is quite simple (bi-level quantizer) but hard to analyze due 

to its non-linearity. Hence, the ―safe‖ design criteria are also discussed so that the 

proposed algorithm can be easily adopted in a practical engineering mission.    

 Summary 2.6

In this chapter, firstly the history of the fractionated satellite structure was briefly 

introduced. Then the previous work of Δ∑ modulation and 1-bit processing control 

system was briefly reviewed. More focus was then placed towards the MPC problem, 

and specifically to existing fast MPC methods.  

As an optimization based algorithm, the online computational burden limited the 

MPC from most fast sampled applications. To decrease the online computational 

effort, one can improve the iteration methods by means of mathematical tools (e.g. 

different QP solvers). Additionally, a model reduction method can be used to reduce 
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the model order and hence the computational requirements. The most popular 

approach for the fast sampled MPC systems is the mpQP approach (also known as 

EMPC), where all the possible solutions are solved off-line and stored in the memory, 

leaving only the requirement of online searching processing in each iteration. The 

combination of different methods can also be utilized to trade-off between the on-line 

optimization time and the accuracy of the control system. Moreover, one can also 

decrease the online computational cost by designing customized MPC controllers if a 

finite number of constraint sets are explicitly known. The improvement, however, is 

limited by the algorithms themselves but it may feasible for special applications.    

In this thesis, the author proposes a 1-bit processing based MPC (OBMPC) for the 

fractionated satellite mission. The proposed algorithm addresses issues introduced due 

to the tough wireless communication environment as well as the limited onboard 

resources in the fractionated satellite structure. The algorithm can fit into the 

framework of the quantized MPC, and the 1-bit nature of the controller allows a high 

sampling rate with low computational cost. It is worth noting that as an 

implementation method, most efforts made to decrease the online computational effort 

such as model reduction and fast online solvers can be combined with the OBMPC 

structure to further improve the system performance. 
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3. DELTA-SIGMA MODULATION AND 1-BIT 

PROCESSING 

====================================================================== 

3.1 Delta-Sigma Modulation  

3.2 1-Bit Processing Control Systems 

3.3 Numerical Example: 1-Bit Processing Control System for a Fractionated 

Satellite Mission 

3.4 Summary 

====================================================================== 

The 1-bit processing is a new concept proposed by Wu and Goodall (2005a). It was 

inspired by the development of bi-level ∆∑ modulators and single bit filters. The 

theory is then extended into the control theory for controller implementation. The key 

concept of such implementation is that the ∆∑ modulation uses Pulse Density 

Modulation (PDM) where each pulse contains useful information and noise 

introduced during the quantization process (namely quantization noise). In contrast to 

the ∆ modulation (e.g. Pulse Width Modulation, PWM), the ∆∑ modulation gives a 

representation of the signal‘s amplitude rather than its slope. Hence, with the FIR 

filter technology, each pulse can be considered as independent control information 

with filtered noise. Additionally, although not necessary, the control input signal can 

be encoded by ∆∑ modulation for digital communication proposes. Such bi-level 

control signals can be used to drive the control object directly, which may be 

convenient for hardware implementation. Fig.3.1 (Wu and Goodall, 2005b) shows a 

comparison between conventional digital control system and a 1-bit processing 

control system.  
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Figure 3.1 Comparation of (a) conventional digital control system and (b) 1-bit processing control 

system. 

Note that for both digital control systems in Fig.3.1, the control law can be designed 

using either classic or modern control theory. In other words, one-bit processing is a 

way to implement rather than to design control laws. The benefit of 1-bit processing is 

appealing due to the explicit use of the 1-bit signal. The most attractive one is that 

1-bit signals can be processed independently by the controller. All the feedback based 

multiplications can be simplified by changing the signs of the multi-bit coefficients. 

Hence, a multiplier free structure can be designed by choosing a modified controller 

structure. The area of silicon required to implement a 1-bit controller is potentially 

much smaller than that of a multi-bit system. Such implementation is especially 

beneficial for optimization based control algorithms for large scaled control systems, 

where extensive matrix multiplications may apply. Other benefits for the 1-bit 

processing include:  

- It retains the advantages of digital-processing techniques while approaching high 

quality analogue processors (Wu and Goodall, 2005a).  

- Only 1-bit A/D converters are needed in the control loop, and D/A converters or 

PWM logics are not necessary as 1-bit signals can drive physical systems directly. 

Thus, there is no error accumulation in the sigma-delta demodulator and the 

system is less sensitive to channel errors. 

- The 1-bit processing control system can be beneficial to a wireless networked 

control system in many ways. Firstly, sensing and control signals are modulated 
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into 1-bit signals, ready for transmission directly. Secondly, at the receiver end 

there is no decoding process, i.e. the 1-bit signals being fed into controller or 

actuator directly. Thirdly, the control performance is not affected by data loss due 

to the modulation techniques (Wu and Bai, 2010).  

However, comparing to the conventional digital control systems, 1-bit processing 

control systems bring new challenges to the designers. As a kind of A/D conversion, 

∆∑ modulation requires high sampling rate (Oversampling Rate, namely OSR) to 

achieve good resolution and high SNR. Therefore, for 1-bit processing, the main 

drawback is that the OSR needs to be involved in the entire control loop rather than 

the A/D converter itself, so the controller needs to be heavily sampled. The interests in 

such control systems are the controller formulation and the trade-off between 

reasonable OSR and system performance. Moreover, even with proper filtering 

technology, the quantization process still introduces nonlinearity to the control system 

and therefore compromises the robustness of the control algorithm.  

 Delta-Sigma Modulation  3.1

3.1.1 Definition and description 

The Δ∑ modulation technology was developed based on the Δ modulation, and added 

integrators to include the sum of the previous difference. Unlike Δ modulators, the 

overload characteristic of the Δ∑ modulator is independent of the frequency of the 

input signal. In other words, the maximum SNR is independent of the frequency of 

the input signal in ∆∑ modulation (Yu, 1992). The resulting signal is also known as 

PDM, as it uses the relative density of the pulses to represent the analog signal. For 

∆∑ modulators, bi-level quantizer is the most widely adopted structures due to the 

circuit simplicity and robustness. 
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Figure 3.2 Conceptual view of bi-level ∆∑ modulation 

As an effective method for building high resolution data converters, Δ∑ modulator is 

featured with a high dynamic range and the modulation process is not affected by the 

cumulative error. Among ∆∑ modulators, bi-level quantizer based ∆∑ modulation is 

used more than others due to the circuit simplicity and the binary nature of the 

quantizer output. Fig.3.2 shows a conceptual view of the bi-level ∆∑ modulation, 

where 𝑈𝑞  is the modulator input, 𝑈̂𝑞  is the quantizer input and 𝑞𝛥(𝑈̂𝑞) is the 

modulator output. The Δ∑ modulation quantizes the signal directly, rather than the 

signal‘s derivative. Hence the maximum quantizer range is determined by the 

maximum signal amplitude. If the input exceeds this limit, scaling needs to be 

applied.  

 

Figure 3.3 A High order Δ∑ modulator structure 

Fig.3.3 illustrates the structure of a discretized high order Δ∑ modulator, where z 

denotes the z-transform of a shift operator. To a discrete-time sample 𝑈𝑞(𝑛) at time 

step n: 

𝑧; 𝑈𝑞(𝑛) = 𝑈𝑞(𝑛 − 1).                (3.1) 

Also, the bi-level quantizer 𝑞𝛥 is defined as: 

𝑞𝛥(𝑈̂𝑞) ≜ {
𝛥                 𝑖𝑓 𝑈̂𝑞 ≥ 0

−𝛥                𝑖𝑓 𝑈̂𝑞 < 0
 .               (3.2) 
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To approach high resolution performance of a bi-level Δ∑ modulator, the OSR is 

required for ∆∑ modulation. If the frequency of interest is from 0 to f0, the OSR is 

defined to be the ratio of the sampling frequency fs to the Nyquist frequency 2f0: 

𝑂𝑆𝑅 ≜
𝑓𝑠

2𝑓0
                                                            (3.3) 

For decoding, decimation is required. The corresponding multi-bit digital format 𝑌𝑞 

of the input 𝑈𝑞 is determined by taking the average value within an OSR period:  

𝑌𝑞 =
 

𝑂𝑆𝑅
∑ 𝑞𝛥(𝑈̂𝑞)𝑖
𝑂𝑆𝑅
𝑖<  ,                                               (3.4) 

where 𝑈̂𝑞 is the integrator‘s output with respect of the input 𝑈𝑞, and 𝑞𝛥(𝑈̂𝑞) is the 

output of the quantizer 𝑞𝛥. If 𝑈̂𝑞 is positive or 0, 𝑞𝛥(𝑈̂𝑞) is +∆. If 𝑈̂𝑞 is negative, 

then 𝑞𝛥(𝑈̂𝑞)  is -∆. The output after decoding is limited to -∆ and +∆. Eq.3.4 also 

suggests that the bi-level output can be decimated by simply taking the average of a 

group of oversampled signals, or adding a low pass filter to convert the digital signal 

to an analog signal. The fact that most physical dynamic systems can be regarded as 

low pass filters means that the ∆∑ modulation requires no additional A/D converter in 

the loop.  

The question raises that, if the dynamic system can be driven by the PDM signals, 

whether the controller can process these 1-bit data individually or not. It has been 

proven by various literatures, e.g. (Delchamps, 1990), that in fact, the 1-bit signals 

generated by the ∆∑ modulation contains all the useful information of the input, but 

this information is obscured by the errors, in other words, the quantization noise.  

3.1.2 Wavelet analysis 

For Δ∑ modulations, the nonlinear nature of a quantizer introduces the quantization 

noise. As the author is including the Δ∑ modulator in an oversampled control loop, 

the quantization noise will be processed along with the useful information at each 

time step. Moreover, the error may accumulate fast due to the integrators existed in 
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the control loop and the controller may lose the track in a few time steps.  

To analyse the quantization noise in detail, wavelet de-noising is applied here. 

Assume (ℵ𝑗,𝑘)𝑗,𝑘 ∈ 𝐾 as an orthogonal basis of wavelets on the interval I = [a; b] as 

described by (Cohen, et al., 1993) so that any signal 𝑢 ∈ 𝐿2(𝐼) can be written as the 

sum of a series 

u = ∑  〈𝑢, ℵj,k〉 ℵj,k,                                        j,k∈K          (3.5) 

where 

< 𝑢, ℵ𝑗,𝑘 >= ∫ 𝑢(𝑥)
𝑏

𝑎
ℵ𝑗,𝑘(𝑥)𝑑𝑥 .                                (3.6) 

Define hard threshold operator η as: 

η(x)={
𝑥      𝑖𝑓|𝑥| ≥   𝜆

0       𝑖𝑓|𝑥| ≤  𝜆
  (𝜆 𝑖𝑠 𝑡𝑕𝑒 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑) .      (3.7) 

Then the de-noised signal can be presented as 

𝑢0 = ∑ 𝜂(< 𝑢, ℵ𝑗,𝑘 >)ℵ𝑗,𝑘 .                               𝑗,𝑘∈𝐾 (3.8) 

Hence, the noisy signal can be written as 

𝑢 = 𝑢̃ + ∑ 𝜔𝑖 .                                                    𝑖 (3.9) 

where 𝑢̃ is the noiseless signal to be estimated, 𝜔𝑖 is the additive Gaussian white 

noise of standard deviation 𝛿𝑖, and i is the number of de-noising steps. Then 1-bit 

signal can be linearized by a signal plus additive quantization error approximation, 

making it easier to design and analyze the 1-bit systems. Normally, such linearization 

is followed by some basic assumptions based on (Norsworthy, et al., 1996): 

A.3.1: The absolute in-band quantization noise power is expected as white noise 

within the interval [0, 𝑓𝑠] of the frequency band. 

A.3.2: The probability density function (PDF) of the quantization error is uniform 

in the interval [-Δ, Δ].  
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3.1.3 Quantization noise 

As suggested in the wavelet analysis, the nonlinearity in the Δ∑ modulation can be 

linearized by modeling the 1-bit quantizer with an additive noise. The nonlinear 

quantizer can be replaced with a signal-dependent gain and the quantization noise, 

and therefore described as a quasi-linear model as suggested in (Slotine and Li, 1991). 

Consider the discrete counterpart of the Δ∑ modulator described in Fig 3.2, its 

quasi-linear ∆∑ modulator model is shown in Fig 3.4. The encoder and sampling time 

for the discrete model are not discussed here as they do not affect the analysis in this 

section.    

 

Figure 3.4 First order quasi-linear ∆∑ modulator 

To decrease the in-band noise, the ∆∑ modulation also adds noise-shaping benefits by 

placing integrators in the main loop before the quantizer. The input to the quantizer is 

the integral of the difference between the input and the quantized output, which 

approaches zero. Hence the average value of the binary pulses tracks the input. The 

relationship between the input 𝑈𝑞, the quantization noise e and the output 𝑌𝑞 can be 

described by  

𝑌𝑞 =
 

𝑧

⏞
𝑆𝑇𝐹

𝑈𝑞 + (
𝑧; 

𝑧
)

⏞  
𝑁𝑇𝐹

𝑒.                                                   (3.10) 

This equation contains a signal transfer function (STF) and a noise transfer function 

(NTF). The STF is a low-pass filter and the NTF is a high-pass filter. The integrator 

therefore forms a low-pass filter on the difference signal, providing low frequency 

feedback around the quantizer. This feedback results in a reduction of quantization 

noise at low (in-band) frequencies. The noise, however, is shaped by a high-pass filter, 

shaping the noise out of the low frequency area. In most digitalized control 
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applications, the quantization noise is neglected due to the assumption that the error is 

filtered by the physical system (physical systems are generally not sensitive to signals 

in high-frequency range). However, as mentioned before, for ∆∑ modulators, the 

nonlinearity introduces spectral components which cover a wide bandwidth including 

the baseband (Ardalan and Paulos, 1987). Therefore it is hard to adequately filter the 

quantization noise if the noise power in the base band is too high. In order to settle the 

data rate and sampling frequency for 1-bit processing, the approach taken here is to 

increase the SNR within the baseband. 

Assuming A1 and A2 hold, letting 𝜍𝑒;𝑡𝑜𝑡𝑎𝑙
2  stand for the power density of the 

quantization noise e, it can be calculated as 

𝜍𝑒;𝑡𝑜𝑡𝑎𝑙
2 =

1

2∆
∫ 𝑒2𝑑𝑒 =

∆2

3
 .                                         

∆

−∆
(3.11) 

When the sampling frequency is fs, all of the quantized signal power folds into the 

frequency band 0 ≤ 𝑓 ≤ 𝑓𝑠/2. Assuming that the quantization noise is white noise, 

its spectral density is obtained as 

𝐸(𝑓) = 𝜍𝑒;𝑡𝑜𝑡𝑎𝑙√
2

𝑓𝑠
.                                                 (3.12) 

Therefore, the spectral of the quantization noise of the first order ∆∑ modulator is 

given by 

𝑁(𝑓) = 𝐸(𝑓)|𝑁𝑇𝐹(𝑒𝑗𝜔)| .                                         (3.13) 

Hence the noise power within the signal band is 

𝜍𝑒
2 = ∫ |𝑁(𝑓)|2𝑑𝑓

𝑓𝑜

0
=

𝜍𝑒−𝑡𝑜𝑡𝑎𝑙
2

2𝜋
∫ |𝑁𝑇𝐹(𝑒𝑗𝜔)|2
𝜋

−𝜋
𝑑𝜔,      (3.14) 

and its root mean square value (RMS) is 

𝜍𝑛 = 𝜍𝑒
𝜋2

3
(2

𝑓0

𝑓𝑠
)3/2 = 𝜍𝑒

𝜋2

3
(𝑂𝑆𝑅);3/2.             (3.15) 

Eq.3.15 shows that the noise can reduce 9dB by doubling the OSR, which again 

suggests that in theory, the quantization noise can be lowered to an acceptable range 

with appropriate OSR. In other words, the ∆∑ modulator based systems allow 

designers to trade-off system performance with the OSR. However, extremely high 
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sampling frequency is not expected in the digital control system as the time interval is 

too small for the controller to finish the calculation at each time step and it results in 

very small coefficients which require long word length. To reduce the sampling 

frequency and maintain the quantization noise within the acceptable range, high-order 

∆∑ modulation has to be considered. Similar to Eq.3.15, general RMS noise for the 

high order ∆∑ modulators can be obtained as: 

𝜍𝑛 = 𝜍𝑒
𝜋𝑚

√2𝑚: 
(𝑂𝑆𝑅);(2𝑚: )/2 ,              (3.16) 

where m is the order of the modulator. The RMS noise therefore is reduced 3(2m + 1) 

dB by doubling the OSR. Fig.3.5 represents the linearized counterpart of the high 

order Δ∑ modulator shown in Fig3.3.  

 

Figure 3.5 A High order linearized Δ∑ modulator 

The transfer function in terms of U and e can be obtained as Eq.3.17. 

𝑌𝑞 =
 

𝑧

⏞
𝑆𝑇𝐹

𝑈𝑞 + (
𝑧; 

𝑧
)𝑚

⏞    
𝑁𝑇𝐹

𝑒 .                                            (3.17) 

The NTF then becomes a high order high pass filter, and the Δ∑ modulator can 

therefore achieve a good SNR performance, but it is also expensive to implement it 

with more than two integrators in circuit. In practice, the second order Δ∑ modulator 

is a most common application in data conversion. In this thesis, simulations are only 

based on the implementation of the second order Δ∑ modulator, which reduces the 

RMS noise by 15dB by doubling the OSR, resulting in a high dynamic range for 

signal processing. Fig.3.6 shows the relationship between the calculated SNR and the 

OSR for a second order Δ∑ modulator with sinusoidal input. 
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Figure 3.6 SNR for Second order Δ∑ modulator with sinusoidal input 

Given a sinusoidal input with Standardized total power density of 𝜍𝑢
2, based on the 

Eq.3.16, the SNR can be obtained: 

𝑆𝑁𝑅 =
𝜎𝑢
2

𝜎𝑒−𝑡𝑜𝑡𝑎𝑙
2

2𝜋
∫ |𝑁𝑇𝐹(𝑒𝑗𝜔)|

2𝜋
−𝜋 𝑑𝜔   

.                                       (3.18) 

It is shown in the Eq.3.18 that given a Δ∑ modulation structure and a known signal 

input, the SNR is a function of input power density and the OSR. Furthermore, the 

amplitude of the input signal is also critical to the SNR and the stability of the ∆∑ 

modulator. If the input power overloads the quantizer, the modulator will become 

unstable even the input amplitude drops back to small (Bourdopoulos, et al., 2003). 

Unlike signal processing, in terms of control theory, input signals are normally less 

predictable. Therefore, a good design of the quantization level is also important to the 

design of ∆∑ modulators. The author will continue the discussion of stability criteria 

and stabilization techniques of the Δ∑ modulator in Chapter 4 and Chapter 5.  

3.1.4 Implementation structure  

A large variety of the high order ∆∑ modulator structures exist, e.g. (Chao, et al., 

1990; Troster, et al., 1993; Moussavi, 1994; Aziz and Sorensen, 1996; Brooks, et al., 

1997). Three of common structures are collected here:   

(1) Cascade Integrator with Distributed Feedback (CIDF). 

The structure of CIDF is shown in Fig.3.7(a). The structure is the simplest 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20

40

60

80

100

120

140

Over sampling radio

S
N

R
(d

B
)

 

 

SNR



34 

 

structure where the feedback coefficients an realize the NTF and STF poles and 

the NTF zeros are fixed to unity.  

(2) Cascade Integrator with Distributed Input and Distributed Feedback (CIDIDF). 

The structure of CIDIDF is shown in Fig.3.7(b). Similar to the CIDF, feedback 

coefficients an realize the NTF and STF poles, but the STF zeros can be 

determined by the feed-in coefficients bn. State scaling coefficients cn are used for 

dynamic range scaling. 

(3) Cascade Integrator with Distributed Input and Summed Feed-Forward (CIDIFF).  

The structure of CIDIFF structure is shown in Fig.3.7(c). It has the same input 

distribution but the zeroes of NTF and STF are implemented by the feed forward 

coefficients an.  

Other than the above three structures, a stable resonator can be added into the 

structure with two delay integrators and a feedback coefficient g1, which can be used 

to realize the complex zeros in NTF (i.e. zi = e
±j√g ). For odd order structures, the 

resonators are normally located at the second and the third integrators to avoid noise 

coupling due to the feedback coefficient (Bourdopoulos, et al., 2003). A CIDIFF 

structure with resonator is shown in Fig.3.7(d). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.7 Implementation structures for the 3
rd

 order bi-level ∆∑ modulators: (a)CIDF (b) 

CIDIDF (c) CIDIFF (d) CIDIFF with resonator 
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It is worth noting that for the bi-level ∆∑ modulators, feedback data are in 1-bit form. 

Therefore the operations in the filter loop can be implemented by the resource 

friendly combinations of shift and add. It can even be implemented without any 

comparison operations, and selection of the sign bit is all that is required (Janssen and 

van Roermund, 2011). In the work of 1-bit processing based MPC presented in the 

next chapter, the author considers the ∆∑ modulators as off the shelf analog 

components. Therefore the computational efforts made by the ∆∑ modulators 

themselves are not included in the control loop.  

However, these structures will be used as the foundation of designing the 1-bit 

processing control loop and the ∆∑ modulation based sensors and estimators as 

discussed in Chapter 5 and Chapter 6. In addition to the above discussion, a state 

space approach will be further discussed in Chapter 5 and a parallel structure is used 

to develop an OBMPC based ∆∑ modulator. 

 1-Bit Processing Control Systems 3.2

To design a 1-bit processing control system, a few things need to be taken into 

consideration. Firstly, the control structure needs to be designed to fully utilize the 

―1-bit‖ characteristic of the signal, so that good system performance can be achieved 

with relatively low computational resources. Secondly, reasonable OSR need to be 

chosen to achieve high resolution of the modulated signal while maintain the 

functionality of the controller to operate in real-time. Thirdly, the stability issues need 

to be addressed since the quantization noise is introduced into the control loop, which 

will affect the robustness of the control system.  

The basic idea of the 1-bit processing is to encode analogue signals into binary pulses 

and represent these pulses with 1-bit registers in hardware, then work on these 1-bit 

data to produce desired actuation in real-time. Rather than using multi-bit A/D 

converter, the proposed system structure uses bi-level Δ∑ modulators to encode 

signals, and then process these signals directly with controllers. Also, considering that 

most dynamic models are insensitive to high frequency signals (i.e. works as a low 
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pass filter), the oversampled Δ∑ modulator output can be considered to drive the 

dynamic model directly without demodulators.  

3.2.1 Controller structure 

Here, a canonic z-form is presented first and the control structure is shown in Fig.3.8. 

(Goodall, 1990; Wu and Goodall, 2005a). 

 

Figure 3.8 Canonic z-form 

In Fig.3.8, the discrete transfer function can be described as:  

𝐻(𝑧) = 𝑐
𝑎1𝑧

2:𝑎2𝑧:𝑎3

𝑧2:𝑏2𝑧:𝑏1
 ,                          (3.19) 

where 𝑎 , 𝑎2, 𝑎3 and 𝑏 , 𝑏2, 𝑏3 are the coefficients of the transfer function, c is the 

gain outside the feedback loop. At sampling step k, define 𝑋(𝑘) = ,𝑥(𝑘 − 2), 𝑥(𝑘 −

1), 𝑥(𝑘)-𝑇 , U(k)∈  and Y(k)∈  as the state vector, control  input and output 

respectively, then its state space equation can be formulated as: 

𝑋(𝑘 + 1) =  𝑧𝑋(𝑘) + 𝐵𝑧𝑈(𝑘), 

𝑌(𝑘) = 𝐶𝑧𝑋(𝑘),                                                          (3.20) 

where  𝑧 = [
0 −𝑏 −𝑏2
1 0 0
0 1 0

] , 𝐵𝑧 = [
1
0
0
], 𝐶𝑧=,𝑐𝑎 𝑐𝑎2 𝑐𝑎3-. 

However, the required high sampling frequency (e.g. much higher than the system 

poles) may result in long word lengths for both coefficients and variables within the 

controller, primarily because as the differences between successive values of the input 

and output become increasingly small, the coefficients need more bits to achieve 

accurate control result. For example, as suggested in Eq. 3.20, 𝑥(𝑘)  can be 
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calculated using the previous data 𝑥(𝑘 − 1) , x(𝑘 − 2) and the control input: 

𝑥(𝑘) = 𝑢(𝑘) − 𝑏 𝑥(𝑘 − 1) − 𝑏2𝑥(𝑘 − 2).                      (3.21) 

The coefficients 𝑏  and 𝑏2 are determined so that the suitable proportions of the 

small differences are combined to give the required output y (Goodall, 1990). For 

each step of the fast sampled system, the difference between 𝑥(𝑘 − 1) and 𝑥(𝑘 − 2) 

has to be small to ensure the dynamic response converges to the Laplace transform, or 

in other words, its continuous counterpart. Meanwhile, digital processors only provide 

a finite word length of the coefficients. Hence, the effect of coefficient round off may 

share a higher proportion of the overall system noise and error, especially when the 

coefficient value varies within a big range. Then the coefficient quantization error 

may be significant, especially for higher order control systems. Such error may 

integrate during each control action and compromise the system robustness.  

To address this problem, a 𝛿 transform is proposed to implement the control law. 𝛿 

transform is proposed by Middleton and Goodwin (1986, 1990). Simply define 

𝛿 =
𝑧; 

𝑇
, where T is the sampling interval, or 𝛿 = 𝑧 − 1 (since T in this equation 

only changes coefficients). The  δ  transform is developed along with the 

commencement of digital microprocessor. Considering a δ transform on Eq. 3.19, 

then  

𝐻(δ) =
𝑛1δ

2:𝑛2δ:𝑛3

δ2:𝑚2δ:𝑚1
 .                                       (3.22) 

Since δ and Z are linear function transform, then corresponding state space equation 

for this form are 

𝑋𝑛: =  δ𝑋𝑛 + 𝐵δ𝑈𝑛                                       (3.23) 

𝑌𝑛 = 𝐶δ𝑋𝑛 ,       

where  δ = [
0 −𝑚 −𝑚2

1 0 0
0 1 0

] , 𝐵δ = [
1
0
0
], 𝐶δ=,𝑛 𝑛2 𝑛3-, are functions of the 

 z, 𝐵z, 𝐶z respectively. As a linear transform, δ transform shares most of the 

characteristics with the z transform. However, unlike the z transform, the δ transform 
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has low coefficient sensitivity as the accuracy of the coefficients simply needs to have 

the same accuracy as is required for the overall system performance (typically 5% for 

control; Forsythe and Goodall 1991). Again a conventional canonic structure in δ 

form can be considered as Fig.3.9(a).  

To approach an explicit relationship between coefficients and the control variables, a 

modified canonic structure in δ form is demonstrated in Fig.3.9(b) (Parra, 2001). 

Both control structures can represent the same transfer function with  

p1=n3 

p2=n2 

p3=n1 

    q1=m2, and 

 q2=m1. 

.  

(a) 

 

(b) 

Figure 3.9 (a) canonic structure in 𝛅 form (b) modified canonic structure in 𝛅 form 

3.2.2 1-bit processing in 𝛅 transform 

Based on the modified canonic structure, the structure of a 1-bit processing system 
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can be developed as Fig.3.10 (Wu and Goodall, 2005a).  

 

Figure 3.10 One-bit processing with modified canonic 𝛅 form 

 

Figure 3.11 1-bit processing with modified canonic 𝛅 form with CIDF 

Given a second order CIDF structure based Δ∑ modulator, the full control structure is 

shown in Fig.3.11. Therefore the quantization noise and sampling rate analysis can 

refer to the analysis of Δ∑ modulator itself. That is, given fixed Δ∑ modulation order 

and a known signal input, the SNR is a function of the OSR. 

3.2.3 System sampling and robustness of the control system 

As discussed at the beginning of this chapter, the Δ∑ data modulators require OSR 

with respect of Nyquist–Shannon sampling theorem to achieve good precision of 

modulated data. The basic idea for the OSR is to use higher sampling rate to 

compensate for the low resolution of the quantizer. Specifically speaking, for a first 

order bi-level (single bit) Δ∑ modulator, to obtain the 8-bit precision, the sample 

frequency needs to be at least 256 times more than the bandwidth to achieve the same 

precision of a multi-bit processing. Increasing the modulator order can decrease the 

OSR accordingly, which, however, will sacrifice the circuit simplicity and increase the 

number of integrators in the control loop. The author can again consider the 

―controller plus Δ∑ modulator‖ structure as a higher order Δ∑ modulator, and then 
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apply Eq.3.18 to analyze the SNR. To have a satisfying SNR, normally, the OSR also 

need to be chosen at a relatively high range. In this case, for 1-bit processing control 

systems, the phase delay introduced by the controller and Δ∑ modulator only has a 

minor effect on the robustness of the control system.  

For 1-bit processing control system, the OSR is applied to the whole control system 

rather than just the modulators, raising issues of the trade-off between system 

precision and the capability of completing all the instructions within the time interval. 

