STUDIES ON THE CRYOPRESERVATION OF BOAR SPERMATOZOA AND ITS INTEGRATION INTO ASSISTED REPRODUCTIVE TECHNOLOGIES

Roslyn Bathgate

BSc (Hons), Sydney

2004

Thesis submitted to the Faculty of Veterinary Science, The University of Sydney in fulfilment of requirements for Doctor of Philosophy

Supervisor Professor Gareth Evans

Associate supervisor Professor WMC Maxwell

DECLARATION

Apart from the assistance mentioned in the acknowledgments and where due reference is made in the text, this thesis represents original research of the author and has not been previously submitted for a degree to any other institute.

Roslyn Bathgate BSc (Hons)

ACKNOWLEDGEMENTS

Firstly, thanks should go to my supervisor, Gareth Evans and associate supervisor, Chis Maxwell for giving me the opportunity to undertake this PhD and for all the last minute editing. I couldn't have done this without the support and advice of Bengt Eriksson, who showed himself to be a guru of many things and exceptionally good at pointing things out in books. I will never be able to thank him enough for all the time spent teaching me the way of the pig.

There was also much support from others in the lab, especially Kim Heasman (a fantastic Island in the Stream), Simon de Graaf, Tina McPhie and Andrew Souter. Also, Justine O'Brien, Fiona Hollinshead, Lindsay Gillan, Victoria Cogger, Naomi Cogger and Jorge Renya. The people who cared for 'my boys', John McClure, Matt van Dyjk and Nobel Toribio were absolutely indispensable, especially Matt for his sense of humour when things didn't go according to plan.

Many thanks go to the university poultry unit staff, Mel Hayter and Joy Gill for supplying me with chicken eggs for my project. I am grateful to the people at QAF Meat Industries for their help with the field trial and their willingness to adapt to the many last minute changes to plan 'B'. Many thanks also to Detlef Rath and Birgit Sieg for the collaborative work, sorting and inseminating sperm late into the night. Also the invaluable assistance of Matthew Crowther, for help with analysing the vast quantity of data generated from my field trial. I am also thankful to Zia Ahmed for tracking down the protocols for the yolk assays, advising me on the little tips that make these things go more smoothly and allowing me to use the resources in the Human Nutrition Unit. Thanks to Michael Muller from the ANZAC Institute for advising and assisting in the phospholipid assay of the yolks and for his patience with my steep learning curve. Thanks also to Fred Fowler and Irene van Ekris-Schouten for the duck eggs cheerfully donated.

The IVF performed in this thesis would have been impossible without the help of Katherine Morton and Shelley Underwood making trips to the abattoir and staying late sucking and cleaning eggs and making cleavage checks out of hours. Thanks also to Kath for keeping me sane all those party central weekends in rm344, B19.

Thankyou to the workers at Wollondilly abattoirs for cheerfully donating the ovaries and tracts used in my thesis and to the workers at Hillcrest Farm piggery for supplying me with pigs when needed.

Thanks to John Ryan for allowing me to use the equipment at the embryology lab of IVF Australia, Northshore to take photos for my thesis and to Tomas Stojanov and Omar Chami from the molecular biology lab of Sydney IVF for helping me with the PCR of embryos. Thanks also Chris O'Neill for allowing me to use the facilities of the Human Reproduction Unit, RNSH and to Omar for helping out with the PAF:AH assay.

Thanks to The University of Sydney and the Faculty of Veterinary Science for granting me a scholarship to undertake this project and thanks to APL for funding this project and providing a top-up scholarship that made life a little easier. Thanks to my mum and dad who were thrown into the world of pig reproduction, but took it all in their stride and gave me everything I needed and more. Diky also to Pavel Haluza for his understanding of my trials and tribulations over the last few years. Tak, já jsem udělala.

Most of all, thanks to all my boys, especially Frank, Sean, Mao and Castro, who were the most faithful.

