The Ant GMap Project: Turning Outreach into Basic Research

Donald H. Feener Jr.1, Pat Lambrose2, Robert Rooley3, Adrian T. Feener4, Katie Luecke5 and James Ehleringer1

1Department of Biology, University of Utah, Salt Lake City, UT 84112 USA; 2Utah Geographic Alliance, Salt Lake City, UT 84014 USA; 3Riverton High School, Riverton, UT 84065 USA; 4West High School, Salt Lake City, UT 84103 USA; 5Honors College, University of Utah, Salt Lake City, UT 84112 USA

Introduction

GMap was initiated in 2010 as an outreach project to train Utah K-12 teachers in GIS technology that they could then use in their classrooms. In a series of annual workshops, Utah teachers used handheld GPS devices to record colony locations of two co-occurring species of seed-harvesting ants, Pogonomyrmex occidentalis and Pogonomyrmex rugosus. At two localities in southeastern Utah, the Rio Mesa Center and the Canyonlands Research Center. Data and maps provided by teachers were used to analyze spatial point patterns for evidence of intraspecific and interspecific competition and microhabitat sorting among colonies of the two ant species. Maps were also used to selectively sample workers from geo-referenced colonies for dietary analysis using stable isotopes 13C and 15N. We were particularly interested in whether species identity or spatial location was the primary determinant of colony-level diets as reflected in isotope ratios. This study represents an unusual instance in which a project designed primarily as outreach has led to a new avenue of basic research in a university laboratory. We encourage other laboratories to take advantage of such synergistic opportunities.

Field Sites and Methods

Ant colonies were mapped using handheld GPS devices in a 28.5 ha plot at the Rio Mesa Center (38°46.03’ N 109°11.698’ W 1280 m) and an 18 ha plot at the Canyonlands Research Center (38°8.102’ N 109°46.03’ W 1535 m) in southeastern Utah. Stable isotope analysis was conducted at the University of Utah Stable Isotope Ratio Facility for Environmental Research (SIRFER). All mapping and data analysis were conducted in R.

Spatial Analysis of Ant Colony Locations

Colonies of two species of seed-harvesting ants were mapped at two localities

Pogonomyrmex occidentalis nest

Pogonomyrmex rugosus nest

At the Rio Mesa we have mapped the location of 279 P. occidentalis colonies and 384 P. rugosus colonies. At the Canyonlands Research Center we have mapped the location of 278 P. occidentalis colonies and 123 P. rugosus colonies. Although the two species broadly overlap throughout the plots, neither species is uniformly distributed, with some areas of the plots favored by P. occidentalis and other areas favored by P. rugosus.

Ripley’s K-statistic analysis for the Rio Mesa Center

Ripley’s K-statistic analysis for the Rio Mesa Center

Ripley’s K-statistic indicates that Pogonomyrmex ant colonies at Rio Mesa are randomly distributed with respect to one another at distances between 0-12 m and clumped at distances > 12 m. However, examination of interspecific spacing patterns suggest that colonies of these two species repel one another at distances between 5-10 m, the range over which direct behavioral interactions are most likely. Evidence for interspecific overdispersion at distances >10 m may be related to differences in microhabitat preferences.

Analysis of 13C and 15N isotope ratios obtained from the heads of individuals workers indicate that workers from the same colony have similar isotopic signatures (numbers in graphs refer colony ID). Based on 13C ratios, both species feed on broad mixtures of C3 and C4 plants. However, P. occidentalis colonies at Canyonlands appears to be more restricted to C3 plants. Based on 15N ratios, colonies at Rio Mesa feed across at least 3 trophic levels, whereas colonies at Canyonlands feed across 2 trophic levels. Absence of 15N ratios less than 10 at Canyonlands suggest there is less plant-based food available at this locality.

Stable Isotope Analysis of Diet

Analysis of 13C and 15N isotope ratios for the colonies of these two species at Canyonlands indicates that Pogonomyrmex ant colonies at Canyonlands are overdispersed with respect to one another at distances between 0-16 m and randomly distributed at distances > 16 m. Interspecific spacing patterns suggest colony repulsion a small spatial scales and microhabitat clumping at distances > 15-20 m. Interspecific spacing patterns suggest that colonies of these two species are overdispersed at all spatial scales, which probably results from a combination of direct behavioral interactions at small spatial scales and differences in microhabitat preferences at large spatial scales.

Conclusions

This study demonstrates that outreach projects can make a significant contribution to basic science. Results of our study to date have shown that the spatial distributions of the seed-harvester ant species Pogonomyrmex occidentalis and Pogonomyrmex rugosus are the result of behavioral interactions between species at small spatial scale and probable habitat sorting or recruitment limitation at large spatial scale. The diet of these species is broadly overlapping as indicated by stable isotope ratios, but may be different at the two localities. In future studies we will examine the demography and genetic structure of these populations.

Acknowledgments

We thank all the K-12 teachers and students who have participated in GMap over the years. GMap has been funded by the University of Utah Center for Science and Math Education and NSF grants IOS10-52352 and DGE08-41233 to D. H. Feener.