This is the main drawback for the 1-bit processing control system. The decreased on 

board computational effort and circuit simplicity is necessarily compromised by the 

increased sampling rate. The comparison in terms of circuit occupation and energy 

consumption between 1-bit processing control systems and conventional control 

systems will be conducted in the simulation and hardware implementation. It is worth 

stressing here that a longer bit length not only means higher OSR to maintain system 

precision, but also means higher complexity of multiplications. Therefore, for most 

real-time control systems, the bit lengths are normally chosen as 8 to 12 bits (Wu and 

Goodall, 2005a). Recall Eq. 3.18, given fixed Δ∑ modulation structure and a known 

signal input, the SNR is a function of input power density and the OSR. For PDM 

control, SNR is expected to be a minimum of 50dB (Wu and Goodall, 2005a). The 

resultant OSR can be used as a design criterion during the simulation.  

The stability analysis of the 1-bit processing control system is rather difficult due to 

the non-linearity introduced by the Δ∑ modulator. If the quantization noise can be 

linearized and all the assumptions made for the linearization hold, then the control 

loop can be analysed by standard signal plus white noise systems as discussed in 

(Delchamps, 1990). For simple SISO control systems, an alternative approach is to 

combine the control system with the lower order Δ∑ modulator, and treat them 

together as a higher order Δ∑ modulator (Johns and Lewis, 1993). Then the stability 

issues for the 1-bit processing systems fall into the framework of the stability of Δ∑ 

modulators. Practically, on the other hand, for a well-designed Δ∑ modulator, if the 

input is always bounded within the quantization level, the Δ∑ modulator can be 

file:///E:/kuaipan/Thesis/Final/Final/Final_revise3.docx%23_ENREF_175
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regarded as a simple A/D converter, which means the quantization noise can be 

ignored due to the oversampling technique. However, thorough theoretical analysis 

for the either 1-bit processing control system or even Δ∑ modulator itself is still hard 

to complete. This thesis mainly focuses on the 1-bit processing based implementation 

of optimal control algorithms (e.g. MPC), where such analysis is even harder as the 

canonical structure is not applicable to advanced control systems. Hence the author 

leaves this issue here and will continue the discussion in Chapter 4. Here, one can 

firstly use the results provided in (Johns and Lewis, 1993), that the stability of Δ∑ 

modulators based control system is determined by the stability of the original ones 

excluding the Δ∑ modulators from the loop as long as the Δ∑ modulators are stable.  

3.2.4 1-bit processing based WCSs  

As a bi-level Δ∑ modulation based control system, the 1-bit processing control system 

is naturally suitable to the wirelessly networked applications as the resulting binary 

numbers are ready for transmission directly. For WCS applications, the SNR is 

determined by an additional part: the need for low bit error rate (BER) of the wireless 

communication. Normally for wireless systems, the BER should be no more than 10
-7

, 

which requires a SNR of at least 20dB. Hence the total SNR would be around 70dB 

(Wu and Goodall, 2005b). Together with the SNR requirement of the Δ∑ modulation, 

the OSR can be determined for the WCS.   

The OSR is beneficial to the sensing information. As the sensing component is 

oversampled, more measurement quantities can be acquired even if the information is 

obstructed by the quantization noise and therefore provide better estimation than a 

single multi-bit measurement. However, this requires a customized design of the 

sensor. The Δ∑ modulator based MEMS gyroscopes are studied and a novel OBMPC 

based 1-bit MEMS gyroscope is introduced in Chapter 5. Moreover, the 1-bit 

processing control systems are also insensitive to the noise introduced during the 

WCS. As discussed above, each quantized data carries only partial information but 

can be processed in sequence. Due to the OSR, the significance of data loss is much 
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less than that of traditional multi-bit D/A conversion methods (Wu and Bai, 2010). 

This conclusion is discussed in Chapter 6 and verified in the simulation part in 

Chapter 7. 

 1-Bit Processing Control System for a Fractionated 3.3

Satellite Mission 

As discussed above, the 1-bit processing based control system is efficient in terms of 

circuit areas and power consumption, and advantageous to the wireless 

communication. Hence, it is attractive to the fractionated satellite missions as the 

onboard resources are limited and the control process is maintained by the ISL. The 

benefits of the 1-bit processing control system in the fractionated satellite mission will 

be further discussed in the later part of this thesis. 

In this section, a 1-bit processing based control system is designed for the fractionated 

satellite mission. A numerical design example is provided to verify the feasibility of 

such design. The dynamic model of the satellite is built based on our QB50 mission. 

As the focus of this thesis is the OBMPC based fractionated satellite attitude control, 

the detailed mission modeling and environmental issues are omitted here and will be 

discussed in chapter 7. More details of the 1-bit processing control based fractionated 

satellite mission can refer to (Bai and Wu, 2010), which is the first aerospace 

application of the 1-bit processing control system to the best knowledge of the author. 

In Eq.3.24, a nano-satellite with rigid body is numerically presented: 

𝑥𝑠(𝑘 + 1) =  𝑥𝑠(𝑘) + 𝐵𝑢𝑠(𝑘),   

𝑦𝑠(𝑘) = 𝐶𝑥𝑠(𝑘),                                                          (3.24) 

where: 

 =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 −4.64 × 10;6 0 0 0 0 1.28 × 10;3

0 6.62 × 10;7 0 0 0 0
0 0 0  −1.08 × 10;3 0 0 ]

 
 
 
 
 

; 
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𝐵 =

[
 
 
 
 
 

0 0 0

0 0 0

0 0 0

1.46 × 103 0 0

0 1.46 × 103 0

0 0 1.22 × 103]
 
 
 
 
 

; 𝐶 =

[
 
 
 
 
 
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1]
 
 
 
 
 

. 

The state variable is chosen as 𝑥𝑠 = ,𝜑, 𝜃, 𝜓, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧-
T , where 

𝜑, 𝜃, 𝜓, 𝜔𝑥, 𝜔𝑦 , 𝜔𝑧  are the roll, pitch and yaw angles and angular velocities 

respectively. Since all the state variables are measurable, no observer is necessary in 

the control system. The model is only suitable for small angles. A 2
nd 

order command 

tracking controller is designed and located on-board the master satellite. For three 

axes attitude control and stabilization, it is recommended that each channel should be 

controlled separately. The master satellite carries out control system processing 

directly upon the 1-bit signals, and then encodes and transmits the control input signal 

as 1-bit signals to drive actuators on the slave satellite directly. The sensing 

components are MEMS sensors with built-in Δ∑ modulators, e.g. MEMS gyroscopes 

by (Kraft and Ding, 2009), and provide 1-bit feedback data to the controller. 

Environmental disturbances are ignored here to simplify the problem. The constraints 

applied on the control input are set to ±1×10
-5

 Nm. The control objective for the roll 

angle is set to 1°. 
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Figure 3.12 Diagram of a fractionated satellite attitude decision and control system 

The control structure of a fractionated satellite attitude decision and control system is 

illustrated in Fig.3.12. In the proposed structure, two Δ∑ modulators are used to 

encode the multi-bit data into 1-bit data for the feedback signals and the control inputs 

respectively. The resulting 1-bit data are utilized to drive the dynamic model directly. 

A modified canonical structure is used so all the coefficients are related to the 

distributed 1-bit feedback signals and control inputs. Therefore, no multiplication is 

required in the control structure. The sampling frequency is set to 100 kHz. 

Transmission delay, data loss and the BER are considered to be negligible in this 

simulation and will be further discussed in Chapter 7.  

For simulation, the roll angle is taken as an example of the design process. A PID 

controller using the canonic structure is proposed here to achieve the control objective. 

As discuss above, given relatively high OSR, the stability of the 1-bit processing 

control system is determined by the stability of the original control system excluding 
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the Δ∑ modulators from the loop as long as the Δ∑ modulators are stable. Hence the 

PID controller can be designed first to stabilize the control system with P=2.8 × 10;7, 

I=1.5 × 10; 0, D=5.7 × 10;5. The sampling rate is chosen as 1Hz and the OSR is set 

to 1000 (i.e.1000Hz). Then the discrete controller in z form can be acquired as  

𝐻(𝑧) =
𝑛1𝑧

2:𝑛2𝑧:𝑛3

𝑧2:𝑚1𝑧:𝑚2
,                       (3.25) 

where                          𝑛 =5.6 × 10;5; 

     𝑛2= -1.114× 10;4; 

    𝑛3= -5.63× 10;5; 

𝑚 = 0; 

𝑚2= -1. 

Further transfer the z form discrete controller into δ form, then the coefficients in 

Eq.3.25 can be calculated as  

𝐻(δ) =
𝑝2δ

2:𝑝1δ:𝑝0

δ2:𝑞1δ:𝑞0
                    (3.26) 

where 

   p2 =5.6 × 10;5;  

    p1 = 1.14× 10;6; 

     p0 = -5.514× 10;5; 

q2 = 1;  

q1 = 2; 

q0 = 0. 
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(c) 

Figure 3.13 Simulation results: (a) Position response of the control systems; (b) Difference of the 

responses between the 1-bit processing based control system and the continuous PID control 

system. (c) Difference of the responses between the 1-bit processing based control system and the 

discrete PID control system. 

The simulation results are shown respectively in Fig.3.13 and Fig.3.14. Fig.3.13(a) 

shows the step response of the continuous PID control system, discrete PID control 

system and the 1-bit processing based control system respectively. It can be seen that 

the 1-bit processing based control system tracks the continuous benchmark well. The 

difference between the 1-bit processing based control system and its continuous 

benchmark is shown in Fig.3.13(b). The difference between the 1-bit processing based 

control system and its discrete benchmark is shown in Fig.3.13(c). The peak 

difference in Fig.3.13(b) is about 0.006% and 0.002% in Fig.3.13(c), which is 

suggesting that the quantization noise remains in a reasonable level in the proposed 

1-bit processing based control system under the given OSR. 
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Figure 3.14 Comparison between the simulation results: the data are removed randomly by 

considering a 10
-7

 BER 

Furthermore, transmission delay and BER are investigated for the ISL using Δ∑ 

modulation. The delay and BER are considered for both the sensing and control 

signals. During the simulation the delay is added to the loop for some sampling time; 

and the data are removed randomly by considering a 10;7 BER. The simulation 

results are shown respectively in Fig.3.14. The delays are introduced into the control 

system when the sensing signal is sent to the master satellite and when the control 

signal is sent to the slave satellite. The peak error for the transmission delay model is 

less than 0.1%. And the error for the BER model can be ignored. The results show 

that the ISL using Δ∑ modulation is robust and feasible. 

 Summary 3.4

This Chapter introduced the concept of the 1-bit processing based control system as 

proposed by Wu and Goodall (2005a). The benefits of such 1-bit processing based 

control system are discussed and the author proposed that such structure is feasible for 

the fractionated satellite mission.  

The 1-bit processing control system is built based on the bi-level ∆∑ modulation. 

Normally two ∆∑ modulators are required: one is used to encode the control input to 

drive the dynamic model directly; and the other is used to encode the control feedback 
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to repeat the control loop. The resulting 1-bit data are in pulse density modulation 

nature and include all the useful information. They can be processed individually so it 

is possible to implement the control system with a multiplier free structure. However, 

the information is blocked with quantization noise. As a nonlinear component, the 

behaviour of the ∆∑ modulation can be modelled by linearizing the quantization noise 

into additive white noise. To maintain the robustness of the controller, such noise 

needs to be sufficiently filtered to decrease the noise within the bandwidth of interest. 

A built-in noise shaping filter is applied to address this problem, but may also require 

a high sampling rate (i.e. the OSR) to achieve desired precision.   

The OSR is the main drawback of the 1-bit processing control system. Fast sampled 

control systems may trigger various problems to the control loop. Firstly, the high 

sampling rate normally means long word length, which makes it impractical for 

implementation. This problem is addressed by introducing the δ transform. Secondly, 

small time interval may be a challenge to the controller, especially for the embedded 

control systems where the on-board resources are limited. This means the controller 

needs to be carefully customized to suit the need of 1-bit processing control system.  

Even with all the disadvantages, the 1-bit processing control system is proven to be 

efficient in term of circuit simplicity and online computational effort. The main 

improvement is to replace all the multiplications with conditional-negate (CN), add 

and shift operators. By using a modified canonical structure, an explicit relationship is 

formed between the multi-bit coefficients and 1-bit controller input and control 

feedbacks. Therefore, the control loop can be implemented with a multiplier free 

approach. Also, the 1-bit processing control is especially suitable for wireless control 

applications. The modulated 1-bit data are naturally ready for wireless communication, 

and the OSR makes both the control input data and measurement data less sensitive to 

the errors and communication loss. Based on such advantages, the 1-bit processing 

based control system is proposed for the attitude control system of the fractionated 

satellite missions. A numerical example is provided at the end of this chapter to verify 

the feasibility of such proposal.  
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4. 1-BIT PROCESSING BASED MODEL PREDICTIVE 

CONTROL 

====================================================================== 

4.1 Quadratic Programming and Bi-level problem 

4.2 MPC Concept and Formulation 

4.3 Design of 1-Bit Processing Based MPC 

4.4 Stability analysis for the OBMPC 

4.5 Numerical Example for the OBMPC  

4.6 Summary 

====================================================================== 

In this chapter, a 1-Bit Processing Based MPC (OBMPC) algorithm is proposed. The 

proposition is based on the fractionated satellite attitude control mission but it can be 

extended to the more general case of fast sampled MPCs in embedded control systems. 

The results of this thesis are generated based on the 1-bit processing system proposed 

in Chapter 3, where the bi-level Δ∑ Modulators are used and the modulation output 

shall be processed directly by the controller. To discuss the OBMPC, it is necessary to 

study the MPC algorithm and its extensions. As an optimization based algorithm, the 

MPC is typically based on the online QP solver. Before the discussion about the MPC 

algorithm, a few basic definitions and the QP problem shall first be introduced. 

  Quadratic Programming and Bi-level Problem: 4.1

The definitions in this section are based on (Boyd and Vandenberghe, 2009). 

Definition 4.1: Convex Set and convex function: 

A set C is a convex set if the line segment between any two points in C lies in C. A 

function f: 𝑛 →  is a convex function if dom f is a convex set and if for all x, 

y ∈ 𝐝𝐨𝐦 f, the line segment between (x, f(x)) and (y, f(y)) lies above the graph of f. 

∎ 

Definition 4.2: Polyhedron: 
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A polyhedron is defined as the solution set of a finite number of linear equalities and 

inequalities: 

𝑃 = {𝑥|𝑎𝑗
𝑇𝑥 ≤ 𝑏𝑗  𝑗 = 1,… ,𝑚, 𝑐𝑗

𝑇𝑥 = 𝑑𝑗 , 𝑗 = 1,… , 𝑝}.  ∎       (4.1) 

Definition 4.3: The set of positive semi-definite matrix: 

Define notation 𝑛 to denote the set of symmetric 𝑛 × 𝑛 matrices, then define :
𝑛  

to denote the set of symmetric positive semi-definite matrices. 

𝑛 ≜ *𝑥 ∈ 𝑛×𝑛|𝑥 = 𝑥𝑇+ 

:
𝑛 ≜ *𝑥 ∈ 𝑛|𝑥 ≥ 0+.  ∎                   (4.2) 

Definition 4.4: Convex optimization problem: 

A convex optimization problem is a optimization problem where  

(a) The objective function is convex, 

(b) the inequality constraint functions are convex, 

(c) the equality constraint functions are affine.   ∎ 

Definition 4.5: Quadratic Programming (QP) problem formulation 

The convex optimization problem is called a quadratic program (QP) if the objective 

function is (convex) quadratic, and the constraint functions are affine. Defining x∈

𝑛 and p∈ 𝑛, q  is a symmetric matrix where q∈ 𝑛×𝑛,  𝑎 ∈ 𝑚×𝑛 𝑏 ∈ 𝑚, then a 

QP problem can be formulated as: 

𝑚𝑖𝑛𝑥 𝑓(𝑥) =
 

2
𝑥𝑇𝑞𝑥 + 𝑥𝑇𝑝                 (4.3) 

Subject to :                         𝑎x≤ b     ∎        

Generally, if 𝑞 ∈ :
𝑛   and all the constraints are convex, the QP can be solved by 

simple convex optimization. To include the inequality constraints, such QP problem 

can be extended into a lagrangian dual by introducing the Lagrange factor λ (also 

refered as Dual Problem, Bi-level Problem or Max-min Problem in some references).  

Definition 4.6: Lagrangian Dual 

http://en.wikipedia.org/wiki/Symmetric_matrix
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Define the lagrangian function 𝐿(𝑥, λ) as 

𝐿(𝑥, λ) =
 

2
𝑥𝑇𝑞𝑥 + 𝑥𝑇𝑝 + 𝜆𝑇(𝑎𝑥 − 𝑏)              (4.4) 

Subject to :                    𝜆 ≥ 0.  

Based on Definition 4.4, an optimal solution 𝑥∗  for 𝐿(𝑥)  can be solved by 

∇𝑥 𝐿(𝑥, λ)=0.  

𝑥∗ = −𝑞; 𝑎𝑇𝜆 − 𝑞; 𝑝.                       (4.5) 

Substituting 𝑥∗ into Eq.4.4, then a dual function can be acquired: 

g(𝜆)=−
 

2
𝜆𝑇𝑚𝜆 − 𝜆𝑇𝑛 +

 

2
𝑝𝑇𝑞; 𝑝.             (4.6) 

where 𝑚 = −𝑎𝑞; 𝑎𝑇 and 𝑛 = 𝑏 + 𝑎𝑞; 𝑝. ∎ 

To better describe the problem, the optimization can be formulated in Eq.4.7 as a Dual 

Problem: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆≥0𝑚𝑖𝑛𝑥 𝐿(𝑥, 𝜆).                                             (4.7) 

Let the lower-level problem to be convex (i.e. 𝑓(𝑥)is a convex problem with convex 

constraints), the problem can be treated as the Karush-Kuhn-Tucker (KKT) conditions 

(Kuhn and Tucker, 1951), where exists a unique 𝑥∗ ∈ 𝑛 and a vector 𝜆∗  that

satisfy: 

𝑞𝑥∗   + a𝑇𝜆∗   = −𝑝;                                                (4.8) 

𝜆∗ 𝑇 (𝑎𝑥∗  −  𝑏) =  0; 

𝑎𝑥∗  −  𝑏 ≤  0; 

𝜆∗  ≥  0. 

However, even when the constraint sets are strictly convex, the combination of these 

constraints still need to be addressed to find the optimal solution. The numerical issue 

for the bi-level problem can be found in the survey (Colson, et al., 2005).  
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  MPC Concept and Formulation 4.2

MPC (also known as Receding Horizon Control, RHC) is one of the most attractive 

and promising control theories for the past few decades. The MPC algorithm is an 

optimization based control strategy. Typically, a MPC system optimizes a quadratic 

problem, which is formulated depending on the performance criterion (i.e. minimizing 

the predicted error or the objective function.), over a control input sequence (control 

horizon). The basic concept of MPC is to perform optimization over a control horizon 

to predict the future process behavior over a predefined prediction horizon by 

explicitly using the process model. A sequence of control signals including the current 

and future Nc time steps is computed and only the first component of the sequence is 

applied as the optimized solution to obtain feedback. In the next time step, a receding 

horizon strategy is applied. The first component in the control sequence is discarded 

and the prediction horizon is moved one step forward. The optimization process is 

then repeated. A conceptual view of the discrete MPC is shown in Fig.4.1.   

 

Figure 4.1 A conceptual view of the discrete MPC 

Consider a MIMO system with p inputs, q outputs (q≤p) and n state variables. This 

system is described by the discrete time state space model with sampling interval dt. 

At time step k 

𝑥𝑚(𝑘 + 1) =  𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘)                                               

𝑦𝑚(𝑘) = 𝐶𝑚𝑥𝑚(𝑘)                                                           (4.9) 

where k∈ , and 𝑥𝑚∈
𝑛 , u(k)∈ 𝑝  and 𝑦𝑚(𝑘)∈

𝑞  denoting respectively the 
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state,  input and output at time step k.  𝑚∈
𝑛×𝑛 , 𝐵𝑚∈

𝑛×𝑝, 𝐶𝑚∈
𝑞×𝑛  and ( 𝑚, 

𝐵𝑚) is a controllable pair. 𝑛 ⊆ 𝑛, and 𝑝 ⊆ 𝑝 are closed constraint sets. The 

control horizon and prediction horizon are denoted as Nc and Np respectively. Define 

vectors Y and U as: 

𝑌 = ,𝑦𝑚(𝑘|𝑘) 𝑦𝑚(𝑘 + 1|𝑘)…𝑦𝑚(𝑘 + 𝑁𝑝|𝑘)-
𝑇; 

𝑈 = ,𝑢(𝑘|𝑘)  𝑢(𝑘 + 1|𝑘)…𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)-
𝑇,  

By substituting Eq.4.9 into vector Y, the following result is obtained: 

𝑌 = 𝐹𝑥𝑚(𝑘) + 𝜗𝑈,                                                (4.10) 

where 

𝐹 =

[
 
 
 
 
 

𝐶𝑚
𝐶𝑚 𝑚

 

𝐶𝑚 𝑚
2

⋮
𝐶𝑚 𝑚

𝑁𝑝; ]
 
 
 
 
 

; 𝜗 =

[
 
 
 
 

𝐶𝑚𝐵𝑚 0 0 ⋯ 0
𝐶𝑚 𝑚𝐵𝑚 𝐶𝑚𝐵𝑚 0 ⋯ 0

𝐶𝑚 𝑚
2𝐵𝑚 𝐶𝑚 𝑚𝐵𝑚 𝐶𝑚𝐵𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶𝑚 𝑚
𝑁𝑝; 𝐵𝑚 𝐶𝑚 𝑚

𝑁𝑝;2𝐵𝑚 𝐶𝑚 𝑚
𝑁𝑝;3𝐵𝑚 ⋯ 𝐶𝑚 𝑚

𝑁𝑝;𝑁𝑐𝐵𝑚]
 
 
 
 

. 

The cost function in Eq.4.10 can be formulated with respect to the state variable 

𝑥𝑚(k) and the control input u(k). The problem can then be described as a standard 

QP problem with constraint sets: 

𝐽(𝑥𝑚(𝑘), 𝑢(𝑘)) = 𝑚𝑖𝑛
𝑈(𝑘)

{||𝑥𝑚(𝑘 + 𝑁𝑝|𝑘)||𝑃
2 + ∑ (||𝑥𝑚(𝑘 + 𝑖|𝑘)||𝑄

2 + ||𝑢((𝑘 + 𝑖)||𝑅𝐿
2 )

𝑁𝑝; 

𝑖<0

} (4.11) 

Subject to           𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢𝑚𝑎𝑥 , 𝑖 = 0,… ,𝑁𝑐 − 1; 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑚(𝑘 + 𝑖|𝑘) ≤ 𝑦𝑚𝑎𝑥 , 𝑖 = 1,… ,𝑁𝑝; 

𝑢(𝑘 + 𝑖) = 𝑢(𝑘 + 𝑖 − 1);𝑁𝑐 ≤  𝑖 ≤ 𝑁𝑝; 

𝑥𝑚(𝑘|𝑘) = 𝑥𝑚(𝑘); 

𝑥𝑚(𝑘 + 𝑖 + 1|𝑘)  =  𝑚𝑥𝑚(𝑘 + 𝑖|𝑘)  + 𝐵𝑚𝑢(𝑘 + 𝑖) , 𝑖 ≥ 0; 

𝑦𝑚(𝑘 + 1|𝑘) = 𝐶𝑚𝑥𝑚(𝑘 + 𝑖|𝑘) , 𝑖 ≥ 0; 

where 𝑄 ∈ :
𝑛 , P ∈ :

𝑛  and RL ∈ :
𝑛  are weighting matrices and where 
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||𝑥𝑚||𝑃
2  denotes the quadratic form 𝑥𝑚

𝑇𝑃𝑥𝑚.  𝑥𝑚(𝑘 + 𝑖|𝑘)  is the prediction of 

𝑥𝑚(𝑘 + 𝑖) at time step k. At further step i, define:  

 𝛺 ≜ 𝛴
𝑖< 

𝑁𝑝 ( ∑  𝑚
𝑖;𝑗; 𝐵𝑚)

𝑖; 
𝑗<0 𝑸 𝑚

𝑖  ∈ 𝑁𝑝×𝑛 

       𝛷 ≜ 𝛴
𝑖< 

𝑁𝑝 ( ∑  𝑚
𝑖;𝑗; 𝐵𝑚)

𝑖; 
𝑗<0 𝑸( ∑  𝑚

𝑖;𝑗; 𝐵𝑚)
𝑖; 
𝑗<0

𝑇
+ 𝑹𝑳 ∈

𝑁𝑝×𝑁𝑝 ,  

where 𝑸 ≜ 𝑑𝑖𝑎𝑔(𝑄, 𝑄 … . 𝑃) ∈ 𝑅𝑁𝑝𝑛×𝑁𝑝𝑛, 𝑹𝑳 =  𝑑𝑖𝑎𝑔(𝑅𝐿 , 𝑅𝐿 … .𝑅𝐿) ∈ 𝑅
𝑁𝑝×𝑁𝑝 . If 

the constraints in the QP problem stated in Eq.4.11 are not taken into consideration, 

then the global optimal solution can be found as: 

𝑈(𝑘) = −𝛷; 𝛺𝑥𝑚(𝑘).                 (4.12) 

If the constraints are taken back into consideration, with the problem formulation 

presented above, the MPC problem becomes a constrained QP problem. Hence, 

Eq.4.11 can be rewritten with respect of U(k) as 

𝐽(𝑥𝑚(𝑘)) = 𝑚𝑖𝑛
𝑢(𝑘)

2
 

2
𝑈𝑇(𝑘)𝛷𝑈(𝑘) + 𝑈𝑇(𝑘)𝛺𝑥𝑚(𝑘)3        (4.13)                                                

Subject to  𝐺𝑈(𝑘) ≤ γ.  

where G, γ are functions of the bounds umin, umax, ymin, and ymax. Assuming the dual 

problem is strictly convex and regular. 𝑈(𝑘) ∈ 𝑁𝑐 ≜ *𝑢: 𝐺𝑈(𝑘) ≤ 𝛾 + . Then 

introducing the Lagrange factor λ can help to further format the problem into a 

Lagrangian dual problem.  

𝐽(𝑥𝑚(𝑘), 𝑈(𝑘), 𝜆) = 𝑚𝑎𝑥
𝜆
𝑚𝑖𝑛
𝑈𝑘

2
 

2
𝑈(𝑘)𝑇𝛷𝑈(𝑘) + 𝑈(𝑘)𝑇𝛺𝑥𝑚(𝑘) + 𝜆

𝑇(𝐺𝑈(𝑘) − 𝛾)3(4.14) 

Subject to      𝜆 ≥ 0. 

If the constraint sets are convex, then the typical KKT is the necessary and sufficient 

condition for optimality. If the constraint sets are non-convex, then a near optimal 

solution can be solved by various numerical methods, e.g. (Garcia, et al., 1989; 

Bemporad and Morari, 1999; Qin and Badgwell, 2003; Colson, et al., 2005). 

http://en.wikipedia.org/wiki/Dual_problem
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 Design of 1-Bit Processing based MPC 4.3

This section proposes a novel approach to design an embedded MPC controller for the 

satellite attitude control mission. Based on the 1-bit processing control system 

discussed in Chapter 3, the author developed a 1-bit processing based MPC system, 

namely OBMPC. Such OBMPC system embeds bi-level Δ∑ modulators in the control 

loop, transforming the control inputs and feedbacks into 1-bit format. The work can 

be briefly described as:  

1) The control feedback is acquired in 1-bit format via the bi-level Δ∑ Modulation 

based sensors.  

2) The 1-bit state feedback is processed in the OBMPC controller. The iterative 

process shall be based on the explicit relationship between the 1-bit state feedback 

and the 1-bit control input.  

3) An optimal solution is determined and sent to the dynamic model to perform 

control action.  

As the state vectors are encoded into 1-bit signals, by pre-calculating the coefficients, 

all the multiplication operations are performed only between 1-bit signal and multi-bit 

coefficients. Therefore, multiplication operations in the arithmetic block of the 

controller can be replaced by conditional-negates (CN) and bit shifters (i.e. 

appropriate standardization and sign changing), so that each iteration can be processed 

in a small time frame. The small circuit scale and high power efficiency of such 

implementation makes the OBMPC algorithm feasible for large scale real-time 

control applications. Moreover, the OBMPC system inherits the benefits of the 1-bit 

processing control system, which renders it beneficial for the proposed WCS 

application. Moreover, if the sensing devices can be embedded into Δ∑ Modulator 

control loops, e.g. MEMS gyroscopes (see (Kraft and Ding, 2009) for a recent survey), 

no D/A converter is necessary as 1-bit signals can be processed directly by the 

controller.  
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The main drawback, however, is that an OSR is necessarily required to achieve a high 

resolution. As discussed before, unlike the conventional A/D conversion based digital 

control systems, for the 1-bit processing control system, the OSR is applied to the 

entire control system rather than the A/D convertor itself, which may cause relatively 

high energy consumption for the controller. A low OSR, on the other hand, will cause 

high quantization noise power in the base band. Hence, a moderate OSR shall be 

considered between a reasonable OSR and the system performance.  

Moreover, unlike the simple, direct implementation of a PID controller based 1-bit 

processing control system, the MPC algorithm needs to be modified to achieve an 

explicit relationship between the 1-bit state feedback and the multi-bit parameter 

during each of iteration process.  

To address the above problems, the interest of this work is focused on how to 

implement the Δ∑ modulator in MPC (i.e. how to take advantage of the 1-bit signal to 

decrease the online computation), and the stability issues caused by the quantized 

signals given moderate OSR.  