TABLE OF CONTENTS

DECLARATION		ii
ACKNOWLEDGI	EMENTS	iii
TABLE OF CONT	TENTS	vi
LIST OF ABBREV	VIATIONS	xiii
LIST OF TABLES	5	xvi
LIST OF FIGURE	S	xviii
PUBLICATIONS	ARISING FROM THIS WORK	xxi
SYNOPSIS		xxiii
CHAPTER 1	REVIEW OF THE LITERATURE	1
1.1.	Introduction	2
1.2.	Artificial insemination	4
1.2.1.	Site and dose of insemination	6
1.2.2.	Timing of insemination	9
1.3.	Transport and storage of semen	12
1.3.1.	The history of sperm cryopreservation	16
1.3.2.	The principles of cryopreservation	17
1.3.3.	Cryopreservation packaging	24
1.3.4.	Cooling and thawing rates	27
1.3.5.	Cryopreservation medium	29
1.3.5.1	Cryoprotectants	29

1.3.5.2.	Antioxidants	36
1.3.5.3.	Platelet-activating factor and platelet-activating	40
	factor: acetylhydrolase	
1.3.5.4.	Seminal plasma	41
1.4	Reproductive technologies	45
1.4.1.	Embryo transfer in pigs	45
1.4.2.	Sex preselection	46
1.4.3.	In vitro production of pig embryos	47
1.5.	Conclusions	47
CHAPTER 2	MATERIALS AND METHODS	50
2.1.	Introduction	51
2.2.	Media preparation	51
2.2.1.	Initial extenders	52
2.2.2.	Freezing extenders	52
2.2.3.	Collection and preparation of seminal plasma	53
2.2.4.	Pre-freeze treatment	53
2.2.5.	Post-thaw treatment	54
2.3.	Semen collection	54
2.4.	Initial preparation and transport of semen	55
2.5.	Sperm assessment	56
2.5.1.	Motility	56
2.5.2.	Gross Morphology	56
2.5.3.	Concentration	57
2.5.4.	Staining	58
2.5.4.1.	Chlortetracycline	58
2.5.4.2.	Fluorescein-conjugated peanut agglutinin	60
2.6.	Semen freezing	61
2.6.1.	IMV-recommended method	63
2.6.2.	Minitüb-recommended method	64
2.6.3.	FlatPack method	65
2.6.4.	Final protocol	66
2.7.	Statistical analysis and data presentation	68

CHAPTER 3	COMPARISON OF BOAR SEMEN	70
	CRYOPRESERVATION METHODS	
3.1.	Introduction	71
3.2.	Experiment 1	72
3.2.1	Introduction	72
3.2.2	Materials and Methods	72
3.2.2.1.	IMV-recommended method	73
3.2.2.2.	Minitüb-recommended method	74
3.2.2.3.	Method recommended by Eriksson et al (2000)	75
	(FlatPack method)	
3.2.3.	Results	77
3.3.	Experiment 2	79
3.3.1.	Introduction	79
3.3.2.	Materials and methods	79
3.3.3.	Results	80
3.4.	Discussion	83
3.4.1.	Experiment 1	83
3.4.2.	Experiment 2	86
3.4.3.	Conclusions	87
CHAPTER 4	COMPARISON OF THE EFFECT ON	89
	POST-THAW MOTILITY AND	
	ACROSOME INTEGRITY OF EGG	
	YOLK FROM DIFFERENT AVIAN	
	SPECIES IN BOAR SEMEN FREEZING	
	EXTENDER	
4.1.	Introduction	90
4.2.	Experiment 1	91
4.2.1.	Introduction	91
4.2.2.	Materials and methods	91

4.2.3.	Results	92
4.3.	Experiment 2	93
4.3.1.	Introduction	94
4.3.2.	Materials and methods	94
4.3.2.1.	Moisture content	94
4.3.2.2.	Total fat content	94
4.3.2.3.	Fatty acid composition	95
4.3.2.4.	Phospholipid composition	96
4.3.2.5.	Protein content	98
4.3.2.6.	Cholesterol content	99
4.3.3.	Results	99
4.4.	Discussion	103
4.4.1.	Experiment 1	103
4.4.2.	Experiment 2	104
CHAPTER 5	THE EFFECT OF ADDITION OF	109
	SEMINAL PLASMA TO MEDIUM	
	BEFORE AND AFTER	
	CRYOPRESERVATION ON POST-	
	THAW VIABILITY OF SPERM	
5.1.	Introduction	110
5.2.	Experiment 1	111
5.2.1.	Introduction	111
5.2.2.	Materials and methods	111
5.2.3.	Results	113
5.3.	Experiment 2	116
5.3.1.	Introduction	116
5.3.2.	Materials and methods	116
5.3.3.	Results	117
5.4.	Discussion	120

