ASPECTS OF THE PATHOGENESIS OF
OVINE JOHNE’S DISEASE

by

Leslie Anne Reddacliff

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Veterinary Science
UNIVERSITY OF SYDNEY
March 2002
Acknowledgments
I would like to thank the following people and organisations for their assistance during my PhD studies.

Meat and Livestock Australia provided a scholarship for the three years of study, operating expenses which contributed to all aspects of the study, and also specific funding for the pen trials described in Chapter 3 and the field trials in Chapter 4.

NSW Agriculture provided me with three years full time study leave with part salary, and continued access to departmental services such as computer support, transport and office space.

Many staff at EMAI provided technical assistance, both in the laboratory and in the field. Without their dedicated and cheerful efforts only a tiny percentage of the sheer volume of cultures and other laboratory testing would have been possible. Special thanks are due to all in the microbiology section, including Aparna Valdali (M. a. paratuberculosis culture, enumeration work, preparation of inocula and cultures for the pen trial), Anna Waldron (enormous numbers of cultures arising from the field trials and genetic studies), Shane Fell and Vanessa Saunders (many long days in the field in all sorts of weather), Martin McLoon (help and advice with molecular biological techniques) and Lisa Smith (some field work and several late nights with IFN-γ antigens). Special thanks also to Ian Marsh (support, friendship, encouragement, constant optimism and enthusiasm, performing the IS1311 PCR for isolates from sheep tissues used in the enumeration work, and assistance in saving the world). Many others in the lab were also involved – above all it was a team effort in which willing help and friendship were always available.

Other staff at EMAI were also of immense help and the work could not have been done without them. Thanks to Dot Thompkins, Kim Koeford, Joe Kormos and Lyn Muirhead (care of sheep in the animal house and paddocks of EMAI and assistance with all kinds of sample collection). And thanks to the wonderful folks from the Regional Veterinary Laboratory, too many to mention all by name, for their
continued support and friendship, and technical assistance in histopathology, bacteriology, preparation for field trips and lots of clerical advice.

Special thanks also to Paul Nicholls for his patient biometrical support and in particular for performing the intricate statistical analysis to justify the use of CGI1000 as a cut-off point for estimation of inoculum sizes in Bactec culture, and the development of the predictive relationships.

A large amount of the work in this thesis depended on ongoing support from the owners of Farm H (Chapter 4), alias Farm B (Chapter 6). I owe a large debt of thanks to Terry and Cecily Hayes for their assistance over so many years in providing access to their sheep, looking after our sheep, mustering sheep at odd times and from the very top of the big hill, helping and recording at sampling times, sorting out numbers when I couldn’t count straight, and above all, friendship and some wonderful yarns over a cup of tea.

I am also indebted to Kym Abbott from Sydney University for facilitating the field work on Farm A (Chapters 4 and 6). In the field on Farm A, a very special thank you to Helen McGregor whose wonderful work in organising, handling and sampling the sheep made many long days enjoyable rather than just hard work.

I did most of the immunoperoxidase staining for the immunological studies in Chapter 5, and all of the PCRs and polyacrylamide gels for the genetics study at the McMaster laboratory, CSIRO Animal Production, Prospect, unfortunately in the dying days of the Prospect site. Special thanks to Susan McClure (patient advice and guidance on sheep immunology, IPX staining and tricks for cutting good cryostat sections, comments on the literature review and immunology chapters, plus friendship and hints on surviving a PhD), Rhonda Davey (technical assistance with IPX staining techniques, use of digital camera), Ken Beh (demonstration of techniques, and use of facilities for PCR for sheep microsatellites, advice in selection of immune genes for examination, and patient tutelage on the reading of polyacrylamide gels), Rose White (sharing her office and friendship), and Rob Slatter (invaluable technical advice and encouragement on running polyacrylamide gels).
Very special thanks are due to my supervisor Richard Whittington for providing the environment within NSW agriculture so that I could work on my PhD without distraction or worry about rapidly changing departmental priorities, providing ideas, encouragement, field assistance, inspiration, and invaluable, insightful and constructive criticism of my early draft chapters. Sadly my other supervisor, Professor Daria Love, passed away during my candidature. Professor John Edgerton stepped into the breach at short notice and provided invaluable comments on the developing thesis.
Declaration

Apart from the help acknowledged this thesis represents the unaided work of the author. The investigations presented here have not been presented for any other degree or diploma at any other university.