4.3.1 1-Bit processing based MPC 

As discussed in Chapter 3, Δ∑ modulator based control system requires a high 

sampling frequency, which may result in long word lengths for both coefficients and 

variables within the controller. The δ transform based control system can be used to 

replace the common z transform to overcome such issue by performing a simple linear 

transform. It is proven that the design of the δ-operator based predictive control is 

very similar to the traditional ones based on the shift operator, but computationally 

advantageous at high sampling rates (see e.g. (Lauritsen and Rostgaard, 1997) and 

(Ebert, 2001)).  

Delta operator methods introduced in (Middleton and Goodwin, 1986) require smaller 

word length when implemented in fixed-point digital control processors than shift 

operator models (Goodwin, et al. 1986). In δ transform, a δ operator is more like a 
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derivative by resembling the continuous operator 𝑑/𝑑𝑡  with 𝛿 = (𝑧 − 1)/𝑇  or 

𝛿 = 𝑧 − 1  (the mathematical model in the delta operator form has different 

coefficients only changes the coefficient magnitudes). Since δ and z are linear 

transformations, then Eq.4.9 can be rewritten as   

𝑥𝑚(𝑘 + 1) =  𝛿𝑥𝑚(𝑘) + 𝐵𝛿𝑢(𝑘)                                                

𝑦𝑚(𝑘) = 𝐶𝛿𝑥𝑚(𝑘)                                                      (4.15) 

where  𝛿 =
𝐴𝑚;𝐼𝑚

𝑇
, 𝐵𝛿 =

𝐵

𝑇
, 𝐶𝛿 = 𝐶. To get rid of the observer bias problem, the 

author adopts the augmented model here, as described in Eq. 4.16: 

[
∆𝑥𝑚(𝑘 + 1)

𝑦𝑚(𝑘 + 1)
] = [

 𝛿 0𝑞×𝑚
𝑇

𝐶𝛿 𝛿 𝐼𝑞×𝑞
] [
∆𝑥𝑚(𝑘)

𝑦𝑚(𝑘)
] + [

𝐵𝛿
𝐶𝛿𝐵𝛿

] ∆𝑢(𝑘)                                                                         

                            𝑦(𝑘) = ,0𝑞×𝑞 𝐼𝑞×𝑞- [
∆𝑥𝑚(𝑘)

𝑦𝑚(𝑘)
] .                                          (4.16) 

Comparing to the state space model stated in Eq. 4.6, the augmented model does not 

require steady-state information in the control system implementation. For many 

linearized control systems, the linearization will introduce non-zero constant terms to 

the control output unless the system is at equilibrium point. These constant terms will 

cause steady state error or observer bias if they are not modelled. However, when 

using the augmented model, the difference of the constants becomes zero. 

A new state variable vector is chosen to be 𝑥(𝑘) = ,𝛥𝑥𝑚(𝑘)
𝑇, 𝑦𝑚(𝑘)-

𝑇 . For 

notational simplicity, denoting Eq.4.17 by 

𝑥(𝑘 + 1) =  𝑥(𝑘) + 𝐵∆𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) ,                                                         (4.17) 

where A, B and C are matrices corresponding to the forms given in Eq.4.15. Define 

∆𝑈 = ,∆𝑢(𝑘|𝑘)  ∆𝑢(𝑘 + 1|𝑘)…∆𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)-
𝑇 , then Eq.4.11 can be 

reformulated as: 
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𝐽(𝑥(𝑘), ∆𝑈(𝑘)) = 𝑚𝑖𝑛
∆𝑈(𝑘)

{||𝑥(𝑘 + 𝑁𝑝|𝑘)||
𝑃

2

+ ∑ (||𝑥(𝑘 + 𝑖|𝑘)||𝑄
2 + ||𝛥𝑢((𝑘 + 𝑖)||𝑅𝐿

2 )

𝑁𝑝; 

𝑖<0

}  (4.18) 

Subject to: 

𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢(𝑘 + 𝑖) ≤ 𝛥𝑢𝑚𝑎𝑥 , 𝑖 = 0,… ,𝑁𝑐 − 1 

𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘 + 𝑖|𝑘) ≤ 𝑦𝑚𝑎𝑥 , 𝑖 = 1,… ,𝑁𝑝 

𝛥𝑢(𝑘 + 𝑖) = 𝛥𝑢(𝑘 + 𝑖 − 1);𝑁𝑐 ≤  𝑖 ≤ 𝑁𝑝 

𝑥(𝑘|𝑘) = 𝑥(𝑘); 

𝑥(𝑘 + 𝑖 + 1|𝑘)  =  𝑥(𝑘 + 𝑖|𝑘)  + 𝐵𝛥𝑢(𝑘 + 𝑖) , 𝑖 ≥ 0 

𝑦(𝑘 + 1|𝑘) = 𝐶𝑥(𝑘 + 𝑖|𝑘) , 𝑖 ≥ 0 

Define 𝑟(𝑘) = ,𝑟 (𝑘), 𝑟2(𝑘)… 𝑟𝑁𝑝(𝑘)-  as a sequence of set-point signals 

where𝑟 (𝑘) = 𝑟2(k) = ⋯ = 𝑟𝑁𝑝(𝑘), i.e. the set-point remains constant with in the 

prediction horizon. In this case, the augmented state variable 𝛥𝑥𝑚  remains 

unchanged when the set-point is introduced into the system. Hence, the state variable 

𝑥(𝑘) can be redefined as 𝑥(𝑘 + 𝑖 + 1|𝑘)  = ,𝛥𝑥𝑚(𝑘 + 𝑖 + 1|𝑘)
𝑇, 𝑦𝑚(𝑘 + 𝑖 + 1|𝑘)−

𝑟𝑖(𝑘)-
𝑇, where the sequence of the set-point is treated as constant feedback errors. If 

no constraint is applied to the control system, then the QP remains the same and can 

be solved as Eq.4.19 by taking the first p elements of the state variable.  

∆𝑢∗(𝑘) = 𝐾𝑦𝑟(𝑘) − 𝐾𝑚𝑝𝑐𝑥(𝑘);                                      (4.19) 

where 𝐾𝑦=,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

𝛷;  𝛹 and 𝐾𝑚𝑝𝑐 = ,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

𝛷; 𝛺  and 𝛹 equals 

to the last n columns of 𝛺. 𝐼𝑚 is a 𝑝 × 𝑝 identity matrix and 𝑜𝑚 zero is a 𝑝 × 𝑝 

zero matrix. In this case, the MPC problem is degraded into a simple proportional 

control. The 1-bit processing control system can be implemented directly as described 

in Fig.4.2. 



62 

 

 

Figure 4.2 𝛅 form based MPC control structure Δ∑ modulation. 

Fig.4.2 illustrates a δ form based MPC control structure implemented with Δ∑ 

modulation, where  δ;  denotes a shift operation. In the control loop, the Δ∑ 

modulator is used to encode signal from a physical system into binary pulses. Then, 

these 1-bit data are used to solve the optimal actuation in real-time. Finally, another 

Δ∑ modulator encodes the control input into binary pulses to drive physical systems. 

As the Δ∑ modulators are included, the quantization noises shall be introduced to the 

control loop. For a Δ∑ modulator, define time-invariant filter L(z) as the loop filter, 

S(z) and N(z) for the STF and NTF respectively. The assumptions A1 and A2 in 

Chapter 3 will hold during the discussion below. 𝑥̃(𝑘) is the quantized state feedback. 

Then the control input can be determined as  

𝑈̅∗(𝑘) = 𝐾𝑦𝑟(𝑘) − 𝐾𝑚𝑝𝑐𝑥̃(𝑘).                                      (4.20) 

For a bi-level ∆∑ modulator, the state feedbacks are restricted to the quantization 

levels, i.e. = *𝛥,−𝛥+. The filtered conversion distortion (i.e. quantization noise) can 

be defined as 𝑒(𝑘) ≜  𝑁(𝑧); (𝑆(𝑧)𝑥(𝑘) − 𝑥̃(𝑘)). The author leaves the analysis of 

the quantization error effect to the next section and assume it is small enough so that 

E*𝑥̃(𝑘)+ = E*𝑥(𝑘)+. Therefore 

𝐸*𝑈̅∗(𝑘)+ = E*𝑈∗(𝑘)+.                                             (4.21) 

It can be seen from Eq.4.20 that if the quantization levels are standardized into ±1, all 

multiplications in this structure are between a 1-bit signal and a multi-bit controller 

coefficient. This operation, in fact, just changes the sign of the multi-bit coefficient, 

which removes the multiplier from the controller. It is worth noting that encoding the 
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control input is not necessary to maintain the benefit of the 1-bit processing control 

system, but only to modulate the signal for driving the plant.  

When constraints are applied, a QP solver is required to compute the optimization 

process. Again considering the QP problem described in Eq.4.11, a closed-form 

solution can be found in Theorem 4.1.  

Theorem 4.1 (Closed Form Solution): Consider a combination of a finite number of 

active constraints is applied to the control objective and all the active constraints are 

linearly independent, then 𝑢(𝑘) =  G(𝑥̃(𝑘)) is a uniquely defined affine function 

over 𝑛.  

Proof:  Recall 𝛺 and 𝜙 defined in Section 4.22, the KKT condition can be used 

here for optimality, which can be solved as a Lagrangian dual problem by introducing 

the Lagrange factor λ, (see e.g. (Manum and Skogestad, 2010)), the cost function can 

be rewritten with respect of ∆U and 𝜆 as                 

𝐽(𝑥(𝑘)) = max
λ
min
𝛥𝑢(𝑘)

2
 

2
∆𝑈𝑇(𝑘)𝛷∆𝑈(𝑘) + ∆𝑈𝑇(𝑘)𝛺𝑥̃(𝑘) + λT(G∆𝑈(𝑘) − γ)3    

(4.22) 

                           Subject to G∆𝑈(𝑘) ≤ γ      

              λ ≥ 0 

where G, γ are functions of the bounds umin, umax, ymin, and ymax, and assume the dual 

problem is strictly convex and regular. ∆𝑈(𝑘) ∈ 𝑁𝑐 ≜ *𝑢: 𝐺∆𝑈(𝑘) ≤ 𝛾 +. Applying 

the active set method, the 𝑈(𝑘) can be solved with respect to the state variable 𝑥(𝑘) 

and Lagrange factor ∈ 𝑛 , one can have:  

∆𝑈(𝑘) = −𝛷; 𝛺𝑥̃(𝑘)   − 𝛷; 𝐺𝑇𝜆.                                   (4.23) 

When there is no constraint applied to the model, (e.g. 𝜆 = 0), applying the receding 

horizon principle, a well-known global optimal solution can be denoted as: 

𝑈∗(𝑘)  = − ,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

𝜙;  𝛺𝑥̃(𝑘)                            (4.24) 

http://en.wikipedia.org/wiki/Dual_problem
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If there exists a finite number of active constraints and all the active constraints are 

linearly independent, 𝜆 can be expressed as 𝜆𝑎𝑐𝑡: 

 𝜆𝑎𝑐𝑡 = −(𝐺𝛷
; 𝐺𝑇); (𝛾 + 𝐺𝛷; 𝛺𝑥̃(𝑘)).         (4.25) 

For notational simplicity, one can rewrite 𝜆𝑎𝑐𝑡 as 

 𝜆𝑎𝑐𝑡 = 𝑆 +𝑊𝑥̃(𝑘)                      (4.26) 

where S and W are corresponding matrices which can be pre-calculated before 

implementation. We can substitute  𝜆𝑎𝑐𝑡 from Eq.4.26 into Eq.4.23 to obtain:  

𝑢(𝑘) = ,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

 𝑈(𝑘) 

where  𝑈(𝑘) = (𝛷; 𝐺𝑇𝑊 −𝛷; 𝛺)𝑥̃(𝑘)   − 𝛷; 𝐺𝑇𝑆.  (4.27) 

Let ρ = (𝛷; 𝐺𝑇𝑊−𝛷; 𝛺) and σ=𝛷; 𝐺𝑇𝑆, then  

𝑢(𝑘)  =  G(𝑥̃(𝑘)) = ,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

(ρ𝑥̃(𝑘) − σ)      □(4.28) 

Lemma 4.1: If there is a limited number of constraint sets, then the control input is 

restricted to a finite set, e.g. = *𝑠1, 𝑠2, …𝑠2𝑛𝑢+1+, where 𝑛𝑢 is the number of active 

constraint sets. 

Proof: 

Since G(𝑥̃(𝑘)) is a uniquely defined affine function over 𝑛. Then the real-time 

optimization for the dual problem can be mapped with respect of two state constraints. 

If no constraint exists, then  

𝑢∗(𝑘)  = {
− ,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        

𝑁𝑐

𝜙;  𝛺𝛥 ;             𝑖𝑓 𝐻𝑥(𝑘) ≥ 0

,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

𝜙;  𝛺𝛥 .                𝑖𝑓 𝐻𝑥(𝑘) < 0

       (4.29) 

If there are more than one set of constraints, then the sizes of matrices ρ and σ are 

dependent on the size of matrix G. Each combination of these constraint sets will 

result in a different set of ρ and σ, and therefore include two more control input 

components in . □ 
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Remark 4.1: Such a result mirrors the work of finite constraint set receding horizon 

quadratic control method (Quevedo, et al., 2004) and the EMPC (Bemporad, et al., 

2002) method. Similar to the EMPC, the proposed OBMPC is also taking the 

advantage of the affine relationship between the state vector and the control input. 

However, instead of solving the optimal solution offline, the 1-bit signals are 

processed online directly with the ―multiplication‖ free structure as proposed in 

Chapter 3. In comparison to the EMPC approach, the 1-bit processing based online 

optimization overcomes the limitation that the offline computation results are hard to 

trace for large scaled control systems with long control horizons (Pannocchia and 

Rawlings et al., 2007) while it maintains the parametric nature of the EMPC. 

Remark 4.2: For implementation, according to Theorem 4.1, if the parameters ρ and 

σ can be pre-calculated, then all the necessary multiplications for the control are only 

between ρ and  ±𝛥 , which can be pre-calculated and stored in the memory. 

Alternatively, we can standardize ±𝛥 into ±1 by simply applying bit shifts to 

parameters 𝜌 and 𝜍. Then all the necessary multiplications processed by controller in 

real time are simply changes the sign of the parameters, which removes all the 

multipliers from the controllers. Such method mirrors our previous work for 1-bit 

processing control systems, e.g. (Wu and Goodall, 2005a). 

4.3.2 OBMPC with modified Lagrange factor 

So far, we have assumed that all the constraints are linearly independent, i.e. the rows 

of G are linearly independent. However, more than one set of active constraints may 

apply, where the Lagrange factor may not be uniquely defined by the non-convexities. 

In this work, we choose the Hildreth‘s QP procedure to deal with this situation, which 

has been adopted in (Wang, 2009) as an iteration method for the MPC algorithm.  

Theorem 4.2: Consider a combination of a finite number of active constraints is 

applied to the control objective but not all the active constraints are linearly 

independent. If the a priori active constraint set can be identified, then a near optimal 

solution 𝑢(𝑘) within a finite number of iteration is still a uniquely defined affine 
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function over 𝑛.  

Proof: 

If more than one set of active constraints apply, then the Lagrange factor 𝜆 may not 

be uniquely defined as non-convexities will be introduced into the dual problem. In 

this work, we choose the Hildreth‘s QP procedure to deal with this situation, which 

has been adopted in (Wang, 2009) to solve a MPC problem with model reduction. 

Before the proof, it is convenient to define 𝜆̅ ≜ 𝛷; 𝐺𝑇𝜆. Then 

𝑈(𝑘) =  −𝛺; 𝛷 𝑥̃(𝑘) − 𝜆̅ .                    (4.30) 

where 𝜆̅  ∈ p
 and 𝜆̅𝑖 = 𝑆𝑖̅ + 𝑊̅(𝑖,:)𝑥̃(𝑘),   𝑆̅ and 𝑊̅are the corresponding matrices 

solved during the iteration process. 

Hildreth‘s QP algorithm is based on an element-by-element search and it does not 

require any matrix inversion. Therefore, the program will continue without 

interruption even the rows of G are not linearly independent (e.g. more than one 

constraints is active). And the λ will always exist as a near-optimal solution in a 

finite iteration loop. The iteration expression of Hildreth‘s QP Procedure is given in 

following equation: 

𝜆̅𝑖
𝑚: = 𝑚𝑎𝑥 (0, 𝜔𝑖

𝑚: )                     (4.31) 

where 

𝜔𝑖
𝑚: = −

1

𝑕𝑖𝑖
,𝑘𝑖 +∑ 𝑕𝑖𝑗𝜆̅𝑗

𝑚: +∑ 𝑕𝑖𝑗𝜆̅𝑗
𝑚

𝑛

𝑗<𝑖: 

𝑖; 

𝑗< 
-
 

and m means the m
th 

iteration, the scalar 𝑕𝑖𝑖  is the ii
th

 element in the matrix 

𝐻 = 𝐺𝛷; 𝐺𝑇 and 𝑘𝑖 is the i
th

 element in the vector 𝐾 = 𝛾 + 𝐺𝛷; 𝛺𝑥̃(𝑘). 𝜆̅(𝑘 ) is 

calculated according to the previous one,  𝜆̅(𝑘 − 1), which can either be 0 or an 

affine function of the quantized measurement 𝑥̃(𝑘 − 1). Given a finite number of 

iteration, 𝜆̅ can be solved as a near optimal solution even if two or more constraints 

are active at the same time. Therefore, even if 𝜆̅(𝑘 ) cannot be solved explicitly, a set 



67 

 

of near optimal control input 𝑈(𝑘) can still be found as an affine function over the 

state feedback 𝑥̃(𝑘).     □ 

Remark 4.3: For implementation, in the optimal solution presented in Eq. 4.30, the 

component 𝜆̅ and −𝛺; 𝛷 𝑥̃(𝑘) can be implemented separately. More specifically, 

the global optimal solution 𝑈(𝑘) = −𝛺; 𝛷 𝑥̃(𝑘) can be calculated at each iteration 

process while the Hildreth‘s QP Procedure will be used to decide when it is necessary 

to calculate 𝜆̅. Both components can be implemented under the framework of a 1-bit 

processing control system. The optimal solution can be determined by adding the two 

components together.  

Remark 4.4: The iteration can be performed by storing the previous measurement 

𝑥̃(𝑘 − 1) into a register. Similar to Remark 4.2, the implementation can be achieved 

in a multiplier free controller due to the affine relationship between the quantized state 

feedbacks and parameters. Also, the method discussed in Theorem 4.2 allows the 

designer to trade-off the online computation effort with the accuracy of the optimal 

solution. Typically, a small number of iteration loops is designed for the proposed 

satellite attitude control mission.  

For the specific iteration method proposed above, at each sampling time, the 

optimization will be performed according to the 1-bit state feedback. Theoretically 

speaking, the OBMPC method is an implementation method rather than a control 

algorithm. Therefore, most of the methods to decrease the online computational effort 

discussed in Chapter 2 can be combined to improve the OBMPC directly or with 

minor modifications. For example, the model reduction methods can be combined 

with the OBMPC to decrease the order of the model and therefore decrease the 

computational effort, while the active set method mentioned above needs to be 

modified to satisfy the explicit relationship between the multi-bit coefficients and the 

1-bit state feedback.  

 Stability Analysis  4.4

The stability analysis for the OBMPC includes a few aspects. From the 
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implementation point of view, the easiest way to design a stable OBMPC system is to 

design a stable MPC controller, and include a stable Δ∑ modulator into the control 

loop. An efficient OSR is then chosen to ensure that the quantization noise can be well 

shaped so that high resolution can be achieved. In essence, the design problem is 

treated as a MPC controller design with an efficient digital A/D converter. However, 

for a 1-bit processing control system, the OSR is normally limited due to the scarcity 

of onboard resources and coefficient bit length. In this case, the quantization noise 

could become significant enough to affect the robustness of the MPC controller. To 

quantify the effect caused by the quantization noise, the problem can be studied under 

the framework of MPC with quantized state feedback.  

Another problem for the quantized MPC is that the quantizer input can overload the 

quantizer. In such circumstances, the quantization error is large and the Δ∑ modulator 

will soon lose track of the input signal. Stabilization techniques such as resetting the 

integrators in the Δ∑ modulator or adding clippers can help to restore the functionality 

of the modulator but will sacrifice the SNR of the control system. Therefore, the 

quantization level need to be carefully designed to ensure the overload does not 

happen frequently.  

4.4.1 Stability for the MPC 

Before we study the stability of the OBMPC, it is necessary to include some 

fundamental assumptions and conclusions for the MPC algorithm itself. Mayne (2000) 

provided an abundant review about the stability methodologies of the MPC, which is 

regarded as the foundation of the stability research for many works. It specified three 

useful ―ingredients‖ to stabilize a MPC problem including a terminal cost F(
.
), a 

terminal constraint set 𝑋𝑓, and a local control law 𝜅𝑓. Under the context of (Mayne, 

2000), the stability can be obtained by ensuring  

𝐽𝑁
0(𝑓(𝑥(𝑘),𝜅𝑁(𝑘)),𝜅𝑁(𝑘)) − 𝐽𝑁; 0 .𝑥(𝑘),𝜅𝑁(𝑘)/+ 𝑙(𝑥, 𝜅𝑁(𝑥)) ≤ 0.    (4.32) 

Toward these ―ingredients‖, four assumptions are developed as sufficient conditions 
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to ensure closed-loop asymptotic stability.  

A.4.1: 𝑋𝑓 ⊂ , 𝑋𝑓 closed, 0 ∈ 𝑋𝑓; 

A.4.2: 𝜅𝑓(𝑥) ∈  , ∀𝑥 ∈ 𝑋𝑓; 

A.4.3: 𝑓 .𝑥, 𝜅𝑓(𝑥)/ ∈ 𝑋𝑓 , ∀𝑥 ∈ 𝑋𝑓; 

   A.4.4: 𝐹(𝑓(𝑥(𝑘), 𝜅𝑁(𝑘))) − 𝐹(𝑥(𝑘)) + 𝑙 .𝑥, 𝜅𝑓(𝑥)/ ≤ 0. 

In this thesis, the assumption A.4.1 and A.4.2 are assumed to be true. Consider a 

constrained linear control system. If the system is stable, or in other words, is (strictly) 

Hurwitz, then the MPC problem can be proven to be stable if the weighting matrices P 

and Q defined by Eq.4.3 are adopted by solving the Lyapunov equation APA+Q=P 

(Rawlings and Muske, 1993). A simple proof is collected in Theorem 4.3.  

Theorem 4.3: If assumption A.4.1 and A.4.2 hold, and the system is (strictly) 

Hurwitz, and 𝑄 ∈ :
𝑛 , P∈ :

𝑛  are satisfying the Lyapunov equation  𝑇PA+Q=P and 

RL ∈ :
𝑛 . Then closed-loop system for Eq.4.18 with the quantized state feedback is 

asymptotically stable.   

Proof: 

According to Eq.4.11, and Eq.4.27, an optimal solution at time step k can be found as 

𝛥𝑈(𝑘)∗ = ,𝛥𝑢𝑇(𝑘)∗  𝛥𝑢𝑇(𝑘 + 1)∗…𝛥𝑢𝑇(𝑘 + 𝑁𝑐 − 1)
∗-  and its cost function 

is 𝐽(𝑥(𝑘)). Define a new control sequence 𝑈̅(𝑘 + 1)∗ which shifts the elements in 

𝑈(𝑘)∗and replaces the last element by zero and name the cost function as 𝑗(̅𝑥(𝑘 +

1)). Due to optimality, 𝐽(𝑥(𝑘 + 1)) ≤ 𝑗(̅𝑥(𝑘 + 1)). Hence: 

𝐽(𝑥(𝑘 + 1)) − 𝐽(𝑥(𝑘)) ≤   𝐽(̅𝑥(𝑘 + 1)) − 𝐽(𝑥(𝑘)) 

    = . 𝑥(𝑘 + 𝑁𝑝|𝑘)/
𝑇

𝑃 . 𝑥(𝑘 + 𝑁𝑝|𝑘)/- 𝑥(𝑘 + 𝑁𝑝|𝑘)
𝑇
𝑃𝑥(𝑘 + 𝑁𝑝|𝑘) 

+𝑥(𝑘 + 𝑁𝑝|𝑘)
𝑇
𝑄𝑥(𝑘 + 𝑁𝑝|𝑘) − 𝑥(𝑘)

𝑇𝑄𝑥(𝑘)- 𝛥𝑈(𝑘)𝑇𝑅𝐿 𝛥𝑈(𝑘) 
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    =  𝑥(𝑘 + 𝑁𝑝|𝑘)
𝑇
( 𝑃 + 𝑄 − 𝑃)𝑥(𝑘 + 𝑁𝑝|𝑘) − 𝑥(𝑘)

𝑇𝑄𝑥(𝑘) −  𝛥𝑈(𝑘)𝑇𝑅𝐿 𝛥𝑈(𝑘).       

(4.33) 

As  𝑃 + 𝑄 − 𝑃 = 0, then 𝐽(𝑥(𝑘 + 1)) − 𝐽(𝑥(𝑘)) ≤ 0. It is worth to emphasize 

that give E*𝑥̃(𝑘)+ = E*𝑥(𝑘)+,  if one replace the state feedback 𝑥(𝑘)  with the 

quantized state feedback 𝑥̃(𝑘), the asymptotically stability of the Eq.4.18 still valid 

according to Eq. 4.33, which completes the proof. □ 

If the system is unstable, then A.4.3 and A.4.4 are required to establish the asymptotic 

stability of the closed-loop system. Various theories were developed during the 1990s, 

e.g. (Mayne and Michalska, 1990).  

4.4.2 Stability for the Δ∑ modulator and the OBMPC 

4.4.2.1 Quantization level design and stability criteria for the Δ∑ modulator 

The stability issues for the Δ∑ modulation based control system are difficult to 

analyze, especially for high order Δ∑ modulators due to the non-linear nature of the 

quantizer and the integrators existed in the Δ∑ modulator. The noises introduced by 

the Δ∑ modulator are dependent on the OSR and the amplitude of the input signals to 

the modulators. Instability occurs in a higher-order Δ∑ modulator when the amplitude 

of the input signal approaches the full-scale of the quantization level. When this 

happens, the limit cycle (high amplitude low frequency oscillations) is excited and the 

quantizer is overloaded. Because of the integrators in the Δ∑ modulators, the error in 

the modulation loop will only become larger and soon reach extreme values. In this 

case, the input to the quantizer increases rapidly even if the input signal is withdrawn 

(Norsworthy, et al., 1996), which locks the modulator in the unstable limit cycle. The 

limit cycle is hard to eliminate once it is excited as the modulator loses track of the 

input signal quickly. It is possible to stabilize the modulator using the stabilization 

techniques such as resetting the integrators (Norsworthy, et al., 1996) and clipping the 

integrators (Dunn and Sandler, 1994). However, most of these stabilization techniques 

sacrifice the SNR in order to remove the limit cycles, i.e. increase the noise floor. The 
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stabilization techniques will be further discussed in the next chapter.  

From a designer‘s point of view, when designing higher-order Δ∑ modulators, it is 

better to ensure the modulator input is always bounded. Or alternatively, one can 

choose the quantization level under ―safe‖ criteria, and test the system with different 

control input sequences in the simulation to ensure the modulators themselves will 

always remain stable. A variable gain method was proposed in (Baird and Fiez, 1994) 

to find the appropriate maximum quantization level. Given a n
th

 order bi-level 

quantizer with quantization level [+𝛥,−𝛥] and defining the quantizer input as 𝑢, the 

variable gain method substitutes the quantizer with a variable gain K where  

𝐾 =
𝛥

𝑢
 .                             (4.34) 

For discrete systems, a stable Δ∑ modulator can be achieved by keeping the poles of 

the transfer function within the unit circle. For example, given a second order Δ∑ 

modulator as showed in Fig.4.3, a quantizer is substituted by a variable K.  

 

Figure 4.3 Δ∑ modulator with variable gain 

Based on this, the transfer function can be derived as: 

𝐻(𝑧) =
𝐾

𝑧2:(𝑎2𝐾;2)𝑧:(𝑎1;𝑎2)𝐾: 
.                  (4.35) 

By using this transfer function, one can plot the root loci for 𝐾 ∈ (0,+∞- and find 

the 𝐾 range within the limit circuit. Find the minimum 𝐾𝑚𝑖𝑛 and the substitute it 

into Eq.4.35, then the quantization level can be found as: 

𝛥 = 𝐾𝑚𝑖𝑛𝑥𝑚𝑎𝑥.                        (4.36) 
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Note that the 𝑥𝑚𝑎𝑥 in Eq.4.33 can also be considered as a guideline to design the 

clipping technique, which will be further discussed in the next chapter.  

For high order Δ∑ modulators, however, the quantizer input is not explicitly known. 

To provide a guideline of designing a stable Δ∑ modulator, three stability criteria for  

the Δ∑ modulator design taken from (Norsworthy, et al., 1996) are discussed and 

summarized here: 

(1) The sum of the absolute value of the terms in the impulse response of the 

NTF is bounded. Mathematically: 

𝑆|𝑕| ≡ ∑ |𝑕𝑖|
∞
𝑖<0 = 3 − 𝑢max ,                                      (4.37) 

where 𝑢𝑚𝑎𝑥 is the maximum signal amplitude for which the modulator 

remains stable and 𝑕𝑖 is the impulse response of the NTF. 