CHAPTER 6 EFFECT OF CATALASE, DESFERAL, 126 PAF AND PAF:AH ADDITION TO MEDIUM ON MOTILITY AND ACROSOME INTEGRITY OF BOAR SPERM POST-THAW

6.1.	Introduction	127
6.2.	Experiment 1	128
6.2.1.	Introduction	128
6.2.2.	Materials and methods	129
6.2.3.	Results	130
6.3.	Experiment 2	131
6.3.1.	Materials and methods	132
6.3.2.	Results	132
6.4.	PAF:AH ASSAY	134
6.4.1.	Protein assay	135
6.4.2.	PAF:AH assay	135
6.4.3.	Results	136
6.5.	Experiment 3	136
6.5.1.	Materials and methods	137
6.5.2.	Results	138
6.6.	Experiment 4	139
6.6.1.	Introduction	139
6.6.2.	Materials and methods	140
6.6.3.	Results	140
6.7.	Discussion	142
6.7.1.	Experiments 1 and 2	142
6.7.2.	PAF:AH assay	144
6.7.3.	Experiments 3 and 4	145

CHAPTER 7	FIELD FERTILITY OF FROZEN-	147
	THAWED SPERM AT LOW DOSES	
	USING NON-SURGICAL, DEEP	
	INTRAUTERINE INSEMINATION	
7.1.	Introduction	148
7.2.	Materials and methods	149
7.2.1.	Collection of semen	149
7.2.2.	Animal husbandry	150
7.2.3.	Control inseminations	151
7.2.4.	Insemination technique	151
7.2.5.	Detection of ovulation	153
7.2.6.	Experimental design	153
7.2.7.	Supplementary study	154
7.3.	Results	155
7.3.1.	Pilot study	155
7.3.2.	Main experiment	157
7.3.2.1.	Catheter Insertion	158
7.3.2.2.	Weaning to oestrus interval	159
7.3.2.3.	Timing of insemination	162
7.3.2.4.	Effect of boar, semen type, dose and	163
	insemination timing on fertility rates	
7.3.2.5.	Double inseminations	168
7.3.2.6.	Pregnancy loss	170
7.3.2.7.	DIU insemination and reproductive tract	171
	damage	
7.3.2.8.	Supplementary study	174
7.4.	Discussion	175

CHAPTER 8	FERTILITY STUDIES ON SEX-	185
	SORTED, FROZEN-THAWED BOAR	
	SPERMATOZOA	
8.1.	Introduction	186
8.2.	Experiment 1	187
8.2.1.	Introduction	187
8.2.2.	Materials and methods	187
8.2.2.1.	Sex-sorting	188
8.2.2.2.	Freezing of sperm	190
8.2.2.3.	Insemination of sows	191
8.2.3.	Results	192
8.3.	EXPERIMENT 2	193
8.3.1.	Introduction	193
8.3.2.	Materials and methods	194
8.3.2.1.	In vitro maturation	194
8.3.2.2.	Preparation of sperm for IVF	195
8.3.2.3.	In vitro fertilisation and culture	196
8.3.2.4.	Oocyte and embryo assessment	197
8.3.2.5.	Synchronisation of recipient sows	198
8.3.2.6.	Embryo transfer	198
8.3.2.7.	PCR of remaining embryos	199
8.3.3.	Results	203
8.3.3.1.	In vitro results	203
8.3.3.2.	In vivo results	205
8.3.3.3.	Results of PCR and restriction analysis	205
8.4.	Discussion	208
8.4.1.	Experiment 1	208
8.4.2.	Experiment 2	210
CHAPTER 9	CONCLUDING REMARKS	213