All research reported in this thesis which involves animals has been approved by the Elizabeth Macarthur Agricultural Institute’s Animal Ethics Committee.

Leslie Anne Reddacliff
March 2002
Summary

Johne’s disease is a chronic enteropathy of ruminants caused by infection with \textit{M. a. paratuberculosis}. Ovine Johne’s disease in Australia is an emerging disease and the National Ovine Johne’s Control and Evaluation Program, established in 1998, identified further research into ovine Johne’s disease in the Australian context as a priority. It is against this background that this PhD program was undertaken.

Alternative methods to end-point titration in liquid media for estimation of viable numbers of Australian ovine strains of \textit{M. a. paratuberculosis} were evaluated. A simple technique using cumulative growth indices in Bactec vials that was applicable to isolates from a variety of sources was developed. This allowed quantification of the loss in numbers which occurs during the routine decontamination procedures necessary for the isolation of \textit{M. a. paratuberculosis} from faeces and tissues. Storage of cultured suspensions at -80°C was shown to result in minimal loss of viable numbers. These techniques will facilitate future experimental infections and the efficient determination of numbers of \textit{M. a. paratuberculosis} in clinical and environmental samples.

In controlled pen trials, lambs were given low oral doses (10^7 to 10^8 viable organisms) of ovine strain \textit{M. a. paratuberculosis}. Successful infection was demonstrated by culture of tissues 2 to 4 months after the first dose. There were no associated lesions, but skin testing detected 66% of culture-positive lambs with 100% specificity. Significantly, this was the first demonstration of infection with ovine \textit{M. a. paratuberculosis} in Australian Merino sheep at low doses likely to be representative of natural infection. In follow-up field trials, culture of tissues collected at necropsy was shown to be the most sensitive method for the detection of early infection in flocks of sheep after natural exposure to ovine strains of \textit{M. a. paratuberculosis}. Antemortem diagnostic tests (skin testing, IFN-\gamma and faecal culture) were shown to have low sensitivity at this early stage of naturally acquired disease. These findings suggested that groups of naive sheep, used as tracer animals and tested by culture of tissues at slaughter after 6 months exposure, might be useful to assess pasture infectivity in disease control programs.
Immunoperoxidase labelling (for CD4, CD8, TCR-γδ, WC1, CD1b, IFN-γ, CD45R, CD56, lysozyme and *M. a. paratuberculosis*) was used to investigate changes in cell mediated immune effector cell populations in the intestine and associated lymph nodes in these early infections. Increased numbers of CD4⁺, TCR-γδ⁺ and WC1⁺ cells were demonstrated in the infected lambs, while a decrease in cells expressing CD1b was shown.