(2) The mean-squared value of the magnitude response of the NTF  ̅𝑁 (noise 

amplification factor) must be smaller than c ≅2.5. Mathematically: 

 ̅𝑁 ≡
 

2𝜋
∑ |𝑁𝑇𝐹(𝑒𝑗𝜃)|2𝑑𝜃𝜋
;𝜋 < 𝑐,             (4.38) 

(3) The maximum value of the frequency response of the NTF must be smaller 

than 𝑑 ≅ 2. Mathematically: 

𝑀 ≡ max*|𝑁𝑇𝐹(𝑧)|+ < 𝑑 .                                        (4.39) 

In theory, the NTF should be designed under the above criteria, which have been 

derived from extensive simulations. Unfortunately, so far the estimation of the 

maximum input to the quantizer is only accurate for the first order Δ∑ modulator. For 

other types, the above criteria can be very strict and the maximum quantizer input is 

normally underestimated (Bourdopoulos, et al., 2003). In the simulation presented in 

this thesis, the maximum input into Δ∑ modulator is set to be 75% of the quantization 

level (e.g. ||x(k)||≤0.75Δ) to satisfy both stability and SNR performance.   

4.4.2.2 Linearization analysis for the OBMPC and positively invariant set 

For the stability analysis in this subsection, with carefully designed quantization 
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levels and extensive simulations, we mainly consider that the modulator Δ∑ is stable 

for all modulator inputs, and focus on the effect of the filtered quantization error to 

the robustness of the control loop. The most commonly adopted method is to linearize 

the Δ∑ modulated signal as a signal-plus-white-noise structure as we discussed in the 

previous chapter. For the OBMPC, if no constraint is applied to the input and the 

assumptions A1 and A2 hold, the globe optimal solution of Eq.4.18 can be found 

according to Eq. 4.24 as ∆𝑢∗(𝑘) = ,1, 0,0…0-𝐾𝑀𝑃𝐶𝑥̃(𝑘). Recall the quantized state 

variable 𝑥̃(𝑘) = 𝐿(𝑧) 𝑥(𝑘) + 𝑒(𝑘), hence 

𝑥(𝑘 + 1) =  𝑥(𝑘) + 𝐵,1, 0,0…0-𝐾𝑀𝑃𝐶 𝑥̃(𝑘)                           

 = ( − 𝐵,1, 0,0…0-𝐾𝑀𝑃𝐶𝐿(𝑧))𝑥(𝑘) + 𝐵,1, 0,0…0-𝐾𝑀𝑃𝐶𝑒(𝑘). (4.40) 

Let  α = ,1, 0,0…0-𝐾𝑀𝑃𝐶𝐿(𝑧), given a relatively long NP and proper choices of P 

and Q, 𝛼 can be designed to ensure ( − 𝐵α𝐿(𝑧)) is stable. If the assumptions A1 

and A2 hold, then the closed-loop system is a stable system which is driven by 

additive white noise 𝑒(𝑘). Then standard signal plus additive white noise analysis is 

sufficient for the OBMPC.  

In fact, in most applications, Δ∑ modulators can be treated as A/D converters, which 

have little effect to the control system under noise shaping techniques and the OSR 

design. If the quantization noise is not deterministic, the stability analysis of the 

OBMPC fall to the framework of quantized MPC. The asymptotic stability of the 

MPC with an eventually quantized state feedback can be achieved if the following 

assumptions are satisfied.  

A.4.5: A relatively large prediction horizon Np (comparing to the system rising 

time) is chosen; 

A.4.6: State matrix A in Eq.4.9 is Hurwitz. 

Based on the assumptions above, the asymptotic stability of the MPC with quantized 

state feedback can be guaranteed by Theorem 4.3, which has been addressed in many 

literatures, e.g. (Quevedo, et al., 2004).  

http://dict.cn/linearizing
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If A is not Hurwitz, the fixed points and control sequence may not be admissible. Also, 

the asymptotic stability may be relaxed into ―practical‖ asymptotic stability, (such 

―practical‖ asymptotic stability is in the same context of (Picasso, 2003, Zampieri, 

2003) and (Mayne, 2000)). The stability of an OBMPC can be proven if a set in 

state-space can be found with the property that all subsequent states lie in the original 

set (Schreier, 1997) or are trapped in this set for a sufficiently long time. For the case 

of Nc =1, it is simple to obtain a positively invariant set for the OBMPC system.  

Theorem 4.4: For Nc =1, given the quantized feedback 𝑥̃ ∈  , where ={𝛥, −𝛥}. 

h=∑ ||( − 𝐵α)𝐵||∞
𝑖<0  and suppose that ( − 𝐵α) is Hurwitz. ||.|| stands for the 

Euclidean norm on 
𝑛
. For every i =0,1,2…., the quantization error 𝑒 satisfies 

|𝑒(𝑘 − 𝑖)| ≤ 𝐿, where L≥ 𝛥. Then 𝑕 ≤ 1 +  𝛥/𝐿 is a sufficient condition for the set 

D  

D = *𝑥𝜖𝑅: ||𝑥|| ≤ 𝐿𝑕+                     (4.41) 

to be a positively invariant set for the system presented in Eq.4.17.  

Proof: 

At time step k,   

  |e(k + 1)| = || 𝑞𝛥(𝑥(𝑘 + 1)) −  𝑥(𝑘 + 1)|| =  min𝛥∈ | 𝛥 −  𝑥(𝑘 + 1)|; (4.42) 

Since 𝑥(𝑘 + 1) =  ∑ ( − 𝐵α)𝑖B𝑒(𝑘 − 𝑖)∞
i<0 , inequality Eq.4.43 can be derived by 

using the triangular inequality:  

||x(k+1)||= ∑ ||( − 𝐵α)𝑖B𝑒(𝑘 − 𝑖)||∞
i<0  

≤ 𝑚𝑎𝑥𝑖<0, ….*𝑒(𝑘 − 𝑖)+∑ ||( − 𝐵α)𝑖𝐵 ||∞
i<0 ≤ 𝐿𝑕;            (4.43) 

Substitute 𝑕 ≤ 1 +  𝛥/𝐿 into Eq. 4.43: 

 ||x(k+1)|| ≤ 𝐿 +  𝛥.                     (4.44) 

According to Eq.4.42, the quantization error e(k+1) satisfies the bound  
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|e(k+1)|=min𝛥∈ | 𝛥 −  𝑥(𝑘 + 1)| ≤ 𝐿.         (4.45) 

Also, for any further time step 𝑗 ≥ 1, due to Eq.4.43, one can obtain ||𝑥(𝑘 + 𝑗)|| ≤

𝐿𝑕, which completes the proof. □  

Such an invariance set method for the quantized MPC problem mirrors the method 

proposed in (Quevedo, et al., 2004), in which only the control inputs are quantized. A 

systemic analysis of quantized state feedback stabilization can be found in (Fagnani, 

2003) and (Delchamps, 1990). Unfortunately, for Nc >1, ||x(k+1)|| ≤ 𝐿 +  𝛥 can only 

vaguely suggest that e(k+1) is bounded. Reference (Schreier, 1997) also addressed 

another method to find positively invariant set, which provide a more general case 

with the constraint set applied to more than one component (e.g. Nc>1) in the control 

horizon. For many MIMO systems, Nc =1 is considered for practical reasons as the 

online computational burden will increase rapidly for larger Nc. The stability issue for 

this particular case has also been studied in (Müller, et al., 2011). 

 Numerical Example 4.5

Consider a practical 1-bit control system using a DC motor to control the angular 

position of a rotating load. The objective is to control the position of the rotating load 

with flexibility in the drive shaft. A simplified second order DC motor transfer 

function (Dorf, 1995) is used as shown in Fig.4.4:    

 

Figure 4.4 Block diagram of the closed-loop control system using the DC motor as the actuator. 

In the Fig.4.4, La and Ra are the resistances and inductances of the armature sides of 

the motor. Km is considered as the motor constant, which is the transfer function from 

the input armature current to the motor torque. Kb is the counter electromotive force  

constant to convert the feedback position 𝜃 the into voltage (assuming the feedback 

voltage is proportional to the position θ, i.e. Vb(s)=Kb𝜃(s)). J is the Rotor moment of 

http://www.google.com/url?sa=t&rct=j&q=back+emf&source=web&cd=1&cad=rja&ved=0CCgQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCounter-electromotive_force&ei=NuRGUJ2ACYakiAf-t4D4Cg&usg=AFQjCNFcq9tjygB14qKi6xdYe4BsL_ME7g
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inertia and c is the friction which is assumed to be zero in the simulation. Disturbance 

torque is considered to be negligible in the structure. Then the motor transfer function 

is shown as Eq. 4.46 

𝐺(𝑠) =
𝐾𝑚

𝑠(𝐿𝑎𝐽𝑠2:𝑅𝑎𝐽𝑠:𝐾𝑚𝐾𝑏)
 .                                            (4.46) 

Suppose we attempt to control the speed by driving the motor with a constant voltage. 

Given the motor parameters:  Ra=5Ω, La=0.106, Km=58, J=40kg.m
2
, Kb=12.5, then 

the transfer function becomes:  

𝐺(𝑠) =
 3.68

𝑠3:47. 7𝑠2: 7 𝑠
 .                                               (4.47) 

Thus, the overall control scheme can be illustrated as Fig.4.5. The controller 

bandwidth f0 is about 2Hz. For a second order ΔΣ modulator based OBMPC, to get 

satisfying SNR, the OSR for the OBMPC is set to 1000, i.e.4000Hz, which can 

achieve a SNR above 60dB according to Fig.3.6 presented in Chapter 3. The OBMPC 

controller is represented by the modified canonic δ-form.  

 

Figure 4.5 OBMPC implemention for the DC Motor control system. 

The full 1-bit control system also contains a 1-bit A/D converter in the loop. In the 

simulation, The input voltage (control variable constraint) is 24V. To numerically 

standardize the voltage which is required for satisfying the quantizer, the input voltage 

signal is divided by 2
5
 before it is sent into the Δ∑ modulator so that the signal is 

standardized (i.e. within 75% of quantization level) to fit within the quantization level, 

(i.e. ±1). The quantized signal is amplified by 2
5
 after the modulator to restore the 

original signal level. Such standardization can be easily operated in the controller by a 

simple bit shift. Similar scales are also applied to the feedback signal before and after 
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the Δ∑ modulator. Rw is set to be 0.01, Np=50 and Nc=10. The operational sampling 

frequency for the benchmark controller, i.e. a conventional MPC controller, is set to 

400Hz. The simulation structure is shown in Fig.4.5. The procedure of the control 

system processing can be described as follows. Firstly, the analogue signals 

(command and actual motor position) are sampled by a bi-level ΔΣ modulator, and 

hence produces a bit stream. Then the signals are fed into the digital controller and the 

state variables are updated so that they are ready for the next sample. The control 

input signal is modulated into the1-bit format, which can be directly used to drive the 

motor, i.e. pulse-density-modulation. The simulation results are shown in Fig.4.6 and 

Fig.4.7.  

 
Figure 4.6 Control torque and Δ∑ modulated 1 bit signal 

Fig.4.6 shows the control torques of the conventional MPC and the OBMPC 

(decimated). It can be seen that the decimated OBMPC control torque tracks the 

conventional MPC well although appears to be noisy. Such high frequency low level 

noise is not sensitive to the dynamic model. This will be shown in Fig.4.7. The 

modulated 1-bit signals are standardized into ±1 as control signals. The signal 

density shown in Fig 4.6 is higher at 1 when the control torque reaches peak and 

higher at −1 when the control torque hits the bottom.  
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(c)  

 
 (d)  

Figure 4.6 Simulation results for the 1-bit processing control system: (a) Position response and 

output control signal of the OBMPC control system and normal MPC control system; (b) 

Comparison between the simulation results (Close examination) (c) Response difference between 

the OBMPC and normal MPC. (d) The quantization noise  

As shown in Fig.4.7, due to the high OSR, the control trajectory tracks the 

conventional MPC controller well. The maximum difference between the responses of 

OBMPC and MPC is less than 0.0003 rad. The peak error is mainly due to the 

different sampling frequency. The effect of the quantization can be seen when the 

control trajectory is settle. The difference is around 0.5 × 10;8𝑟𝑎𝑑 when settled, 

which is mainly due to the quantization noise. These results show the feasibility of the 

OBMPC system. The quantization noise is retained in a relatively low level and can 
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be treated as adhesive noise with zero mean.  

 Summary 4.6

In this Chapter, an OBMPC structure is proposed. The design is inspired by the 1-bit 

processing technology, and takes advantage of the affine relationship between the 

1-bit state feedback and parameters to implement a multiplier free MPC system. The 

proposed OBMPC encodes the sensing and control signals into a binary format, and 

processes such binary signals directly to obtain online optimal solutions. Because of 

the properties of the 1-bit data, the online optimization can be implemented with a 

multiplier free structure. As multipliers are the major power consumer for hardware 

implementation, such OBMPC structure can be very efficient in term of power and 

circuit complexity. The system is in digital control nature, affected by quantization 

noise introduced by Δ∑ Modulators.  

The main issue for the OBMPC system, however, is that a higher sampling frequency 

needs to be employed for the entire control system rather than just the modulator. This 

means that a trade-off between system performance and the OSR is required. Also, the 

power consumption under the OSR needs to be verified to prove the efficiency and 

feasibility of the proposed controller.   

The other important aspect for the OBMPC system is the system stability issues. The 

system stability relies on a stable MPC controller design and a stable Δ∑ modulator 

design. A general stability analysis for the OBMPC is very difficult to achieve 

although designing one is not. A well designed stable Δ∑ modulator has very few 

effects on the control system as the filtered quantization noise is small, so that the 

system stability can be achieve by designing a stable Δ∑ modulator and the stable 

MPC respectively. Otherwise, the quantization noise can be analyzed by the signal 

plus white noise structure. The OBMPC problem then falls into the framework of the 

quantized MPC.  

Moreover, the OBMPC also has advantages toward the WCS as the 1-bit signals are 

―stand ready‖ to transmit, and the noises and data loss are less sensitive due to the 
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modulation techniques. The OBMPC for the WCS and the 1-bit state estimator design 

will be discussed in Chapter 6.  
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5. DESIGN OF 1-BIT MEMS GYROSCOPE SENSOR 

FOR 1-BIT PROCESSING CONTROL SYSTEMS 

================================================================== 

5.1 Δ∑ Modulator based MEMS gyroscope 

5.2 Stabilization Techniques  

5.3 OBMPC Structure for the Δ∑ Modulator based MEMS Gyroscope 

5.4 Numerical Example and Simulation 

5.5 Summary 

================================================================== 

To achieve a simple and direct implementation of the 1-bit processing structure, it is 

necessary to acquire all the sensing data in 1-bit format. Hence, the 1-bit sensing 

components are required to complete the OBMPC control system for the proposed 

fractionated satellite mission. Specifically, all the sensing data need to be encoded by 

the Δ∑ modulator in order to generate the PDM signals. As an efficient A/D 

conversion method, the Δ∑ modulator can be embedded into almost all types of 

sensing components, i.e. gyroscopes, accelerometers etc. In fact, along with 

development of the MEMS, the Δ∑ modulator based gyroscopes and accelerometers 

are rather popular in many applications. For instance, it is feasible to choose MEMS 

gyroscopes as the sensing devices for small satellite missions, e.g. (De Rooij, et al., 

2009).  In this work, the author provides a design of a 1-bit MEMS gyroscope and 

discusses the potential issues of implementing the Δ∑ modulator based sensing 

components for the OBMPC system. To further minimize the quantization noise, an 

implementation of a novel OBMPC based 1-bit MEMS sensor shall also be 

developed.  

 Δ∑ Modulator based MEMS Gyroscope 5.1

The high-performance micro-machined MEMS gyroscope is appealing to many 

researchers as they are advantageous in terms of power, cost and flexibility over the 

bulky and expensive macroscopic gyroscopes. Incorporating the Δ∑ modulator to the 
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gyroscope sensing element is one of the most promising approaches to implement the 

MEMS gyroscope due to the circuit simplicity and the benefits of incorporating the 

sensing component in a feedback control loop (Kraft and Ding, 2009). The Δ∑ 

modulation embedded MEMS gyroscope was first introduced in (Jiang, et al., 2000), 

and ever since became a popular research topic in literature (Petkov and Boser, 2006; 

Dong, et al., 2007; Raman, et al., 2009; Antonello and Oboe, 2012).  

A typical approach to design a Δ∑ modulator based MEMS gyroscope is to treat the 

MEMS gyroscope as a Δ∑ modulation based control loop. For most MEMS 

gyroscopes, the angular motion is determined by measuring the vibration of the proof 

mass, which is excited due to the Coriolis force. The sense mode (The mass is set up 

to oscillate along the axis at the resonant frequency for that axis, which is 

synonymously referred to as the drive mode. The axis that orthogonal to the drive 

mode and is called the sense mode, where Coriolis accelerations are sensed along the 

that axis (Wu, 2009)) of the MEMS gyroscope can then be regarded as a spring damper 

dynamic system responding to the Coriolis force, and hence can be modeled by two 

integrators in series. Fig.5.1 shows a system level diagram of a mechanical sensor. 

 

Figure 5.1 System level diagram of the dynamic system of a mechanical sensor. 

where K is the spring stiffness. 
𝜔0

2𝜋
 is resonant frequency of the dynamic system and 

𝜔0 = √
𝐾

𝑚
 (Dong, et al., 2007). For the sensing mode of the gyroscope, the control 

loop design problem can also be treated as the Δ∑ modulator based accelerometer 

under Coriolis force, e.g.(Smith, et al., 1994). The continuous-time transfer function 

of the mechanical sensor can be denoted as:  

file:///D:/kuaipan/Thesis/Final/Final/Response%20to%20Examiner%20reports.docx%23_ENREF_6
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𝐻𝑚(s) =
 /𝑚

𝑠2:
𝜔0
𝑄
𝑠:𝜔02

,                      (5.1) 

where m is the mass of the sensing element, 𝜔0 is the resonant frequency and Q is 

the quality factor. High quality factors are generally required to achieve high 

sensitivity of the sensor (200-250 for the sense mode and 35000-45000 for the drive 

mode (Dong, et al., 2008)). Due to the phase shift introduced by the mechanical 

sensing element, a simple lead compensator needs to be included to stabilize the 

control loop. Other sensor fusion technologies are also available, e.g. (Einicke, 2012), 

but are outside of the scope of this work. The output of the compensator can be 

regarded as the input of the Δ∑ modulator, which serves as an interface to digitalize 

the sensor signal. The resultant bi-level bit stream can be translated into an 

electrostatic force as the feedback to the control loop of the sensor.  

To further analyze the stability and performance of the Δ∑ modulator based MEMS 

gyroscope, one can treat the sensing component and the compensator as two second 

order loop filters, and then analyze the entire control loop as a high order Δ∑ 

modulator. The structure of the Δ∑ modulator based MEMS gyroscope is shown in 

Fig.5.2.  

 

Figure 5.2 Structure of a typical Δ∑ modulator based MEMS gyroscope 

Like any other A/D conversion method, the Δ∑ Modulation introduces quantization 

noise into the MEMS control loop. Such quantization noise, coupled with the 

mechanical noise and the electrical noise, may cause large gyroscope bias or 

instability of the control loop. Filtering techniques are therefore required to decrease 

the in band noise. Other filtering techniques can be embedded in the control loop 

before the A/D conversion as the Δ∑ modulator operates under high sampling rate 
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(OSR) and can be constrained in a narrow frequency band. Also, the bandwidth 

requirements of the electronic components needed for implementation in the 

integrated circuit are relatively demanding as a high OSR is eventually required to 

achieve a good SNR.  

Similar to all Δ∑ modulators, one way to minimize the quantization noise is to 

increase the order of the Δ∑ modulator in the control loop at a cost of circuit 

complexity. A well designed high order Δ∑ modulator based MEMS gyroscope can 

filter most of the noise from the Δ∑ modulator loop. For instance, the results obtained 

in (Petkov and Boser, 2005) proved that one can achieve a SNR of 93dB with a 

relatively low OSR of 500, including realistic values for electronic noise introduced.  

As an A/D converter, the output of the Δ∑ modulator is stand-ready for transmission. 

For the proposed OBMPC system as discussed in the previous chapters, it is essential 

to acquire the sensing data through the bi-level Δ∑ modulation. Each quantized 

measurement is regarded only as an entity containing partial information about the 

state feedback x(k) and can be processed independently. In other words, no decimation 

is required (Wu and Goodall, 2005a). The 1-bit feature enables the possibility of 

implementing fast QP solvers, thus achieving an OBMPC system operating under a 

small time interval. Moreover, according to proposition 2.2 in (Delchamps, 1990; 

Datta, et al., 2000), each single quantity of the oversampled measurements contains as 

much useful sensing information as the entire measurement history. Therefore, even if 

the sensor accuracies are severely limited, causing the measurements to become very 

rough, a long record of such measurements can result in a better estimation than the 

otherwise single multi-bit measurement. Since the oversampled 1-bit data is processed 

individually by the controller rather than by using decimation, each sampling instant 

can be considered as an effective measurement. In other words, at the cost of an 

oversampled control loop, the quantized state measurements can provide better state 

trajectory than slow sampled measurements. 

The analysis provided in Chapter 3 for Δ∑ modulator based control system can also 

be used here to analyze the Δ∑ modulator based MEMS gyroscope. The MEMS 
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gyroscope itself can be treated as a second order transfer function. Due to the 

non-linear nature of the quantizer, the extra integrators in the gyroscope transfer 

function may cause stability issues in the control loop. Moreover, the compensator 

will also introduce extra poles in the control loop and consequently affect the 

noise-shaping performance of the system (Raman, et al., 2009). Additional integrators, 

serving as usual noise shaping solutions, will be adopted in the feedback loop to 

attenuate the magnitude of the impulse response of the NTF at low frequencies (see 

e.g.(Miller and Petrie, 2003) for different Δ∑ modulator based MEMS gyroscope 

structures). This methodology is analogous to a PID (Proportional-Integral-Derivative) 

control system, in which the performance of the designed system depends on the 

experience of the designer (Datta, et al., 2000). The implementation structure can be 

referred to the ∆∑ modulator structures as discussed before. For example, Michael 

Kraft and his research team replaced the integrators with resonators, e.g. (Dong, et al., 

2007; Dong, et al., 2008), to form a band-pass Δ∑ modulator, which mirrors the 

CIDIFF structure with resonators as discussed in Chapter 3. A third order Δ∑ 

modulator based MEMS gyroscope with CIDIFF structure with resonator is shown in 

Fig.5.3 

 

Figure 5.3 A third order Δ∑ modulator based MEMS gyroscope using CIDIFF structure with 

resonator 

More Δ∑ modulator based MEMS gyroscope implementations can be found in a 

review paper (Kraft and Ding, 2009).  

In such MEMS gyroscope applications, two main concerns need to be addressed other 

than directly combining the MEMS gyroscope with the Δ∑ modulator structure. 
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Firstly, as a sensing component, the input of the gyroscope is less predictable than the 

typical AC/DC input (i.e. audio applications). Even though one can calculate a 

reasonable dynamic range of the sensing component, external disturbances could still 

cause unexpected input amplitude which will overload the Δ∑ modulator. Therefore, 

it is necessary to choose an optimal scale factor for the modulator input so that it does 

not frequently violate the constraints in the modulator while maintaining a good SNR. 

Secondly, the integration of the Δ∑ modulator based MEMS gyroscope will 

necessarily introduce internal electrical noise. As mentioned before, such electrical 

noise could couple with the quantization noise, causing instantaneous high noise 

amplitude at a certain integrator output. Hence, stabilization techniques are 

necessarily required for the Δ∑ modulator based MEMS gyroscope. 

 Stabilization Techniques 5.2

In Chapter 3, designing a stable Δ∑ modulator control loop has been discussed. Here, 

we assume a stable Δ∑ modulator is engaged and a lead compensator is used to deal 

with the phase shift introduced by the Δ∑ modulator. As discussed before, the stability 

of the Δ∑ modulator relies on the amplitude of the modulator input signal. This is 

especially true for higher order Δ∑ Modulators as the quantization error will be 

accumulated by the integrators in the main loop, which can quickly steer the 

modulator output diverging from the input signal. For most control missions, the 

constraints on control inputs are known by studying the actuator of the dynamic 

system. The sensing range can then be predicted in the preliminary design stage and 

subsequently, the quantization level can be designed according to the sensing range to 

ensure the Δ∑ modulator is stable subject to all inputs. However, there are two 

integrations in the gyroscope and the speed of the proof mass is not directly available 

in most cases. Additional integrators are also necessary to achieve a good SNR for the 

Δ∑ modulators (i.e. high order Δ∑ modulators). Moreover, the electrical noise may 

interact with the quantization noise in the closed-loop system, especially with many 

integrators in the control loop. Therefore, even if the control loop is designed to be 

stable, there is still a chance that the modulator input will temporarily overload the 
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quantizer. When this occurs, the Δ∑ modulator output will enter the status of the 

―limited cycle‖ (low frequency binary signals), and will remain unstable even the 

modulator input restored within the quantization range (Bourdopoulos, et al., 2003). 

To increase the robustness of the sensing system, stabilization techniques need to be 

introduced to enhance the stability of the Δ∑ Modulator. It is worth noting that 

stabilization techniques will sacrifice the SNR of the Δ∑ modulator as the 

stabilization actions will change the behavior of the modulator. Therefore these 

techniques are using temporary loss of SNR to restrain the possibility of overloading 

due to the input signal or one of the integrators, and only active in the worst case 

scenarios (i.e. when instability is detected).  

In this section, we only discuss the input scaling method and the clipping techniques. 

A systematic comparison of the stabilization techniques for the Δ∑ Modulator can be 

found in (Bourdopoulos, et al., 2003).  

5.2.1 Scaling the input signal 

As discussed in the previous chapters, a well-designed quantization level with respect 

to the input signal is crucial to the stability of the Δ∑ Modulator. For higher order Δ∑ 

Modulators, a more general approach is to scale the coefficients in the modulators so 

that overloading rarely happens. The direct scaling method (or equivalent scaling 

method in some references) is used to linearly scale both the feedback signal and the 

modulator input by 1/𝐾𝑠. In other words, all the local coefficients are scaled by the 

same scale factor 𝐾𝑠  at each integrator node, i.e. c1, c2…cn  in the CIDF, CIDIDF or 

CIDIFF structures in Fig.5.3. Such a method does not change the functionality of the 

Δ∑ Modulator, so that the stability of the Δ∑ Modulator can be preserved e.g. 

(Yazkurt, et al., 2006).  

Such a direct scaling method is easy to design and can efficiently decrease the input 

signal level. However, it is limited due to the fact that the scaling factors before each 

integrator can be very big or very small as each integrator input in higher order Δ∑ 

Modulators varies within a large dynamic range. Such a limitation makes the direct 
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scaling method hard to implement in some cases. Alternatively, one can scale the 

input signal and all the feedback and forward signals by designing appropriate gains, 

i.e. a1, a2…an and b1,b2...bn in the CIDF, CIDIDF or CIDIFF structures in Fig.5.3, 

under the pre-condition that the system stability will be preserved, e.g. (Zorn, et al., 

2013). Such a modification can be referred as the functional scaling method, which 

does not necessarily maintain the characteristics of the system, but provides trade-off 

between the SNR performance and stability (Hein and Zakhor, 1993). The functional 

scaling method is easier to implement than the direct scaling method. However, 

finding the optimal scaling gains is normally a case by case study rather than a 

general analysis due to different topologies of Δ∑ Modulators, especially for higher 

order ones.  

An alternative way to avoid the overloading is the adaptive approach based techniques 

e.g. (Yu, et al., 1992; Zierhofer, 2000; Prosalentis and Tombras, 2007; Gore and 

Chakrabartty, 2010). Such a method scales the quantization level based on a rough 

estimate of the instantaneous amplitude of the input signal (predicted input signal) so 

that quantizer overload rarely happens. Meanwhile, a correction bit is generated and 

included in the output signal so that the output signal with adaptive quantization level 

can be demodulated properly. However, such a method will remove the 1-bit 

characteristic of the bi-level Δ∑ Modulator and therefore is not suitable for the 

proposed OBMPC system.   

5.2.2 Clipping in a Δ∑ Modulator 

Among the various stabilization techniques, clipping the integrators to a certain level 

(Dunn and Sandler, 1994; Norsworth, et al., 1996) has been proven to be an efficient 

method to avoid overloading for higher order single-bit Δ∑ Modulators. Typically, the 

saturating clipper is implemented by clipping the supply voltage of the operational 

amplifiers that are used to build integrators, so that its unstable regions may not be 

entered (Adams, 1984). The benefit of this method is that the modulator can be 

designed to adapt the overloaded signal so that the system will retain the 
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characteristics of the input signal and relatively high SNR comparing to the 

setting-to-zero method. A second order Δ∑ modulator structure (CIDF) with clippers 

at each integrator output is presented in Fig.5.4. 