BIBLIOGRAPHY

221

LIST OF ABBREVIATIONS

AAAO	aromatic amino acid oxidase
AI	artificial insemination
ANOVA	analysis of variance
ATP	adenosine triphosphate
BTS	Beltsville Thawing Solution
BSA	bovine serum albumin
CASA	computer-assisted sperm analysis
COC	cumulus-oocyte complex
СТС	chlortetracycline
DABCO	1,4-diazabicyclo[2,2,2]octane
DIU	deep intrauterine
DMSO	dimethyl sulphoxide
DNA	deoxyribose nucleic acid
DTT	dithiolreitol
EDTA	ethylenediaminetetraacetic acid
ET	embryo transfer
FAA	fertility-associated antigen
FITC-PNA	fluorescein-conjugated peanut agglutinin
FCS	foetal calf serum
FM	fertilisation medium
FR	farrowing rate
GSH	reduced glutathione

hCG	human chorionic gonadotrophin
hpi	hours post insemination
HSPM	human sperm preservation medium
IMV	Instruments de Médicine Vétérinaire
IU	intrauterine
IVF	in vitro fertilisation
IVP	in vitro production
LDL	low density lipoproteins
LPC	lysophosphotidylcholine
LPE	lysophosphotidylethanolamine
ММ	maturation medium
MUFA	monounsaturated fatty acids
NRR	non-return rate
PAF	platelet activating factor
PAF:AH	platelet activating factor: acetylhydrolase
PBS	phosphate buffered saline
PC	phosphotidylcholine
PCR	polymerase chain reaction
PE	phosphotidylethanolamine
PET	polyethylene terephthalate
PI	phosphotidylinositol
PMSG	pregnant mare serum gonadotrophin
PS	phosphotidylserine
PUFA	polyunsaturated fatty acids
PVA	polyvinyl alcohol

PVC	polyvinyl carbonate
PVP	polyvinyl pyrollidone
RO	reverse osmosis
ROS	reactive oxygen species
SDS	sodium dodecyl sulphate
SEM	standard error of the mean
SFA	saturated fatty acids
SOD	superoxide dismutase
TLC	thin layer chromotography
UTJ	uterotubal junction
UV	ultraviolet
ZF	zinc finger

LIST OF TABLES

Table 1.1	Use of extenders and storage time	13
Table 1.2	Sources of injury from freeze-thawing of cells	19
Table 1.3	Media components commonly used in freezing sperm of different species	29
Table 1.4	Optimal glycerol concentrations for cryopreservation of sperm of different species	31
Table 2.1	Components of CTC staining solution buffer	60
Table 2.2	Constituents of cryopreservation media	62
Table 2.3	Freezing rates	62
Table 3.1	Dimensions of sperm packages used for freezing	76
Table 3.2	Original components of Androhep and BTS (plus antibiotics) prior to adjustment by commercial suppliers and commercial confidentiality.	76
Table 3.3	Proportion of sperm exhibiting F, B and AR CTC staining pattern after freeze-thawing by different methods	78
Table 3.4	Combinations of boar semen freezing methods tested	80
Table 3.5	Proportion of post-thaw CTC staining pattern of sperm after being frozen and thawed by different methods	83
Table 4.1	Components of yolk from different avian species	100
Table 4.2	Fatty acid composition of yolks from different avian species	101
Table 4.3	Proportion of phospholipid types in the yolks of different avian species	102
Table 5.1	pH of semen in different media with addition of differing amounts of seminal plasma	120
Table 6.1	Final concentration of reagents added to cooling extender prior to freeze-thawing of boar semen	129
Table 6.2	PAF:AH activity in boar semen	136

Table 7.1	Conception and farrowing rates in sows inseminated with a double dose of 1000×10^6 fresh or frozen-thawed sperm using DIU insemination	156
Table 7.2	Mean fertility results in sows inseminated with a double dose of 1000×10^6 fresh or frozen-thawed sperm using DIU insemination	156
Table 7.3	Parity, time and order of sow in an insemination session of sows which could not be inseminated	159
Table 7.4	Fertility results of sows given a single or double insemination of fresh or frozen-thawed semen, using a low dose and DIU insemination	165
Table 8.1	Constituents of media used during sex-sorting of boar sperm	190
Table 8.2	Summary of outcomes for all sows receiving low dose, DIU insemination with sorted or unsorted, frozen-thawed boar sperm	193
Table 8.3	PCR protocol for amplification of template porcine DNA	202
Table 8.4	Oocyte maturation, penetration and fertilisation rates after IVF with frozen-thawed control or sex-sorted boar sperm	204
Table 8.5	Results for all sows after non-surgical transfer of embryos derived from sex-sorted, frozen-thawed boar sperm	205
Table 8.6	Sex of embryos derived from IVF with sex-sorted, frozen-thawed sperm, as determined by PCR	207

