CHANGE IN LUNG VOLUME IN ASTHMA
WITH PARTICULAR REFERENCE TO OBESITY

L M Schachter

A thesis submitted for the degree of

Doctor of Philosophy

Department of Medicine

University of Sydney

2005
DECLARATION

Apart from the assistance which is acknowledged herein, this thesis represents the original work of the author.

This work has not been submitted for any other degree at this or any other institution.

Linda Michele Schachter

December 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Publications arising from this thesis</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>Hypothesis</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>Thesis summary</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Literature review</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Relationship between obesity, asthma symptoms, lung function and bronchial responsiveness in adults</td>
<td>83</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Relationship between asthma, atopy and obesity in children</td>
<td>103</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Comparison of high dose methacholine challenges between obese and non-obese women</td>
<td>121</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>The relationship between changes in lung volumes and bronchial responsiveness in normal subjects and subjects with asthma</td>
<td>133</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>The association between severity of gastro-oesophageal reflux, asthma and lung function in obesity</td>
<td>147</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Discussion</td>
<td>163</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>170</td>
</tr>
</tbody>
</table>
DEDICATION

To those who have supported, loved and put up with me while I have completed this thesis.

In particular to my husband James,

Without whom this would either have taken 4 years or never would have been completed,

and

To Mum and Dad,

Who have led me to believe that anything is possible and that I can achieve it all.
ACKNOWLEDGEMENTS

This thesis has come together with the assistance and support of many people. I would like to thank all of the people who have helped me on the long journey to completing this PhD.

I would especially like to thank Michael Pain who has been a wonderful mentor and whose wisdom, support and guidance particularly in recent months has helped me in finishing my PhD, and the late Ann Woolcock whose encouragement and belief in my abilities convinced me to do a PhD.

Cheryl Salome has been a wonderful and patient friend throughout and she has read and reviewed everything that I have written and answered all my questions, no matter how silly they seemed at the time. I am very grateful for all of your time, patience and effort over the years.

Colin Sullivan and Robert Pierce have encouraged me to continue even when my enthusiasm was fading. Thankyou both for your enthusiasm and persistence.

I would also like to thank Jenny Peat for allowing me to use data previously collected and her statistical advice, which she made seem understandable, no matter how complicated the analyses. I would also like to thank Elena Belousova for help with data management and Wei Xuan for statistical advice. I would also like to thank Brett Toelle, who would answer all my calls for information and help.

I would also like to thank everyone at the Woolcock Institute for their assistance, encouragement and friendship. In particular, to Victoria Keena, Jane Burden, Tessa Bird and Helen Reddel, who all welcomed me back with open arms despite my ever-lengthening absences.

In Chapter 2 and 3, I have used data that has been collected by other colleagues and fellow scholars at the Woolcock Institute, University of Sydney. I personally was involved with performing spirometry, lung volumes, histamine challenges, and skin prick testing in Belmont in 1997.
I personally formulated the research question, assisted with extracting the data and performed the analyses.

All data from the other chapters, was collected by myself with the technical assistance of Alyson Roberts, Hayley McClure, Kim Gooey, Steven Ng and I thank them for their assistance.

Ethics committee approval was obtained by the Human Ethics Committee of the University of Sydney for Chapters 2, 3 and 4, the Human Ethics Committee of Central Sydney Area Health Service, NSW for Chapter 5 and by the Human Ethics Committee of the Avenue Hospital, Victoria for Chapter 6.

The prevalence data from these studies have been published elsewhere (cited below). The relationship between asthma, symptoms, lung function and obesity from this data has not been reported elsewhere and has not been used in another thesis.

PUBLICATIONS ARISING FROM THIS THESIS

HYPOTHESES

1. Obesity causes a reduction in lung volume and with this change in lung function predisposes obese subjects to an increase in diagnosis of asthma, bronchial hyperresponsiveness and symptoms of asthma including wheeze and shortness of breath.

2. This increase in asthma prevalence occurs in both obese adults and obese children.

3. Other factors that also cause a reduction in lung volume, such as lying supine will also increase bronchial hyperresponsiveness in both non-asthmatics and asthmatics.