 

Figure 5.4 A second order Δ∑ modulator with clippers at each integrator output 

Specifically speaking, as presented in (Hein and Zakhor, 1991), for a second order Δ∑ 

Modulator, for the CIDF structure presented in Fig.3.8(a) with unit feedback gain, the 

state bound can be presented as 

 |𝑥 |𝑚𝑎𝑥 = |𝑢𝑖𝑛| + 2; 

|𝑥2|𝑚𝑎𝑥 =
(5;|𝑢𝑖𝑛 |)

2

8( ;|𝑢𝑖𝑛 |)
.                      (5.2) 

where 𝑢𝑖𝑛 is the modulator input, 𝑥  and 𝑥2 are respectively the states for the first 

and second integrators. The result is further generalized in (Hein and Zakhor, 1993) 

with different feedback gains. (Wang, 1993) provided state bounds analysis for the 

third order Δ∑ Modulators. Although the main results discussed above are designed 

for the DC inputs, they are fairly tight from the design point of view and can be 

considered as a sufficient condition for most designs (Bourdopoulos, et al., 2003). To 

further simplify the problem, as suggested in (Dunn and Sandler, 1994) and 

(Bourdopoulos, et al., 2003), the clipping threshold can only be set to the last 

integrator. The variable gain method used in Section 4.5 can also be used as the 

design guide of the hard constraints of the last integrator in the control loop. In 

practical cases, one can find out a ―safe‖ threshold by studying the impulse response 

of a stable modulator. 

Designing and implementing a clipper is one of the easiest ways to stabilize a Δ∑ 

modulator. The main challenge, however, lies in how to choose a reasonable chipping 
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level while retaining the high SNR when the input does not overload the quantizer. In 

practical missions, if the non-ideal integrators and noises are taken into consideration, 

rigorous clipper level (typically much higher than the input signal for higher order Δ∑ 

Modulators, e.g. 90 times of the input signal for a third order Δ∑ Modulator) may 

result in low SNR at the noisy instants, even when the stability of the control loop can 

be guaranteed. Moreover, as a non-linear approach, the clipping technique will bring 

additional non-linearity to the Δ∑ Modulator, which is also a non-linear system itself, 

so that the stability analysis is even harder to perform.  

 OBMPC structure for the Δ∑ Modulator based MEMS 5.3

Gyroscope 

As discussed above, despite that the stabilization techniques can help to stabilize the 

system, it is not easy to design a Δ∑ modulator based MEMS gyroscope with 

guaranteed stability while maintaining a reasonable SNR. Toward this aspect, in this 

section, the author adopts the OBMPC structure as proposed in the previous chapter to 

implement the MEMS gyroscope.  

5.3.1 Problem formulation 

The control objective is to find the optimal integrator output to minimize the filtered 

quantization error. We first consider a digital signal (e.g. a sampled continuous-time 

signal) a(k) as the output of the MEMS gyroscope system and the input to a high 

order Δ∑ modulator. Consider an nth order Δ∑ modulator CIDIFF structure as shown 

in Fig.5.5.  

 
Figure 5.5 CIDIFF structure of an n

th
 order bi-level ∆∑ modulator 
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To discuss the problem under the context of the OBMPC, we suggest the state space 

approach to analyze the characteristic of the ∆∑ modulators. The state equations of 

the proposed structure can be written as  

𝑥⃗𝑀(𝑘 + 1) =  ⃗𝑀𝑥⃗𝑀(𝑘) + 𝐵⃗⃗𝑀𝑎⃗𝑀(𝑘) − 𝐶𝑀𝑙𝑀(𝑘),         (5.3) 

𝑦⃗𝑀(𝑘) = 𝐷𝑀 [

𝑥𝑀1
𝑥𝑀2
⋮
𝑥𝑀𝑛

], 

where 𝑥𝑀  (k)∈ 𝑛 is the state vector,  ⃗𝑀 =

[
 
 
 
 
1
1
0

0 0 … 0
1 0 … 0
1 1 … 0

⋮
0

⋱ ⋱ ⋱ ⋮
⋯ 0 1 1]

 
 
 
 

， 𝐵⃗⃗𝑀 =

[
 
 
 
 
𝑏 
𝑏2
𝑏3
⋮
𝑏𝑛]
 
 
 
 

, 

𝐶𝑀 =

[
 
 
 
 
𝑐 
𝑐2
𝑐3
⋮
𝑐𝑛]
 
 
 
 

, 𝐷𝑀 = ,𝑑 , 𝑑2, … 𝑑𝑛-, 𝑥⃗𝑀 ∈ , 𝑦⃗𝑀(𝑘) ∈ ,  k∈ . 𝑙𝑀(𝑘) ≜ 𝑞𝛥(𝑦𝑀(𝑘)) is 

the quantizer output. 𝑎(𝑘) ∈ is the modulator input. The asymptotical stability of 

such Δ∑ modulator can be designed by moving all the eigenvalues of  𝑀 inside the 

unit circle. The modulator is oversampled so that 𝑎(𝑘) can be considered as constant 

within n time steps where  𝑛 ≪ 𝑂𝑆𝑅 , i.e. 𝑎(𝑘) = 𝑎(𝑘 + 1)… = 𝑎(𝑘 + 𝑛) . x1(k), 

x2(k)…xn(k) are the state variables for the n
th

 integrator. 𝑙𝑀 is weighted by a bi-level 

quantizer, where 𝑙𝑀 ∈ *𝛥,−𝛥+. The quantization level 𝛥 is standardized as 1 and 

𝑙𝑀(k) is scaled by 𝑐 , 𝑐2, … 𝑐𝑛 according to the quantization level. In this particular 

case, the state matrix  ⃗𝑀 can be transformed into the Jordan canonical form by 

replacing 𝑥⃗𝑀  with 𝑃𝑇
; 𝑥𝑀 , e.g. (Steiner and Yang, 1997), where 𝑃𝑇 = 

(
⋮ ⋮ ⋮ ⋮
𝜌 𝜌2 ⋯ 𝜌𝑛
⋮ ⋮ ⋮ ⋮

)  and 𝜌 , 𝜌2…𝜌𝑛  are the eigenvectors of  ⃗𝑀 . Eq.5.3 then 

becomes: 

𝑥𝑀(𝑘 + 1) =  𝑀𝑥𝑀(𝑘) + 𝐵𝑀𝑎𝑀(𝑘) − 𝐶𝑀𝑙𝑀(𝑘),         (5.4) 
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𝑦𝑀(𝑘) = 𝐷𝑀𝑥𝑀(𝑘), 

where  𝑀 = 𝑃𝑇
;  ⃗𝑀𝑃𝑇, 𝐵𝑀 = 𝑃𝑇

; 𝐵⃗⃗𝑀, 𝐵𝑀 = 𝐶𝑀. 𝑥𝑀 ∈ , 𝑦𝑀(𝑘) ∈ . 

Remark 5.1: In terms of implementation, the structure proposed in Eq.5.4 is less 

popular than the ones discussed in Chapter 3 as the vectors 𝐵𝑀 and 𝐶𝑀, i.e. the gains 

used to implement the Δ∑ modulator, may vary within a large range if some of the 

eigenvalue values in  𝑀 is very close to zero. This will cause issues in terms of 

implementation as certain accuracy is hard to achieve using analog components if the 

gain is very small. In this work, as we prepare to use the OBMPC controller in the 

modulation, as discussed in Chapter 4, a δ form can be introduced to ameliorate this 

problem. For applications that are not suitable to include a digital controller, such 

structure can still be used for analysis purposes. This point will be further discussed in 

Remark 5.3.  

The main benefit for the proposed structure is that the state variables are now 

decoupled. To further simplify the problem, define 𝐷𝑀 ≜ ,1,1,⋯ ,1-. The structure of 

the Δ∑ modulator with parallel state variables can then be reconstructed as shown in 

Fig.5.6  

 

Figure. 5.6 N
th

 order Δ∑ modulator with parallel state variables (Thick lines denote vector 

routing) 
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In Fig.5.6, 𝜌 , 𝜌2…𝜌𝑛  are the eigenvalues of  𝑀 . It is worth noting that the 

inclusion of linear feedback paths other than the resonators results in a diagonal 

canonical form of  𝑀. It is possible to extend such parallel structures to many Δ∑ 

modulator structures if the state matrix  𝑀 is similar to a diagonal matrix. In the 

following subsection, we shall assume that a simple diagonal state matrix is used. An 

OBMPC controller can then be applied to such Δ∑ modulator with the ability to 

handle the constraints (i.e. the clipping thresholds) on all the state variables. Also, the 

order reduction is discussed in (Steiner and Yang, 1997) for some particular Δ∑ 

modulators, which may help to decrease the online computation effort (if required) of 

the proposed method. 

In some other cases, however, the use of resonators will result in a non-diagonal  𝑀. 

These cases are studied in (Steiner and Yang, 1997) and can be analyzed on a 

system-by-system basis. Generally, not all the state variables can be decoupled for the 

Δ∑ modulator structure with resonators. They can, however, be written as a parallel 

state structure with a certain level of decoupling. In other words, it is still possible to 

decouple some of the state variables in most non-diagonal structures. For example, 

consider a third order Δ∑ modulator with a resonator on the second and the third 

integrator. Hence only the first integrator can be decoupled, which can be restructured 

in parallel with the other two integrators. In such a structure, the first and the third 

state variable can be explicitly known. However, this will only require the study of the 

impulse response of a first order NTF and a second order NTF respectively, which is 

easier than studying the third order one directly in terms of determining reasonable a 

clipper level. The worst case is that none of the state variables can be decoupled. 

Hence only the last state variable can be directly constrained. It is still possible to 

stabilize the modulator as suggested in (Dunn and Sandler, 1994). However, the 

clipping action will result in a relatively low SNR in comparison to the individually 

clipped Δ∑ modulator. In the following section, we assume that the state matrix of the 

Δ∑ modulator in the proposed mission is designed to be diagonal. If otherwise, a 

case-by-case study needs to be performed for the proposed method.  
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5.3.2 OBMPC based MEMS gyroscope using 1-bit processing  

5.3.2.1 Unconstrained OBMPC implementation with linearization assumption 

As discussed above, if the state variables can be decoupled, so that the constraints 

applied on the state variable are linearly independent, the OBMPC can be 

implemented with relatively small circuit scale under the framework of 1-bit 

processing control system, i.e. a KKT condition is sufficient to address the problem. 

Based on the same linearization assumptions made in Chapter 3, Fig 5.6 can also be 

presented as seen in Fig.5.7. 

 

Figure. 5.7 Linearized n
th

 order Δ∑ modulator with parallel state (Thick lines denote vector 

routing). 

In Fig.5.7, 𝑒𝑀 (𝑘) is the filtered quantization noise. According to Fig.5.7 

𝑙𝑀(𝑘) = 𝑦𝑀(𝑘) + 𝑒𝑀 (𝑘).                   (5.5) 

Define 𝑁(𝑧) and 𝑆(𝑧)  as discrete linear time invariant filter representing 

respectively the NTF and the STF. S(z) can be presented in a state space form as 

𝑥𝑀(𝑘 + 1) =  𝑃𝑥𝑀(𝑘) + 𝐵𝑆𝑎𝑀(𝑘)            (5.6) 

      𝑦𝑀(𝑘) = 𝐶𝑆𝑥𝑀(𝑘), 
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where  𝑃 =  𝑀 − 𝐶𝑀𝐷𝑀, 𝐵𝑆 = 𝐵𝑀, 𝐶𝑆=𝐷𝑀. Similarly, let 𝑎𝑀(𝑘) = 0, the N(z) of 

the proposed Δ∑ modulator structure in the state space equation form can be derived 

as: 

𝑥𝑀(𝑘 + 1) =  𝑃𝑥𝑀(𝑘) + 𝐵𝑁𝑒𝑀 (𝑘)                (5.7) 

𝑙𝑀(𝑘) = 𝐶𝑁𝑥𝑀(𝑘) + 𝑒𝑀 (𝑘), 

where 𝐵𝑁 = 𝐶𝑀 , 𝐶𝑁 = 𝐷𝑀 . Additionally, define 𝐸(𝑘)  is unfiltered quantization 

noise, where  

𝐸(𝑘) = (𝑙𝑀(𝑘) − 𝑆(𝑧)𝑎𝑀(𝑘)).              (5.8) 

Therefore, 

𝑒𝑀(𝑘) = 𝑁(𝑧)
; (𝑙𝑀(𝑘) − 𝑆(𝑧)𝑎𝑀(𝑘)).           (5.9) 

The state space function for 𝑁(𝑧);  can be presented as   

𝑥𝑓(𝑘 + 1) =  𝐹𝑥𝑓(𝑘) + 𝐵𝐹𝐸(𝑘)                (5.10) 

𝑒𝑀(𝑘) = 𝐶𝐹𝑥𝑓(𝑘) + 𝐸(𝑘), 

where  𝐹 =  𝑀, 𝐵𝐹 = 𝐶𝑀, 𝐶𝐹 = −𝐷𝑀, and 𝑥𝑓 ∈  is the state variable of 𝑁(𝑧); . 

The goal here is to implement a control structure to minimize the filtered quantization 

noise 𝑒𝑀(𝑘). A conceptual view of an OBMPC based Δ∑ modulator is shown in 

Fig.5.8: 

 

Figure 5.8 The OBMPC design for an n
th

 order Δ∑ modulator (Thick lines denote vector routing). 
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In Fig.5.8, 𝑢𝑀 = ,𝑢𝑀 , 𝑢𝑀2…𝑢𝑀𝑛-
𝑇 is the control input to minimize the filtered 

quantization noise in Eq.5.11. Similar to the statement made in the previous section, it 

is possible to directly process the 1-bit Δ∑ modulator output. The 1-bit processing 

control system structure results in simple circuits and short operation time so that it is 

practical to include the OBMPC in the oversampled modulation loop. Based on this 

perspective, the OBMPC is used in the modulation loop. The benefits of doing this are 

two-fold: Firstly, hard constraints can be easily included under the framework of the 

OBMPC structure. Therefore, the stability criteria can be easily acquired. Secondly, 

future predictions can be included in the control structure. Theoretically speaking, if 

the prediction horizon is long enough, then the quantization noise should tend towards 

zero.  

Based on Fig.5.6 and the results discussed in the previous section, a structure of Δ∑ 

modulator based MEMS gyroscope using the OBMPC can be designed as shown in 

Fig.5.9.  

 

Figure 5.9 MEMS gyroscope using the OBMPC based Δ∑ modulator (Thick lines denote vector 

routing). 

In Fig.5.9, 𝑎̃(k) is the signal applied to the MEMS gyroscope, 𝑎(k) is the sensing 

signal picked up by the MEMS gyroscope which is the narrow band of interest around 

the gyroscope resonant frequency and 𝑙𝑀(𝑘) is the quantizer output under the OSR. 

The optimal solution 𝑢𝑀
∗(𝑘) has an affine relationship between the quantized output 



99 

 

and multi-bit coefficients and therefore forms a 1-bit processing structure. Specifically, 

define 𝐻M(𝑧)  and 𝐻C (z) as the transfer function of the discretized gyroscope 

dynamic model and the compensator respectively. For the OBMPC controller 

presented above, define the prediction horizon 𝑁 and vectors: 

𝑒𝑀(𝑘) ≜ ,𝑒(𝑘|𝑘) 𝑒(𝑘 + 1|𝑘)… 𝑒(𝑘 + 𝑁|𝑘)-
𝑇; 

𝑢⃑⃗𝑀(𝑘) ≜ ,𝑢𝑀(𝑘|𝑘)  𝑢𝑀(𝑘 + 1|𝑘)…𝑢𝑀(𝑘 + 𝑁 − 1|𝑘)-
𝑇; 

𝐸⃑⃗(𝑘) ≜ ,𝐸(𝑘|𝑘)  𝐸(𝑘 + 1|𝑘)…𝐸(𝑘 + 𝑁 − 1|𝑘)-𝑇 . 

According to Eq.5.9 and Eq.5.10: 

𝑒𝑀(𝑘) = 𝐹𝑀𝑥𝑀(𝑘) + 𝜗𝑀 𝐸⃑⃗(𝑘),             (5.11) 

𝐸⃑⃗(𝑘) = 𝑙𝑀(𝑘) − 𝑆(𝑧)𝑎⃑(𝑘),                    

where 

𝐹𝑀 =

[
 
 
 
 
𝐶𝐹
𝐶𝐹 𝐹
𝐶𝐹 𝐹

2

⋮
𝐶𝐹 𝐹

𝑁]
 
 
 
 

; 𝜗𝑀 =

[
 
 
 
 

𝐷𝐹 0 0 ⋯ 0
𝐶𝐹𝐵𝐹 𝐷𝐹 0 ⋯ 0
𝐶𝐹 𝐹𝐵𝐹 𝐶𝐹𝐵𝐹 𝐷𝐹 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
𝐶𝐹 𝐹

𝑁; 𝐵𝐹 𝐶𝐹 𝐹
𝑁;2𝐵𝐹 𝐶 𝐹

𝑁;3𝐵𝐹 ⋯ 𝐷𝐹]
 
 
 
 

. 

𝑙𝑀 ∈
𝑁 and 𝑎⃑(𝑘)  ∈ 𝑁 are the predicted modulator input and output respectively 

along the prediction horizon. The cost function of Eq.5.11 can be built to minimize 

the filtered quantization noise: 

𝐽(𝑥𝑀 , 𝑢⃑⃗𝑀(𝑘)) = 𝑚𝑖𝑛𝑢⃑⃗⃗𝑀(𝑘){||𝑥𝑓(𝑘 + 𝑁|𝑘)||P𝑀
2 + ∑ (||𝑥𝑓(𝑘 + 𝑖|𝑘)||Q𝑀

2 +𝑁; 
𝑖<0

||𝑢𝑀((𝑘 + 𝑖)||𝑅𝐿
2 )}   (5.12) 

where 𝑃𝑀 and 𝑄𝑀 are positively defined weighting matrices. Hence the optimal 

control input 𝑢𝑀
∗ can be found as in Theorem 5.1.    

Theorem 5.1, Define the main loop filter 𝐿(𝑧) ≜ (𝑧𝐼 −  𝑀)
; and a control input 

𝑢𝑀 = ,𝑢𝑀 , 𝑢𝑀2…𝑢𝑀𝑛-
𝑇  as shown in Fig.5.7. If no constraint is applied, then the 
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optimal 𝑢𝑀
∗  can be solved as: 

𝑢𝑀
∗(𝑘) = ,1,0… . ,0- .𝐿⃑⃗0𝐻𝐴(𝑧)𝑎̃(𝑘) − (𝐿⃑⃗1 + 𝐿⃑⃗0𝐻𝐴(𝑧)𝐾2)𝑙𝑀(𝑘)/, (5.13) 

where  𝐿⃑⃗0 = 𝐿(𝑧)
; ((,1, 𝑧 … 𝑧𝑛; - + 𝐾𝑀(𝑧𝐼 −  𝐹)

; 𝐵𝐹)𝑆(𝑧); 

 𝐿⃑⃗ = 𝐿(𝑧)
−1𝐾𝑀(𝑧𝐼 −  𝐹)

−1𝐵𝐹.   

Proof: 

Under the context of the MPC algorithm, if no constraint is applied, the global 

optimal solution of Eq.5.12 can be found as:  

𝐸⃑⃗∗(𝑘) = −𝐾𝑀𝑥𝑓(𝑘),                        (5.14) 

where 𝐾𝑀 is the MPC gain obtained by solving Eq.5.12. Based on Eq. 5.11, the state 

variable of 𝑁(𝑧);  can be derived as: 

𝑥𝑓(𝑘) = (𝑧𝐼 −  𝐹)
; 𝐵𝐹(𝑆(𝑧)𝑎(𝑘) − 𝑙𝑀(𝑘)).        (5.15) 

Substituting Eq.5.15 into Eq.5.14, the following is obtained: 

𝐸⃑⃗∗(𝑘) = −𝐾𝑀(𝑧𝐼 −  𝐹)
; 𝐵𝐹(𝑆(𝑧)𝑎(𝑘) − 𝑙𝑀(𝑘))).      (5.16) 

Now substitute Eq. 5.11 into Eq.5.16 and apply the receding horizon principle. Hence 

the optimal modulator output 𝑙∗(𝑘) can be found as: 

𝑙𝑀
∗(𝑘) = 𝑞 (,1,0… . ,0- .𝑆(𝑧)𝑎⃑(𝑘) + 𝐾𝑀(𝑧𝐼 −  𝐹)

; 𝐵𝐹(𝑆(𝑧)𝑎(𝑘) − 𝑙𝑀(𝑘))/).(5.17) 

Let the quantizer input be: 

 𝑦𝑀(𝑘) = ,1,0… . ,0- .𝑆(𝑧)𝑎⃑(𝑘) + 𝐾𝑀(𝑧𝐼 −  𝐹)
; 𝐵𝐹(𝑆(𝑧)𝑎(𝑘) − 𝑙𝑀(𝑘))/. (5.18) 

According to Eq.5.18, given the main loop filter 𝐿(𝑧), the control input 𝑢𝑀(𝑘) can 

be determined as:  

𝑢𝑀
∗(𝑘) = ,1,0… . ,0-𝐿(𝑧); (,1, 𝑧 … 𝑧𝑛; -𝑆(𝑧)𝑎(𝑘) + 
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𝐾𝑀(𝑧𝐼 −  𝐹)
; 𝐵𝐹(𝑆(𝑧)𝑎(𝑘) − 𝑙𝑀(𝑘)).    (5.19) 

By reformatting Eq. 5.19, we obtain: 

𝑢𝑀
∗(𝑘) = ,1,0… . ,0-𝐿(𝑧); ((,1, 𝑧 … 𝑧𝑛; - + 𝐾𝑀(𝑧𝐼 −  𝐹)

; 𝐵𝐹)𝑆(𝑧)𝑎(𝑘) −

𝐾𝑀(𝑧𝐼 −  𝐹)
; 𝐵𝐹𝑙𝑀(𝑘)) (5.20) 

By assigning 𝐿⃑⃗0 = 𝐿(𝑧)
; ((,1, 𝑧 … 𝑧𝑛; - + 𝐾𝑀(𝑧𝐼 −  𝐹)

; 𝐵𝐹)𝑆(𝑧); 

𝐿⃑⃗ = 𝐿(𝑧)
−1𝐾𝑀(𝑧𝐼 −  𝐹)

−1𝐵𝐹, 

Hence                 𝑢𝑀
∗(𝑘) = ,1,0… . ,0-(𝐿⃑⃗0𝑎(𝑘) − 𝐿⃑⃗1𝑙𝑀(𝑘))         (5.21) 

Furthermore define 𝐻𝐴(𝑧) ≜ 𝐾 𝐻M(𝑧) 𝐻C(z), then according to Fig. 5.8 

𝑎(𝑘) ≜ 𝐻𝐴(𝑧)(𝑎̃(𝑘) − 𝐾2𝑙𝑀(𝑘))                 (5.22) 

Substitute Eq.5.22 into Eq.5.21, then the optimal control input can be obtained, which 

completes the proof. □  

Remark 5.2: Part of the above proof mirrors the work achieved in (Quevedo and 

Goodwin, 2005). In addition to (Quevedo and Goodwin, 2005), in the proposed 

structure, one can directly include the hard constraints onto each of decoupled state 

variables according to the impulse response of each integrator, which can greatly 

simplify the design process.  

It is worth noting that Eq.5.13 is not strictly compliant to the 1-bit processing 

structure since 𝑎̃(𝑘) is the multi-bit counterpart of the analog signal. Modulating 

𝑎̃(𝑘) into 1-bit signal is not appropriate as this may increase the circuit complexity 

and once again bring the quantization noise into the control loop. However, as the 

system is oversampled, 𝑎̃(𝑘) is relatively slow in comparison to the sampling rate. 

Hence, the computation burden is mainly caused by the second component in Eq.5.13, 

i.e. (𝐿⃑⃗1 + 𝐿⃑⃗0𝐻𝐴(𝑧)𝐾2)𝑙𝑀(𝑘). If the bi-level quantizer is adopted, then the explicit 

relationship between the multi-bit parameters and the bi-level quantized signal can 

provide a multiplier free structure. Hence the circuit simplicity of the 1-bit Δ∑ 
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modulator is still preserved.  

Essentially, the proposed OBMPC changes the zeros of the NTF by finding the 

optimal solution to minimize the filtered quantization noise, and therefore improve the 

performance of the system. The method can also be regarded as an implementation 

guideline for the design of the Δ∑ modulator as will be discussed in Remark 5.3.  

Remark 5.3: For applications where the Δ∑ modulator has to be built using analog 

components (i.e. controllers are not feasible in the modulation loop), Theorem 5.1 can 

still be treated as a design guideline to design a high order Δ∑ modulator. Essentially, 

the 𝐾𝑀 solved by the MPC can change the zeros of the NTF and therefore affect the 

noise shaping characteristic of the modulator. According to Theorem 5.1, define 

𝐻𝑎(𝑧) = ,
𝐿⃑⃗01
𝑏1
,
𝐿⃑⃗02
𝑏2
…
𝐿⃑⃗0𝑛

𝑏𝑛
-𝑇  and 𝐻𝑙(𝑧) = ,−

𝐿⃑⃗11

𝑐1
, −

𝐿⃑⃗12

𝑐2
…−

𝐿⃑⃗1𝑛

𝑐𝑛
-𝑇 , then Fig.5.9 can be 

simplified as Fig 5.10.  

 

Figure 5.10 Design of high order Δ∑ modulator based gyroscope using the OBMPC 

The 𝐾𝑀 in Fig.5.10 can be regarded as the functional scaling factor on each integrator 

to achieve certain 𝐿⃑⃗0 and 𝐿⃑⃗ . By designing the appropriate values for 𝑃𝑀 and 𝑄𝑀 

(i.e. to satisfy  𝑀
𝑇𝑃𝑀 𝑀 + 𝑄𝑀 = 𝑃𝑀), the modulator can be safely scaled while the 

stability of the control loop is guaranteed. The downside of doing this, however, is 

that the constraints cannot be directly included, so that the chipping or other 

stabilization technique needs to be once again used in the modulator.    
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5.3.3 Hard constraints on Δ∑ Modulator based MEMS gyroscope 

Given a set of constraints applied to the state variables: 

𝐺𝑀𝑥𝑀(𝑘) ≤ 𝛾𝑀,                       (5.23) 

where 𝐺𝑀 and 𝛾𝑀 are acquired based on the state bound for each integrator which 

can guarantee the stability of the modulator . The constraint levels can be determined 

by studying the impulse response of each integrator or simply according to Eq.5.2. In 

the proposed parallel state structure, even if the state variable cannot be fully 

decoupled, the structure in each branch will still be a relative simple one (typically 

second order ones if the coupling is merely caused by the resonator). Hence, it is 

relatively easy to determine a reasonable constraint level to the state variable. Similar 

to Eq.4.7, when a set of active constraints is applied to the quantizer input a(k), the 

optimal solution can be solved iteratively by introducing the modified Lagrange factor 

𝜆̅: 

𝑢𝑀
∗(𝑘) = 𝐿⃑⃗0𝑎̃(𝑘) − 𝐿⃑⃗ 𝑙𝑀(𝑘) − 𝜆̅ .            (5.24) 

where 𝜆̅  ∈ p
 and 𝜆̅𝑖 = 𝑆𝑖̅ + 𝑊̅(𝑖,:)(𝑧𝐼 −  𝐹)

; 𝐵𝐹(𝑆(𝑧)𝑎(𝑘) − 𝑙𝑀(𝑘))) and 

𝑆̅ and 𝑊̅ are the corresponding matrices solved during the dual level iteration process. 

If one or several of the constraints are violated, the 𝜆̅𝑖 will be calculated accordingly. 

Note that both 𝜆̅𝑖 and the global optimal solution presented in Eq.5.24 have an affine 

relationship with the 1-bit feedback 𝑙𝑀(𝑘)  (again 𝑎(𝑘)  will be considered as 

constant within several time steps), the arithmetic block of the proposed OBMPC 

controller can process all the fast sampled operations with simple conditional-negates 

(CN) and bit shifters, and therefore achieve a 1-bit processing structure. In the 

proposed parallel structure, since the state variables are linearly independent, a simple 

active set method can efficiently find the optimal KM and then in turn, find Ha and Hl. 

Hence the proposed OBMPC controller for the Δ∑ modulator structure has an even 

simpler implementation structure than the one proposed in the previous chapter. The 

state stability analysis for the OBMPC based Δ∑ modulator can be referred as the 
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standard MPC stability analysis in subsection 4.4.1. 

 Numerical Example  5.4

In the interest of justifying the OBMPC controller in the MEMS gyroscope design, 

the simulation in this section focuses on the sense mode of the gyroscope. The input 

signal is acted upon by the proof mass of a second order spring and damping 

mechanical system as stated in Eq.5.1. The proof mass of the sense mode is 

𝑚 = 1.96 × 10;9 kg. The quality factor is set as 𝑄𝑓 = 100  and the resonance 

frequency of the mechanical system is 4000Hz. The quantization level is standardized 

into binary alphabet ±1v, and translated into electrostatic feedback force by the gain 

of the voltage to force conversion 𝐾2 = 3.35 × 10
;9𝑉/𝑁. The input signal is firstly 

defined as a periodic input signal operating at 64 𝑟𝑎𝑑/𝑠𝑒𝑐 with amplitude 0.6 𝑑𝑒𝑔. 

The structure of the MEMS gyroscope is shown in Fig.5.11a. The sampling time is set 

to 1.625 × 10;9s (OSR=200). A lead compensator is used to deal with the phase 

shift introduced by the mechanical sensing element. A simple second order Δ∑ 

modulator is presented here as  𝑀 = 0
1 0
0 0.2

1，𝐵𝑀 = 0
0.2
0.2
1 , 𝐶𝑀 = 0

0.2
0.2
1 , 𝐷𝑀 =

,1 1-. The state space realization is shown in Eq.5.25 

𝑥𝑀(𝑘 + 1) = 0
1 0
0 0.2

1 𝑥𝑀(𝑘) + 0
0.2
0.2
1 𝑎𝑀(𝑘) − 0

0.2
0.2
1 𝑙𝑀(𝑘)         (5.25) 

𝑦𝑀(𝑘) = ,1 1- 0
𝑥𝑀1
𝑥𝑀2

1. 