LIST OF FIGURES

Figure 1.1	Catheters used for AI in pigs	7
Figure 1.2	Summary of sources of injury arising from lowered temperature	20
Figure 2.1	Dummy sow used for boar semen collection	55
Figure 2.2	Morphology examples commonly seen throughout the project	57
Figure 2.3	CTC patterns on boar sperm	58
Figure 2.4	Example of sperm stained with FITC-PNA	61
Figure 3.1	Post-thaw motility of spermatozoa at 0 and 3h when frozen and thawed by different methods	78
Figure 3.2	Percentage motile spermatozoa after freeze-thawing using different combinations of protocols	81
Figure 3.3	Percentage motile spermatozoa after freeze-thawing using different combinations of protocols	82
Figure 4.1	Post-thaw motility of sperm frozen in extender containing different yolk types	92
Figure 4.2	Proportion of sperm with intact acrosomes after freeze-thawing in extender with different yolk types	93
Figure 4.3	Example of a TLC plate after separation of phospholipid classes	102
Figure 5.1	Post-thaw motility (0h) after addition of seminal plasma to the cooling extender	113
Figure 5.2	Proportion of intact acrosomes after freeze-thawing with seminal plasma added to the cooling extender	114
Figure 5.3	Post-thaw motility (0, 3 and 6h) after addition of seminal plasma to the cooling extender	115
Figure 5.4	Proportion of intact acrosomes after freeze-thawing (0, 3 and 6h) with addition of seminal plasma to the cooling extender	116
Figure 5.5	Post-thaw motility (0h) after addition of seminal plasma to the semen after thawing	118

Figure 5.6	Post-thaw motility (3h) after addition of seminal plasma to the semen after freeze-thawing	118
Figure 5.7	Proportion of sperm with AR pattern staining 0 and 3h post-thaw with addition of seminal plasma after thawing	119
Figure 6.1	Effect on post-thaw motility of antioxidants added to cooling extender pre-freeze	130
Figure 6.2	Effect of pre-freeze addition of antioxidants to post-thaw acrosome integrity of boar sperm	131
Figure 6.3	Effect of post-thaw antioxidant addition on motility of boar sperm	133
Figure 6.4	Effect of antioxidant addition to post-thaw medium on acrosome integrity of boar sperm	134
Figure 6.5	Effect on post-thaw motility of boar sperm of PAF or PAF:AH addition to cooling extender pre-freeze	138
Figure 6.6	Effect of PAF or PAF:AH addition to cooling extender on post- thaw acrosome integrity of boar sperm	139
Figure 6.7	Effect on post-thaw motility of PAF or PAF:AH addition to sperm after thawing	141
Figure 6.8	Effect on acrosome integrity of addition of PAF or PAF:AH post- thaw	142
Figure 7.1	Catheters used for inseminations during the experiment	153
Figure 7.2	Distribution of the time taken to inseminate sows using the Firflex catheter	157
Figure 7.3	Proportion of sows in each parity group that could not be inseminated	158
Figure 7.4	Proportion of sows with differing weaning to oestrus interval	160
Figure 7.5	Non-return rates of sows with differing weaning to oestrus intervals	160
Figure 7.6	Relationship between weaning to oestrus interval and timing of ovulation in relation to insemination	161
Figure 7.7	Relationship between weaning to oestrus interval and insemination time	162