Polymorphisms at loci in a number of genes associated with immune function (NRAMP, MHC complex, IFN-γ, lysozyme, leukaemia inhibiting factor) were examined in two independent flocks of Merino sheep, each with a high prevalence of Johne’s disease. Possible associations of NRAMP and MHC alleles with resistance to Johne’s disease were detected.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB</td>
<td>acid-fast bacilli</td>
</tr>
<tr>
<td>AGID</td>
<td>agar gel immunodiffusion test</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cell(s)</td>
</tr>
<tr>
<td>BHI</td>
<td>brain heart infusion broth</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CGI</td>
<td>cumulative growth index/indices</td>
</tr>
<tr>
<td>CMI</td>
<td>cell-mediated immunity</td>
</tr>
<tr>
<td>DTH</td>
<td>delayed type hypersensitivity</td>
</tr>
<tr>
<td>EIA</td>
<td>enzyme immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMAI</td>
<td>Elizabeth Macarthur Agricultural Institute</td>
</tr>
<tr>
<td>GI</td>
<td>growth index/indices</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte macrophage colony stimulating factor</td>
</tr>
<tr>
<td>H&E</td>
<td>haematoxylin and eosin</td>
</tr>
<tr>
<td>HPC</td>
<td>hexadecylpyridinium chloride</td>
</tr>
<tr>
<td>ICV</td>
<td>ileocaecal valve</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>gamma interferon</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IPX</td>
<td>immunoperoxidase</td>
</tr>
</tbody>
</table>
IV intravenous(ly)
KW Kruskal-Wallis
LAM lipoarabinomannan
mAb monoclonal antibody
M. a. paratuberculosis *Mycobacterium avium* subsp. *paratuberculosis*
MB methylene blue (0.02% w/v)
MHC major histocompatibility complex
MLN mesenteric lymph node(s)
mRNA messenger RNA
NO nitric oxide
OD optical density
OJD ovine Johne’s disease
PCR polymerase chain reaction
PBMC peripheral blood mononuclear cell(s)
PBS phosphate buffered saline
PBST phosphate buffered saline containing 0.1% Tween-80
PP Peyer’s patch(es)
PPD purified protein derivative
REA restriction endonuclease analysis
SC subcutaneous(ly)
TCR T cell receptor
TI terminal ileum/ileal
TNF tumour necrosis factor
VAN vancomycin (100 µg/mL), nalidixic acid (100 µg/mL) and amphotericin B (50 µg/mL)
ZN Ziehl-Neelsen
Table of contents

Acknowledgments .. ii

Declaration ... iv

Summary ... v

Abbreviations ... vi

Table of contents .. viii

Chapter 1. Introduction and literature review ..

1

Introduction

.. 1

Aetiology

.. 2

Host and geographic range

.. 3

Epidemiology

.. 5

 Transmission of infection between animals

 Faecal excretion and oral infection

 Infection via the milk

 Congenital infection

 Venereal transmission

 Embryo transfer

 Age and susceptibility to infection

 Introduction and development of infection in a herd or flock

 Strains of *M. a. paratuberculosis* – host specificity

Pathology and clinical signs

... 11
Clinical findings
Gross lesions
Histopathological lesions

Diagnosis of *M. avium* subsp. *paratuberculosis* infection

Detection of *Mycobacterium avium* subsp. *paratuberculosis*

- **Culture**
- **Molecular techniques**
- **Stained smears**
 - **Immunoperoxidase labelling of histological sections**

Detection of host immune responses

- **Humoral immune responses**
 - **Cell Mediated Immune responses**

Pathology – biopsies from live animals

Control

- **Vaccination**
- **Other management options**
 - **Establishing and maintaining herds free of infection**
 - **Culling of infected animals**
 - **Management of young stock**
 - **Selection of resistant animals**

Treatment of clinically affected animals

Pathogenesis

- **Overview**

Entry to the host - route of infection

Penetration of the mucosal barrier
Survival in macrophages
... 28
Host immunological responses
... 30

Innate immune responses

Specific adaptive immune responses
Progression to clinical disease
... 34

The Th1 to Th2 shift in the immune response

Factors triggering clinical disease
Development of clinical signs
Humoral antibodies to M. a. paratuberculosis
Recovery
...
38

Chapter 2. Development of methods for the enumeration of ovine strains of
Mycobacterium avium subsp. paratuberculosis
.. 40

Summary
General introduction
GENERAL METHODS
..
............. 43

2.1. Evaluation of direct counts, spectrophotometry and colony counts on
solid media as alternatives to MPN estimation for the enumeration of M.
a. paratuberculosis (ovine strain)
... 45

Introduction and aims
Methods
Results
Discussion

2.2. The effect of 0.1% Tween-80 in serial dilutions used to provide MPN
estimates for M. a. paratuberculosis (ovine strain)
... 54

Introduction and aims
Methods
Results
Discussion

2.3. Use of cumulative growth indices in Bactec vials for the enumeration of ovine strains of \textit{M. a. paratuberculosis} .. 57

Introduction and aims
Methods
Results
Discussion

2.4. The effect of storage 4 oC, -20 oC or -80 oC on the survival of cultured \textit{M. a. paratuberculosis} in PBST suspensions .. 70