The filter N(z);  can then be denoted as:  

𝑥𝑓(𝑘 + 1) = 0
1 0
0 0.2

1 𝑥𝑓(𝑘) − 0
0.2
0.2
1 𝐸(𝑘)            (5.26) 

𝑒(𝑘) = ,−1 −1-𝑥𝑓(𝑘) +  𝐸(𝑘). 

If no constraint is applied and N=4, then 𝐾𝑀 can be found as  

𝐾𝑀 = [

 −0.1584 −0.0240
−0.1411 −0.0040
 −0.1245
 −0.1064

−0.0002
  −0.0005

] ; 
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Consequently, 𝐿⃑⃗0 and 𝐿⃑⃗  can be found as:   

𝐿⃑⃗0 =
z2; .2365𝑧:0.2    

z2;0.8z;0.04
; 𝐿⃑⃗ =

0.0365𝑧;0.0    

0.4z;0.24
 

Based on all of this, the control structure is shown in Fig.5.11b 

 
(a) 

 

(b) 

Figure 5.11 (a)Simulation structure of the ∆∑ modulator based MEMS gyroscope;(b) Simulation 

structure of the RHC based 1-bit MEMS gyroscope 

We firstly assume the system is ideal (e.g. no electrical noises and internal distortion 

exist). Then the angular system input is a sinusoidal input. The delay caused by the 

filter is compensated in the displayed result. A second order Δ∑ modulator based 

gyroscope is designed as comparison group.  

The tracking trajectory and the spectra of both systems are plotted in Fig. 5.12. As 

shown in Fig. 5.12a and Fig. 5.12c, both systems show good tracking results to the 

input signal. The amplitude of the quantizer input shows some difference but none of 

them reaches the constraint (as shown in Fig.5.12b). It can be seen from Fig.5.12d 

that the spectra are not much different (as expected) since no constraints are applied to 

the system. However, the OBMPC tends to be slightly better than its benchmark when 

higher frequency is applied. This is due to the fact that the low pass filter in the 

designed system is less sufficient in the benchmark than the one in the OBMPC 
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structure. This point will be further verified in the following simulations.  

  

(a)                                   (b) 

 
                    (c)                                    (d) 

Figure 5.12 Results for the Δ∑ modulator based MEMS gyroscope with Amplitude=0.6. 

(a)MEMS gyroscope with sinusoidal input. (b) Comparison of the quantizer input (c) Close 

comparison in time domain. (d) Spectra comparison.  

Now we increase the amplitude of the input signal to 1.1 deg/sec, so that the quantizer 

will be overloaded. Constraints and clippers are set to both systems respectively 

according to Eq.5.2. The tracking trajectory and the spectra of both systems are 

plotted in Fig.5.13. This time the OBMPC based MEMS gyroscope shows notable 

improvement comparing to its benchmark. The trajectory of the amplitude is closer to 

the input signal around the overloading area (as shown in Fig.5.13a and Fig.5.13c) 

and the quantizer input is nicely shaped (as shown in Fig.5.13e) as the hard 

constraints are handled better by the OBMPC than clipper. The spectra also show that 

the OBMPC based MEMS gyroscope performs better at both the peak (as shown in 

Fig.5.13d) and at higher input frequency (as shown in Fig.5.13b). The OBMPC based 

∆∑ modulator shows less noise leakage at the higher frequency as the OBMPC 

controller improves the original low pass filter in the loop.  
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(a)                                      (b) 

  
                    (c)                                    (d) 

 
 (e) 

Figure 5.13 Results for the OBMPC based MEMS gyroscope with Amplitude=1.1 (a)MEMS 

gyroscope with sinusoidal input. (b) Spectra comparison (c) Close comparison in frequency 

domain (d) Close comparison in time domain. (e) Comparison of the quantizer input. 

Then the proposed MEMS gyroscope under different sampling frequency is studied. 

The SNR and the MSE of the quantization noise are plotted in Fig.5.14. 
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    Frequency (Hz) 

(a) 

 
    Frequency (Hz) 

(b) 

Figure 5.14 (a) SNR and (b) MSE of the quantization noise with different sampling frequency  

It is can be seen that under high sampling frequency (> 104), the OBMPC based 

MEMS gyroscope provide better SNR and lower noise level than its benchmark due 

to the use of MPC controller. Moreover, since the amplitude of the modulator input 

signal is important to the performance of the Δ∑ modulator based system, the SNR 

and MSE of the quantization noise under different input amplitude are obtained as 

shown in Fig. 5.15. 
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(a) 

 
(b) 

Figure 5.15 (a) MSE and (b) SNR of the quantization noise with different input amplitude 

Fig5.15 again shows that the OBMPC based MEMS gyroscope provide better SNR 

and lower noise level than its benchmark due to the use of MPC controller. When the 

input amplitude gets close to the quantization level the integrators in the loop can go 

even higher due to the integrators in the loop and may trigger clippers or constraints 

in the design circuits. In this case, the clipper only chops the amplitude of the 

quantizer input rather than calculate the optimal value toward the cost function of the 

noise transfer function. Hence, the OBMPC based MEMS gyroscope provide better 

SNR over the conventional Δ∑ modulator based MEMS gyroscope. It is worth noting 

that if the amplitude of the input signal is much higher than then quantization level, 

then the system will no longer track the input signal and both systems need to be 
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redesigned (e.g. change the quantization level or the loop gain).  

 

   

Figure 5.16 Comparisons between the Δ∑ modulator based gyroscope using the OBMPC and the 

conventional Δ∑ modulator based gyroscope 

 

Figure 5.16 Comparisons between the Δ∑ modulator based gyroscope using the OBMPC and the 

conventional Δ∑ modulator based gyroscope 

Finally, given a random input, adding random noise with relatively high amplitude 

and low frequency to each of the integrator, the response of the Δ∑ modulator based 

MEMS gyroscope can be found in Fig.5.16. It can be seen that the OBMPC based 

MEMS gyroscope tracks the input signal better especially around the quantization 

level, which proofs the benefits of using the OBMPC controller in the MEMS 

gyroscope. 

 Summary  5.5

In this chapter, a 1-bit MEMS gyroscope is discussed. To provide the desired 1-bit 

data to the OBMPC system, the bi-level Δ∑ modulator becomes an essential part of 

the sensing component. The Δ∑ modulator can be regarded as an efficient A/D 
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converter, which incorporates the sensing data into bi-level bit stream. Such Δ∑ 

modulator generates very high frequency 1-bit signals, which could be transmitted 

directly and used for the control system processing. 

The challenges of the Δ∑ modulator based MEMS gyroscope are mainly the 

randomness of the sensor input and the noise introduced by the mechanical and 

electrical systems. Hence, it is essential to increase the SNR to improve the control 

accuracy while maintaining the robustness of the control system of the gyroscope 

control loop. In this work, we propose to include an OBMPC algorithm in the Δ∑ 

modulator based gyroscope. Such structure improves the SNR by minimizing the 

filtered quantization noise. As a result, constraints applied on the modulator state 

variables can be included in the controller directly, and an optimized gain can be 

determined so that the coefficients can be safely scaled. Due to the 1-bit nature of the 

modulated signal, if the state variable can be decoupled, so that the constraints applied 

to the state variable are linearly independent, the OBMPC can be implemented with 

relatively simple circuit under the framework of the 1-bit processing control system. 

Note that it is not necessary to apply constraints to all the state variables to stabilize 

the sensing output. Hence if some of the modulator states cannot be decoupled, the 

constraint can be applied to the last state variable in that branch.  

For more general sensing circuits, if the proposed OBMPC controller is not suitable to 

be implemented, it can still serve as a design guideline for designers (i.e. perform the 

unconstrained optimization process offline). However, in such implementations, the 

clipping technique or other stabilization techniques are still required as constraints 

cannot be directly included in the control loop.  
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6. OBMPC FOR THE WIRELESS CONTROL 

SYSTEM AND 1-BIT STATE ESTIMATOR DESIGN 

================================================================== 

6.1 Problem formulation 

6.2 Data Loss and Time Delay in the OBMPC system 

6.3 State Estimation for 1-Bit Processing Control System 

6.4 Summary 

================================================================== 

For the fractionated satellite attitude control system, the effects introduced by the 

WCS need to be considered. Challenges such as network-induced delay, data dropout 

and quantization error are expected, all of which can cause stability issues to the 

control system. Thus, in the proposed fractionated satellite attitude control mission, 

the controller should be designed with considerable efforts to deal with the side 

effects created by the communication channel, i.e. the ISL.  

The purposes of this chapter are twofold. 1) We firstly discuss the robustness of the 

proposed OBMPC in the WCS. 2) To further improve the performance of the WCS, a 

state estimation is required. Typical state estimators reconstruct the binary sensing 

signals into their multi-bit counterpart, where demodulation/decimation on the 1-bit 

signals is required. However, in doing so, adding the conventional state estimator will 

compromise the 1-bit feature of the OBMPC system. Therefore, a 1-bit state estimator 

is designed in order to utilize the benefits of the 1-bit feature of the control system.  

 Problem Formulation 6.1

The formulations in this thesis assume a master-slave WCS configuration: the 

controller is centralized on the master satellite while the attitude sensors and actuators 

are located on the slave satellite. The physical bus system is replaced with the ISL, 

which forms a WCS. Note that the formulation in this work does not cover WCSs 

with a peer-to-peer configuration, e.g. the systems studied in (Langbort, et al., 2004).  
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The control inputs are calculated by the controller on-board the master satellite and 

sent to the actuators on-board the slave satellite. They are converted by Δ∑ 

modulators and the resultant 1-bit signals are sent to the actuators in series. For the 

slave satellite, the satellite motion can be determined by the Δ∑ modulator based 

sensors, e.g. the MEMS gyroscope as discussed in the last chapter. Such 1-bit data are 

fed back to the controller, which includes the angular position and angular rate for all 

axes. The interest of this part lays in the robustness of the proposed OBMPC 

controller under the effect of data loss, disturbances/noise and time delay introduced 

in the communication process. A state estimator is developed at the controller side to 

eliminate the effects of the measurement noises and data loss.  

The time delay caused by the plant (referred as ―Nature delay‖ or ―Plant delay‖) and 

the processing time of the controller are considered. Such delays can be modeled in 

the control system as the onboard computation time at each time step. Also the 

communication can be time-stamped so that the propagation delay caused by the 

wireless transmission can be explicitly known. A fixed time delay 𝜏 can be used to 

model the time delays discussed above. In this case, the inputs to the actuators held at 

their previous values. Small fixed time delays can be modeled in the controller by 

letting the state variable 𝜘(𝑘) = 𝑥(𝑘 + 𝜏). For notional simplicity, we still use 𝑥(𝑘) 

to represent 𝜘(𝑘)  in this work, assuming the expected plant delay and the 

communication delay has been modeled in the system. A state space function for a 

WCS can be formulated as Eq.6.1: 

𝑥(𝑘 + 1) =   𝑥(𝑘) + 𝐵u(𝑘) + 𝐵 𝜔(𝑘)    

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑣(𝑘),                                                         (6.1) 

where 𝜔(𝑘) ∈ 𝑛  and 𝑣(𝑘) ∈ 𝑛 are additive white noises standing for the system 

noise and the observation noise respectively. Any delay larger than 𝜏 is considered to 

be a data loss. For the following discussion, two basic assumptions are made here.  

A 6.1: Both noises 𝜔(𝑘) and 𝑣(𝑘) are Gaussian and have means of zero.  

A 6.2: The pair (A,C) is completely observable. 
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However, Eq.6.1 cannot accurately model all the time delays that occur in a real world 

WCS. Even if the clock can be synchronized, large and unexpected delays may still 

occur and cause deterioration in the control system. Also, in the communication 

channel with limited bandwidth, the sensor data will be queued in the buffer, which 

will also cause random time delays. The stability issues caused by the time delay have 

been developed by many researchers, e.g. (Branicky, et al., 2000). In this work, any 

unexpected large time delays are regarded as a data loss, and the data loss rate is 

assumed to be known. 

 Data Loss and Time Delay in the OBMPC System 6.2

The MPC developed in the WCS applications can be found in many literatures 

e.g.(Quevedo, et al., 2003), (Hegrenæs, et al., 2005). The OBMPC inherits the 

benefits of the MPC algorithm for the WCS, in which the prediction data can be used 

to produce backup information in case of packet loss or a large time delay occurrence. 

Assuming the plant model is stable and the initial state condition of the satellite is 

calculated nearly correctly, at time step k, with the plant input and output‘s current and 

past information, x(k+i) can be explicitly known, a clock will be set in the controller 

to synchronize and index the control process to detect if there is any unexpected data 

loss or time delay. The predicted value will replace the input data if a data loss or time 

delay is detected. Such replacement can be achieved by adding a buffer to the 

controller to store the predicted information during each optimization process. In 

doing so, the data loss or delay can be treated as a disturbance applied to the system. 

For example, at time step k, the sensor data 𝑥(𝑘|𝑘) are sent to the controller and 

received with negligible error. A predicted state feedback 𝑥(𝑘 + 𝑖|𝑘)  in the 

prediction horizon will be calculated and saved in the buffer. If at time step k+i, the 

packet is lost, the predicted data 𝑥(𝑘 + 𝑖|𝑘) can be taken from the buffer and serve 

as the feedback signal to maintain the convergence process. Such a buffered control 

system is similar to the state predictor proposed in (Chan and Ozguner, 1994). The 

stability issues of such WCS with future data buffering have been discussed in many 

literatures e.g. (Sha, et al., 2002; Tang and de Silva, 2006). Similarly, data with large 
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delays can be regarded as data loss, and substituted by the predicted data even if they 

eventually arrived at the receiver. Therefore, large time delays will be treated as data 

loss in this work and will not be discussed as a separate issue.  

Except for the explicit use of the predicted data, the OBMPC is also less sensitive to 

the data loss due to the nature of the 1-bit processing control system. As the control 

signals are oversampled, each 1-bit data carries only partial information due to the 

OSR, but can be processed in sequence. Hence the significance of data loss is much 

less than conventional multi-bit D/A conversion methods (see one of our previous 

works (Wu and Bai, 2010) for more details). In order to emphasize the bi-level 

quantization nature of the problem, here the author assumes a n channel state 

feedback acquired from the sensing element is defined as 𝑋(𝑘) ∈ 𝑛, where  = 

{-1,1}. In principle it is only necessary to transmit one bit for each communication 

channel as the control input information per time step to maintain control progress 

(more bits are required to address multiple information, e.g. 3 angular position 

feedbacks and 3 angular velocity feedbacks and so on). As already discussed, to 

achieve good resolution, a high OSR is typically chosen for the OBMPC system. Such 

high frequency 1-bit data will be processed in sequence without 

demodulation/decimation. Hence, in the case of a single bit loss, the equivalent 

demodulated value (i.e. the average of a series of over sampled 1-bit data) will not be 

affected significantly.  

 State Estimation for 1-Bit Processing Control System  6.3

The state feedbacks in the proposed attitude mission can be directly acquired from the 

sensing elements (e.g. gyroscope, accelerometer, etc.). Therefore the state observer is 

not required. However, full state feedback does not directly address the issue of the 

steady state error, especially when considering the disturbances and delays introduced 

by the wireless communication. The augmented model is proposed in chapter 4 to 

address the effect of the constant disturbance so that the disturbance model is not 

necessarily included in the observer to avoid the observer bias. Hence, the state 
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estimator discussed in this chapter is mainly focus on the regulation purposes rather 

than disturbance rejection and reference tracking. Also, the design proposed this 

chapter can be referred as an example of designing the state estimator for the 1-bit 

processing based control system in a more general case when the full state feedback is 

not feasible.  

6.3.1 State observer  

Essentially, the state variable  ( ) is estimated via an observer of the form: 

𝑥̂(𝑘 + 1) =  𝑥̂(𝑘) + 𝐵𝑢(𝑘) + 𝐾𝑜𝑏(𝑦(𝑘) − 𝐶𝑥̂(𝑘)),              (6.2) 

where  ̂( ) is the estimated state feedback,  𝐨  is the observer gain which is 

designed to converge the state error. This algorithm is able to detect differences 

between the actual state variable value  ( ) and the estimated value  ̂( ) and 

change the estimated value to better fit the environmental noises. With the 

information of   ̂( ) replacing  ( ), given the notational context in chapter 4, the 

optimal solution for the unconstrained MPC can be found as: 

𝑈(𝑘) = 𝐾𝑦𝑅𝑠(𝑘) − 𝐾𝑚𝑝𝑐𝑥̂(𝑘),                 (6.3) 

where 𝐾𝑦=,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

𝛷;  𝛹 and 𝐾𝑚𝑝𝑐 = −,𝐼𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚-⏞        
𝑁𝑐

𝛷; 𝛺. Note that the 

closed-loop observer error equation is 

𝑒(𝑘 + 1) = ( − 𝐾𝑜𝑏𝐶)𝑒(𝑘).                                     (6.4) 

The augmented form of state variable can be then written as  

[
𝑒(𝑘 + 1)

𝑥(𝑘 + 1)
] = [

 − 𝐾𝑜𝑏𝐶 𝑜𝑛×𝑛
−𝐵𝐾𝑚𝑝𝑐  − 𝐵𝐾𝑚𝑝𝑐

] [
𝑒(𝑘)

𝑥(𝑘)
] + [

𝑜𝑛×𝑚
𝐵𝐾𝑦

] 𝑟(𝑘)      (6.5) 

where 𝑜𝑛×𝑛  is a 𝑛 × 𝑛  zero matrix and 𝑜𝑛×𝑚  is a 𝑛 ×𝑚  zero matrix. The 

characteristic equation of the closed-loop state-space system is determined by 

det(𝜆𝐼 − ( − 𝐾𝑜𝑏𝐶)) det(𝜆𝐼 − ( − 𝐵𝐾𝑚𝑝𝑐))=0.      (6.6)    

It can be seen that the design of the predictive control law and the observer can be 

carried out independently (or separately). Despite this, when the two components are 

combined together, the Eigenvalues remain unchanged. 
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Amongst various state estimators, the Kalman filter is the most popular choice 

because it is simple to implement as well as its capability of maintaining the stability 

of the system at the design stage. By combining error-containing sensor measurement 

and the theoretical prediction of the dynamic model of the system, the Kalman filter 

can provide a good state estimation for the controller. Many literatures have explained 

the fundamental theory of the Kalman Filter and its use in many applications, e.g. 

(Lee and Ricker, 1994; Welch and Bishop, 2006; Grewal and Andrews, 2008).  

If the constraints exist, then the Moving Horizon Estimation (MHE) can be used in 

state estimation. Similar to the MPC algorithm, the MHE technique is based on a QP 

problem which utilizes a moving window containing a fixed number of observed 

measurements. The MHE can be simplified into the Kalman filter under some 

conditions. In this work, the MHE method shall be firstly discussed and the Kalman 

filter will then be discussed as a special case.  

6.3.2 Customized moving horizon estimator for the OBMPC 

6.3.2.1 Moving horizon estimator and 1-bit processing  

Despite of the similarity of the MPC, the MHE is a less popular approach because of 

the wide success of the EKF. Unlike the EKF, MHE requires solving QP solvers 

iteratively, which induces computational expense to the estimator. Similar to the early 

stage of the MPC development, most MHE applications only apply to systems with 

moderate/slow system dynamics (i.e. Process control).  

Similar to the MPC algorithm, the MHE also have the advantage of dealing with hard 

constraints. Despite being less popular than the MPC, the MHE is still suggested as a 

practical method to incorporate inequality constraints in estimation for many 

applications, e.g. (Robertson, et al., 1996). Also the MHE is proven to be a powerful 

tool to deal with the quantization noise, data loss and time delay introduced in the 

WCS, e.g. (Rao, et al., 2001; Luo, et al., 2008; Xue, et al., 2012).  

In the proposed satellite mission, the state variables 𝑥(𝑘) (i.e. angles, angular 

velocities) can be directly measured using the sensing devices on the slave satellites. 

The sensing component (e.g. MEMS gyroscope) is embedded in a Δ∑ modulator 

http://en.wikipedia.org/wiki/Quadratic_programming
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based control loop, which modulates 𝑥(𝑘) into 1-bit signals. Normally, the quantized 

signal is oversampled by the modulator and a low pass filter will be used to decimate 

the oversampled signal. The Kalman filter technique or the MHE are employed to 

perform state estimation using the restructured signal e.g. (Goodwin, et al., 2004; Luo, 

et al., 2008; Wang, et al., 2008; Liu, et al., 2013).  

Unlike the above approaches, in this work, we develop a state estimator under the 

context of 1-bit processing. For the OBMPC system, the implementation of a simple 

and fast response controller relies on the 1-bit state feedback. Therefore, the interest 

of this section is to design the state estimator under the context of 1-bit processing so 

that it complies with the fast sampled control loop, while retaining the characteristic 

of the 1-bit state feedback. To formulate the estimation problem, the sensing data are 

assumed to be acquired in 1-bit format and the filtered quantization noise 𝑒(𝑘) is 

relatively small such that will not destabilize the control system. The sensing 

measurement 𝑥(𝑘) on each channel is weighted through a loop filter 𝐻𝑠  and a 

bi-level quantizer 𝑞Δ(. ) ∈ *Δ,−Δ+. The resultant 1-bit data 𝑥̃(𝑘) will be processed in 

the estimator directly without decimation. The estimated state feedback 𝑥̂(𝑘) needs 

to be weighted by a Δ∑ modulator to acquire its quantized counterpart 𝑞(𝐻𝑒𝑥̂(𝑘)) so 

that it can be used to perform the online optimization in the OBMPC controller. For 

the 1-bit MHE design discussed in the next subsection, the same Δ∑ modulator is 

used to modulate 𝑥̂(𝑘) so that 𝐻𝑒 = 𝐻𝑠. The control structure with state estimation 

is shown in Fig.6.2 

 

Figure 6.1 OBMPC based WCS with 1-Bit Moving Horizon Estimator 

The purposes of such a proposal are twofold. Firstly, the decimation filter can be 
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avoided as the 1-bit signal can be processed directly. This potentially simplifies the 

circuit complexity of the state estimator, and removes noises and delays introduced by 

the decimation filter. Secondly, as both the state feedback and the state estimation are 

eventually quantized signals, the state estimator can comply with the framework of 

the 1-bit processing, and therefore achieve a simple (multiplier free) implementation 

structure, so that a fast response state estimator can be achieved to comply with the 

oversampled control system. Moreover, as each of the 1-bit state feedback will be 

treated individually, the state update will be more frequent than the conventional state 

estimation, and therefore provide better state estimation results.  

The main drawback, however, is that such a 1-bit state estimator design will lose the 

ability to minimize the quantization noise (the 1-bit data will be processed directly so 

that the quantization noises will remain in the estimator). In this work, we assume the 

quantization noise can be minimized at the sensing end as discussed in the previous 

chapter. The proposed estimator will mainly deal with the measurement noises and 

data loss/packet loss during the communication process.  

6.3.2.2 Customized 1-bit moving horizon estimator   

In addition to A 6.1 and A 6.2, the following assumptions are needed to discuss the 

theory of the 1-bit MHE. 

A 6.3: The matrix pair (A, C) is an observable pair through the receding horizon N.  

A 6.4: The quadratic problem is asymptotically stable.  

Consider a sensor feedback that is transmitted through the lossy communication 

network. Define:  

𝛾𝑙𝑜𝑠𝑠(𝑘) ≜ {
0,   if the packet drop does not occur at time step k 
1,    if the packet drop occurs at time step k              

 

as an independent and identically distributed Bernoulli white sequence with 

distribution Prob (𝛾𝑙𝑜𝑠𝑠(𝑘) = 1)=p and Prob (𝛾𝑙𝑜𝑠𝑠(𝑘) = 0)=1-p, where 0≤p≤1. To 

simplify the problem, here we combine the data loss in both uplink and down link 
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together and model them with 𝛾(𝑘). Hence the system presented in Eq.6.1 can be 

described as Eq.6.7 and Eq.6.8:  

𝑥(𝑘 + 1) =   𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤(𝑘)                                (6.7) 

z𝑟(𝑘) = 𝐶𝛾(𝑘)𝑞Δ(𝐻𝑠(𝑧)𝑥(𝑘) + 𝑣(𝑘)) + (1 − 𝛾𝑙𝑜𝑠𝑠(𝑘))z𝑟(𝑘 − 1),    (6.8) 

where z𝑟(𝑘) is the data received by the state estimator with the stochastic parameter 

𝛾(𝑘). 𝐶𝛾(𝑘) = 𝛾𝑙𝑜𝑠𝑠(𝑘)𝐶. 𝑥̂(𝑘) is the estimated state variable. The system can be 

discussed under the framework of the stochastic system, where the state of the system 

is determined probabilistically. Given a batch of actual arrival information in a finite 

horizon window from k-N to k, a moving horizon estimator based on the 1-bit sensing 

data is proposed here to solve the state estimation. Define vectors:         

 Zk;N
k = ,z𝑟(k − N), z𝑟(k − N + 1),… z𝑟(k)-

T; 

Zk;N; 
k; = , z𝑟(k − N − 1), z𝑟(k − N),… z𝑟(k − 1)-

T  ; 

 𝑈𝑘;𝑁
𝑘; = , 𝑢(𝑘 − 𝑁), 𝑢(𝑘 − 𝑁 + 1),…  𝑢(𝑘 − 1)-𝑇; 

𝛤𝑘 = 𝑑𝑖𝑎𝑔,𝛾𝑙𝑜𝑠𝑠(𝑘 − 𝑁)𝐼, 𝛾𝑙𝑜𝑠𝑠(𝑘 − 𝑁 + 1)𝐼, … , 𝛾𝑙𝑜𝑠𝑠(𝑘)𝐼-; 

𝑉𝑘;𝑁
𝑘 = , 𝑣(𝑘 − 𝑁), 𝑣(𝑘 − 𝑁 + 1),…  𝑣(𝑘)-𝑇; 

𝑊𝑘;𝑁
𝑘 = , 𝑤(𝑘 − 𝑁),𝑤(𝑘 − 𝑁 + 1),…  𝑤(𝑘)-𝑇. 

According to Eq.6.1 and Eq.6.8, the state estimation vector 𝑋̅𝑘;𝑁
𝑘  and the received 

data pack 𝑍𝑘;𝑁
𝑘  within the receding horizon N can be described as 

𝑋̅k;N
k = 𝐹𝑠𝑥̂(𝑘 − 𝑁|𝑘) + 𝜗𝑠𝑈𝑘;𝑁

𝑘 + (1 − 𝛤𝑘)Zk;N; 
k;       (6.9) 

𝑍k;N
k = 𝐹𝑠𝑞∆(𝐻𝑠(𝑧)𝑥(𝑘 − 𝑁) + 𝑣(𝑘 − 𝑁)) + 𝜗𝑠𝑈𝑘;𝑁

𝑘 + (1 − 𝛤𝑘)𝑍k;N; 
k; + Є𝑒𝑊𝑘;𝑁

𝑘 (6.10) 

where  
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𝐹𝑠(𝑘) =

[
 
 
 
 
 

𝐶𝛾(𝑘 − 𝑁)

𝐶𝛾(𝑘 − 𝑁 + 1) 

𝐶𝛾(𝑘 − 𝑁 + 2) 
2

⋮
𝐶𝛾(𝑘) 

𝑁
]
 
 
 
 
 

; 

𝜗𝑠(𝑘) =

[
 
 
 
 
 

0 0 0 ⋯ 0
𝐶𝛾(𝑘 − 𝑁 + 1)𝐵 0 0 ⋯ 0

𝐶𝛾(𝑘 − 𝑁 + 2) 𝐵 𝐶𝛾(𝑘 − 𝑁 + 2)𝐵 0 ⋱ ⋮

⋮ ⋮ ⋮ ⋱ 0
𝐶𝛾(𝑘) 

𝑁; 𝐵 𝐶𝛾(𝑘) 
𝑁;2𝐵 𝐶𝛾(𝑘) 

𝑁; 𝐵 ⋯ 𝐶𝛾(𝑘)𝐵]
 
 
 
 
 

; 

Є𝑠(𝑘) =

[
 
 
 
 
 

0 0 0 ⋯ 0
𝐶𝛾(𝑘 − 𝑁 + 1)𝛾(𝑘) 0 0 ⋯ 0

𝐶𝛾(𝑘 − 𝑁 + 2) 𝛾(𝑘) 𝐶𝛾(𝑘 − 𝑁 + 2)𝛾(𝑘) 0 ⋱ ⋮

⋮ ⋮ ⋮ ⋱ 0
𝐶𝛾(𝑘) 

𝑁; 𝛾(𝑘) 𝐶𝛾(𝑘) 
𝑁;2𝛾(𝑘) 𝐶𝛾(𝑘) 

𝑁; 𝛾(𝑘) ⋯ 𝐶𝛾(𝑘)𝛾(𝑘)]
 
 
 
 
 

. 

