Arousal, Sleep and Cardiovascular Responses to Intermittent Hypercapnic Hypoxia in Piglets.

By

Kellie D. Tinworth

A thesis presented for the degree of Master of Science (Medicine)

The University of Sydney, November 2003
Statement of Originality

I declare that all work presented in this thesis is my own, except for the contribution of those acknowledged hereunder. The work was performed whilst the candidate was employed as Research Assistant with Dr Karen Waters in the Department of Medicine, University of Sydney, between July 2000 and November 2003. The methods utilised in these studies are modified from those used routinely in this laboratory and recently published in peer-reviewed journals (Waters and Tinworth 2001, Waters and Tinworth 2003).

General animal husbandry was performed by the Laboratory Animal Services staff at The University of Sydney. Surgical procedures and electrophysiological studies were performed by Dr Karen Waters, with the candidate’s assistance.

No part of this thesis has been previously submitted for any other degree or diploma at any University or Institution. No material in this thesis has been written or published by another individual, except where due credit has been given in the form of a reference.
Acknowledgements

My gratitude to ‘The Boss’, Dr Karen Waters. Karen has acted as my supervisor for this thesis and my employer for the past seven years. Her ideas for research were inspirational, and her editorial input invaluable. The completion of this thesis signals the conclusion of our working relationship, with my imminent departure from this laboratory. Over seven years, we have worked together as a team to achieve great things in respiratory physiology. I am proud of our realizations, and our determination against some almost insurmountable odds to attain those realizations.

My gratitude also to A/Prof. Bob Love and Matthew Van Dijk at the University Farms, Camden. Their help in teaching me about pigs and what piglets regard as ‘treats’ was priceless.

My thanks to Mr Kevin Woodman, anaesthetic technician extraordinaire, who managed to teach me a good portion of all that he knows about anaesthetics and other life matters.

Thanks also to Dr Malcolm France and the Laboratory Animal Staff of The University of Sydney. Their efforts to meet our demands were undertaken with goodwill and will be fondly recalled.

My gratitude to my friends and family for their patience with my (at times) antisocial behaviour during the writing of this thesis. My most common refrain during these years has been that ‘animals do not observe weekends, public holidays or Christmas’ and how true it is.

The completion of this thesis was one of the most challenging and satisfying aspects of my life yet. My gratitude is held for the animals that contributed to our knowledge of respiratory and developmental physiology. I thoroughly enjoyed my time working with piglets and recommend it as a great and humbling experience.
Table of Contents

Statement of Originality __ iii

Acknowledgements __ iv

Table of Contents __ v

Abbreviations___ xi

Abstract __ xiii

CHAPTER 1: LITERATURE REVIEW ____________________________________ 1

Overview ___ 3

Functions of Arousal __ 4

The Arousal Response __ 5

Arousal Stimuli __ 7

Clinical Abnormalities Associated with Respiratory Compromise in Infants ______ 10
 Obstructive Sleep Apnoea __ 10

OSA Infants and Arousal Responses ___ 12

The Sudden Infant Death Syndrome __ 13

Risks for SIDS __ 14
 OSA ___ 14
 Prone Sleeping __ 15

Averting SIDS – The Arousal Response ______________________________________ 16

The Brain and Respiratory Control __ 17
 Ventilation ___ 18
 Ventilatory Control ___ 18
 The Central Controller ___ 18
CHAPTER 4: CHRONIC EFFECTS OF IHH ON AROUSAL, SLEEP AND CARDIOVASCULAR RESPONSES IN PIGLETS

Introduction

Methods

The Piglets

Study Protocol
Abbreviations

ABP arterial blood-gas
ALTE apparent life-threatening event
ATP adenosine triphosphate
ANOVA analysis of variance antilogarithm
BE base excess
BL Baseline
BP blood pressure
CNS central nervous system
CO₂ carbon dioxide
CPAP Continuous Positive Airway Pressure
CSF cerebrospinal fluid
d day
EEG electroencephalogram
ECG electrocardiogram
EMG electromyogram
EOG electrooculogram
H⁺ hydrogen ion
HCO₃⁻ bicarbonate ion
h hour
HH hypercapnic hypoxia, 8 % O₂ / 7% CO₂ / balance N₂
HR heart rate
IHH intermittent hypercapnic hypoxia
min minute
N₂ nitrogen
NREM non-rapid eye movement sleep
O₂ oxygen
OSA obstructive sleep apnoea
PaCO₂ arterial partial pressure of CO₂
PaO₂ arterial partial pressure of O₂
PCO₂ partial pressure of CO₂
PO₂ partial pressure of O₂
Recovery recovery, air: 21% O₂ / balance N₂
REM rapid eye movement sleep
RR respiratory rate
SIDS Sudden Infant Death Syndrome
s second
SD standard deviation
TST total sleep time
W wake
Abstract

Clinical studies have demonstrated an arousal deficit in infants suffering Obstructive Sleep Apnoea (OSA), and that treatment to alleviate the symptoms of OSA appears to reverse the deficit in arousability. Some sudden infant deaths are thought to be contingent upon such an arousal deficit. This research utilised young piglets during early postnatal development, and exposed them to intermittent hypercapnic hypoxia (IHH) as a model of clinical respiratory diseases. Arousal responses of control animals were compared to the animals exposed to IHH. Comparisons were also made between successive exposures on the first and the fourth consecutive days of IHH. Time to arouse after the onset of the respiratory stimulus, and frequency of arousals during recovery, demonstrated that arousal deficits arose after successive exposures and that these were further exacerbated on the fourth study day. After an overnight recovery period, the arousal deficit was apparently dormant, and only triggered by HH exposure. These studies confirm that both acute and chronic deficits can be induced on a background of otherwise normal postnatal development, suggesting that deficits observed in the clinical setting may be a secondary phenomenon.