Figure 7.8	Distribution of the time taken to inseminate sows in the main experiment	163
Figure 7.9	Non-return rate of sows inseminated with fresh or frozen-thawed semen using DIU insemination	166
Figure 7.10	Farrowing rates of sows inseminated with fresh or frozen-thawed semen using DIU insemination	167
Figure 7.11	Litter sizes of sows inseminated with different doses of fresh or frozen-thawed semen at different times after oestrus detection	168
Figure 7.12	Non-return and farrowing rates of sows given a double insemination of fresh or frozen-thawed semen using DIU insemination or a control dose of fresh semen with cervical insemination	169
Figure 7.13	Litter sizes of sows given a double insemination of fresh or frozen-thawed semen using DIU insemination or a control dose of fresh semen using cervical insemination	170
Figure 7.14	Proportion of sows losing their pregnancy after DIU insemination	171
Figure 7.15	Non-return and farrowing rate of sows which were or were not inseminated properly as determined by catheter damage after insemination	173
Figure 7.16	Proportion of inseminations resulting in reproductive tract bleeding at 24 or 36h after oestrus detection	174
Figure 7.17	Damage to the reproductive tract seen after insertion of the Firflex catheter	175
Figure 8.1	Example of an orcein-stained presumptive zygote	204
Figure 8.2	PCR fingerprint of boar sperm run with human primers SRY, Amel and ZF, used to confirm the compatibility of human primers with porcine DNA	206
Figure 8.3	<i>Hae III</i> restriction analysis of ZFX and ZFY sequences, amplified from pig embryos derived from IVF with Y-chromosome-bearing sperm	207

PUBLICATIONS ARISING FROM THIS WORK

R. Bathgate, B. Eriksson, W.M.C. Maxwell and G.Evans (2001). Comparison of boar semen freezing methods. *Faculty of Veterinary Science Postgraduate Research Conference* – Conference paper, p.15

R. Bathgate, B. Eriksson, W.M.C. Maxwell, G. Evans (2001). Comparison of boar semen freezing methods. *Australasian Pig Science Association* – Conference paper, p.191

R. Bathgate, B.M. Eriksson, W.M.C. Maxwell, G. Evans (2002). Effect of seminal plasma on frozen-thawed boar semen. *Society for Reproductive Biology* – Conference paper, p.19

R. Bathgate (2002) The effect of seminal plasma on frozen-thawed boar sperm. *Faculty of Veterinary Science Postgraduate Research Conference* – Winner, best conference paper, p.13

R. Bathgate, B. Eriksson, W.M.C. Maxwell, G. Evans (2003). Potential damage to the uterine lining after non-surgical deep intrauterine insemination of sows. *Australasian Pig Science Association* – Conference paper, p.57

B.M. Eriksson, **R. Bathgate**, W.M.C. Maxwell and G. Evans (2003). Effect of seminal plasma protein fractions on boar spermatozoa motility and acrosome integrity. *5th International Conference on Boar Semen Preservation* – Conference paper, III-P33

R. Bathgate, B.M. Eriksson, W.M.C. Maxwell and G. Evans (2003). Low dose deep intrauterine insemination of sows with fresh and frozen-thawed spermatozoa. *5th International Conference on Boar Semen Preservation* – Conference paper, IV-P49

R. Bathgate, B.M. Eriksson, W.M.C. Maxwell and G. Evans (2003). Observational study on the effect of bleeding from the reproductive tract on the fertility and fecundity of sows after deep intrauterine insemination. *Faculty of Veterinary Science Postgraduate Research Conference* – Winner, best conference paper, p.10

B.M. Eriksson, **R. Bathgate**, W.M.C. Maxwell, and G. Evans (2004). Developing techniques for pig AI. *Australian Association of Pig Veterinarians* – Review paper, pp61-69

Maxwell WMC, Evans G, Hollinshead FK, **Bathgate R**, de Graaf SP, Eriksson BM, Gillan L, Morton KM and O'Brien JK (2004). Integration of sperm sexing technology into the ART toolbox. *Animal Reproduction Science* 82-83:79-95 – Invited review paper

R Bathgate, KM Morton, BM Eriksson, D. Rath, B Seig, O Chami, T Stojanov, WMC Maxwell and G Evans (2005) Production of porcine embryos of a predetermined sex after in vitro fertilisation of in vitro matured oocytes with sex-sorted frozen-thawed boar sperm *Reproduction, Fertility and Development* 17:303

R Bathgate, BM Eriksson, WMC Maxwell and G Evans (2005) Effect of pre-freeze addition of platelet-activating factor and platelet-activating factor:acetylhydrolase on the post thaw integrity of frozen-thawed boar sperm *Reproduction, Fertility and Development* 17:189

SYNOPSIS

The aim of this thesis was to investigate the possibility of integrating frozen-thawed boar semen into reproductive technologies and into commercial production of pigs in Australia. This was to be achieved by establishing a semen freezing and AI regime that was of a standard acceptable to industry, and integrating the resultant frozen-thawed sperm into other reproductive technologies, such as flow cytometric sperm sorting and IVF.