The cost function for the 1-bit MHE can be then described as  

𝑚𝑖𝑛
𝑥̂∗(𝑘;𝑁|𝑘)

𝐽( 𝑘) = E 2𝑚𝑖𝑛𝑥̂(𝑘;𝑁|𝑘)2∑ (||𝑧(𝑖) − 𝑥̅(𝑖|𝑘)||𝑃̂𝑠
2 + ||𝑥̂(𝑘 − 𝑁|𝑘) −𝑘

𝑖<𝑘;𝑁

𝑥̅(𝑘 − 𝑁|𝑘 − 1)||𝑄̂𝑠
2 )33               (6.11) 

where        z𝑟(𝑖|𝑘) = 𝐶𝛾(𝑖)𝑞Δ(𝐻𝑠(𝑧)𝑥(𝑖) + 𝑣(𝑖)) + (1 − 𝛾𝑙𝑜𝑠𝑠(𝑖))z𝑟(𝑖 − 1); 

  𝑥̅(𝑖|𝑘) =  𝑞∆(𝐻𝑠𝑥̂(𝑖 − 1|𝑘)) + 𝐵𝑢(𝑖− 1); 

𝑥̅(𝑘−𝑁|𝑘− 1) =  𝑞∆(𝐻𝑠𝑥̂(𝑘−𝑁−1|𝑘− 1)) +𝐵𝑢(𝑘−𝑁−1); 

𝑃̂𝑠 ∈ :
𝑛  and 𝑄̂𝑠 ∈ :

𝑛  are weighting matrices, which stand for the confidence of the 

prediction 𝑥(𝑘 − 𝑁|𝑘) and the state estimation 𝑥̂(𝑖|𝑘) respectively. 𝑥̅(𝑖|𝑘) is the 

priori state estimation based on the posteriori state estimation at time step k-1. The 

quantizer output is a set of bi-level signal where 𝑥̂(𝑖|𝑘) ∈ = *𝑥: 𝑥 ∈ (∆,−∆)+.  

Theorem 6.1: For an unconstrained close-loop OBMPC control system with a stable 

control law 𝑈(𝑘) = −𝐾𝑀𝑃𝐶𝑞∆(𝐻𝑆𝑥̂
∗(𝑘|𝑘)), given weighting matrices 𝑃̂𝑠 ∈ +

𝑛
 and 

𝑄̂𝑠 ∈ +
𝑛

, the optimization state estimation 𝑥̂∗(𝑘 − 𝑁|𝑘) can be uniquely solved as: 

𝑥̂∗(𝑘 − 𝑁|𝑘) = 𝑞∆(𝐻𝑒*.𝑄̂𝑠𝐼 + 𝑃̂𝑠𝐹𝑠(𝑘)
𝑇𝐹𝑠(𝑘)/

; 

(𝑄̂𝑠( − 𝐵𝐾𝑀𝑃𝐶)𝑞∆(𝐻𝑒𝑥̂
∗(𝑘 −



123 

 

𝑁 − 1|𝑘 − 1)) + 𝑃̂𝑠𝐹𝑠(𝑘)
𝑇𝐹𝑠(𝑘)𝑞∆(𝐻𝑠𝑥(𝑘 − 𝑁) + 𝑣(𝑘 − 𝑁)) + 𝑄̂𝑠𝑤(𝑘 − 𝑁 − 1) −

𝑃̂𝑠𝐹𝑠(𝑘)
𝑇Є𝑠(𝑘)𝑊𝑘;𝑁

𝑘 )+)     (6.12) 

Proof:  

Directly solve the cost function Eq.6.11: 

𝛻𝑥̂(𝑘;𝑁|𝑘) 𝐽(𝑥̂
∗(𝑘 − 𝑁|𝑘)) = 2𝑄̂

𝑠
(𝑥̂∗(𝑘 − 𝑁|𝑘) − 𝑥̅(𝑘 − 𝑁|𝑘 − 1)) 

−2𝑃̂𝑠𝐹𝑠(𝑘)
𝑇(𝑍𝑘;𝑁

𝑘 − 𝐹𝑠(𝑘)𝑥
∗(𝑘 − 𝑁|𝑘) − 𝜗𝑠(𝑘)𝑈𝑘;𝑁

𝑘 − (1 − 𝛤𝑘)𝑍𝑘;𝑁; 
𝑘; ) = 0. (6.13) 

Therefore  

𝑥̂∗(𝑘 − 𝑁|𝑘) = (𝑄̂
𝑠
𝐼 + 𝑃̂𝑠𝐹𝑠

𝑇(𝑘)𝐹𝑠(𝑘))
; 
*𝑄̂

𝑠
𝑥̅(𝑘 − 𝑁|𝑘 − 1) − 𝑃̂𝑠𝐹𝑠(𝑘)

𝑇,𝑍𝑘;𝑁
𝑘 − 

(1 − 𝛤𝑘)𝑍𝑘;𝑁; 
𝑘; − 𝜗𝑠(𝑘)𝑈𝑘;𝑁

𝑘 -+; (6.14) 

According to Eq.6.14, we obtain: 

𝑍k;N
k − (1 − 𝐿)𝑍k;N; 

k; − 𝜗𝑠(𝑘)𝑈𝑘;𝑁
𝑘 = 𝐹𝑠(𝑘)𝑞∆(𝐻𝑠𝑥(𝑘 − 𝑁) + 𝑣(𝑘 − 𝑁)) +

Є𝑠(𝑘)Wk;N
k .(6.15) 

The state estimation can then be derived as: 

𝑥̂∗(𝑘 − 𝑁|𝑘) = (𝑄̂𝑠𝐼 + 𝑃̂𝑠𝐹𝑠(𝑘)
𝑇𝐹𝑠(𝑘))

; 
*𝑄̂𝑠𝑥̅(𝑘 − 𝑁|𝑘 − 1) − 

𝑃̂𝑠𝐹𝑠(𝑘)
𝑇𝐹𝑠(𝑘)𝑞∆(𝐻𝑠𝑥(𝑘 − 𝑁) + 𝑣(𝑘 − 𝑁)) − 𝑃̂𝑠𝐹𝑠(𝑘)

𝑇Є𝑠(𝑘)𝑊𝑘;𝑁
𝑘 +.       (6.16) 

Given a control law 𝑈(𝑘) = −𝐾𝑀𝑃𝐶𝑞∆(𝐻𝑠𝑥̂
∗(𝑘|𝑘)), if the quantization noise is small 

enough to be ignored, a priori state estimation of a stable 1-bit processing control 

system can then be derived as Eq.6.17. 

𝑥̅(𝑘 − 𝑁|𝑘 − 1) = ( − 𝐵𝐾𝑀𝑃𝐶)𝑞∆(𝐻𝑒𝑥̂
∗(𝑘 − 𝑁 − 1|𝑘 − 1)) + 𝑤(𝑘 − 𝑁 − 1). (6.17) 

Substitute Eq.6.17 into Eq.6.16. Hence Eq.6.12 can be obtained, which completes the 

proof. □  

As shown Eq. 6.12, the state optimization 𝑥̂∗(𝑘 − 𝑁|𝑘) can be obtained based on the 

a posteriori state estimation 𝑞∆(𝐻𝑆𝑥̂
∗(𝑘 − 𝑁 − 1|𝑘 − 1)) and the quantized state 
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feedback 𝑞∆(𝐻𝑠𝑥(𝑘 − 𝑁) + 𝑣(𝑘 − 𝑁)). Hence, by pre-calculating the parameters in 

Eq.6.12, the state estimator can be implemented under the framework of the 1-bit 

processing to comply with the fast sampled OBMPC controller.  

Moreover, due to the fact that γ(k) is a stochastic parameter, it is necessary to 

analyze the expectation of the estimation error generated by the estimator.  

6.3.3 Mean analysis 

Define the estimation error at time k-N as 𝑒𝑘;𝑁 ≜ 𝑥(𝑘 − 𝑁) − 𝑥̂
∗(𝑘 − 𝑁|𝑘) , 

re-arrange Eq.6.12, we have:  

(𝑄̂𝐼 + 𝑃̂𝐹𝑠(𝑘)
𝑇𝐹𝑠(𝑘))(𝑥̂

∗(𝑘 − 𝑁|𝑘) − 𝑞∆(𝐻𝑆𝑥(𝑘 − 𝑁) + 𝑣(𝑘 − 𝑁))) =

     𝑄̂ .𝑞∆(𝐻𝑆𝑥̂
∗(𝑘 − 𝑁|𝑘 − 1)) − 𝑞∆(𝐻𝑠𝑥(𝑘 − N − 1))/ + 𝑄̂𝑠𝑤(𝑘 − 𝑁 − 1) −

𝑃̂𝑠𝐹𝑠(𝑘)
𝑇Є𝑠(𝑘)𝑊𝑘;𝑁

𝑘 .      (6.18) 

For notational simplicity, define 𝐸𝑥̂∗ = 𝐸*𝑞∆(𝐻𝑆𝑥̂
∗(𝑘 − 𝑁|𝑘))+ , 𝐸𝑤 =  𝐸*𝑤(𝑘)+ , 

𝐸𝑥 = 𝐸{𝑞∆(𝐻𝑆𝑥(𝑘 − 𝑁)) + 𝑣(𝑘 − 𝑁)},  𝐸𝐾𝐸_𝑝𝑟𝑖 = E*𝐾𝐸_𝑝𝑟𝑖+ , 𝐸𝑒𝑘−𝑁 =  E*𝑒𝑘;𝑁+ , 

𝐸𝛷−1 = 𝐸*𝑄̂𝑠𝐼 + 𝑃̂𝑠𝐹𝑠(𝑘)
𝑇𝐹𝑠(𝑘)+, 𝐸𝛺 = 𝐸*𝑃̂𝑠𝐹𝑠(𝑘)

𝑇+ and 𝐸Є𝑠 = 𝐸*Є𝑠(𝑘)+.  

If the observation noise term 𝑣(𝑖) is not deterministic (i.e. not significant enough to 

change the sign of the received state feedback), then the received state feedback 

coincides with the output of the Δ∑ modulator based measurement unit. Assume the 

quantization noise has zero mean, hence  

𝐸𝑥 = 𝐸*𝑥(𝑘 − 𝑁)+;                      (6.19) 

   𝐸𝑥̂∗ = 𝐸*𝑥̂
∗(𝑘 − 𝑁|𝑘)+. 

Based on the independence and stationary assumptions, the expected value for the 

state estimation can be written as:  

𝐸𝑥̂∗(𝑘;N) = 𝐸𝑥(𝑘;𝑁) − 𝐸𝛷−1𝑄̂𝑠(𝐸𝑥(𝑘;𝑁; ) − 𝐸𝑥̂∗(𝑘;𝑁; )) + 𝐸𝛷−1(𝑄̂𝑠 − 𝐸𝛺𝐸Є𝑠)𝐸𝑤).     

(6.20) 
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Then the expected value of the error can be found as: 

𝐸𝑒𝑘−𝑁 = 𝐸𝑥(𝑘;𝑁) − 𝐸𝑥̂∗(𝑘;N) =  𝐸𝛷−1𝑄̂𝑠𝐸𝑒𝑘−𝑁−1 + 𝐸𝛷−1(𝑄̂𝑠 − 𝐸𝛺𝐸Є𝑠)𝐸𝑤. (6.21) 

Note that since 𝑄̂𝑠 and 𝑃̂𝑠 are positively defined matrices, then 𝐸𝛷−1𝑄̂𝑠 ≤ 1. Then the 

state estimator is a stable system which is driven by additive white noise 𝑤(𝑘), where 

‖𝐸𝑒𝑘‖ will converge to zero if 𝑘 → ∞. 

6.3.4 1-bit estimator using the Kalman filter technique  

Similar to the proposed RHE, a Kalman filter can also be used to implement the 1-bit 

state estimation. One can define QKal  and RKal  respectively as the covariance of 

the process noise and the measurement noise. During the estimation process, the first 

step is to obtain the state estimation through an a priori estimate of the state and the 

error covariance of the current time step, based on information from the previous time 

step. Given a quantized a posteriori state estimation 𝑞∆(𝐻𝑒𝑥̂(𝑘 − 1)) at time step 

k-1, the a priori state estimate and estimate covariance can be found as  

 𝑥̂(𝑘); =  (𝑞∆(𝐻𝑒𝑥̂(𝑘 − 1)) + 𝐵𝑢(𝑘 − 1) 

     𝑃𝐾𝑎𝑙 (𝑘)
; =  𝑃𝐾𝑎𝑙 (𝑘 − 1) 

𝑇 + 𝑄𝐾𝑎𝑙 ,                                 (6.22) 

where 𝑞∆(𝐻𝑒𝑥̂(𝑘 − 1)) is the quantized state estimation of the previous time step. 

Then the Kalman gain can be updated as:  

𝐾𝐾𝑎𝑙(𝑘) = 𝑃𝐾𝑎𝑙 (𝑘)
;𝐻𝑜

𝑇(𝐻𝑜𝑃𝐾𝑎𝑙 (𝑘)
;𝐻𝑜

𝑇 + 𝑅𝐾𝑎𝑙 )
; 

,       (6.23) 

where 𝐻𝑜 is the observation matrix. Note that in Eq.6.23, 𝐻𝑜 is modelled as identity 

as the state feedback is measurable in the proposed space mission. At the next time 

step, a posteriori estimation of the state and the error covariance are found by  

𝑥̂(𝑘) = 𝑥̂(𝑘); + 𝐾𝐾𝑎𝑙(𝑘)(𝑧(𝑘) − 𝐻𝑜𝑥̂(𝑘)
;) 

𝑃𝐾𝑎𝑙 (𝑘) = (1 − 𝐾𝐾𝑎𝑙(𝑘)𝐻𝑜)𝑃𝐾𝑎𝑙 (𝑘)
;.                (6.24) 



126 

 

The estimated state variable 𝑥̂(𝑘) is weighted in a Δ∑ modulator, then the quantized 

state variable can be presented as  𝑞∆(𝐻𝑒𝑥̂(𝑘)). The error covariance can then be 

found by substituting  Kal(k) into 

𝑃𝐾𝑎𝑙 (𝑘) = 𝑃𝐾𝑎𝑙 (𝑘)
; − 𝑃𝐾𝑎𝑙 (𝑘)

;𝐻𝑜
𝑇(𝐻𝑜𝑃𝐾𝑎𝑙 (𝑘)

;𝐻𝑜
𝑇 + 𝑅𝐾𝑎𝑙 )

; 
𝐻𝑜𝑃𝐾𝑎𝑙 (𝑘)

;. 

(6.25) 

Similar to the RHE case, the mean analysis can also be used to justify the use of the 

Kalman filter in the 1-bit processing system. Again given a stable closed-loop control 

law 𝑈 = −𝐾𝑚𝑝𝑐 𝑥(𝑘), simply minus 𝑥̂(𝑘) with 𝑥(𝑘), we have 

𝑥̂(𝑘) − 𝑥(𝑘)=( − 𝐵𝐾𝑚𝑝𝑐)(𝑞∆(𝐻𝑒𝑥̂(𝑘 − 1))-𝑞∆(𝐻𝑒𝑥(𝑘 − 1)))+ 𝐾𝐾𝑎𝑙(𝑘)𝐻𝑜 .( −

𝐵𝐾𝑚𝑝𝑐)𝑞∆(𝐻𝑒𝑥(𝑘 − 1)) − ( − 𝐵𝐾𝑚𝑝𝑐)𝑞∆(𝐻𝑒𝑥̂(𝑘 − 1))/. (6.26) 

Re-arrange Eq. 6.26, we have: 

𝑥(𝑘) − 𝑥(𝑘) = ( − 𝐵𝐾𝑚𝑝𝑐)(𝐼 − 𝐾𝐾𝑎𝑙(𝑘)𝐻𝑜)(𝑞∆(𝐻𝑒𝑥̂(𝑘 − 1)) − 𝑞∆(𝐻𝑒𝑥(𝑘 − 1))).(6.27) 

Adopting again the mean analysis gives us that  

𝐸𝑥̂(𝑘) − 𝐸𝑥(𝑘) = ( − 𝐵𝐾𝑚𝑝𝑐)(𝐼 − 𝐾𝐾𝑎𝑙(𝑘)𝐻𝑜)(𝐸𝑥̂(𝑘−1) − 𝐸𝑥(𝑘−1)).     (6.28) 

Then the expected value for the error can be derived as 

‖𝐸𝑒(𝑘)‖ = |( − 𝐵𝐾𝑚𝑝𝑐)(𝐼 − 𝐾𝐾𝑎𝑙(𝑘)𝐻𝑜)|‖E𝑒(k−1)‖ .      (6.29) 

Then if 𝐾𝐾𝑎𝑙(𝑘)  is designed to be stable, then ‖𝐸𝑒(𝑘)‖  will converge to zero 

if  → ∞. It is worth noting that, with known values of 𝑄𝐾𝑎𝑙  and 𝑅𝐾𝑎𝑙 , the iterative 

solution of the covariance of the state vector estimation and the Kalman gain is not 

required in real time. Therefore, it is feasible to design the 1-bit Kalman filter under 

the framework of 1-bit processing control system.  

 Summary 6.4

In this chapter, we first discussed the OBMPC controller in a wirelessly control 
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system (WCS). The benefits of the OBMPC controller toward the WCS mainly 

include two aspects. Firstly, as a predictive control algorithm, a predicted data can be 

used if a data loss or a large time delay is detected. Although such predictions rarely 

coincide with the actual data, they still provide a reasonable estimation while 

retaining the operation of the control system. Secondly, as a 1-bit processing based 

control system, the control system is less sensitive to the noises and delays due to the 

oversampled modulation techniques.  

However, the communication channels are still noisy and a 1-bit state estimator is 

required to improve the state feedback. A 1-bit processing based state estimator has 

been designed to improve such WCS architecture. Unlike the conventional state 

estimator methods, in the proposed OBMPC system, it is unnecessary to demodulate 

the 1-bit sensing signal to perform digital processing. The quantized data in the 

proposed 1-bit processing system can be processed directly by taking the advantages 

of signal processing techniques. If the loop filters of the Δ∑ modulator are well 

designed so that the filtered quantization noise power is retained within a small range, 

then the quantized sensing feedbacks can be treated as independent state feedback. 

Due to the nature of the 1-bit PDM, the modulated data can be demodulated by simply 

averaging a certain period of data group, i.e. according to the OSR. For example, if 

the sampling time is Ts, and the OSR is set to 200, then any 200 bits can be regarded 

as a single analogue measurement. From this point of view, the 1-bit data can be 

directly used in most filter techniques as the expectation of the resulted 1-bit state 

estimation over a certain period will be equivalent to the conventional state estimation 

results. Also, due to the 1-bit nature of the feedback data, the proposed estimator can 

be designed under the framework of the 1-bit processing control system, and therefore 

achieve a fast response, multiplier free structure. A 1-bit moving horizon estimator has 

been developed in this chapter as an example of the state estimator design. The design 

of the 1-bit Kalman filter is also discussed as a special case of the MHE. The 

simulation results will be discussed in the next chapter.  
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7. FRACTIONATED SATELLITE CONTROL SYSTEM 

IMPLEMENTATION, MATLAB SIMULATION AND 

HARDWARE IMPLEMENTATION 

================================================================== 

7.1 Mission Modeling  

7.2 System Architecture and Control System Design 

7.3 Matlab Simulation 

7.4 Hardware Implementation 

7.5 Summary 

================================================================== 

 Mission Modeling  7.1

The OBMPC is designed for a fractionated satellite project in which two 2-unit 

CubeSats will be developed. One CubeSat serves as a master satellite, which carries a 

primary onboard controller and bus subsystems. The other one serves as a slave 

satellite, which carries payload sensors for actual scientific missions. The two 

CubeSats together form a ―fractionated satellite‖ structure. The slave satellite has its 

own attitude sensors and actuators. However, the control algorithm runs on the 

primary onboard controller of the master satellite. The sensing and control signals are 

passed through a wireless data bus using the ISL. A charge exchange thruster (CXT) 

is developed as the attitude actuator for the slave satellite at the University of Sydney 

(Funamoto, et al., 2012). The CXT is only 50 grams in mass, which is specially 

designed for our nano-satellites.  

7.1.1 Slave satellite dynamic model 

A rigid-body satellite is used in this application as the slave satellite. It is symmetric 

about all three axes. Therefore, the equation of motion can be obtained for the attitude 

of the satellite using the Euler‘s equation of motion for a rigid body as described in 

Eq.7.1. 

𝑇𝑐𝑡𝑟𝑙 + 𝑇𝑔+𝑇𝑑 = 𝐼𝜔̇𝑆/𝑁 + 𝜔𝑆/𝑁 × 𝐼𝜔𝑆/𝑁 ,                      (7.1) 
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where I is the inertia matrix of the satellite, 𝜔S/N and 𝜔̇S/N are the angular rate and the 

angular acceleration of the satellite respectively in reference to the inertial system. 

𝑇𝑐𝑡𝑟𝑙 is the control torque applied to the satellite by the actuator and  𝑇𝑑 is the total 

disturbance. 𝑇𝑔  is the linearized gravity gradient disturbance.  The 𝜔𝑆/𝑁 × 𝐼𝜔𝑆/𝑁 

component represents a gyroscopic term between angular velocity vectors. The body 

coordinate system axes being the same as the main inertia axes, therefore, Eq.7.1 can be 

written in the scalar form: 

𝜔̇𝑆/𝑁𝑥𝐼𝑥 = 𝜔𝑆/𝑁𝑦𝜔𝑆/𝑁𝑧(𝐼𝑦 − 𝐼𝑧) + 𝑇𝑥 

𝜔̇𝑆/𝑁𝑦𝐼𝑦 = 𝜔𝑆/𝑁𝑥𝜔𝑆/𝑁𝑧(𝐼𝑧 − 𝐼𝑥) + 𝑇𝑦 

𝜔̇𝑆/𝑁𝑧𝐼𝑧 = 𝜔𝑆/𝑁𝑥𝜔𝑆/𝑁𝑦(𝐼𝑥 − 𝐼𝑦) + 𝑇𝑧 .                                       (7.2) 

Ix , Iy and Iz are the inertia of the satellite about the x, y and z-axis; and Tx , Ty and Tz are 

the total torques about three axes respectively. An angular momentum in the 

coordinates of the orbital coordinate system can be expressed as 

𝜔𝑆/𝑁 = 𝜔𝑆/𝑅 + (
1 𝜑 −𝜃
−𝜑 1 ∅
𝜃 −∅ 1

)

⏞          
𝐴𝐷𝐶𝑀

(
0
−𝜔𝑜
0
) ,                                      (7.3) 

where ∅, 𝜃 and 𝜑 are the Euler angles for three channels and ADCM is the approximate 

result of the direction cosine matrix (DCM) for small angles (Vallado, 2001; Funamoto, 

et al., 2012). 𝜔𝑆/𝑅 is the angular velocity of the reference attitude system and 𝜔𝑜 is 

the rotational velocity of the satellite. The quadratic terms can be ignored since they 

are of a low order. By denoting each axis in 𝜔𝑆/𝑅 as 𝜔𝑥, 𝜔𝑦 , 𝜔𝑧 respectively and by 

substituting Eq.7.3 into Eq.7.2, the linearized equation of motion can then be expressed 

as Eq.7.4:    
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                 𝜔̇𝑥 = −σ 𝜔𝑜
2𝜑 + (1 − σ )𝜔𝑜𝜔𝑧 +

𝑇𝑥
𝐼𝑥

 

                       𝜔̇𝑦 =
𝑇𝑦

𝐼𝑦
 

              𝜔̇𝑧 = σ3𝜔𝑜
2𝜑 − (1 + σ3)𝜔𝑜𝜔𝑥 +

𝑇𝑧

𝐼𝑧
 ,                            (7.4) 

where 𝜍 =
𝐼𝑦;𝐼𝑧

𝐼𝑥
; 𝜍2 =

𝐼𝑧;𝐼𝑥

𝐼𝑦
; 𝜍3 =

𝐼𝑥;𝐼𝑦

𝐼𝑧
 . Before continuing to build the state space 

model, we use Psiaki‘s idea (Vallado, 2001) to implement the linearized gravity 

gradient disturbance.  

𝑇𝑔 = 3𝐼𝜔𝑜
2 (
−𝜍 ∅
𝜍2𝜃
0

),                                                    (7.5) 

From Eq. 7.3 to Eq.7.4, the linear satellite dynamic model can be derived: 

𝑥̇ =  𝑥 + [
03,3
𝐼; 

] 𝑇𝑐𝑡𝑟𝑙,                      (7.6)                               

where: 

 =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−4𝜔𝑜
2𝜍 0 0 0 0 𝜔𝑜(1 − 𝜍 )

0 3𝜔𝑜
2𝜍2 0 0 0 0

0 0 𝜔𝑜
2𝜍3 −𝜔𝑜(1 + 𝜍3) 0 0 ]

 
 
 
 
 

; 

The state vector is given as x = (∅ 𝜃 𝜑 𝜔x 𝜔y 𝜔z)
T
. The inputs to the model have units 

in [Nm]. 

7.1.2 Constraints on control torque 

The control torque‘s saturation plays an important role in the attitude control process 

of fractionated satellites missions. Due to the constraints applied on actuators, the 

control process then becomes a non-linear control problem. As shown in Table 7.1, 

the maximum thrust for CXT in this case is limited to 86𝜇𝑁 at the current stage when 

using Argon gas (Funamoto, et al., 2012). 
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Table 7.1 Thrust produced by the most recent CXT 

Gas Mass flow rate [sccm] Applied voltage Power Use [W] Thrust[𝜇N] 

Hydrogen 7 12.5 2.7 18 

Argon <1 15 0.4 86 

In this simulation, we consider the attitude control of a 2U CubeSat 

(20cm×10cm×10cm) by using two CXTs on each axis, where the maximum torque 

for the longer side is approximately 1.72 × 10;5Nm. In the following simulation, 

1 × 10;5Nm is taken as the hard constraint for the control torque of the roll channel 

and yaw channel, and 0.5 × 10;5Nm for the pitch channel. 

7.1.3 Environmental models 

1) Solar pressure:  

The solar pressure will instantly jump to the highest value once the satellite comes out 

of the shadow of the earth and as soon as the satellite will reach the earth shadow 

again it will also vanish nearly instantly. This would be the worst case scenario for the 

controller. The force of the solar pressure is calculated with the following formula 

from (Vallado, 2001; Funamoto, et al., 2012): 

𝐹𝑆𝑜𝑙𝑎𝑟 = 𝑝𝑆𝑐𝑅 𝑠𝑎𝑡                                                         (7.7)  

where 𝑝𝑆 is the solar pressure,  𝑠𝑎𝑡  is the solar illuminated cross section area of the 

satellite and 𝑐𝑅 = 2 is the reflection coefficient. Then the moment of solar disturbance 

can then be presented as 

𝑇𝑆𝑜𝑙𝑎𝑟 = 2
𝐹𝑆𝑜𝑙𝑎𝑟𝑑𝑆𝑜𝑙𝑎𝑟 𝑠𝑖𝑛 𝛽     90

𝑜 ≤ 𝛽 ≤ 270𝑜

0                            𝑒𝑙𝑠𝑒
   ,                        (7.8) 

where 𝛽 is the angle of the latitude of the satellite, 𝑑𝑆𝑜𝑙𝑎𝑟 is the torsion arm. The 

torque generated through the solar pressure normally just affects the attitude in the 

y-axis. However, if we have bigger attitude changes, with respect to the reference 

coordinate system, the x-axis of the satellite might also be affected. The z-axis is 

unaffected as long as the center of gravity is near the z-axis. 

2) Aerodynamic drag 

The acceleration due to aerodynamic drag can be estimated as 
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𝐹𝑎𝑒𝑟𝑜 = −
1

2
𝑐𝐷 𝑠𝑎𝑡𝜌𝑣𝑟𝑒𝑙

2                                                          

𝑇𝑎𝑒𝑟𝑜 = 𝐹𝑎𝑒𝑟𝑜 × 𝑑𝑎𝑒𝑟𝑜 ,                                                  (7.9) 

where 𝑐𝐷 is the coefficient of drag; 𝜌 is the density of the air and vrel is the relative 

velocity of the air and 𝑑𝑎𝑒𝑟𝑜 is the torsion arm of aerodynamic drag. In this work, we 

assume both disturbances are constant in the simulation.  

 System Architecture and Control System Design 7.2

An augmented model is proposed for the fractionated satellite attitude control mission. 