4. Obesity primarily affects lung function through a direct mechanical effect on lung volumes. An alternative hypothesis exists that the effect of obesity on lung function is through associated conditions such as gastro oesophageal reflux or obstructive sleep apnoea, which are increased in the obese.

5. Obese subjects with reduced lung volume will have a change in position of the high dose methacholine curve and plateau in the absence of asthma diagnosis or symptoms.
THESIS ABSTRACT

Over the last 20 years both asthma and obesity have increased in prevalence. What is the link? There are data to suggest that increasing obesity is a risk for the increase in prevalence of asthma. A number of mechanisms have been postulated including the effects of reduced lung volume on bronchial reactivity and mechanical changes with lower lung volumes. Other possibilities include other obesity-induced co-morbidities including gastro-oesophageal reflux.

The aim of this thesis was to evaluate the link between asthma and obesity in both adult and childhood populations and to undertake experimental studies to examine the effects of changes in lung volume on bronchial reactivity.

In chapter 1, the literature is reviewed. The current literature suggests that there is a link between diagnosis of asthma, new onset of asthma, symptoms of shortness of breath and wheeze.

In chapter 2, data on 1997 adults in 3 population studies were analysed and the association between body mass index (BMI) and symptoms of shortness of breath and wheeze, diagnosis of asthma, medication usage for asthma, lung function and bronchial responsiveness were studied. This study showed that obesity was a risk for recent asthma (OR 2.04; 95%CI 1.02-3.76, p=0.048), symptoms of shortness of breath and wheeze (OR 2.6; 95%CI 1.46-4.70, p=0.001), and medication usage for asthma (OR 2.53; 95%CI 1.36-4.70, p=0.003).

There was a reduction in lung volume as measured by forced vital capacity (FVC), but there was no increase in bronchial hyperresponsiveness (BHR) (OR 0.87; 95% CI 0.35-2.21, p=0.78). Thus although the symptoms of asthma are increased there were no increases in BHR, despite significantly reduced lung volumes. The increase the medication usage is unlikely to have normalised the BHR, as there were ongoing symptoms suggestive of asthma.

In chapter 3, data on 5993 children in 7 population studies were analysed and the association between BMI percentile and symptoms of cough, wheeze,
diagnosis of asthma, medication usage for asthma, atopy, lung function and bronchial responsiveness was studied.

After adjusting for atopy, sex, age, smoking and family history, BMI was a significant risk factor for wheeze ever (OR=1.06; 95%CI 1.01-1.10, p=0.008) and cough (OR=1.09; 95%CI 1.05-1.14, p=0.001) but not for recent asthma (OR=1.02; 95%CI 0.98-1.07 p=0.43), or bronchial hyperresponsiveness (OR=0.97; 95%CI 0.95-1.04 p=0.77). In girls, a higher BMI was significantly associated with higher prevalence of atopy (χ^2 trend 7.9, p=0.005), wheeze ever (χ^2 trend 10.4, p=0.001), and cough (χ^2 trend 12.3, p<0.001). These were not significant in boys.

With increasing BMI in children, there was no reduction in lung volume, no increase in airway obstruction and no increase in bronchial responsiveness.

In chapter 4, the hypothesis that obesity per se is associated with bronchial responsiveness was tested. Six obese women without asthma were compared to 6 non-obese women without asthma with high dose methacholine challenges to assess the bronchial responsiveness.

There was no increase in bronchial responsiveness, and no difference in the position or shape of the high dose methacholine curve despite the fact that these women had reduced lung volumes associated with their obesity.

In chapter 5, the hypothesis whether reduced lung volume per se would cause a change in greater mechanical effect, ie more marked airway narrowing in both non-asthmatic and asthmatic subjects was tested. Lung volumes and methacholine challenges were undertaken in the supine and erect position on different days. As expected in normal subjects there was a small reduction in lung volume on lying down, this was associated with an increase in the measure of bronchial reactivity DRR. In contrast, in asthmatics, there was no acute fall in lung volume and there were variable changes in the index of reactivity suggesting non-homogeneity in the lung function abnormality. This suggests changes in bronchial reactivity can occur without any relationship to lung volume change.
These negative results suggest that lung volume changes that may occur in obesity are unlikely contributors to the apparent increase in asthma symptoms.