Initially, a protocol for freezing and thawing boar semen was established, based on the method described by Westendorf *et al.* (1975) and attempts were made to modify this protocol to improve the post-thaw sperm quality, as determined by in vitro assessment of motility, acrosome integrity and longevity. First, the egg yolk used in the freezing extenders was investigated, and the chicken yolk was replaced with either duck or quail yolk. It was shown that there was no benefit in substituting yolk from duck or quail for the chicken yolk traditionally used in freezing extender.

Second, the effect of seminal plasma addition to the freezing extender, or seminal plasma addition to resuspension medium post-thaw was tested. Incorporating whole seminal plasma into the freezing extender at levels above 50% was found to be detrimental to post-thaw sperm quality. Reducing levels to 20% of the final volume improved acrosome integrity, but adversely affected motility of sperm. However, adding 20% seminal plasma to the resuspension medium used after thawing of boar semen had no significant influence on sperm quality compared with resuspension in medium without seminal plasma.

The antioxidant catalase, and the iron chelator desferal added to the freezing extender, did not improve post-thaw sperm quality, nor was any benefit seen with addition of these substrates to the resuspension medium post-thaw. However, the bioactive phospholipid PAF and its regulating enzyme PAF:AH appeared to enhance post-thaw motility and acrosome integrity of sperm, respectively, when added to the semen pre-freezing. Unfortunately, due to the restrictions imposed on rPAF:AH as a research drug, it was not possible to test the in vivo effects at this time.

After the in vitro experiments were completed, the in vivo fertility of frozen-thawed sperm was tested using the optimal freezing protocol and a novel technology, enabling non-surgical deep intrauterine insemination of sows. The aim was to establish the lowest possible dose of frozen-thawed sperm that could be used, without compromising fertility. Successful pregnancies were achieved with doses as low as 62.5×10^6 frozen-thawed sperm but the farrowing rates were too low to be practicable on a commercial scale. This is the first report of litters born after insemination of such a low dose of frozen-thawed sperm and using the novel DIU insemination technique. However, it was concluded that a double dose of 250×10^6 frozen-thawed sperm was the minimum dose required for maintaining acceptable fertility.

Reduction in sperm numbers to such an extent made it possible to consider non-surgical insemination of sex-sorted, frozen-thawed semen. Previously, pregnancies had been achieved only after surgical insemination of sex-sorted boar sperm, or with DIU insemination of unfrozen sperm, immediately after sex-sorting. The low numbers of sex-sorted sperm available restricted the inseminate dose used here to 50×10^6 motile

sperm. A litter of 5 piglets was born after a low-dose, DIU insemination of sex-sorted, frozen-thawed sperm. This is the first report of piglets born after insemination with sex-sorted frozen-thawed sperm and non-surgical insemination.

The low farrowing rate achieved in this experiment prompted the investigation of integrating sex-sorted, frozen-thawed boar sperm into IVF. Morulae were produced after IVF with sex-sorted, frozen-thawed sperm and successfully transferred using non-surgical techniques. This is the first report of pregnancy achieved with non-surgical transfer of embryos produced after IVF and IVC of IVM oocytes with sex-sorted, frozen-thawed boar sperm. Unfortunately, the pregnancy did not hold, and the embryos were lost prior to Day 32, but PCR of non-transferred embryos confirmed successful pre-selection of sex.

Overall, this thesis demonstrated that it is still not economically feasible to incorporate frozen-thawed boar semen into the commercial production of pigs although it has considerable application in breeding programmes. However, the development of novel techniques enabling reduction in sperm dose, and for non-surgical transfer of embryos into recipient sows and incorporation of frozen-thawed semen into these technologies means that progress is being made with the integration of reproductive technologies and frozen-thawed semen into the pig industry.