Consider a discretized linear satellite dynamic model 

𝑥𝑚(𝑘 + 1) =  𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘) 

𝑦𝑚(𝑘) = 𝐶𝑚𝑥𝑚(𝑘).                                                       (7.10) 

The state vector is given with x = (∅ 𝜃 𝜑 𝜔x 𝜔y 𝜔z)
T
, which are fully observable. The 

inputs to the model are actuator torques (in [Nm]) for three axes. The model can be 

further translated into the δ-form by defining  𝛿 =
𝐴𝑚;𝐼𝑚

𝑇
, 𝐵𝛿 = 𝐵𝑚/𝑇, 𝐶𝛿 = 𝐶𝑚 , 

then Eq.7.10 can be rewritten as   

𝑥(𝑘 + 1) =  𝛿𝑥(𝑘) + 𝐵𝛿𝑢(𝑘)                                                

𝑦(𝑘) = 𝐶𝛿𝑥(𝑘).                                                       (7.11) 

One can further rewrite Eq.7.11 into the augmented model: 

[
∆𝑥𝛿(𝑘 + 1)

𝑦𝛿(𝑘 + 1)
] = [

 𝛿 0𝛿
𝑇

𝐶𝛿 𝛿 𝐼𝑞×𝑞
] [
∆𝑥𝛿(𝑘)

𝑦𝛿(𝑘)
] + [

𝐵𝛿
𝐶𝛿𝐵𝛿

] ∆𝑢(𝑘)                                                         

             𝑦(𝑘) = ,0𝛿 𝐼𝑞×𝑞- [
∆𝑥𝛿(𝑘)

𝑦𝛿(𝑘)
] .                                   (7.12) 

In addition to the benefits stated in Chapter 4, the augmented model also appears to be 

advantageous in WCS as it retains most of the properties of the dynamic system, 

while requiring fewer bits to specify the control signal (Vallado, 2001; Quevedo, et al., 

2003). Integrators are required on the actuator side to obtain the control input. A new 

state variable vector is chosen to be 𝑥 =  ,Δ𝑥𝑚
𝑇 ym-

𝑇. For notational simplicity, 
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Eq.7.12 can be denoted as: 

𝑥(𝑘 + 1) =  𝑥(𝑘) + 𝐵∆𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘).                                                          (7.13) 

The OBMPC algorithm is used for the attitude control of the proposed mission. From 

the master to the slave satellite, the augmented control input is given as the increase of 

the control torque. They are modulated by Δ∑ Modulation, and the resultant 1-bit data 

are queued in a buffer and transmitted to the decentralized actuators in series. To 

avoid gyroscopic effects, only one axis is controlled at one time. All the other input 

previous channels are held at status while one desired actuation control in progress. 

The attitudes of the slave satellite are sensed by the Δ∑ Modulator based MEMS 

gyroscope, and encoded into 1-bit data, and then transmitted back to the controller in 

1-bit format as state feedback. Such 1-bit state feedback has information including the 

angular position and angular rate for all axes. A state estimator can be used at the 

controller side to decrease the noises generated during the communication process. 

The control system structure can then be denoted as Fig.7.1 

 

Figure 7.1 Fractionated satellite attitude control with OBMPC and 1-bit state estimator. 

In Fig.7.1, the optimized control decision is solved online by the OBMPC controller 

using the attitude information. The control signals generated by the OBMPC 

controller are modulated and transmitted in the format of the augmented signals. 

Integrations are needed at the slave satellite end. The satellite‘s motion is measured by 

the Δ∑ Modulator based gyroscope as discussed in Chapter 5 and transmitted back to 
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the master satellite via the ISL. The sensor fusion technique will not be discussed in 

this work but is left as further work for researchers who are interested in the 1-bit 

processing control system.  

To deal with the measurement noise, data loss or unexpected large time delay, a 1-bit 

moving horizon estimator is used for the state estimation. The output of the estimator 

will retain the characteristics of the 1-bit data and therefore enable the implementation 

of the OBMPC controller. Alternatively, the 1-bit MHE can be degraded into a 1-bit 

Kalman Filter by setting the prediction horizon as 1, and using the noise covariance as 

the tuning parameters during the design process.  

 Matlab Simulation 7.3

The structural data of a slave satellite is shown in Table 7.2. 

Table 7.2 The slave satellite parameters 

Orbit Height(km) 320 

Time of Circulation(s) 1.6h 

Inclination(°) 79 

Velocity(m/s) 7572.3 

Rotational Velocity(1/s) 1.09×10
-3

 

Satellite 

Dynamic 

Model 

Size(cm) 20×10*10 

Mass(kg) 2kg 

Moment of Inertia x-axis (kg*m
2
) 5.98×10

-3
 

Moment of Inertia y-axis (kg*m
2
) 6.00×10

-3
 

Moment of Inertia z-axis (kg*m
2
) 9.64×10

-3
 

Based on Eq. 7.6, the continuous state-space model can be derived as 

𝑥̇(𝑡) =  𝑥(𝑡) + 𝐵𝑢(𝑡),   

𝑦(𝑡) = 𝐶𝑥(𝑡)                                                           (7.14) 

where: 

 =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 −4.64 × 10;6 0 0 0 0 1.28 × 10;3

0 6.62 × 10;7 0 0 0 0
0 0 0  −1.08 × 10;3 0 0 ]

 
 
 
 
 

; 
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𝐵 =

[
 
 
 
 
 

0 0 0

0 0 0

0 0 0

1.46 × 103 0 0

0 1.46 × 103 0

0 0 1.22 × 103]
 
 
 
 
 

; 𝐶 =

[
 
 
 
 
 
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0  0 0 1]
 
 
 
 
 

. 

An OBMPC is designed and implemented on-board the master satellite to control the 

slave satellite. The initial attitude is assumed to be known and set as the reference for 

the attitude control. For three axes attitude control and stabilization, it is 

recommended that each time only one axis is controlled. The master satellite carries 

out control system processing for the slave satellite directly upon the 1-bit signals, and 

then encodes and transmits the control signal as 1-bit signals to the slave satellite to 

drive the actuators directly. Firstly, we shall examine the OBMPC in the proposed 

mission without the effect of data loss and random time delay. The state estimator is 

not used in the control loop for this analysis.  

In the simulation, only the roll angle is controlled and the other two axes are set to 

zeros. The sampling time requirement is 10 seconds for the proposed mission. The 

OBMPC controller is considered with the OSR set to 200, so that the sampling time is 

0.05s. Set Np=4, Nc=4 and the weighting matrix Rw=0.5×10
7
. P and Q are chosen to 

satisfy the Lyapunov equation A
T
PA+Q=P. The set point for the roll angle is set to 1 

degree. A conventional MPC controller is also simulated as a benchmark for the 

OBMPC based on the same sampling rate and tuning parameters.  
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 (a) Control result comparison 

 

 (b) Control torque comparison 
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(c) Attitude difference between OBMPC and MPC 

Figure 7.2 OBMPC vs MPC control simulation 

In Fig.7.2(a), we can see that for the controlled roll angle axis, both controllers track 

the command and reach stable status in about 100 seconds. The difference between 

the stable values after 100 seconds is within 2%. The oscillations after 100 seconds 

are mainly caused by the gyroscopic effect. As suggested in Fig.7.2(b) and (c), the 

1-bit signals are able to drive the satellite accurately.  

For the benchmark controller, the OSR is actually not required. Hence, the OSR is 

removed and the sampling time of the control benchmark is changed to 10 seconds in 

the next simulation. Np and Nc remain the same as the previous simulation. Other 

parameters including the sampling time of the OBMPC have been set to be the same 

as the previous simulation. It is shown in Fig.7.3 (a) and (b) that the proposed 

OBMPC provides similar control performance as the benchmark controller, but the 

control trajectory is smoother.  
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(a) comparison in terms of angular position and angular rate 

 

(b) Control torque comparison 

Figure 7.3 Oversampled OBMPC vs MPC simulation 

To further study the performance of the OBMPC in the WCS, the effects of the 

wireless communication are included in the system. In the following simulation, the 

wireless link can be modelled via a known fixed time-delay (i.e. the on-board 

computation time can be well estimated and the communication can be time-stamped 

so that the propagation delay during the communication can be explicitly known). 

Any unexpected time delay is regarded as data loss. The data loss rate is known based 

on experience models. In this case, the inputs to the actuators are held at their 

previous values. Also, random instant noises may occur during the communication, 

which may cause numerical flips (e.g. from 1 to 0) in the 1-bit data sequence. The 
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data loss and noisy data together form the communication noises, which are also 

implemented in the simulation. Firstly, two groups of random data losses are added 

into the OBMPC and the benchmark controller with no estimator in use. In both the 

OBMPC and its benchmark, the predicted control data is stored in the buffer and used 

as sub-optimal value if the data dropout occurs. The BER is set to be the same for 

both control loops where BER=10
-3

 (Although the BER of the ISL in the proposed 

mission is around 10
-7

, the value was increased so that its influence on the result is 

notable within a small time period). The conventional MPC is using 16 bits binary 

signals to present the analogue signal.  

 

Figure 7.4 Oversampled OBMPC vs MPC with time delay and data loss 

In the OBMPC, each data loss only presents a single bit error under the OSR. On the 

other hand, the conventional MPC will suffer the loss of the entire state feedback, i.e. 

the effect of the data loss in 1-bit processing control system will be diluted by the 

OSR, and evenly distributed in the highly sampled control feedbacks. From Fig.7.4, it 

is observed that the OBMPC control tracks the control trajectory accurately whereas 

its benchmark showed two notable V shape variation curve. Therefore the effect of 

data loss is less significant for OBMPC than conventional MPC.  

Then we further integrate a 1-bit state estimator into the OBMPC system. As 

discussed in Chapter 6, it is possible to directly include to RHE to process the 1-bit 
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data without decimation, and provide the state estimation to the controller to perform 

control action. The main objective is to test the feasibility of implementing the 1-bit 

state estimator in the OBMPC system. Here, a RHE is designed to deal with the 

measurement noise, data loss and time delay. The BER remains the same so 

that γ = 0.001. A similar methodology can also be used to design a Kalman filter as 

discussed in chapter 6. The horizon is set to 𝑁𝑒 = 4. No constraint is applied to the 

estimator. The simulation result is shown in Fig.7.5: 

 

Figure 7.5 State estimation using the 1-bit RHE  

Based on the RHE, the control trajectory is shown in Fig.7.6. A reference OBMPC 

(truth) is used as shown in dashed black.  

 
Figure 7.6 1-bit RHE for Oversampled OBMPC with time delay and data loss 

It is observed in Fig.7.6 that the 1-bit RHE tracks its benchmark well despite of the 

noisy measurement and the noises introduced in the control loop, which proves that 
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the 1-bit RHE is as functional as usual RHE methods. Hence, it is feasible to include 

the state estimators in the control loop.  

Based on the simulation results provided above, conclusions can be drawn that the 

OBMPC controller is feasible for MIMO satellite attitude control systems, and can 

provide better results under the OSR when compared to the conventional MPC 

benchmark. To further verify the onboard resource consumption issues in terms of 

speed, power and area, the above simulations are implemented in a 

field-programmable gate array (FPGA) board.  

 Hardware Implementation 7.4

7.4.1 Arithmetic Blocks 

The arithmetic blocks used to implement the OBMPC are relatively simple. As 

discussed in the previous chapters, the state feedback in the OBMPC is restricted to 

the quantization level set = *𝛥, −𝛥+ and the optimal solution is uniquely defined 

as a piecewise affine function over 𝑛. In other words, the control input at each time 

step can be mapped with respect to the 1-bit state feedback and the pre-calculated 

multi-bit controller coefficient. If the quantization levels can be chosen as values of 

2‘s power, then there are only three arithmetic operations that are needed to complete 

all the calculations in the OBMPC: conditional-negate (CN), add and shift. (The 

quantization levels need to be carefully chosen to satisfy the stability issues discussed 

in Chapter 4. It is normally restricted in a specified range between stability 

requirement and SNR requirement. Practically, one can use the closest value of 2‘s 

power which is just larger than the maximum modulator input, e.g. control 

input/output saturation, as the quantization level). Among these operations, the CN 

and shift operations can substitute for the conventional multipliers: the CN operation 

is used to change the sign of the coefficients and the shift operation is used to scale 

the coefficients to the quantization level. Normally, right shift operations are applied 

as the quantization level is larger than the modulator input. The negative sign is 

https://en.wikipedia.org/wiki/Field-programmable_gate_array
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included in the coefficients for negative feedbacks so that the subtract operation is 

avoided. A comparison between a CN-shift operation and a conventional 

multiply-and-accumulation (MAC) arithmetic block implementation has been as 

presented in Table 7.3. Such MAC uses two data types: a 6-bit mantissa and a 5-bit 

exponent for coefficients and a 27-bit signed fixed point form for state variables. The 

results are obtained by realizing these operations with a VLSI process which is the 

UMC 0.13μm, 8-layer copper process. The power consumptions of these designs are 

also estimated in Synopsys Power Compiler (Cumplido-Parra, et al., 2001). 

Table 7.3 Comparisons between arithmetic operations 

 Conventional 1-Bit Processing 

Multiply MAC CN Add Shift 

Area(μm
2
) 21351.1 25369.1 1229.8 4800.4 3337.6 

Frequency(MHZ) 621.2 440.7 2597.4 2143.6 2520.8 

Power(mW) 5.0805 5.7825 0.1838 0.7263 0.4820 

 

It can be seen from Table.7.3 that the area and power consumption of arithmetic 

operations used for the proposed structure are significantly smaller than the 

conventional one. It is worth noting that for longer bit length, the ―1-bit‖ shows even 

more privilege than the conventional ones as the area and power consumption 

increase significantly with the increase of bit length while CN and Shift operations 

remain almost the same. So by eliminating the multipliers, in theory the OBMPC can 

achieve better performance in terms of area, speed and power. Such a proposition will 

be verified in the next section.   

7.4.2 Direct implementation 

The FPGA implementation made in this thesis is for design verification purpose only. 

Hence, a simple direct implementation is discussed in this section. For conventional 

MPC implementation, some improvements have been made to optimize matrix 

multiplication based on the work proposed in (Cumplido-Parra, et al., 2001). The 
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FPGA resource occupation and the power consumption are estimated by Xilinx power 

estimator (XPE) for both the MPC and the OBMPC. 1-bit signals are embedded into 

the OBMPC by second order Δ∑ modulators on both control inputs and feedbacks. 

The Δ∑ modulators for the control inputs act as A/D converters which are located off 

chip while the ones for the feedbacks are integrated in the MEMS to incorporate the 

sensors on the slave satellites. The coefficients are pre-calculated and hard wired 

on-chip. The global optimal solution and the modified Lagrange multiplier stated in 

Eq. 4.21 and Eq. 4.27 are processed and stored in registers. At each time step, the state 

feedback 𝑥(𝑘) is acquired from sensors as controller inputs and the controller 

outputs are calculated and written to the output port of the chip. All the calculations 

operate on two‘s complement numbers. The sign bit identifies a value as positive or 

negative, where 1 means a negative value and 0 means a positive value.  

 

Figure 7.7 The FPGA implementation for satellite attitude control mission. 

The proposed OBMPC hardware implementation can follow the steps stated below: 

1. Acquire the 1-bit feedback signal and calculate the global optimal 

solution using Eq.4.21. Since there are only two states for a modulated 

Δ∑ signal, the global optimal solution can be solved by simple bit shifts 

and sign switching operations as suggested in Lemma 4.1, e.g. only 

conditional-negates (CN) and bit shifters are required to process the 

multiplication between the 1-bit signal and parameters. 
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2. Compare the global optimal solution with all the constraints. If there is no 

violation, send the solution to the actuator and go back to step (1).  

3. Otherwise, calculate the modified Lagrange multiplier 𝜆̅  using Eq. 4.27. 

The operation remains between 1-bit feedback signals and parameters. 

Repeat the step until the Lagrange multiplier converges to zero (or small 

enough), which means the solution is optimal enough (Normal finite loop 

can be set to converge the Lagrange multiplier). 

4. Solve Eq.4.27 with λ̅, and send the resulting actuation signal to the 

actuator then go back to step 1 

A flow chart of the simulation configuration is shown in Fig.7.7. 

Matrix operations in Eq.4.21 and the iteration process in Eq.4.28 are resource 

expensive for FPGA implementations. Since 𝛺,ϕ and G  are constant matrices, 

matrix inversions can be pre-calculated offline to balance performance and resource 

utilization. Only input optimization with respect to state feedback needs to be 

processed in real time. Xilinx Vertex5 330t is used as the simulation device for both 

implementations.  

 

Figure 7.8 Simulation in Progress 
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The design summary is listed in Table 7.4.   

Table 7.4 Direct implementation design summary 

 MPC OBMPC 

Slice Logic Utilization Used Available Utilization Used Available Utilization 

Number of Slice Registers 3,361 207,360 1% 2,112 207,360 1% 

Number of Slice LUTs 81,462 207,360 39% 17,462 207,360 8% 

Number of occupied Slices 26,841 51,840 51% 6,684 51,840 12% 

Number of fully used LUT-FF pairs 3,268 17,850 18% 1,724 17,850 9% 

Number of BUFG/BUFGCTRLs 1 32 3% 1 32 3% 

Number of DSP48E1s 192 192 100% 0 192 0% 

 

As presented in Table.7.4, the OBMPC controller has much lower circuit complexity. 

The occupied slices are less than half and the Slice Lookup Tables (LUTs) are about 

2/3 less in comparison to its benchmark, and the later one also used up all the DSPs in 

the device. The power consumption for both implementations is compared in 

Table.7.5 

Table 7.5 (a) Detailed power consumption for the OBMPC and the MPC 

 

(b) Power consumption comparison between MPC and Oversampled OBMPC 

 

The clock for OBMPC is set to 200 times higher than the MPC controller to show the 

power comparison under the effect of OSR.  It can be seen from Table.7.5 that with 

OSR, the dynamic power consumption for the proposed OBMPC controller (17mW) 

is much smaller than MPC controller (49mW). Hence, even under the effect of OSR, 

the OBMPC still shows notable power efficiency over the conventional MPC.  

Ambient Temp: 0 ᵒC OBMPC MPC 

Supply Summary Total 

Current(A) 

Dynamic 

Current (A) 

Quiescent 

Current(A) 

Total 

Current(A) 

Dynamic 

Current(A) 

Quiescent 

Current(A) Source Voltage 

Vccint 1.000 1.161 0.017 1.144 1.193 0.049 0.145 

Vccaux 2.500 0.353 0.000 0.353 0.353 0.000 0.353 

Vcco25 2.500 0.012 0.000 0.012 0.012 0.000 0.012 

 
Frequency 

Supply Power (W) 

Total Dynamic Quiescent 

OBMPC(Oversampled) 1MHz 2.074 0.017 2.057 

MPC 5kHz 2.106 0.049 2.057 
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 Summary  7.5

In this chapter, a fractionated attitude control system has been developed and simulated. 

Firstly, the dynamic model of the slave satellite (the control objective) has been 

modeled, along with the constraints applied on the actuator. An environmental model 

has then been introduced. The parameters of the mission modeling are based on a 2-unit 

CubeSat satellite structure designed for the QB50 space mission.  

Secondly, the control system structure has been introduced. The controller is located on 

the master satellite while the actuator is fractionated in the space and wirelessly 

controlled via the ISL. The 1-bit sensing component discussed in Chapter 5 has been 

used to provide 1-bit state feedback to the controller. Also a 1-bit state RHE has been 

used to deal with the data loss and the large time delays introduced by the ISL. The 

Matlab simulation results have proven the feasibility of the OBMPC controller of the 

proposed space mission, as well as the efficiency of the proposed 1-bit RHE. 

To further prove the efficiency of the OBMPC controller, a direct implementation has 

been conducted based on the Xilinx vertex5 330t FPGA board. Comparison has been 

made between an oversampled (with the OSR=200) OBMPC controller and a 

conventional MPC controller. The design summary verified that the OBMPC 

controller has much lower circuit complexity in term of the occupied slices (less than 

1/2 of its benchmark) and the Slice LUTs (about 2/3 less comparing to its benchmark). 

The implementation of the conventional MPC also used up all the DSPs in the device. 

Power consumption for both implementations have been compared. The dynamic 

power consumption of the proposed oversampled OBMPC structure (17mW) is much 

smaller than MPC structure (49mW). The simulation results show that circuit 

complexity of the OBMPC structure is much simpler than that of the conventional one. 

Also even under the effect of OSR, the OBMPC structure still shows notable power 

efficiency over the conventional MPC structure.  
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8. CONCLUSIONS 

================================================================== 

8.1 Main Contributions 

8.2 Limitations and Further Work 

================================================================== 

 Main Contribution 8.1

8.1.1 Design of an OBMPC framework  

The OBMPC controller design has been discussed in this work. The 1-bit processing 

control system is based on the bi-level ∆∑ modulation. The resultant 1-bit data is in 

PDM nature which includes all the useful information but also includes quantization 

noises. As a nonlinear component, the behaviour of the ∆∑ modulation can be 

modelled by linearizing the quantization noise into additive white noise. To maintain 

the robustness of the controller, such noise needs to be sufficiently shaped to decrease 

the noise within the bandwidth of interest. A build-in noise shaping filter is applied to 

address this problem, but this may also require a high OSR to achieve the desired 

precision.   

If high OSR is engaged, the fast sampled control system may trigger various problems 

to the control loop. Firstly, the high sampling rate normally means long word length, 

which means it is impractical for implementation. Secondly, the use of small time 

intervals may be a challenge to the controller, especially for the embedded control 

systems where the on-board resources are limited. This means the controller needs to 

be carefully customized to suit the needs of the 1-bit processing control system. The 

discussion of the 1-bit processing based PID control system has been conducted in 

Chapter 3, along with a numerical simulation utilizing a small satellite model.  

Similar to the 1-bit processing control system discussed in Chapter 3, we first 

addressed the numerical issues generated by the high sampling rate, i.e. the OSR. 

High sampling rate may result in long word lengths for both coefficients and variables 
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within the controller, which will compromise the accuracy of the controller 

considering that limited bits are allowed for almost all the digital controllers. In the 

OBMPC controller, a δ-transform is proposed to replace the conventional z transform 

to overcome such numerical issues by performing a simple linear transformation. The 

design of the OBMPC structure is built on the 1-bit processing control system. Due to 

the online optimization nature, direct implementation of the MPC algorithm is not 

suitable for most embedded control systems, especially the ones with high sampling 

rates and/or limited onboard resources. The core idea of the OBMPC algorithm is to 

take the advantage of the explicit relation between the multi-bit coefficients and 1-bit 

controller state feedbacks. All the operations in the embedded controller can be 

achieved by simply using conditional-negate (CN), add and shift operations. 

Therefore, the control loop can be implemented with a multiplier free approach. As 

multiplications are the major power consumer for the onboard controller, the OBMPC 

structure can be very efficient in term of power and circuit complexity. The system is 

in digital control nature, affected by quantization noise introduced by Δ∑ modulators.  

To achieve such multiplier free structure, the explicit relationships between the 1-bit 

state feedbacks and the multi-bit coefficients shall be derived subject to: 

1) unconstrained systems; 

2) constrained system with convex constraint sets; 

3) constrained system with non-convex constraint sets. 

It has been proven that all the above three system can be implemented under the 

OBMPC scheme. It is worth noting that other than the demonstrated method 

developed in Chapter 4, many other fast MPC schemes can be implemented by the 

OBMPC structure directly or with minor modifications. 

8.1.2  Stability analysis for the OBMPC algorithm and design 

criteria   

The stability analyses for the OBMPC algorithm and design criteria are included in 
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this work. The stability issues for the Δ∑ modulation based control system are 

difficult to analyze, especially for high order Δ∑ modulators due to the non-linearity 

nature of the quantizer and the integrators in the structure. In Chapter 4, we first 

discussed the problem using the stable MPC controller as well as the stable Δ∑ 

modulator method for the stable OBMPC system design based on the assumptions 

that high OSR is provided and that the quantization noise is well filtered by the in 

loop filters of the Δ∑ modulator. In this case, designing a stable Δ∑ modulator is very 

important. The stability analysis involved designing the quantization level, followed 

by some stability criteria collected for stable Δ∑ modulator design. Also, general 

stability analyses for the MPC algorithm has also been briefly introduced in this 

section. If the OSR is not sufficiently high, that is, when the quantization noise is not 

small enough to be ignored, it can be proven that the signal-plus-white-noise structure 

as suggested in Chapter 3 is also suitable for the OBMPC algorithm, and therefore a 

stable close-loop control system can be designed. Moreover, a sufficient condition can 

be found to determine the positively invariant set of the OBMPC system with the 

control horizon 𝑁𝑐 = 1. 

8.1.3 Design of the 1-bit MEMS gyroscope sensor 

Chapter 5 discussed a 1-bit Δ∑ modulator based MEMS gyroscope for the OBMPC 

system. It serves as the sensing component and modulates the control signal into the 

1-bit format. In fact, embedding the Δ∑ modulator with the MEMS gyroscopes turned 

out to be a successful application due to the circuit simplicity and the benefits of 

incorporating the sensing component in a feedback control loop. If one treats the 

sensing mode of the gyroscope dynamics as a second order transfer function, then 

designing a bi-level Δ∑ modulator based MEMS gyroscope (i.e. a 1-bit MEMS 

gyroscope) falls into the framework of the 1-bit processing control system as 

discussed previously.  

To further improve the 1-bit MEMS gyroscope, the MPC algorithm can be used to 

minimize the quantization noise introduced by the Δ∑ modulator. A direct 
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implementation of the OBMPC structure to the MEMS gyroscope has then been 

studied. In comparison to the work achieved in (Cumplido-Parra, et al., 2001; 

Quevedo and Goodwin, 2005), the proposed method can include the constraints to the 

quantizer inputs, which serve as a clipping technique to stabilize the Δ∑ modulator if 

quantizer overloading occurs. 

8.1.4 Design of the 1-bit Moving Horizon Estimator 

A 1-bit processing based moving horizon estimator has been proposed in this work as 

an example of implementing the state estimator in the 1-bit processing based control 

systems. For the proposed space mission, the control system is maintained by the 

communication via the ISL. Due to the harsh space environment, a state estimator is 

required to deal with the noises and data loss during the communication process. 

Typically, the quantized data is demodulated at the state estimator to reconstruct the 

multi-bit signal in order to perform an estimation of the future state and the 

covariance of noise. Such demodulation would once again require digital signal 

processing, which removes the benefit of simple, direct implementation of the 1-bit 

processing control system.  

In the proposed OBMPC system, it is unnecessary to demodulate the 1-bit sensing 

signals to perform digital processing like other approaches. The modulated signals can 

be treated as independent measurement information with shaped quantization noise 

and can be processed directly by most signal processing techniques. From this point 

of view, the 1-bit data can be directly used in most types of Kalman filter or other 

sensor state estimation techniques. To prove this conclusion, a 1-bit processing based 

moving horizon estimator has been proposed in Chapter 6 as the state estimator for 

the OBMPC system. Therefore in the proposed OBMPC technique, one can avoid the 

use of complex A/D convertors in the control loop and retain the benefits of the 

simple 1-bit format state feedback.  
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8.1.5 Feasibility study and hardware implementation for the 

OBMPC in a fractionate satellite attitude control mission 

To verify the OBMPC controller and validate the claimed power efficiency for the 

proposed fractionate satellite attitude control mission, simulation and hardware 

implementation are developed in this work.  

For the proposed OBMPC controller, the author has firstly verified it in a motor 

control system in Chapter 4 to prove the feasibility of the algorithm. Then in Chapter 

7, the control system is designed to perform attitude control for a nano-satellite in a 

fractionated satellite mission to validate the proposed OBMPC control algorithm. 

Simulations have been made to compare the OBMPC. The simulation results of both 

the OBMPC and the traditional MPC are compared in Matlab. The efficiency of the 

OBMPC is also compared in terms of power and area with the conventional MPC 

using FPGA implementations.  

 Limitations and Further Work 8.2

8.2.1 1-bit data fusion techniques  

In this work, the author assumed that the acquired sensory data is accurate before 

being modulated by Δ∑ modulators. However, noises generated by the gyroscope 

such as gyroscope bias, bias instability (which is a major concern in MEMS 

gyroscopes), gyroscope scale factor error and nonorthogonality, are not considered in 

this work. Also, to acquire more dependable sensory data, disparate sources could be 

necessary for some desired propositions. Typically, a sensor fusion center is required. 

The quantized data is collected and demodulated at the sensor fusion center to 

perform an estimation of future states and the covariance of noise. Given the 1-bit 

processing concept developed throughout the thesis, one can design a 1-bit sensor 

fusion technique which processes the 1-bit data directly without demodulation. For 

the sake of brevity, the design of a data fusion center is reserved for the further work. 

The authors hope the design of the 1-bit state estimator presented in Chapter 6 can 
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induce more valuable contributions, i.e.1-bit control system based sensor fusion 

techniques, to improve the 1-bit processing control systems.  

8.2.2 Direct communication using the 1- bit data.  

New space network system developments, e.g. the development of Interplanetary 

Internet (e.g. InterPlaNet) protocol will certainly improve the control results of the 

fractionate satellite attitude control missions. Also, new development of the 

communication techniques, e.g. optical communication for satellites (Quevedo and 

Goodwin, 2005), will also improve the communication results. As the 1-bit processing 

control systems are usually highly sampled, if the communication channels can be 

well established, where the BER is reasonably small, one can send the 1-bit data 

directly via the ISL without extra modulation techniques. For example, as proposed in 

(Wissinger, 1995), an all optical binary Δ∑ modulator is used. It provides faster A/D 

conversion and induces less noise in the modulation loop. More importantly, it uses 

the electro-optical modulator (EOM) which provides optical outputs. If the range of 

such optical modulators can be extended to the operational range of a fractionated 

satellite mission, then the data can be directly transmitted to the control object. Such 

communication will base on only the physical layer and the communication protocol 

can be greatly simplified.  

8.2.3 Implementation of high efficiency OBMPC controllers 

In this work, to verify the power efficiency of the OBMPC control, a direct 

implementation method is adopted. To further improve the feasibility of the OBMPC 

control for the proposed mission, high efficiency OBMPC control system processor 

(CSP) can be developed to adopt the embedded controller for a proposed satellite 

mission. Moreover, it is necessary to guarantee that all the variety of functions can be 

processed under the sampling time interval to maintain the real-time performance. 

Therefore, a dual processor or a pipelining structure can be adopted to satisfy the 

required computational power. Moreover, as an implementation method, the OBMPC 

can be combined with many other techniques such as model reduction methods, fast 

http://en.wikipedia.org/wiki/InterPlaNet


154 

 

online QP solvers and hybrid control schemes.  
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