In chapter 6, the hypothesis that the supposed increase in asthma symptoms in the obese were due to the effects of gastro-oesophageal reflux were assessed in 147 obese subjects graded for gastro-oesophageal reflux severity using manometry and gastroscopy. This study showed that subjects with increased gastro-oesophageal reflux did not have subjective increases in asthma prevalence, obstructive sleep apnoea, or snoring however they had a clear worsening of gas transfer as measured by carbon monoxide transfer suggesting a greater level of parenchymal disease.

The overall results are that there is an increase of diagnosis of asthma, increase in symptoms of asthma and medication usage for the treatment of asthma in the obese. Objectively despite reductions in lung volume, there is no increase in bronchial responsiveness in this group suggesting that these symptoms are not related to true asthma, but to alternative co-morbidities associated with obesity such as gastro-oesophageal reflux. Notably gastro-oesophageal reflux was not associated with increased asthma prevalence or airway obstruction. However it was associated with reduced gas transfer suggesting parenchymal disease.

This suggests that the increase in symptoms of wheeze and shortness of breath in the obese should not be attributed to asthma in the absence of variable airflow limitation that is reversible spontaneously or with treatment, or with an increase in the existing bronchial hyperresponsiveness (BHR) to a variety of stimuli.
ABBREVIATIONS

ANOVA - Analysis of variance
ASM – Airway smooth muscle
ATS - American Thoracic Society
BHR - Bronchial hyperresponsiveness
BiPAP - Bi-level positive airway pressure
BMI - Body mass index
Bpm - Beats per minute
BR - Bronchial responsiveness
CI - Confidence interval
CO – Carbon monoxide
CPAP – Continuous positive airways pressure
D_{CO} – Diffusing capacity
D_{LCO} – Single breath diffusing capacity
D_{LCO}/V_A - Single breath diffusing capacity corrected for alveolar volume
DRC – Dose response curve
DRR - Dose response ratio
EC_{50} – The MCh concentration at 50% of the maximum fall in FEV$_1$
ED - Emergency department
EDS – Excessive daytime somnolence
EELV - End expiratory lung volume
EIB - Exercise induced bronchospasm
ESS – Epworth sleepiness scale
FEF $25-75\%$ - Forced expiratory flow
FEV$_1$ - Forced expiratory volume in 1 second
FRC - Functional residual capacity
FVC - Forced vital capacity
GER - Gastro oesophageal reflux
GERD - Gastro oesophageal reflux disease
IC - Inspiratory capacity
ILD – Interstitial lung disease
IPF – Idiopathic pulmonary fibrosis
IUATLD - International Union against Tuberculosis and lung disease questionnaire
KCO - Single breath diffusing capacity corrected for alveolar volume
Kg - kilogram
L – Litres
LAGB (Lap-Band®) - Laparoscopic adjustable gastric banding
LV – Lung volume
M - Metre
MCh – Methacholine
MEFV – Maximal expiratory flow volume
MR – Maximal response
NHANES – National Health and Nutrition Examination Survey
NS - Not significant
NSW - New South Wales
OR - Odds ratio
PD₂₀FEV₁ - Dose of histamine that caused a 20% fall in FEV₁
PEEP – Positive end expiratory pressure
PEFR - Peak expiratory flow rates
PEFV – Partial expiratory flow volume
PFT - Pulmonary function test
P_L - Pulmonary elastic recoil pressure
Raw – Airways resistance
R_L - Pulmonary resistance
SD - Standard deviation
SEM – Standard error of mean
SGRQ - St George Respiratory Questionnaire
SOBOE – Shortness of breath on exertion
TLC - Total lung capacity
US - United States of America
V_{20c} – Flows measured from the MEFV curve at a volume equivalent to 80% of the baseline vital capacity below TLC
V_{20p} - Flows measured from the PEFV curve at a volume equivalent to 80% of the baseline vital capacity below TLC
V₅₀ – Flow rate at 50% of the vital capacity
VQ – Ventilation perfusion
VS - Versus
WHO - World Health Organisation