Introduction and aims
Methods
Results
Discussion

2.5. The effect of decontamination protocols on the numbers of \textit{M. a. paratuberculosis} of ovine origin isolated from tissues and faeces 75

General discussion .. 83

Chapter 3. Experimental infection of weaner lambs with \textit{M. avium} subsp. \textit{paratuberculosis} – pilot study in housed sheep ... 85

Summary
Introduction and aims
Methods ..
86
Experimental design
Animals
Inocula
Clinical and necropsy sampling
\textit{M. a. paratuberculosis} isolation
Histopathology
Serology for antibodies to \textit{M. a. paratuberculosis}
Intradermal testing for delayed hypersensitivity
Gamma interferon assay
Results ..
89
Quantification of \textit{M. a. paratuberculosis} dose
Culture of tissues for \textit{M. a. paratuberculosis}
Faecal culture
Gross pathology
Histopathology
Serology for antibodies to \textit{M. a. paratuberculosis}
Intradermal testing for delayed hypersensitivity
IFN-\(\gamma\) assay
Chapter 4. Early detection of natural infection of sheep with *Mycobacterium avium* subsp. *paratuberculosis* .. 97

Summary

Introduction and aims

Methods

Experimental design

Intradermal testing for delayed hypersensitivity (DTH)

Gamma interferon (IFN-γ) assay

Necropsy sampling

M. a. paratuberculosis isolation

Histopathology

Results

Overview of findings on Farm H

Overview of findings on Farm A

Culture of *M. a. paratuberculosis*

Intradermal testing for delayed hypersensitivity

IFN-γ

Histopathology

Discussion

.. 109

Chapter 5. Cell mediated immune effector cell populations in early *Mycobacterium avium* subsp. *paratuberculosis* infection in sheep 115

Summary

Introduction and aims

Methods

Animals and experimental design

Antibodies for immunoperoxidase labelling

Immunoperoxidase labelling

Microscopic examination

Statistical analysis

Results

CD4

CD8

TCR-γδ

WC1

CD1b
Chapter 6. A preliminary study of possible genetic influences on the susceptibility of sheep to Johne's disease ... 140
 Summary
 Introduction and aims
 Methods
 .. 142
 Experimental flocks
 Assessment of clinical signs
 Serology for antibodies to M. a. paratuberculosis
 Intradermal testing for delayed hypersensitivity
 Necropsy sampling
 M. a. paratuberculosis isolation
 Histopathology
 Phenotypic classification of sheep
 Candidate genes
 DNA extraction
 PCR
 Statistical analysis
 Results
 .. 146
 NRAMP alleles
 MHC complex
 Lysozyme alleles
 IFN-γ alleles
 Leukaemia inhibiting factor alleles
 Discussion
 .. 154

Chapter 7. General discussion and conclusions .. 159

References .. 167

Appendices to Chapter 3
 ... 193
 Appendix 3a. Log_{10} direct counts of M. a. paratuberculosis compared to Log_{10} MPN estimates of viable organisms in suspensions used to prepare experimental inocula
Appendix 3b. Intended and actual doses of *M. a. paratuberculosis*
Appendix 3c. Culture results, tissues collected at necropsy
Appendix 3d. Quantitative culture results, tissues collected at necropsy
Appendix 3e. Faecal culture results from fortnightly samplings
Appendix 3f. Faecal culture results from daily collections
Appendix 3g. Parachek ELISA results
Appendix 3h. Skin test results
Appendix 3i. Gamma-interferon results, OD (Avian PPD) - OD (PBS)

Appendices to Chapter 4
... 205
Appendix 4a. Tracer weaner field evaluation. Farm H, Year 1
Appendix 4b. Tracer weaner field evaluation. Farm H, Year 2
Appendix 4c. Tracer weaner field evaluation. Farm A

Appendices to Chapter 6
... 219
Appendix 6a. Summary of phenotypic assessment and genotype of individual sheep from Flock A
Appendix 6b. Summary of phenotypic assessment and genotype of individual sheep from Flock B